
CaP -392

D o m a i n D e c o m p o s i t i o n in D i s t r i b u t e d
a n d S h a r e d M e m o r y E n v i r o n m e n t s

I: A Uniform Decomposition and Performance Analysis
for the N C U B E and JPL Mark IIIfp Hypcrcubes

Geoffrey C. Fox t
Calteeh Concurrent Computation Program

Mail Code 158-79
California Institute of Technology

Pasadena, CA 91125
June 8, 1987

Invited Paper at ICS 87, International Conference on Supercomputing, June 8-12, 87, Athens, Greece.
To be published as a Lecture Note in Computer Science by Springer-Verlag, and edited by Constantine
Polychronopoulos.

Abstract:

We describe how explicit domain decomposition can lead to implementations of large scale scientific
applications which run with near optimal performance on concurrent supercomputers with a variety of archi-
tectures. In particular, we show how one can discuss from a uniform point of view two architectural charac-
teristics; distributed memory and hierarchical memory where a large relatively slow memory is buffered by a
faster cache or local memory. We consider two hypercubes in particular; the commercial NCUBE and JPL's
Mark IIIfp with hierarchical memory at each node of a hypercube. We remark on the application of these
ideas to other architectures and other concurrent computers. We present a performance analysis in terms of
basic parameters describing the hardware and the applications.

I: Introduct ion

This paper is the first of a series from Caltech that will discuss some of the issues in developing decom-
position and software tools for concurrent supercomputers. In particular we need to develop implementations
of major scientific problems that run well on concurrent supercomputers with a variety of different architec-
tures. At Caltech, there is widespread support among many of the computational scientists and engineers for
the use of concurrent supercomputers [1]. However, there is clearly no agreement among either research
groups or commercial vendors as to the "right" architectures either at the present or in the future. It is impor-
tant that we can find techniques that will allow (Caltech) users to develop code which will be useable not only
on today's prototypes but will not need major revision for future machines.

Presently available concurrent supercomputers suitable for scientific computations can be divided into
three classes [2-4]

Small grain size, SIMD, Distributed Memory: Such as the ICL DAP, Goodyear MPP, and Connection
Machine.

Large grain size, MIMD Distributed Memory: Such as the various hypercubes and the transputer based
systems like the M E I K O Computing Surface.

t Work supported in part by DOE grant DF~FG0S-SSER25009 and DE-AC0S-SSER40050, the Program
Manager of the Joint Tactical Fusion Office, and the ESD division of the USAF, Also, grants from IBM,
SANDIA and the Parsons and the System Development Foundations.

1043

Large grain size, tk~MD Shared Memory: Such as the CRAY, ETA, ELXSI, ALLIANT, ENCORE,
SEQUENT, C E D A R , B U T T E R F L Y , and RP3.

Here we will concentrate on a version of domain decomposition that is appropriate for the large grain
size machines and not consider the SIMD architectures. This is not due to lack of interest - the SIMD
machines have been very successful in many scientific problems - rather I am largely constrained by
ignorance. Further, we will not consider dataflow which could in the future be an interesting approach to
supercomputers. In order to focus the paper further, we will not discuss shared memory machines in general
but rather concentrate on one aspect of some of these machines - namely a hierarchical memory where good
performance requires data to lie in a cache or local memory and not fetched from a relatively slow shared
memory each time. We note that a memory hierarchy is difficult to avoid in high performance machines with
pipelined floating point units. We will not discuss important issues such as the contention in a shared memory
access network nor will we consider alternative programming methodologies such as automatic (user or com-
puter generated) parallelization of do and for loops even though these techniques have had important
successes [28, 29, 32].

I have chosen domain decomposition because it is the natural and at present required method for pro-
gramming the hypercube. Further, we understand it reasonably well and shared memory machines typically
support it elegantly [5] whereas the favored shared memory methodologies are not easy to port to the simpler
hardware of the distributed memory machines. I will sharpen the hypercube discussion further by consider-
ing two particular machines.

The commercial N C U B E hypercube with 1/2 megabyte of memory on each node and up to 1024 nodes.
Our initial 512 node machine has 0,25 gigabytes of memory and 0.05 gigaflops peak performance.

The so-called Mark IIIfp hypercube under construction at Caltech's Jet Propulsion Laboratory (JPL).
This will have 128 nodes each with 4 megabytes of slow memory and a high performance WEITEK XL
chip based floating point unit buffered by a 64 - 128K bytes data cache i.e., each node has a hierarchical
memory. The total machine has 0.5 gigabytes o f memory and up to 1 gigaflop performance.

We expect these two machines to be the initial hardware facility around which we will build our new
"Concurrent Supercomputing Initiative at Caltech" or CSIC [4,6].

In Sec. II, we describe the target machines in greater detail and introduce and quantify the necessary
hardware parameters to measure performance. In the third section, we describe domain decomposition, its
application to distributed and hierarchical memories and relation to the theory of complex systems [2 ! 7].

The heart of the paper lies in Sec. IV where we analyze several specific scientific algorithms including
particle dynamics, iterative methods for partial different equations (PDE), fast fourier transform (FFT),
matrix inversion and multiplication and finally neural network simulation. We conclude in Sec. V.

II: Charaeterlzation of Concurrent Machines

The hardware architectures considered here are shown in Fig. 1. In l(a) we show a generic sequential
machine with a cache as a buffer to a main memory. It should be noted that this conventional machine is not
the focus of this article; however, the techniques described here could allow coding such machines in a way
that makes excellent use of the cache. In Figs. t(b) and (c), we generalize this architecture in two ways.
Firstly in l(b), we show a hierarchical shared memory machine with a group of C.P.U?s connected by an
unspecified network to a large global shared memory. This model is a reasonably accurate description of such
machines as the CRAY-2, ETA-10, ELXSI, B U T T E R F L Y , and RP3 among others. This design, or variants
of it, is more or less required if one either has a large number of nodes (as in the B U T T E R F L Y or RP3) or
very fast C.P.U.'s (as in the other cases). We note that the memory denoted as "cache" in Fig. 1 should often
be more properly called local memory. The functions of cache and local memory are similar; both provide
faster access to variables than is possible from the main memory. Our discussion will apply to both memory
constructs but is perhaps more natural for local memory which is user (software) controlled rather than the
hardware controlled cache. We will hereafter use the term "cache" to describe the dual concept. The neces-
sity of a multistage network connecting nodes to the global memory implies the importance of the "cache" for
machines like the RP3 and B U T T E R F L Y with very many nodes. The use of a fast C.P,U., even with a small
number of processors, also typically needs a "cache" to get good performance. Presumably the future will see
shared memory machines with many very high-performance nodes; these may depend on the "cache" to an
even greater extent. We note that there is no reason for the memory hierarchy to only have two levels; many
machines have more. For instance, the RP3 has global memory, local memory, and a true cache. The analysis
presented here can be extended to a multilevel hierarchy or just applied to one part of it. For instance on the

RP3, the high-speed network gives good access to the shared memory and it would probably be most natural
to apply the analysis here with the "cache" being the hardware cache on each node and the local and global
memory being lumped together at a single level.

In Fig. l(c), we show a distributed memory architecture. The initial hypercubes had rather simple nodes

1044

but newer machines have gone to hierarchical node designs to obtain high performance. Examples of the
latter include the I N T EL iPSC-VX and the new JPL Mark IIIfp design, We will concentrate on the latter
here as we unders tand it better and INTEL's current tools do not, we believe, allow the VX hypercube to be
programmed in the fashion we will suggest. The Mark IIIfp uses complex nodes with large memory and
potentially high performance on each node. These N C U B E and Mark IIIfp nodes are contrasted in Fig. 2 and
pictured in Figs. 3 and 4.

The N C U B E does actually have a small on chip cache but for our purposes it should be viewed as a sim-
ple uni-level memory at each node. We need a reasonably large "cache" - at a min imum the 64 - 128K bytes
of the Mark IIIfp - for our considerations to be relevant. This will become clearer later when in Sees. III and
IV we quantify the role of the "cache" size. Similarly, in the transputer based system, the on chip memory of
2K bytes is probably usually too small to be used as a "cache" in the sense advocated in this paper.

