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Abstract: 

We describe how explicit domain decomposition can lead to implementations of large scale scientific 
applications which run with near optimal performance on concurrent supercomputers with a variety of archi- 
tectures. In particular, we show how one can discuss from a uniform point of  view two architectural charac- 
teristics; distributed memory and hierarchical memory where a large relatively slow memory  is buffered by a 
faster cache or local memory. We consider two hypercubes in particular; the commercial NCUBE and JPL's 
Mark IIIfp with hierarchical memory at each node of  a hypercube. We remark on the application of these 
ideas to other architectures and other concurrent  computers. We present  a performance analysis in terms of 
basic parameters describing the hardware and the applications. 

I: Introduct ion 

This paper is the first of  a series from Caltech that will discuss some of the issues in developing decom- 
position and software tools for concurrent supercomputers.  In particular we need to develop implementations 
of major scientific problems that run well on concurrent  supercomputers with a variety of  different architec- 
tures. At Caltech, there is widespread support  among many of  the computational scientists and engineers for 
the use of  concurrent supercomputers  [1]. However, there is clearly no agreement among either research 
groups or commercial vendors  as to the "right" architectures either at the present or in the future. It is impor- 
tant that we can find techniques that will allow (Caltech) users to develop code which will be useable not only 
on today's  prototypes but  will not need major revision for future machines. 

Presently available concurrent  supercomputers suitable for scientific computations can be divided into 
three classes [2-4] 

Small grain size, SIMD, Distributed Memory: Such as the ICL DAP, Goodyear MPP, and Connection 
Machine. 

Large grain size, MIMD Distributed Memory: Such as the various hypercubes and the transputer based 
systems like the M E I K O  Computing Surface. 

t Work supported in part by DOE grant DF~FG0S-SSER25009 and DE-AC0S-SSER40050, the Program 
Manager of the Joint Tactical Fusion Office, and the ESD division of the USAF, Also, grants from IBM, 
SANDIA and the Parsons and the System Development Foundations. 
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Large grain size, tk~MD Shared Memory: Such as the CRAY,  ETA,  ELXSI, ALLIANT,  ENCORE,  
SEQUENT,  C E D A R ,  B U T T E R F L Y ,  and RP3. 

Here we will concentrate on a version of domain decomposition that is appropriate for the large grain 
size machines  and not  consider the SIMD architectures. This is not due to lack of interest - the SIMD 
machines have been very successful in many scientific problems - rather I am largely constrained by 
ignorance. Further,  we will not consider dataflow which could in the future be an interesting approach to 
supercomputers.  In order to focus the paper further, we will not discuss shared memory machines  in general 
but  rather concentrate on one aspect of  some of  these machines - namely a hierarchical memory  where good 
performance requires data to lie in a cache or local memory  and not  fetched from a relatively slow shared 
memory each time. We note that a memory hierarchy is difficult to avoid in high performance machines with 
pipelined floating point units. We will not discuss important issues such as the contention in a shared memory 
access network nor will we consider alternative programming methodologies such as automatic (user or com- 
puter generated) parallelization of  do and for loops even though these techniques have had important 
successes [28, 29, 32]. 

I have chosen domain decomposition because it is the natural and at present  required method for pro- 
gramming the hypercube.  Further,  we understand it reasonably well and shared memory  machines  typically 
support  it elegantly [5] whereas the favored shared memory  methodologies are not  easy to port to the simpler 
hardware of  the distributed memory machines. I will sharpen the hypercube discussion further by consider- 
ing two particular machines. 

The commercial N C U B E  hypercube with 1/2 megabyte of  memory on each node and up to 1024 nodes. 
Our initial 512 node machine has 0,25 gigabytes of  memory and 0.05 gigaflops peak performance. 

The so-called Mark IIIfp hypercube under  construction at Caltech's Jet Propulsion Laboratory (JPL). 
This will have 128 nodes each with 4 megabytes of  slow memory  and a high performance WEITEK XL 
chip based floating point unit  buffered by a 64 - 128K bytes data cache i.e., each node has a hierarchical 
memory. The total machine has 0.5 gigabytes o f  memory and up to 1 gigaflop performance. 

We expect these two machines to be the initial hardware facility around which we will build our new 
"Concurrent Supercomputing Initiative at Caltech" or CSIC [4,6]. 

In Sec. II, we describe the target machines in greater detail and introduce and quantify the necessary 
hardware parameters to measure performance. In the third section, we describe domain decomposition, its 
application to distributed and hierarchical memories and relation to the theory of complex systems [2 ! 7]. 