In Fig. 5 and Table 1, we introduce three basic parameters t,~t,, t,~,~ and t,~,,~ which we use for our
performance analysis. We will restrict ourselves to considering 32-bit arithmetic as this is sufficient for many
calculations and the WEITEK X L chip set used on the Mark IIIfp currently only supports 32-bit arithmetic.
tea c represents the typical t ime to perform a floating point application including any overheads such as
memory ("cache") access and indexin~ t,,~,~ and t,~,,~ are effectively communicat ion parameters, t,o,,~ is the
time taken to transmit a 32-bit word between nodes of a hypercube and t,,~,~ the time taken to send a word
back and forth between "cache" and main memory. We now need to make several comments and caveats on
these parameters.

Firstly, we note that these three parameters are a very incomplete description of the hardware. For this
paper, we will need the "cache" and node memory sizes as well. We will describe these in application depen-
dent fashion as n~,~h~, n ,~e , and n ~ a for the number of basic entities (e.g., matrix elements in a matrix prob-
lem or particles in a dynamics problem) that can be held in the "cache", node of hypercube or total memory
respectively. The performance of a system will also depend crucially on whether communicat ion (either node
to node or "cache" to memory) is concurrent or sequential with other operations. For the Mark IIIfp, node to
node communicat ion (governed by t,o,,~) is concurrent with calculation while "cache" to node memory
transfers can not be overlapped with calculation. For the NCUBE, communicat ion is presently not concurrent
with calculation.

The N C U B E has a scalar processor and the speed t , ~ of typical floating-point operations will not
depend drastically on circumstances although, even here, factors of two variations can be expected. Pipelined
or vector machines like the Mark IIIfp, ETA-10, and CRAY-2 can expect very different values of t ~ , on dif-
ferent applications. We have listed the approximately smallest possible value of t ~ , as this will be the pacing
value for the performance analysis. The techniques described here are in some sense designed to improve
tea, by ensuring minimal "cache" misses.

All three parameters t~a,, t,o,,~, and tree m depend on the size of the operation performed i.e., on the size
of the vector (t~,a~) or size of the "message" (tco,,~, t,,,~,~). We will ignore the startup time for small vectors and
messages even though these are usually important. The techniques needed to mininalze startup effects are
interesting but are outside the scope of this paper.

The parameter t,~,,~ has been defined in a somewhat unnatural fashion in Fig. 5 as the time to read and
write a word between "cache" and main memory. This makes the definition symmetric with t,~,,~ and indeed
if one uses a shared memory machine to emulate a distributed memory environment, then with our definition
t,,~,,~ is the appropriate value of t,~,~.~ to use to describe node to node communicat ion in the emulation. This
assumes that in the emulation, a hypercube node process is fully contained in the "cache". We will describe in
Sec. III how one takes care of the case when the problem is too large for all the processes to fit into "cache".
In Sec. IV, we will use 1/2 tm~,,, as the transfer time when we are just reading or writing. We again emphasize
that the shared memory value and indeed our later discussion of t,,~,~ completely ignores any contention when
accessing the global memory.

The Mark IIIfp can be seen to have interesting multi-level hierarchy with "cache" ~ node memory ---,
other nodes ' memories. The relevant communicat ion speeds teomm, trnem between the three levels have com-
parable values although as we will see they do enter the performance analysis in related but rather different
ways. The Mark IIIfp illustrates another tactically important issue controlling performance. Namely, in the

default node, variables written to "cache" are also stored in main memory. As we will find that this can
degrade performance, the Mark l t l fp has the capability to temporarily disable the "write through" nature of
the cache and so allows the communicat ion between "cache" and main memory to be under user control. This
control structure is implied for machines where the "cache" is designed as a local memory. Referring back to
our previous discussion of concurrency, we note that on the Mark IIIfp direct loads of either the cache or
local memory cannot be overlapped with calculation. The storing o f variables into main memory is similarly
non overlapped with one exception; automatic write through from cache is transparently overlapped with
other operations as long as a small "pending write" buffer of three requests is not filled i.e., if the writes are
sparse, they are overlapped. We will not use this overlap feature in our discussion although it would be possi-

1045

ble to improve performance in many cases if full overlap had been allowed in the Mark IIIfp design.

In discussing the hypercubes, we have listed too,,~ as the node to node transmission time; messages
between nodes that are not directly connected in the hypercube topology will be characterized by a larger
value of t,o,,~. We will accommodate this by reflecting this as an application dependent effect which will be
seen in Sec. IV as a I /2 log N~-o~ factor in the communicat ion overhead for the FFT. We will use Nr~o~ as the
number of physical processors throughout this paper.

We will use the term hypercube broadly in this paper to include simple nodes like the N C U B E or more
complex designs such as the Mark Illfp. When we wish to single out machines like the NCUBE, we will use
the term homogeneous hypercube while terming machines like the Mark IIIfp as a hierarchical hypercube.

Finally, we summarize many of the caveats by noting that a performance analysis in terms of simple
parameters such as tco,,~, t,,~m, t,ac is usually accurate but the simplifications imply that the parameters are
not universal but need to be adjusted by different, but usually modest and understandable factors for each
application [9].

III: Domain Decomposition and Complex Systems

One can formulate concurrent computation as a mapping of a problem onto a computer [2, 7, 8]. We
consider both the problem and the computer as complex systems; for our purposes, these can be considered as
a set of, in general, dynamically interconnected entities. The performance of a particular implementation can
be related to the structure of the systems describing the problem and computer [2, 3, 9]. In this paper, we are
only considering large grain size concurrent computers i.e., each node has substantial memory. In this case, it
is natural to consider the problem, or more precisely its underlying complex system, as being divided up into
subdomains which we will call grains. At any one time, each node of the concurrent computer is responsible
for a single grain. In this context, domain decomposition is the division of the problem, or typically its defin-
ing data domain, into appropriate grains. We can make this clearer by considering the map of the problem
onto the computer in more detail. We can isolate four stages. The use of a vectoring or parallelizing computer
corresponds to the map:

Problem ~ Algorithm ~ Code --~ Compiler Generated Decomposition ---, (1)

Concurrent Computer

i.e., performing the map onto the concurrent computer between the last two stages.

We will consider domain decomposition corresponding to the map being generated by:

Problem ---, Algorithm --~ Domain Decomposition ~ Code ---, Concurrent Computer (2)

where one forms the basic grains not from the code as in (1) but from the basic algorithm or problem in (2).
The advantage of (1) is that one directly uses existing software on concurrent machines whereas in (2) it is
implied that one must generate code that describes individual grains. (1) is presently only practical on shared
memory machines and indeed the ability to use this programming methodology is a key advantage of this
architecture over distributed memory systems.

The hypercube and other distributed memory machines are traditionally programmed by domain decom-
position as described above. This methodology has advantages of generality (it is potentially useable over a
broad range of architectures) but it does require significantly more user involvement in the concurrency and
software. In particular, there is no easy way to make use of existing sequential software and at Caltech, we
have typically recoded our hypercube applications from scratch. As will become clear, we are interested in
domain decomposition for the shared memory architecture, not only because it allows the porting of hyper-
cube targeted programs but also because it may give near optimal performance for some problems on shared

memory machines.

In a series of papers, we have developed a set of optimization methods, in particular, neural networks
and simulated annealing, for choosing the optimal definition of the grains for a particular problem [7, 8, 10,
I 1, 12]. This work was in the context of a simple hypercube as the target machine. We will not discuss this
research here but note that the discussion of the current paper lays the groundwork for extending the earlier
work to give optimal domain decompositions for complicated hypercubes like the Mark IIIfp and some shared
memory machines.

The optimal decomposition for a simple hypercube divides the problem into grains satisfying two cri-
teria:

The amount of communicat ion between grains is minimized.

Each node of the hypercube does the same amount of work; measured in terms of calculational complex-
ity, each grain is the same "size".

1046

We can now see qualitatively the possible importance of domain decomposition for hierarchical memory
systems. The latter perform well as long as references to memory are largely local to the "cache" and do not
require access to the slower main memory. This is clearly analogous to minimizing communicat ion in a distri-
buted memory machine. We will see that there are important quantitative differences in the "locality" con-
straints for hierarchical and distributed memories. However, the purpose of the current paper is to explore
and explain their similarities and derive the ground rules for a uniform user interface which can be imple-
mented well on either architecture.

The second constraint of the hypercube decomposition given above corresponds to load balancing the
work of the nodes. We will not stress this here as it is not central to our discussion. We will choose as our
examples regular problems for which load balancing is not a difficulty [2, 7]. In the future explicit realizations
of the ideas presented here the constraints of load balancing may, in fact, be very important. In particular, an
elegant dynamic load balancer for the hypercube appears to require a full multitasking environment with each
node responsible for several (~ 10) processes or grains [13-15]. We will adopt a simpler point of view here
With, in the case of the N C U B E and other hypercubes with simple nodes, only one process per node. This is
sufficient for the problems discussed here and will be pedagogically clearer. In fact, the multitasking environ-
ment already introduces hierarchy into a simple hypercube environment as now one has different process to
process communicat ion speeds depending on whether or not the communicat ing processes lie in the same or
different nodes. Thus the multitasking environment will tend to unify the ideas across architectures and we
will include it in future discussions. In this paper, we are not attempting to discuss the detailed user environ-
ment and explicit software implementation but rather the functional structure of the software environment as
"seen" by the machine. We will address the (very important) implementation issues elsewhere.

Let us focus our ideas by considering a specific problem of particle dynamics with a short-range interac-
tion. An example is shown as a complex system in Fig. 6. Typically, the computation involves particles
linked by a force and the number of such links measures the calcutational complexity. Consider the underly-
ing complex system as a graph whose nodes are the particles and nodes are linked if and only if the
corresponding particles interact with each other. Then the calculation complexity is measured by the number
of edges in the graph. Domain decomposition will divide the graph into grains (subgraphs) such that each
grain has approximately equal numbers of edges and we minimize the number of edges that cross grain boun-
daries. When implemented on a homogeneous hypercube, the ratio f c of communicat ion to calculation is
measured by the ratio of the number of edges crossing grain boundaries to the total inside a given grain. In
many previous papers, we have shown that this leads to the result [2,3,7,9]

f o - constant tco,~ (3)
n l/a t c ~ gioir~

Where n g , ~ is the number of entities (number of nodes of graph i.e., particles in our example) in each
grain and the parameters t,o,~.~ and t,,a~ were introduced in Sec. II.

The application dependent constant in Eq. (3) is typically of order unity. The connection dimension d has
been defined generally in Refs. [2] and [7] and coincides with the geometric dimension for short-range or
nearest-neighbor problems.

In architectures where communicat ion is serial with calculation such as all the initial.(Caltech's Cosmic
Cube and Mark II, INTEL iPSC, NCUBE) hypercubes, one aims for f c -< 0.25 which was obtained for the
initial Caltech applications as long as

- - - <_ 3 ; non overlapped (4)
t eate

The goal f o <- 0.25, corresponds to a speed-up S = e N ~ with efficiency e given as

I
e = l+f----- c- ; non overlapped (5)

_> 0.8 for fo<0 .25

This is a phenomenological result averaged over the values of nu,~/,~ , d, and constant seen in typical appli-
cations. In table 2, we give a current list of Caltech hypercube applications to indicate the problem areas
from which our results have been obtained. We do not wish to discuss here the many issues underlying the
validity of (3) but rather refer the reader to the detailed discussions in Refs. [2, 3, 7, 9]

In the case where communicat ion is overlapped with calculation, one can afford an order of magnitude
more message traffic with a typical goal o f r e <_ 1.25 or the less stringent constraint:

tcor~r~
< 15 ; overlapped (6)

t~ze

1047

with efficiency

= min (l , t / f c) ; overlapped (7)

_>0.8 f o r f c _ < 1.25

We see that the difference between (6) and (4) partly explains why the Mark IIIfp and N C U B E can both
give good performance even though the former has an order of magnitude larger value for t~o,~/tc,ao. As we
see from (3) and is explored in detail in Ref. [16], the Mark IIIfp will also have the value o f f c lowered by the
larger value of no,an allowed by the larger memory of the Mark IIIl'p. Explicitly for systems of dimension d=3,
we see that I/nj~/4,~ is decreased by a factor (4/0.5) ~/~ = 2 in comparing the Mark IIIfp to the NCUBE.

Now return to the original particle dynamics example and consider its implementat ion on a variety of
architectures. In the case of a homogeneous hypercube we have already described how we divide the particles
into groupings and assign each grouping to an individual hypercube node. We have a number No,~ . of grains
equal to the number of processors N~.o~ in the concurrent machine. Using the notation of Sect. II, we also
have the number of particles in each grain, no~ . = n,,a, and a total number ntoua of particles given by

n ~ = Nr, ~ no,a, (8)

Now consider a hierarchical shared memory machine such as that pictured in Fig. l(b). As explained
earlier, we would naturally expect best performance if memory references were largely local to each "cache"
and this will be achieved if one can assume that each "cache" contains a complete grain. However, there is a
crucial complication that in general, one can not expect that the full problem can be held in the "caches".
Some fraction of it can be in "cache" with the remainder "waiting" in the large shared memory. In contrast, it
is reasonable to assume that the homogeneous hypercube will be able to contain the full problem in the aggre-
gate of it's nodes ' memories. In general, we will define a grain so that it can be contained in the "cache" or
lowest level o f the memory hierarchy under consideration; this grain can contain ng~,~ members (nodes of
graph). We can now define an effective or virtual number Na~- ~ of processors so that the total system can be
contained in Nq,~. nodes. Thus

nt,~a = Na,a,no,~, (9)

In general, Ng,~, is larger than the real number Nr, ~ of nodes and we can assume that the grains have
been defined so that the ratio r ,~,~ = Ng,~i,/Nr, o~ is an integer.

We can now summarize three relevant circumstances:

Homogeneous Hypercuhe

n,~ae = ngr, a,~ entities fit in a single node

N¢~. = N~o~

r~/~,,o 2 = 1

Hierarchical Shared Memory Machine

n~.~a~ entities fit in a single "cache"

r ,~innat >-- 1

processes "waiting" for loading
(r,~n~a- 1)No,~, into "cache"

(10a)

(10b)

Hierarchical Hypercube

ng,.,a,~ entities fit in a single "cache" (10c)

Ngr~, = n t~ /no ,~ .

r~n~a _> 1 grains in each node

n,o~ = r~,~,a n g ~ entities fit in a single node

The computer system is to be viewed as having Ng,,a,~ virtual nodes which, except in the case of the
homogeneous hypercube, is typically larger than the number of physical processors N ~ . For small problems,
one could find that r~n,~a was unity even for the hierarchical designs. In this case, hierarchical shared
memory or distr ibuted memory architectures can be considered by the same performance analysis given ear-

1048

lier in Eqs. (3 to 7) for homogeneous hypercubes. In this case, one can substitute t,,~,~ for t ,o ,~ on these
equations when considering the shared memory case. However, it is the purpose of this paper to consider the
more general and interesting case r,~n,,a > i.

Consider an example of the consequence of these ideas comparing the 1024 node NCUBE, each node
having 0.5 megabytes of memory with the 128 node Mark IIIfp, each node having 4 megabytes of memory.
Normally one considers the latter machine as having larger grain size but consider the use of these machines
to solve a problem requiring the full 512 megabytes available on each machine. The NCUBE has 1024 grains
each of 0.5 megabyte size but the Mark Illfp with r,i,t~ = 32 has 4096 grains each of 0.125 megabytes! The
addition of the floating point unit has, in fact, given the Mark IIIfp a smaller grain size and required one to
decompose the problem into more and not less (than for the NCUBE) grains. Note that if the total problem
size had been 128 megabytes, then both machines would be used with 1024 grains, each of 128 kilobytes.

Let us consider some of the issues from a more fundamental, or perhaps philosophical, point of view. In
the particle dynamics example, we have a spatially distributed system which nature evolves simultaneously in
time. On a homogeneous hypercube, the spatial complex system corresponding to the problem is directly
mapped onto a spatially distributed memory of the hypercube. Then as in nature, each node evolves different
parts of the spatial system simultaneously. In this case, we have a rather clean association.