The heart  of  the paper lies in Sec. IV where we analyze several specific scientific algorithms including 
particle dynamics,  iterative methods  for partial different equations (PDE), fast fourier transform (FFT), 
matrix inversion and multiplication and finally neural network simulation. We conclude in Sec. V. 

II: Charaeterlzation of Concurrent Machines 

The hardware architectures considered here are shown in Fig. 1. In l(a) we show a generic sequential 
machine with a cache as a buffer to a main memory. It should be noted that this conventional machine is not 
the focus of  this article; however,  the techniques described here could allow coding such machines  in a way 
that makes  excellent use  of the  cache. In Figs. t(b) and (c), we generalize this architecture in two ways. 
Firstly in l(b), we show a hierarchical shared memory machine with a group of  C.P.U?s connected by an 
unspecified network to a large global shared memory. This model is a reasonably accurate description of such 
machines as the CRAY-2, ETA-10, ELXSI, B U T T E R F L Y ,  and RP3 among others. This design, or variants 
of  it, is more or less required if one either has a large number  of  nodes (as in the B U T T E R F L Y  or RP3) or 
very fast C.P.U.'s (as in the other cases). We note that the memory denoted as "cache" in Fig. 1 should often 
be more properly called local memory. The functions of cache and local memory are similar; both provide 
faster access to variables than  is possible from the main memory. Our discussion will apply to both memory 
constructs but  is perhaps more natural for local memory  which is user  (software) controlled rather than  the 
hardware controlled cache. We will hereafter use the term "cache" to describe the dual concept. The neces- 
sity of  a multistage network connecting nodes to the global memory implies the importance of the "cache" for 
machines like the RP3 and B U T T E R F L Y  with very many nodes. The use of  a fast C.P,U., even with a small 
number  of  processors, also typically needs a "cache" to get good performance. Presumably the future will see 
shared memory  machines  with many very high-performance nodes; these may depend on the "cache" to an 
even greater extent. We note that there is no reason for the memory hierarchy to only have two levels; many 
machines have  more. For  instance, the RP3 has  global memory,  local memory,  and a true cache. The analysis 
presented here  can be extended to a multilevel hierarchy or just  applied to one part of  it. For instance on the 

RP3, the high-speed network gives good access to the shared memory  and it would probably be most natural 
to apply the analysis here with the "cache" being the hardware cache on each node and the local and global 
memory being lumped together at a single level. 

In Fig. l(c), we show a distributed memory architecture. The initial hypercubes had rather simple nodes 
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but newer machines  have gone to hierarchical node designs to obtain high performance.  Examples of  the 
latter include the I N T EL  iPSC-VX and the new JPL Mark IIIfp design, We will concentrate on the latter 
here  as we unders tand it better and INTEL's  current  tools do not, we believe, allow the VX hypercube to be 
programmed in the fashion we will suggest. The Mark IIIfp uses complex nodes with large memory and 
potentially high performance on each node. These N C U B E  and Mark IIIfp nodes are contrasted in Fig. 2 and 
pictured in Figs. 3 and 4. 

The N C U B E  does actually have a small on chip cache but  for our purposes it should be viewed as a sim- 
ple uni-level memory at each node. We need a reasonably large "cache" - at a min imum the 64 - 128K bytes 
of  the Mark IIIfp - for our considerations to be relevant. This will become clearer later when  in Sees. III and 
IV we quantify the role of  the "cache" size. Similarly, in the transputer based system, the on chip memory of 
2K bytes is probably usually too small to be used as a "cache" in the sense advocated in this paper. 

In Fig. 5 and Table 1, we introduce three basic parameters t,~t,, t,~,~ and t,~,,~ which we use for our 
performance analysis. We will restrict ourselves to considering 32-bit arithmetic as this is sufficient for many 
calculations and the WEITEK X L  chip set used on the Mark IIIfp currently only supports 32-bit arithmetic. 
tea c represents the  typical t ime to perform a floating point application including any overheads such as 
memory ("cache") access and indexin~ t,,~,~ and t,~,,~ are effectively communicat ion parameters, t,o,,~ is the 
time taken to transmit a 32-bit word between nodes of a hypercube and t,,~,~ the time taken to send a word 
back and forth between "cache" and main memory. We now need to make several comments  and caveats on 
these parameters. 