Space in Problem --* Space in Homogeneous Hypercube (l l a)

Time in Problem --* Elapsed Time in Computer Execution

Tl~is association is particularly precise in the case when each node of the computer holds a single parti-
cle. In the normal case, where each grain has several particles, then we have an intermediate situation when
the spatial system within each node is evolved sequentially in time by the node; i.e., we have partially mapped
the spatial extent of the system into a temporal extent in the computer implementation,

To extend the above picture, we generalize the concept of a complex system to include both the spatial
and temporal aspects of a problem. This is illustrated in Figs. 7 and 8, and in the particle dynamics case, we
would consider the extended complex system as the physical system or a graph generated by, for instance, a
space-time region defined by some condition such as:

Ix_ - x_ol -< r (1 lb)

In Fig. 7, we show this for one spatial dimension and a regular lattice. In our previous work [2,7], we
have only needed to consider the spatial aspects of complex systems because of the rather clean correspon-
dence of space and time, expressed in Eq. (t la), between the computer and problem present for the homo-
geneous hypercube.

Returning to Fig. 1, we now see that the sequential computer shown in Fig. l(a) corresponds to:

Space and Time Elapsed Time in
in Problem --~ Sequential Computer (1 lc)

Typically one cycles through individual particles and processes them sequentially. If we now consider
the hierarchical memory systems l(b) and l(c), we find the intermediate situation:

Space and Time
Space in Problem --* in Heirarchical Memory Machine (1 ld)

Time in Problem ---, Time in Computer

(l i d) would reduce to (l l a) in the degenerate case where the problem can be contained in the "caches" -
summed over nodes.

Above we have pointed out that varying degrees of parallelism correspond to mapping spatial aspects of
the problem into different mixes of space and time on the computer system. Fig. 8 illustrates an important
technical reason to introduce a complex system extended in space and time. For a homogeneous hypercube,
communicat ion costs are related to graph edges crossing spatial boundaries of the system. For the "cache"
based architectures in Fig. l(b) and l(c) we will need to load the initial value of the system at the time to and
store back in main memory after evolution to time t 1- We see that this load and store correspond to the tem-
poral boundaries of the system, t,~,,, and t ~ o ~ correspond respectively to the costs associated with temporal
and spatial limitation of the system.

Figure 8 makes it clear why we may need to disable "write through" on the Mark IIIfp and machines
with comparable architectures. We will find cases where we need significant (t 1 many time steps larger than
t o) t ime extent to minimize "edge" effects corresponding to the boundaries formed by cache load and store.
"Write through" typically implies that the system is stored to main memory after every time step.

1049

We will now quantify this general picture with several examples in the next section. We will find simi-
larities and differences between the temporal (t,~,~) and spatial (tco,,~) aspects of the problems. We will only
summarize the results with the intention of providing a detailed analysis elsewhere.

IV: Examples

IVA: The Long Range Force or Complete Interconnect

This case is interesting because we will find low overheads from both the spatial and temporal boun-
daries in Fig. 8 with these two overheads having the same dependence on grain size na~ ~. The generic prob-
lem, that we will consider, is the time evolution of a set of particles interacting with a long-range force; we use
the brute force algorithm and not the faster FFT [2] or clustering method [17]. We calculate the force on each
particle by summing the contribution of all others [2]. We now consider first homogeneous hypercubes and
then hierarchical memory computers.

a) Homogeneous Hypercube

One decomposes the problem with an equal number ng~an of particles in each node [2]. Another set
(identical copy) of the particles travels completely around the cube (which can be mapped into a ring)
updating the mutual interaction as the travelers pass through the node containing the fixed particles.
There is some care needed to ensure Newton's law of action and reaction is exploited and each interac-
tion is only calculated once [2]. However, the performance analysis is straightforward and if at each step
one transports M particles

Calculation Time T,,ac M n a ~ t~,ac (12a)
2

Communication Time T¢o,~n ~ M t¢o,~,~ (12b)

and the overhead f v introduced in Sec. III, Eq. (3), is given by:

1 t ,o,~
f c (12c)

nu~in teate

independent of M.
b) Hierarchical Machines

Now M is the total number of particles cycled from main memory through the "cache". Each grain takes
time

T e ~ = nu~,a, t,r~, (13a)

to load and store. The travelling particles must be read from main memory and stored back with their force
updated. This takes time:

T ~ = M t,~,, (13b)

These numbers should be compared with the identical values (12a) and (12b) for calculation and com-
munication in the case of the hierarchical hypercube. We see that good performance requires that M be
chosen large (_> na~n) but this is algorithmically possible and natural. Hence for this case, the calculation
time (12a) is much larger than the "cache" overhead and one finds for M_> no~u, that:

1 tmem
fH ~ - - (13c)

n~/~ t~a ~

is the hierarchical memory access overhead to be compared with the communication overhead f a in (12c).
The latter needs to be added to fH for the hierarchical hypercube which has both forms of overhead.

For the hierarchical shared memory machine, the natural value of M is nu~,a and for the hierarchical
hypercube the smaller value M = n,~a, = r , i , ~ n ~ ; in each case Eq. (13e) is valid.

We do find that care is needed to reduce fH. One must cycle all particles through the "cache", i.e.,
choose a large value of M, in between reloading the "cache". Further, one needs to update each particle in the
cache in a fashion that one only writes out the results after all M particles are considered. In the case of the
Mark IIIfp, this implies that one disables the cache "write-through" feature until all M particles have travelled
through.

Comparing Eqs. (12c) and (13c) with Eq. (3), we see that both exhibit our standard form with connection
dimension d = 1 independent of the underlying topological structure of the space.

1050

IVB: Two Dimensional Finite Difference

We will consider a finite difference solution to Poisson's equation, V2~b = 4~rp, solved by an iterative
(relaxation) method on a regular two dimensional mesh. This problem is simple but the discussion generalizes
to other short-range problems including wave equations, image processing, particle dynamics, and Monte
Carlo. The choice of two dimensions is not essential and at the end we will generalize to higher dimensions.
We will use the simplest stencil where the value at the next iteration only depends on the original value and its
four neighbors at the current step. This is shown in Fig. 9(a); as discussed in Ref. [2] and later in this paper,
more complicated stencils such as that in 9(b), do not alter one's conclusions. We are not underestimating the
difficult implementation issues in realistic problems, but we believe that our simple case embodies the essen-
tial issues for the performance estimate.

(a) Homogeneous Hypercube

One performs a simple two dimensional decomposition with each node containing a ~ x ~
submesh. A typical iteration takes a calculation time for each iteration of

T ~ = 5 ng~,~ t~o~ (14a)

and the communicat ion is associated with the edges of the region in each processor and takes time:

T~o,~,,~ = 4x/n0~,~ t~o,,~ (14b)

and one finds a communicat ion overhead

1 tco,~,,~ (14c)
f o ~ .. 1/2

etg(ai~ teole

with the form of Eq. (3) and the connection dimension d equal to the topological dimension.

(b) Hierarchical Machines

As in the previous example, Eq. (13a), one takes time for load and store of:

T~a~e = n g ~ traera (14d)

The grain is stored in the "cache" and one also needs to load the neighboring points and in analogy to
(14b), one finds a communicat ion cost.

T~o,,~ = 4-~/ng,~,~ (1/2 t,~,~ or tcom~) (14e)

where the communicat ion may be from a process in the same or neighboring node; the corresponding com-
municat ion time is either I /2 t,~,~ or t~o,,~. In fact, in terms of the ratio r,~n~a introduced in See. III, one can
rewrite Eq. (14e) as

reo,,~, = 4v/na,oi,~ (1/2t,,~,~ (v / r ~ - l) + t~o,,~) (14el)

~ 2v/n0,vi~ t,,~,~ (14e n)

in the interesting case with large values of r,~n~.