Firstly, we note that these three parameters are a very incomplete description of the hardware. For this 
paper, we will need the "cache" and node memory sizes as well. We will describe these in application depen- 
dent fashion as n~,~h~, n ,~e ,  and n ~ a  for the number  of basic entities (e.g., matrix elements in a matrix prob- 
lem or particles in a dynamics problem) that can be held in the "cache", node of  hypercube or total memory 
respectively. The performance of a system will also depend crucially on whether  communicat ion (either node 
to node or "cache" to memory) is concurrent  or sequential with other operations. For the Mark IIIfp, node to 
node communicat ion (governed by t,o,,~) is concurrent  with calculation while "cache" to node memory 
transfers can not be overlapped with calculation. For the NCUBE,  communicat ion is presently not  concurrent 
with calculation. 

The N C U B E  has a scalar processor and the speed t , ~  of  typical floating-point operations will not  
depend drastically on circumstances although, even here, factors of  two variations can be expected. Pipelined 
or vector machines  like the Mark IIIfp, ETA-10, and CRAY-2 can expect  very different values of  t ~ ,  on dif- 
ferent applications. We have listed the approximately smallest possible value of t ~ ,  as this will be the pacing 
value for the performance analysis. The techniques described here are in some sense designed to improve 
tea, by ensuring minimal "cache" misses. 

All three parameters t~a,, t,o,,~, and tree m depend on the size of  the operation performed i.e., on the size 
of the vector (t~,a~) or size of  the "message" (tco,,~, t,,,~,~). We will ignore the startup time for small vectors and 
messages even though these are usually important. The techniques needed to mininalze startup effects are 
interesting but  are outside the scope of  this paper. 

The  parameter  t,~,,~ has been defined in a somewhat unnatural  fashion in Fig. 5 as the time to read and 
write a word between "cache" and main memory. This makes the definition symmetric  with t,~,,~ and indeed 
if  one uses a shared memory  machine to emulate a distributed memory  environment,  then with our definition 
t,,~,,~ is the appropriate value of  t,~,~.~ to use to describe node to node communicat ion in the emulation. This 
assumes that in the emulation, a hypercube node process is fully contained in the "cache". We will describe in 
Sec. III how one takes care of  the case when the problem is too large for all the processes to fit into "cache". 
In Sec. IV, we will use 1/2 tm~,,, as the transfer time when we are just  reading or writing. We again emphasize 
that the shared memory value and indeed our later discussion of t,,~,~ completely ignores any contention when 
accessing the global memory. 

The Mark IIIfp can be seen to have interesting multi-level hierarchy with "cache" ~ node memory ---, 
other nodes '  memories. The relevant communicat ion speeds teomm, trnem between the three levels have com- 
parable values although as we will see they do enter the performance analysis in related but  rather different 
ways. The Mark IIIfp illustrates another tactically important issue controlling performance. Namely, in the 

default node, variables written to "cache" are also stored in main memory. As we will find that this can 
degrade performance,  the Mark l t l fp has the capability to temporarily disable the "write through" nature of  
the cache and so allows the communicat ion between "cache" and main memory  to be under  user control. This 
control structure is implied for machines  where the "cache" is designed as a local memory.  Referring back to 
our previous discussion of  concurrency, we note that on the Mark IIIfp direct loads of  either the cache or 
local memory cannot be overlapped with calculation. The storing o f  variables into main memory is similarly 
non overlapped with one exception; automatic write through from cache is transparently overlapped with 
other operations as long as a small "pending write" buffer of  three requests is not filled i.e., if the writes are 
sparse, they are overlapped. We will not use this overlap feature in our discussion although it would be possi- 
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ble to improve performance in many cases if full overlap had been allowed in the Mark IIIfp design. 

In discussing the hypercubes,  we have listed too,,~ as the node to node transmission time; messages 
between nodes that are not directly connected in the hypercube topology will be characterized by a larger 
value of t,o,,~. We will accommodate this by reflecting this as an application dependent  effect which will be 
seen in Sec. IV as a I /2  log N~-o~ factor in the communicat ion overhead for the FFT. We will use Nr~o~ as the 
number  of physical processors throughout this paper. 

We will use the term hypercube broadly in this paper to include simple nodes like the N C U B E  or more 
complex designs such as the Mark Illfp. When we wish to single out machines  like the NCUBE,  we will use 
the term homogeneous hypercube while terming machines like the Mark IIIfp as a hierarchical hypercube. 

Finally, we summarize many of  the caveats by noting that a performance analysis in terms of  simple 
parameters such as tco,,~, t,,~m, t,ac is usually accurate but  the simplifications imply that the parameters are 
not universal but  need to be adjusted by different, but  usually modest  and understandable factors for each 
application [9]. 

III: Domain Decomposition and Complex Systems 

One can formulate concurrent  computation as a mapping of a problem onto a computer  [2, 7, 8]. We 
consider both the problem and the computer as complex systems; for our purposes, these can be considered as 
a set of, in general, dynamically interconnected entities. The performance of a particular implementation can 
be related to the structure of  the systems describing the problem and computer  [2, 3, 9]. In this paper, we are 
only considering large grain size concurrent computers i.e., each node has substantial memory. In this case, it 
is natural to consider the problem, or more precisely its underlying complex system, as being divided up into 
subdomains which we will call grains. At any one time, each node of the concurrent  computer  is responsible 
for a single grain. In this context, domain decomposition is the division of the problem, or typically its defin- 
ing data domain, into appropriate grains. We can make this clearer by considering the map of the problem 
onto the computer  in more detail. We can isolate four stages. The use of  a vectoring or parallelizing computer 
corresponds to the map: 

Problem ~ Algorithm ~ Code --~ Compiler Generated Decomposition ---, (1) 

Concurrent Computer 

i.e., performing the map onto the concurrent  computer between the last two stages. 

We will consider domain decomposition corresponding to the map being generated by: 

Problem ---, Algorithm --~ Domain Decomposition ~ Code ---, Concurrent Computer (2) 

where one forms the basic grains not from the code as in (1) but  from the basic algorithm or problem in (2). 
The advantage of (1) is that one directly uses existing software on concurrent  machines  whereas in (2) it is 
implied that one must  generate code that describes individual grains. (1) is presently only practical on shared 
memory  machines and indeed the ability to use this programming methodology is a key advantage of this 
architecture over distributed memory systems. 

The hypercube and other distributed memory machines are traditionally programmed by domain decom- 
position as described above. This methodology has advantages of  generality (it is potentially useable over a 
broad range of architectures) but it does require significantly more user involvement in the concurrency and 
software. In particular, there is no easy way to make use of existing sequential software and at Caltech, we 
have typically recoded our hypercube applications from scratch. As will become clear, we are interested in 
domain decomposition for the shared memory architecture, not only because it allows the porting of hyper- 
cube targeted programs but  also because it may give near optimal performance for some problems on shared 

memory  machines. 

In a series of  papers, we have developed a set of  optimization methods,  in particular, neural  networks 
and simulated annealing, for choosing the optimal definition of the grains for a particular problem [7, 8, 10, 
I 1, 12]. This work was in the context of  a simple hypercube as the target machine. We will not discuss this 
research here but  note that the discussion of the current paper lays the groundwork for extending the earlier 
work to give optimal domain decompositions for complicated hypercubes like the Mark IIIfp and some shared 
memory  machines. 

The optimal decomposition for a simple hypercube divides the problem into grains satisfying two cri- 
teria: 

The amount  of  communicat ion between grains is minimized. 

Each node of  the hypercube does the same amount  of  work; measured in terms of  calculational complex- 
ity, each grain is the same "size". 
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We can now see qualitatively the possible importance of domain decomposition for hierarchical memory 
systems. The latter perform well as long as references to memory are largely local to the "cache" and do not 
require access to the slower main memory. This is clearly analogous to minimizing communicat ion in a distri- 
buted memory machine.  We will see that there are important quantitative differences in the "locality" con- 
straints for hierarchical and distributed memories. However, the purpose of the current paper is to explore 
and explain their similarities and derive the ground rules for a uniform user interface which can be imple- 
mented well on either architecture. 

The second constraint of  the hypercube decomposition given above corresponds to load balancing the 
work of the nodes. We will not stress this here as it is not central to our discussion. We will choose as our 
examples regular problems for which load balancing is not a difficulty [2, 7]. In the future explicit realizations 
of the ideas presented here the constraints of load balancing may, in fact, be very important. In particular, an 
elegant dynamic load balancer for the hypercube appears to require a full multitasking environment  with each 
node responsible for several (~  10) processes or grains [13-15]. We will adopt a simpler point of  view here 
With, in the case of  the N C U B E  and other hypercubes with simple nodes,  only one process per node. This is 
sufficient for the problems discussed here and will be pedagogically clearer. In fact, the multitasking environ- 
ment  already introduces hierarchy into a simple hypercube environment as now one has different process to 
process communicat ion speeds depending on whether  or not the communicat ing processes lie in the same or 
different nodes. Thus the multitasking environment  will tend to unify the ideas across architectures and we 
will include it in future discussions. In this paper, we are not attempting to discuss the detailed user environ- 
ment  and  explicit software implementation but  rather the functional structure of  the software environment as 
"seen" by the machine.  We will address the (very important) implementation issues elsewhere. 