If we compare (14a) with the overheads (14d) and (14en) , we see that cache loading dominates (for
large n~,~-,0 and

1 t,,~,~ (14f)
fH 5 tool~

and unlike our previous results summarized in Eq. (3), f ~ does not decrease as one increases ng ,~ . The rea-
son for this is clear from Fig. 8 and the discussion at the end of Sec. IV. We have a space-time complex sys-
tem stored in our cache, with as shown in Fig. 10(a), a single iteration (time) count as its temporal extent. We
need to reduce the edge/area ratio in the temporal direction. This can be achieved by updating the region
stored in "cache" by more than one time step. This is a nontrivial issue because it now implies a different
decomposition than that usually used for the homogeneous hypercube. In Sec. IVA, we saw a somewhat simi-
lar situation where the hierarchical implementation required M large whereas M -~ 1 was sufficient for the
homogeneous case. Now the hierarchical case has required that each grain update for several, say M, itera-
tions or time cycles.

Two possibilities are shown in Figs. (10b) and (10c) for the case of one spatial dimension. If the wave

1051

equation was the underlying problem, Fig. (10b) separates regions by the characteristics of the equation. We
see that Fig. (10b) still corresponds to short range (spatial) communication. Te~h, is unchanged. T~c and
T,o ,~ in Eqs. (14a, 14e n) are increased by a factor equal to the number M, of iterations. Optimal is the
choice of equal extents in the space and time dimensions, M = na,a~ 1/a, when we get back the result

f c ,~ ~ n ~ (t,n~r~ or t~o,,~)/Ga¢ (14g)

for a system of dimension d.

A simpler alternative, shown in Fig. (10c), is easier to implement. We chose cylinders with sides parallel
to the time axis for our space-time complex systems. These have an interesting property illustrated precisely
in Fig. 7 of cutting more edges with the temporal planes. In fact the number of edges cut is proportional to
M ~ where M is the number of temporal steps. This leads to communicat ion costs, appearing as additional cal-
culations, proportional to M s. We find in with the dimension d = 2,

T~a~ ec na.a~ M (14h)

T~o.,~ o~ na,.,a,, z-zld M 2

Teach e Oc ngmi ~

1 M
The ration f e + f n is proportional to (- ~ + . 7 .) and is minimized for M ~ "o,~-" 1/2a

¢ t o h~in

and we find the amusing total overhead

1 (tm,~ or t ,o ,~) (14i) f c + f n ~ - z / ~
ngiain t cae

Although the dependence on the grain size is slower than for Eq, (14g), this overhead does decrease as
the grain size increases.

IVC: Matrix Multiplication

We now consider a simple matrix algorithm which is not the most important but exhibits interesting con-
trasts with the previous two cases. Take the multiplication of large full matrices

C = Z • B 0 5)

where each matrix is ~ × n x / ~ . The basic ideas in this section are the same as in Refs. [2, Ig, 23, 31].

(a) Homogeneous Hypercube

Here one considers a simple decomposition dividing each matrix into N r ~ square subblocks each o f size
V ' ~ g ~ x v / n g , ~ where the dimensions are given by ~ = ~ / x/N~o~. As discussed in Ref. [18],
there is an efficienl algorithm in which the subblocks of A and B are respectively broadcast (along a subcube)
and shifted along nearest neighbor links of the hypercube. The basic calculation at each stage involves sub-
block multiplication with

Tea, _ ,. a/2 , %,~',~ "ca, (16a)

and overhead

T~o,,~ o~ ng ,~ t~o,~ (16b)

One obtains a conventional overhead formula

f G

corresponding to connection dimension d = 2,

(b) Hierarchical Machines

1 t¢or~rt~
n l/Z t~a, (16c) grh/n

The interesting feature now is that one does not need to modify the algorithm at all because the cache
loading time is

Teach ~ e~ ng~n t,~m (16d)

and so we obtain, with an unchanged algorithm

1052

1 t~.~ (16e)
f s N .. i/2 t ~ .

¢tgfaltt

The constant in (16e) can be affected by the exact algorithm used as it depends on the number of blocks
read in between cache stores; this is analogous to the M dependence in Sec. IVA.

Let us compare this case with that of the finite difference algorithm in Sec. IVB. As shown in Eqs. (14c)
and (16c), both have similar overheads in the case of the hypercube. However, the matrix multiplication
naturally retains this result for hierarchical machines while for IVB, we needed to change the algorithm to
reduce the memory overhead fR . We can understand the issue by comparing Eqs. (14a) and (16a). In the fin-
ite difference case, we have a small communication overhead because we are transmitting a few (pc ~ 1/2
variables but doing little (0(1) per variable) work with them. In matrix multiplication, we communicate more

" ~/~) for each transmitted variable. The algorithms obtain the variables (o~ ngna,.) but do a lot of work t c~ n g ~ .
same result for f c but for different reasons. In fact the matrix multiplication algorithm "succeeds" on the
hierarchical memory machines for the same reason as the long range problem. Both do a lot of work per fun-
damental entity; in IVA, the work is proportional to no.an and in IVC, proportional to ng~. . This is the origin
of the different connection dimensions shown in Eqs. (12c) and (16c).
IVD: LU Decomposition

Now let us consider, a more important matrix algorithm; namely L U decomposition of full matrices or
the related problem of matrix inversion. This has been studied in detail on the hypercube in Refs. [2, 19, 20-
24] and we will find that the issues are more similar to those of Sec. IVB than those of IVC. We will not con-
sider pivoting here; this is an interesting and tricky complication which leaves the results below qualitatively
unchanged [2, 23]. We note that the issues discussed here and in Sec. IVC are closely related to the important
work on the "Level-3 BLAS" discussed by Dongarra at this conference [25].

(a) Homogeneous Hypercube

We use the same square subblock decomposition introduced in INC. At a typical stage of LU decompo-
sition, one is subtracting the row containing the eliminated variable from all other rows. There is a separate
multiplier for each row calculated from the column containing the eliminated variable. This is illustrated in
Fig. 11 and one sees a situation rather similar to that of Sec. IVB.

Namely in a typical stage, one has a calculation

a O. --, aij - -c i rj, (17)

taking time

Te,ae = 2ng~,, t~,ae (i8a)

and a communicat ion

T°o,~. = 2 x / n u ~ . too,,,,. (ISb)

with our s tandard form

1 tco,~,~ (18c)

Actually Eqs. (18a, b) ignore certain overheads connected with the calculation of the cl and r i as well as
load imbalance overhead and the effect of the reduction in value of n a ~ as one eliminates rows and columns.
These effects alter the cons tan t in Eq. (3) but leave the form (18c) unchanged.

(b) Hierarchical Memory

We are faced with the same problem as in Sec. IVB, with a "cache" load and store time which has the
same n g ~ dependence as the calculation in Eq. (18a). The solution is similar to that of IVB and involves
eliminating several, say M, rows (and columns) at the same time. One can show that the M values of r~ and cj
can be calculated in a separate concurrent step which itself can be efficiently implemented. Given this, one
will find a simple block algorithm in which the times in Eqs. (18a, b) are both increased by a factor M

.~ 1 / 2 whereas the "cache" loading is still given by a time t,,~m ng~n. Choosing M c~ ng,~.~, one will find overheads
f n of comparable form to f c and a total overhead that is proportional to n ~ as in the original homogeneous

hypercube case.

1053

IVE: Fast Fourier Transform (FFT)

Originally we implemented the FFT in a natural fashion on the hypercube [2] using local communicat ion
in the hypercube topology where necessary. It is well known that the hypercube architecture exactly matches
the pattern of the binary FFT. However, the discussion here will be easier using a formulation due to Fur-
manski [2, 33] which ingeniously lumps all the communicat ion into a single stage and avoids any communica-
tion during the calculation steps.

(a) Homogeneous Hypercube

We will consider a one dimensional F F T and we can label the variables by a binary digit B illustrated in
Fig. 12. This example shows the case ntoua = 2 ~4 and Nr,,~ = 2 s. Five digits go-4 of B are used to label pro-
cessor number and the remaining nine digits lo--s the position within the local memory of the node. The FFT
algorithms systematically alters the variable starting at the highest digit of B (lo in Fig. 12(a)) and ending at
the lowest (g 4 in Fig. 12a). There are log nta, a steps each of which takes calculation time nu~,a.