Let  us focus our ideas by considering a specific problem of particle dynamics with a short-range interac- 
tion. An  example is shown as a complex system in Fig. 6. Typically, the computation involves particles 
linked by a force and the number  of  such links measures the calcutational complexity. Consider the underly- 
ing complex system as a graph whose nodes are the particles and nodes are linked if and only if the 
corresponding particles interact with each other. Then  the calculation complexity is measured by the number  
of  edges in the graph. Domain decomposition will divide the graph into grains (subgraphs) such that each 
grain has approximately equal numbers  of  edges and we minimize the number  of  edges that cross grain boun- 
daries. When implemented on a homogeneous hypercube,  the ratio f c  of communicat ion to calculation is 
measured by the ratio of  the number  of  edges crossing grain boundaries to the total inside a given grain. In 
many previous papers,  we have shown that this leads to the result [2,3,7,9] 

f o - constant tco,~ (3) 
n l/a t c ~  gioir~ 

Where n g , ~  is the number  of  entities (number  of  nodes of  graph i.e., particles in our example) in each 
grain and the parameters t,o,~.~ and t,,a~ were introduced in Sec. II. 

The application dependent  constant in Eq. (3) is typically of  order unity. The connection dimension d has 
been defined generally in Refs. [2] and [7] and coincides with the geometric dimension for short-range or 
nearest-neighbor problems. 

In architectures where communicat ion is serial with calculation such as all the initial.(Caltech's Cosmic 
Cube and Mark II, INTEL iPSC, NCUBE)  hypercubes,  one aims for f c  -< 0.25 which was obtained for the 
initial Caltech applications as long as 

- - -  <_ 3 ; non overlapped (4) 
t eate 

The goal f o  <- 0.25, corresponds to a speed-up S = e N ~  with efficiency e given as 

I 
e = l+f----- c- ; non overlapped (5) 

_> 0.8 for fo<0 .25  

This is a phenomenological result averaged over the values of  nu,~/,~ , d, and constant seen in typical appli- 
cations. In table 2, we give a current  list of  Caltech hypercube applications to indicate the problem areas 
from which our results have been obtained. We do not wish to discuss here the many issues underlying the 
validity of  (3) but  rather refer the reader to the detailed discussions in Refs. [2, 3, 7, 9] 

In the case where communicat ion is overlapped with calculation, one can afford an order of  magnitude 
more message traffic with a typical goal o f  r e  <_ 1.25 or the less stringent constraint: 

tcor~r~ 
< 15 ; overlapped (6) 

t~ze 
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with efficiency 

= min ( l , t / f c )  ; overlapped (7) 

_>0.8 f o r f c _ <  1.25 

We see that the difference between (6) and (4) partly explains why the Mark IIIfp and N C U B E  can both 
give good performance even though the former has an order of  magnitude larger value for t~o,~/tc,ao. As we 
see from (3) and is explored in detail in Ref. [16], the Mark IIIfp will also have the value o f f c  lowered by the 
larger value of  no,an allowed by the larger memory of  the Mark IIIl'p. Explicitly for systems of  dimension d=3, 
we see that I/nj~/4,~ is decreased by a factor (4/0.5) ~/~ = 2 in comparing the Mark IIIfp to the NCUBE.  

Now return to the original particle dynamics  example and consider its implementat ion on a variety of  
architectures. In the case of  a homogeneous hypercube we have already described how we divide the particles 
into groupings and assign each grouping to an individual hypercube node. We have a number  No,~ . of  grains 
equal to the number  of  processors N~.o~ in the concurrent  machine. Using the notation of  Sect. II, we also 
have the number  of  particles in each grain, no~ . = n,,a, and a total number  ntoua of particles given by 

n ~  = Nr, ~ no,a, (8) 

Now consider a hierarchical shared memory machine such as that pictured in Fig. l(b). As explained 
earlier, we would naturally expect best performance if  memory  references were largely local to each "cache" 
and this will be achieved if  one can assume that each "cache" contains a complete grain. However,  there is a 
crucial complication that in general, one can not expect that the full problem can be held in the "caches". 
Some fraction of  it can be in "cache" with the remainder "waiting" in the large shared memory. In contrast, it 
is reasonable to assume that the homogeneous hypercube will be able to contain the full problem in the aggre- 
gate of  it's nodes '  memories. In general, we will define a grain so that it can be contained in the "cache" or 
lowest level o f  the memory hierarchy under  consideration; this grain can contain ng~,~ members  (nodes of  
graph). We can now define an effective or virtual number  Na~- ~ of  processors so that the total system can be 
contained in Nq,~. nodes. Thus  

nt,~a = Na,a,no,~, (9) 

In general, Ng,~, is larger than the real number  Nr, ~ of nodes and we can assume that the grains have 
been defined so that the ratio r ,~,~ = Ng,~i,/Nr, o~ is an integer. 

We can now summarize three relevant circumstances: 

Homogeneous Hypercuhe 

n,~ae = ngr, a,~ entities fit in a single node 

N¢~. = N~o~ 

r~/~,,o 2 = 1 

Hierarchical Shared Memory Machine 

n~.~a~ entities fit in a single "cache" 

r ,~innat >-- 1 

processes "waiting" for loading 
(r,~n~a- 1)No,~, into "cache" 

(10a) 

(10b) 

Hierarchical Hypercube 

ng,.,a,~ entities fit in a single "cache" (10c) 

Ngr~, = n t~ /no ,~ .  

r~n~a _> 1 grains in each node 

n,o~ = r~,~,a n g ~  entities fit in a single node 

The  computer  system is to be viewed as having Ng,,a,~ virtual nodes which, except  in the case of  the 
homogeneous hypercube,  is typically larger than  the number  of  physical processors N ~ .  For small problems, 
one could find that  r~n,~a was unity even for the hierarchical designs. In this case, hierarchical shared 
memory or distr ibuted memory  architectures can be considered by the same performance analysis given ear- 



1048 

lier in Eqs. (3 to 7) for homogeneous hypercubes.  In this case, one can substitute t,,~,~ for t ,o ,~ on these 
equations when considering the shared memory case. However,  it is the purpose of  this paper to consider the 
more general and interesting case r,~n,,a > i. 

Consider  an example of the consequence of these ideas comparing the 1024 node NCUBE,  each node 
having 0.5 megabytes of  memory with the 128 node Mark IIIfp, each node having 4 megabytes of  memory. 
Normally one considers the latter machine as having larger grain size but  consider the use of these machines 
to solve a problem requiring the full 512 megabytes available on each machine. The  NCUBE has 1024 grains 
each of  0.5 megabyte size but  the Mark Illfp with r,i,t~ = 32 has 4096 grains each of  0.125 megabytes! The 
addition of  the floating point unit has, in fact, given the Mark IIIfp a smaller grain size and required one to 
decompose the problem into more and not less (than for the NCUBE)  grains. Note that if the total problem 
size had been 128 megabytes, then both machines  would be used with 1024 grains, each of 128 kilobytes. 

Let  us consider some of the issues from a more fundamental,  or perhaps philosophical, point of  view. In 
the particle dynamics  example, we have a spatially distributed system which nature evolves simultaneously in 
time. On a homogeneous hypercube,  the spatial complex system corresponding to the problem is directly 
mapped onto a spatially distributed memory  of  the hypercube. Then  as in nature, each node evolves different 
parts of  the spatial system simultaneously. In this case, we have a rather clean association. 

Space in Problem --* Space in Homogeneous Hypercube ( l l a )  

Time in Problem --* Elapsed Time in Computer Execution 

Tl~is association is particularly precise in the case when each node of  the computer  holds a single parti- 
cle. In the normal case, where each grain has several particles, then we have an intermediate situation when 
the spatial system within each node is evolved sequentially in time by the node; i.e., we have partially mapped 
the spatial extent of  the system into a temporal extent in the computer implementation, 

To extend the above picture, we generalize the concept of  a complex system to include both the spatial 
and temporal aspects of  a problem. This is illustrated in Figs. 7 and 8, and in the particle dynamics case, we 
would consider the extended complex system as the physical system or a graph generated by, for instance, a 
space-time region defined by some condition such as: 

Ix_ - x_ol -< r (1 lb) 

In Fig. 7, we show this for one spatial dimension and a regular lattice. In our previous work [2,7], we 
have only needed to consider the spatial aspects of  complex systems because of the rather clean correspon- 
dence of  space and time, expressed in Eq. (t la), between the computer and problem present for the homo- 
geneous hypercube.  

Returning to Fig. 1, we now see that  the sequential computer shown in Fig. l(a) corresponds to: 

Space and Time Elapsed Time in 
in Problem --~ Sequential Computer (1 lc) 

Typically one cycles through individual particles and processes them sequentially. If we now consider 
the hierarchical memory  systems l(b) and  l(c), we find the intermediate situation: 

Space and Time 
Space in Problem --* in Heirarchical Memory Machine (1 ld) 

Time in Problem ---, Time in Computer 

( l i d )  would reduce to ( l l a )  in the degenerate case where the problem can be contained in the "caches" - 
summed over nodes. 