Furmanski ' s algorithm does the first nine steps, each altering one digit, as labelled in Fig. 12(a); then it
transforms the data to the situation of Fig. 12(b) where the lower order bits are now stored locally. This is
performed by a communicat ion primitive called i n d e x in Ref. [33]. After the transformation the remaining
five digits are processed locally in each node. The calculation is load balanced at each stage and takes total
time

1
T,,a~ ~ ~ n ~ log(n~a) t~a, (19a)

= n,~a, log(nt,~a) t,~,

while the communicat ion primitive i n d e x takes time

T,o,~,~ ~ n,,oa, log(Nmo,) t , o ~ (19b)

In this formula the log N m dependence just represents the typical distance (1/2 log Nr~,o~) between
points in a hypercube topology. This communicat ion time could be reduced on machines with automatic rout-
ing. One finds an overhead

f o ~ log(N~,,~) t,o,,~
log(nu~,a) t~a ~ (19c)

which corresponds to infinite connection dimension in Eq.(3).

The discussion of hierarchical memory machines is now straightforward. We will use the same idea of
calculating a certain number of bits in B at a time. Clearly we can perform a number of steps corresponding
to at most log (n~,~a~) bits at any one time and we find a set of calculations each taking time

T a , , , ~ , ~ y log(ng,~,) t,a~ (19d) a le ~ F/gra~'n

and a cache load and store time of

T~h~ ~ n,,~,~ t,,~,~ (19e)

Thus, we perform log (n~,~,,) steps for each cache loading and obtain an overhead

f s oc 1 t,,~,~
log(n~,~) t ,a , (19f)

We have found a slightly different overhead formula from the original case, Eq. (19c), but fortunately we have
been able to use the same decomposition to deal with distributed and hierarchical memories. This
equivalence would not have been direct i f one had used the traditional hypercube FFT approach.

IVF: Neural Networks

We have a growing interest at Caltech in using the hypercube to model both biological and applied
(theoretical) neural networks. In general, distributed memory machines are welt suited to modelling nature 's
own distributed memory "computers". It turns out that the optimal decomposition of the neural network is
sensitive to the structure of the interconnection between the neurons [26]. Some cases have a rather full inter-
connect and the hypercube decomposition resembles the long range force algorithm described in Sec. IVA;
other cases have a dominant short range structure and the analysis is then similar to that in Sec. IVB. The
issues in neural network simulation are of course related to those in other circuit simulations.

1054

We can discuss a recent explicit implementation on the hypercube of a model of the piriform cortex [27].
This corresponds to a nearly full interconnect but an interesting subtlety that changes the analysis from that in
IVA. One is calculating the effect G ~ s of neuron i on j . A symmetry of the propagation Green's function
(G ~ s) means that it is optimal to associate the calculation o f G ~ . with i and not the target neuron j . In the
particle dynamics case in IVA we made the opposite choice o f shipping the information to the target particle
and then doing the calculation. The calculation of all the Green 's functions (G ~ .) is local to each grain and
involves no communication. The latter is needed as one forms the global sums

~] G ~ j for each j (20)
i

Thus, the problem is reduced to the calculation of a large number of sums. The components of the sum
(i) and the storage o f the final result (j) are both uniformly distributed throughout the hypercube. This prob-
lem was solved in Ref. [33] in terms of a hypercube communicat ion primitive called fold. It is straightforward
to implement fold on a hierarchical memory; the issues are similar to those in Sec. IVA.

We see that the neural network decomposition can be unified over the various architectures as long as it
is implemented in terms of the basic primitives fold which is then separately implemented in an optimal
fashion on each architecture.

V: Conclusions

We have considered the issues involved in a unified approach to distributed and hierarchical memory
machines. Our techniques also allow optimal implementations of message passing on shared memory parallel
processors. We have discussed the general approach in See. III and the prettiest result is inclusion of both
space and time in the description of complex systems. In Sec. IV, we worked through six problem classes and
were able to show decompositions that effected our desired unifications. In all cases, the overheads were
small as long as the "cache" size n ~ , was big enough and that the communicat ion performance of the com-
puter, measured by t,,~m/t,ol~, t,o,,~/t¢ac was good enough. Another way of summarizing our results is to say
that problems are associated with data domains. Homogeneous machines just need the decomposition of this
domain; this is often a spatial decomposition. Hierarchical computers also need one to consider the label (e.g.,
DO loop index) of the processing of elements in the domain. These machines require both spatial (data
domain) decomposition and that associated with this new label; this label often corresponds to time i.e.,
hierarchical machines need "space-time" and not just "spatial" decompositions. Our results contain the essen-
tial information to make the necessary tradeoffs between memory/communica t ion bandwidth and "cache" size.
We note that technology improvements should permit "cache" sizes to increase in the future. This will
increase the applicability of our techniques.

In future papers, we will present details of the ideas sketched in IV and describe the implementation
issues in providing the desired portable high performance environments.

We would also point out that the basic ideas presented here are the message passing version of principles
that have been used for some time in the field of vectorizing and decomposing compilers [28, 29, 30]. The
manipulat ion of DO loops described by Gannon at this conference are similar in spirit to the physical
transformations suggested here.

Acknowledgements

I would like to thank the many members o f the Caltech Concurrent Computat ion Program (C3P) on
whose work many of the results discussed here are based. I hope they are content with implied reference in
Table 2. The ideas presented here were first developed during a study of the use of the RP3 and the porting
of hypercube applications to it. I would like to thank IBM for their support of this work and in particular, A.
Frey, S. Harvey and A. Norton. The support of the Electronic Systems Division of the U. S. Air Force has
allowed us to extend our basic hypercube research to a variety of different architectures. Our ELXSI imple-
mentat ions were funded by SANDIA. I would thank the organizers of ICS '87 for an excellent conference
and the honor of the invitation to talk.

References

1. C3P-394: "Caltech Supercomputer Initiative: A Commitment to Leadership and Excellence," A. H.
Barr, R. W. Clayton, A. Kuppermann, L. G. Leal, A. Leonard, T. A. Prince, December 29, 1986.

2. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, "Solving Problems on Concurrent Proces-
sors," April 1986. To be published by Prentice Hall, 1987.

3 C3P-391: "The Hypercube as a Supercomputer," G. C. Fox, January 7, 1987. Published by the Interna-
tional Supercomputing Institute, Inc., St. Petersburg, Florida, May 1987.

4. C3P-409: "Concurrent Supercomputer Initiative at Caltech," G. C. Fox, January 31, 1987. Published by
the International Supercomputing Institute, Inc., St. Petersburg, Florida, May 1987.

1055

5. "Portable Programs for Parallel Processors," J. Boyle, R. Butler, T. Disz, B. Glickfield, E. Lusk, R. Over-
beek, J. Patterson, R. Stevens, published by Holt, Rinehart, and Winston, Inc., N. Y. 1987.

6. C3P-435: "The Concurrent Supercomputing Initiative at Caltech," G. Fox and co-authors.

7. C3P-255: "Concurrent Computation and the Theory of Complex Systems," G. C. Fox, S. W. Otto, March
3, 1986. Published in proceedings of 1985 Hypercube Conference at Knoxville, August 1985, edited by
M. Heath and published by SIAM.

8. CsP-214: "Monte Carlo Physics on a Concurrent Processor," G. C. Fox, S. W. Otto, E. A. Umland, Nov
6, 1985, invited talk by G. Fox at the "Frontiers of Quantum Monte Carlo" Conference at Los Alamos,
September 6, 1985, and published in special issue of Journal of Statistical Physics, Vot. 43,I209, Plenum
Press, 1986.

9 C3P-161: "The Performance of the Caltech Hypercube in Scientific Calc)~lations: A Preliminary
Analysis:" G. Fox, April 1985, Invited Talk at Symposium in Austin, Texas, March 18-20, 1985, and
published in "Supercomputers-Algorithms, Architectures and Scientific Computation," edited by I::. A.
Matsen and T. Tajima, University of Texas Press, Austin, 1985.