Above we have pointed out that varying degrees of  parallelism correspond to mapping spatial aspects of  
the problem into different mixes of  space and time on the computer  system. Fig. 8 illustrates an important 
technical reason to introduce a complex system extended in space and time. For a homogeneous hypercube, 
communicat ion costs are related to graph edges crossing spatial boundaries of  the system. For the "cache" 
based architectures in Fig. l(b) and l(c) we will need to load the initial value of the system at the time to and 
store back in main memory after evolution to time t 1- We see that this load and store correspond to the tem- 
poral boundaries of  the system, t,~,,, and t ~ o ~  correspond respectively to the costs associated with temporal 
and spatial limitation of  the system. 

Figure 8 makes it clear why we may need to disable "write through" on the Mark IIIfp and machines 
with comparable architectures. We will find cases where we need significant (t 1 many  time steps larger than 
t o) t ime extent  to minimize "edge" effects corresponding to the boundaries formed by cache load and store. 
"Write through" typically implies that the system is stored to main memory after every time step. 
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We will now quantify this general picture with several examples in the next section. We will find simi- 
larities and differences between the temporal (t,~,~) and spatial (tco,,~) aspects of  the problems. We will only 
summarize the results with the intention of providing a detailed analysis elsewhere. 

IV: Examples 

IVA: The Long Range Force or Complete Interconnect 

This case is interesting because we will find low overheads from both the spatial and temporal boun- 
daries in Fig. 8 with these two overheads having the same dependence on grain size na~ ~. The generic prob- 
lem, that we will consider, is the time evolution of a set of particles interacting with a long-range force; we use 
the brute force algorithm and not the faster FFT [2] or clustering method [17]. We calculate the force on each 
particle by summing the contribution of all others [2]. We now consider first homogeneous hypercubes and 
then hierarchical memory computers. 

a) Homogeneous Hypercube 

One decomposes the problem with an equal number ng~an of particles in each node [2]. Another set 
(identical copy) of  the particles travels completely around the cube (which can be mapped into a ring) 
updating the mutual interaction as the travelers pass through the node containing the fixed particles. 
There is some care needed to ensure Newton's law of  action and reaction is exploited and each interac- 
tion is only calculated once [2]. However, the performance analysis is straightforward and if at each step 
one transports M particles 

Calculation Time T,,ac M n a ~  t~,ac (12a) 
2 

Communication Time T¢o,~n ~ M t¢o,~,~ (12b) 

and the overhead f v  introduced in Sec. III, Eq. (3), is given by: 

1 t ,o,~ 
f c (12c) 

nu~in teate 

independent of  M. 
b) Hierarchical Machines 

Now M is the total number of  particles cycled from main memory through the "cache". Each grain takes 
time 

T e ~  = nu~,a, t,r~, (13a) 

to load and store. The travelling particles must be read from main memory and stored back with their force 
updated. This takes time: 

T ~  = M t,~,,  (13b) 

These numbers should be compared with the identical values (12a) and (12b) for calculation and com- 
munication in the case of the hierarchical hypercube. We see that good performance requires that M be 
chosen large (_> na~n) but this is algorithmically possible and natural. Hence for this case, the calculation 
time (12a) is much larger than the "cache" overhead and one finds for M_> no~u, that: 

1 tmem 
fH ~ - -  (13c) 

n~/~ t~a ~ 

is the hierarchical memory access overhead to be compared with the communication overhead f a  in (12c). 
The latter needs to be added to fH for the hierarchical hypercube which has both forms of  overhead. 

For the hierarchical shared memory machine, the natural value of  M is nu~,a and for the hierarchical 
hypercube the smaller value M = n,~a, = r , i , ~  n ~ ;  in each case Eq. (13e) is valid. 

We do find that care is needed to reduce fH. One must cycle all particles through the "cache", i.e., 
choose a large value of  M, in between reloading the "cache". Further, one needs to update each particle in the 
cache in a fashion that one only writes out the results after all M particles are considered. In the case of the 
Mark IIIfp, this implies that one disables the cache "write-through" feature until all M particles have travelled 
through. 

Comparing Eqs. (12c) and (13c) with Eq. (3), we see that both exhibit our standard form with connection 
dimension d = 1 independent of the underlying topological structure of the space. 
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IVB: Two Dimensional Finite Difference 

We will consider a finite difference solution to Poisson's equation, V2~b = 4~rp, solved by an iterative 
(relaxation) method on a regular two dimensional mesh. This problem is simple but the discussion generalizes 
to other short-range problems including wave equations, image processing, particle dynamics, and Monte 
Carlo. The  choice of  two dimensions is not  essential and at the end we will generalize to higher dimensions. 
We will use  the simplest stencil where the value at the next  iteration only depends on the original value and its 
four neighbors at the current  step. This is shown in Fig. 9(a); as discussed in Ref. [2] and later in this paper, 
more complicated stencils such as that in 9(b), do not alter one's conclusions. We are not  underestimating the 
difficult implementation issues in realistic problems, but  we believe that our simple case embodies the essen- 
tial issues for the performance estimate. 