10. C3P-292: "A Preprocessor for Irregular Finite Element Problems," CALT-68-1405, J. W. Flower, S. W.
Otto, M. C. Salama, June 1986.

l 1. C3P-363: "Load Balancing by a Neural Network," CALT-68-t408, G. C. Fox, W. Furmanski, Sep-
tember 1986.

12. C3P-327B: "A Graphical Approach to Load Balancing and Sparse Matrix Vector Multiplication on the
I:Iypercube," G. C. Fox, December 5, 1986. To be published in proceedings of IMA Workshop, Min-
nesota, November 1986.

13. C3P-385: "A Review of Automatic Load Balancing and Decomposition Methods for the Hypercube," G.
C. Fox, November 1986. To be published in proceedings of IMA Workshop, Minnesota, November
1986.

14. C3P-328: "The Implementation of a Dynamic Load Balancer," G. Fox, A. Kolawa, R. Williams,
November 1986, published in proceedings of 1986 Knoxville Hypercube Conference, edited by M.
Heath and published by SIAM as "Hypercube Multiprocessors 1987."

15. C3P-427: "A MOOSE Status Report," J. Salmon, S. Callahan, J. Flower, A. Kolawa, May 6, 1987.

16. C3P-390: "An Evaluation of Mark III and NCUBE Supercomputers," G. C. Fox, December 9, 1986.

17. J. Barnes, P. Hut, "A Hierarchical O(NlogN) Force-Calculation Algorithm," Nature 324,446 (1986).

18. C3P-206: "Matrix Algorithms on the Hypercube I: Matrix Multiplication," G. Fox, A. J. G. Hey, S. Otto,
October 1985, published in Parallel Computing, 4, 17 (1987).

19. C3P-97: "Square Matrix Decompositions: Symmetric , Local, Scattered," G. Fox, August 15, 1984,
unpublished.

20. C3P-99: "LU Decomposition for Banded Matrices," G. C. Fox, August 15, 1984, unpublished.

21. C3P-347: "Gauss Jordan Matrix Inversion with Pivoting on the Hypereube," P. Hipes, A. Kuppermann,
August 8, 1986.

22. C3P-348: "A Banded Matrix LU Decomposition on the Hypercube," T. Aldcroft, A. Cisneros, G. Fox,
W. Furmanski, D. Walker, paper in preparation.

23. C3P-386: "Matrix," G. C. Fox and W. Furmanski, paper in preparation.

24. G.A. Geist, M- T. Heath "Matrix Factorization on a Hypercube Multiprocessor;" C. Moler "Matrix Com-
putation on Distributed Memory Multiprocessor." Both these articles are contained in "Hypercube Mul-
tiprocessors, 1986", edited by IV[T. Heath, SIAIVI, 1986.

25. J. Dongarra, Invited talk at 1987 International Conference on Supercomputing, Athens, June 8-12, I987.

26. C3P-405: "Hypercube Communication for Neural Network Algorithms," G. C. Fox, W. Furmanski,
paper in preparation.

27. C3P-404: "Piriform (Olfactory) Cortex Model on the Hypercube," J. M: Bower, M- E. Nelson, M. A. Wil-
son, G. C. Fox, W. Furmanski, February 1987.

28. D. Gannon, Invited talk at 1987 International Conference on Supercomputing, Athens, June 8-12, I987.

29. K. Kennedy, Invited talk at 1987 International Conference on Supereomputing, Athens, June 8-12, 1987.

30. A. Sameh, "Numerical Algorithms on the Cedar System," Second SIAM Conference on ParaUel Process-
ing, Norfolk, Virginia, November 1985.

31. W. Jalby and U. Meier, "Optimizing Matrix Operations on a Parallel Multiprocessor with a Hierarchical
Memory System," CSRD-555, University of Illinois report, 1986.

32. D.J. Kuck, E. S. Davidson, D. H. Lawrie, A. H. Sameh, "Parallel Supercomputing Today and the Cedar

1056

33.

Approach," Science 231, 967 (1986).

C~P-314: "Optimal Communication Algorithms on the Hypercube," G. C. Fox, W. Furmanski, July 8,
1986; "Communication Algorithms for Regular Convolutions on the Hypercube," G. C. Fox, W. Furman-
ski, September 1, 1986, published in proceedings of 1986 Knoxville Hypercube Conference, edited by
IVt Heath and published by SIAM as "Hypercube Multiprocessors, 1987."

Table 1: Hardware Parameters of Some Concurrent Supereomputers

NCUBE
Hypercube
M~rk/l~p

optim~l

tcat¢
lO ,us

0.1 ,us

tcomm

13 ,US

2.5/~S *

t¢orlm~ tree m
teoge Main Memory tmem "Cache"

tca/e
Size M Byte Size M Byte

1.3 0,5

25 4 1.5 16 0,13

*Operation concurrent with calculation

General Field

Applied Math &
Computer Science

Biology

Chemistry and
Chemical Engineering

Engineering

T a b l e 2: S o m e Hypercube Implementa t ions a t Cal teeh

Associated Scientists Topic

A. Barr
J. Goldsmith (JPL)

B, Beckman (JPL)
D. Jefferson (UCLA)

M. Buehler (JPL)

G. Fox

H. Keller
P. Saffman

C. Seitz

J. Bower
J. Hopfield
C. Koch

Computer Graphics

Time Warp Event Driven
Simulation

Computer Aided Design

Matrix Algorithms
Load Balancing Algorithms
Optimization
Computer Chess

Parallel Shooting
Multigrid Adaptive Meshes

Mathematics and Logic
Computer Aided Design

Modelling of
Cortex and Applied
Neural Networks

J. Brady

W. Goddard

A. Kuppermann

N. Corngold

R. Gould
P. Liewer (JPL)

J. Halt

W. Johnson

Flow of Porous Media

Protein Dynamics

Chemical Reaction Dynamics

Turbulence
(strange attractors)

Plasma Physics
(PIC)

Finite Element Analysis
of Earthquake Engineering

Condensed Matter
Simulations for
Material Science

1057

Geophysics

Physics

Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 4.

Fig. 5.

Fig 6.

A. Leonard
B. Sturtevant

R. McEliece
E. Posner
F. Pollara (JPL)

J. Solomon (JPL)

R. Clayton

B. Hager

T. Tanimoto

R. Blandford
D. Meier (JPL)

M. Cross

G. Fox

S. Koonin

A. Readhead
T. Prince

T. Tombrello

Fluid Turbulence
in Computational Aerodynamics

Convolution Decoding

Image Processing

Seismic Waves

Tomography

Geodynamics

Normal Modes of Earth

Fluid Jets in
Astrophysics

Condensed Matter
Two Dimensional Melting

High Energy Physics
Lattice Gauge Theory

Nuclear Matter

Astronomical Data Analysis

Granular Physics
Molecular Dynamics

Block diagram of the three machine architectures considered in this paper. We allow either a
hardware controlled cache or user local memory to be the lowest level of the memory hierarchy.
We ignore the important issues concerning the network connecting the global memory in (b) to the
local "cache" and CPU's of the shared memory architecture.

Block Diagrams of the NCUBE and Mark IIIfp hypercube nodes. We do not show a 68020/68882
based applications controller in (b) as it is irrelevant for this paper. The WEITEK XL unit is a
complete computer.

64 node N C U B E b o a r d and packaging into a 1024 node system

The two printed circuit boards making up the Mark IIIfp node. The WEITEK board is functional
but will be cleaned up for the production unit.

(a) Main board with 4 megabytes of memory and two 68020's.

The two printed circuit boards making up the Mark IIIfp node. The WEITEK board is functional
but will be cleaned up for the production unit.

(b) Floating Point coprocessor built around WEITEK XL chip set.

Definitions of the three hardware parameters tc,a¢, t,,~,,~, and t,o~o discussed in Sec. II.

The complex system corresponding to a short range force particle dynamics problem with its
decomposition into four grains.

Fig. 7.

Fig. 8.

Fig, 9,

Fig. i0.

Fig. 11.

Fig. 12,

1058

A complex system in space and time that corresponds to a regular nearest neighbor problem in one

spatial dimension; the finite difference solution of 0 ~ 2 = c 0~2~- would lead to such a complex sys-
Ox ~ Ot 2

tern.

The boundaries of a space-time complex system of the type illustrated in Fig. 7, Edges of the
graph crossed by spatial boundaries correspond to messages with neighboring systems. Those
crossed by temporal boundaries corresponding to the loading and ejection of the grain to and from
cache and main memory,

Two stencils for the solution of Poisson's equation in two dimensions.

Three decompositions in space and time of the one dimensional wave equation discussed in the
text of Sec. IVB.

A typical step in L U decomposition discussed in Sec. IVD,

The i n d e x transformation used in the FFT discussion of Sec. IVE.

1059

(a) Generic Sequential Computer
With Hierarchical Memory

Main I
Memory[

(b) Shared Memory Computer
With Hierarchical Memory

Global

[I

(Shared) Memory

I I
N E T W O R K

Fig. 1. Block diagram of the three machine architectures considered in this paper. We
allow either a hardware controlled cache or user local memory to be the lowest
level of the memory hierarchy. We ignore the important issues concerning the net-
work connecting the global memory in (b) to the local "cache" and CPU's of the
shared memory architecture.

1060

(c) Hierarchical Memory Hypercube (d=2)

Node 1

Node |
Memory]

Communication
Channels

Node 1
Memory /

i Node]
Memory I

may be a true cache or user controlled memory

Fig. 1. Block diagram of the three machine architectures considered in this paper. We
allow either a hardware controlled cache or user local memory to be the lowest
level of the memory hierarchy. We ignore the important issues concerning the net-
work connecting the global memory in (b) to the local "cache" and CPU's of the
shared memory architecture.

1061

Contrasting Hypercube Nodes

(a) Commercial NCUBE

Each Node is 7 Chips

CUSTOM CHIP
with CPU
including floating point
and 11 communication
channels

Six
1 megabit

memory chips

(b) Mark IIIfp Constructed at JPL

Each Node is 2 Printed Circuit
Boards and a Total of 440 Chips

I
68020 based

Communication
Controller

I I I ! ! ! 1
8 Communication

Channels

4 Megabytes Main
Node Memory

I
WEITEK XL

3 Chip Set
FPU and

Controller

Fig. 2. Block Diagrams of the NCUBE and Mark Illfp hypercube nodes. We do not show
a 68020/68882 based applications controller in (b) as it is irrelevant for this paper.
The WEITEK XL unit is a complete computer.

o c3
3

F
ig

.
3.

64

 n
od

e
N

C
U

B
E

 b
oa

rd
 a

n
d

 p
ac

ka
gi

ng
 i

nt
o

a
10

24
 n

od
e

sy
st

em

Fi
g.

 3
.

64
 n

od
e

N
C

U
B

E
 b

oa
rd

 a
nd

 p
ac

ka
gi

ng
 i

nt
o

a
10

24
 n

od
e

sy
st

em

4
~

Fi
g.

 4
.

T
he

tw

o
pr

in
te

d
ci

rc
ui

t
bo

ar
ds

m

ak
in

g
up

 t
he

 M
ar

k
II

If
p

no
de

.
T

he
 W

E
IT

E
K

bo

ar
d

is
 f

un
ct

io
na

l
bu

t
w

il
l

be
 c

le
an

ed
 u

p
fo

r
th

e
pr

od
uc

ti
on

 u
ni

t.

(a
)

M
ai

n
bo

ar
d

w
it

h
4

m
eg

ab
yt

es
 o

f
m

em
o

ry
 a

nd
 t

w
o

68
02

0'
s.

Fi
g.

 4
.

T
he

 t
w

o
pr

in
te

d
ci

rc
ui

t
bo

ar
ds

 m
ak

in
g

up
 t

he
 M

ar
k

II
If

p
no

de
.

T
he

 W
E

IT
E

K

bo
ar

d
is

 f
un

ct
io

na
l b

ut
 w

ill
 b

e
cl

ea
ne

d
up

 f
or

 t
he

 p
ro

du
ct

io
n

un
it

.

(b
)

F
lo

at
in

g
P

oi
nt

 c
op

ro
ce

ss
or

 b
ui

lt
 a

ro
un

d
W

E
IT

E
K

 X
L

 c
hi

p
se

t.

1066

Basic H a r d w a r e Parameters

Calculation Time

tcalc = Time for basic floating point operation.

"Cache" - Main (Global) Memory Transfer Time

M a i n [
Memory t

;T

tca

tmem Time spent to read AND write word
in "cache" from and to main memory.

Node to Node Communication Time

Main
Node

Memory

tcomm -- Time spent to communicate (read
and write) a word between nodes.

t/•em

tcalc [-~I'U----~

Fig. 5. Definitions of the three hardware parameters t ~ , t,~,~, and t ~ discussed in Sec.
II.

1067

ii /"
I I I I

I
I I

i /
I I •
I / I

I I
I I
I I

I ii !
I I

I / ,'
1 / !
I /

® i o / o ,,' ®

• Particle
-- ~ Interacting

Particles

D o m a i n D e c o m p o s i t i o n In to 4 G r a i n s

Fig 6. The complex system corresponding to a short range force particle dynamics prob-
lem with its decomposition into four grains.

1068

g
Time

tl

to

. - ' - - - " - . A Complex System
/ X

," ", c//" In Space And Time
I X

I

t 1

O O O O • • • Q O O Q O O O O

Q O Q O Q Q Q Q O O O O O O Q

O O O • • • • Q O O O O O O Q

O O Q • Q • • Q O O Q O O O O

Space >

Fig. 7. A complex system in space and time that corresponds to a regular nearest neighbor

problem in one spatial dimension; the finite difference solution of 02~b = c 92~b
Ox 2 Ot 2

would lead to such a complex system.

1069

Time

Messages

Store Final Values
At Time tl

?
I o

t
/ o

J
l e

J

J

• • •

• • • o~

• • • o~

• • • o~

r l)-
Load Previous Conditions

At Time to

Space >

Messages With
Neighboring Systems

Fig. 8. The boundaries of a space-time complex system of the type illustrated in Fig. 7.
Edges of the graph crossed by spatial boundaries correspond to messages with
neighboring systems. Those crossed by temporal boundaries corresponding to the
loading and ejection of the grain to and from cache and main memory.

1070

(a) Simple Stencil

(b) Higher Order Stencil

1
I

• • • • •

I
I

Fig, 9. Two stencils for the solution of Poisson's equation in two dimensions.

1071

(a) A H i g h E d g e / A r e a R a t i o I n T h e T i m e D i r e c t i o n

T i m e

T" /-
S p a c e

• • [• • • • • •] • • •

~" B o u n d a r y o f a C o m p l e x S y s t e m

(b) A B e t t e r E d g e / A r e a R a t i o W i t h M o d e s t C o m m u n i c a t i o n

.

• e o ~ • • ~ o • • • • • • • • • • •

l m e ° . ~ / • • • • • • • • • • • • • T • • • • ° • • • . • • • • • •

S p a c e

(c) A M o r e P r a c t i c a l D e c o m p o s i t i o n W i t h M o r e C o m m u n i c a t i o n

O O O O O O O O O Q O O O O O O O O O O O O O O

O g O O
T i m e Q ® I Q I Q Q Q O O Q ~ O S O O O t O O O Q Q Q

T O O O O O O O g O O O O O O O O Q O O O O O O O

f
S p a c e

Fig. 10. Three decompositions in space and time of the one dimensional wave equation dis-
cussed in the text of Sec. IVB.

1072

> Column

Eliminated
Row @ Variable

Column
Multiplierci

$>

Eliminated Row Element

/ / / M a t r i x E l e m e n t aij

• " " " - -Tvnica lguhhlock
• • • • In A Single Node

~-" (-n grain >

A Typical Step In LU Decomposition

Fig, 11. A typical step in LU decomposition discussed in Sec, IVD.

1073

(a) Initial Storage

(b) After Communication

goJ ~,l ~2

(index)

,ol ',4,21 '~1 ',1
The digits of a binary index B labelling variables to be
further transformed

Fig. 12. The index transformation used in the FFT discussion of Sec. IVE.