(a) Homogeneous Hypercube 

One performs a simple two dimensional decomposition with each node containing a ~ x ~  
submesh. A typical iteration takes a calculation time for each iteration of 

T ~  = 5 ng~,~ t~o~ (14a) 

and the communicat ion is associated with the edges of the region in each processor and takes time: 

T~o,~,,~ = 4x/n0~,~ t~o,,~ (14b) 

and one finds a communicat ion overhead 

1 tco,~,,~ (14c) 
f o  ~ .. 1/2 

etg(ai~ teole 

with the form of Eq. (3) and the connection dimension d equal to the topological dimension. 

(b) Hierarchical Machines 

As in the previous example, Eq. (13a), one takes time for load and store of: 

T~a~e = n g ~  traera (14d) 

The grain is stored in the "cache" and one also needs to load the neighboring points and in analogy to 
(14b), one finds a communicat ion cost. 

T~o,,~ = 4-~/ng,~,~ (1/2 t,~,~ or tcom~) (14e) 

where the communicat ion may be from a process in the same or neighboring node; the corresponding com- 
municat ion time is either I /2  t,~,~ or t~o,,~. In fact, in terms of  the ratio r,~n~a introduced in See. III, one can 
rewrite Eq. (14e) as 

reo,,~, = 4v/na,oi,~ (1/2t,,~,~ ( v / r ~ - l )  + t~o,,~) (14el) 

~ 2v/n0,vi~ t,,~,~ (14e n) 

in the interesting case with large values of  r,~n~. 

If we compare (14a) with the overheads (14d) and (14en) ,  we see that cache loading dominates (for 
large n~,~-,0 and 

1 t,,~,~ (14f) 
fH 5 tool~ 

and unlike our previous results summarized in Eq. (3), f ~  does not  decrease as one increases ng ,~ .  The rea- 
son for this is clear from Fig. 8 and the discussion at the end of  Sec. IV. We have a space-time complex sys- 
tem stored in our cache, with as shown in Fig. 10(a), a single iteration (time) count  as its temporal extent. We 
need to reduce the edge/area  ratio in the temporal direction. This can be achieved by updating the region 
stored in "cache" by more than one time step. This is a nontrivial issue because it now implies a different 
decomposition than that usually used for the homogeneous hypercube. In Sec. IVA, we saw a somewhat simi- 
lar situation where the hierarchical implementation required M large whereas M -~ 1 was sufficient for the 
homogeneous case. Now the hierarchical case has required that each grain update for several, say M, itera- 
tions or time cycles. 

Two possibilities are shown in Figs. (10b) and (10c) for the case of one spatial dimension. If the wave 
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equation was the underlying problem, Fig. (10b) separates regions by the characteristics of  the equation. We 
see that Fig. (10b) still corresponds to short range (spatial) communication.  Te~h, is unchanged.  T~c  and 
T,o ,~  in Eqs. (14a, 14e n )  are increased by a factor equal to the number  M, of  iterations. Optimal is the 
choice of  equal extents in the space and time dimensions, M = na,a~ 1/a, when we get back the result 

f c ,~  ~ n ~  (t,n~r~ or t~o,,~)/Ga¢ (14g) 

for a system of dimension d.  

A simpler alternative, shown in Fig. (10c), is easier to implement.  We chose cylinders with sides parallel 
to the time axis for our space-time complex systems. These have an interesting property illustrated precisely 
in Fig. 7 of  cutting more edges with the temporal planes. In fact the number  of  edges cut  is proportional to 
M ~ where M is the number  of  temporal steps. This leads to communicat ion costs, appearing as additional cal- 
culations, proportional to M s. We find in with the dimension d = 2, 

T~a~ ec na.a~ M (14h) 

T~o.,~ o~ na,.,a,, z-zld M 2 

Teach e Oc ngmi  ~ 

1 M 
The ration f e  + f n  is proportional to ( - ~  + . 7 .  ) and is minimized for M ~ "o,~-" 1/2a 

¢ t o h~in 

and we find the amusing total overhead 

1 (tm,~ or t ,o ,~)  (14i) f c +  f n ~  - z / ~  
ngiain t cae  

Although the dependence on the grain size is slower than for Eq, (14g), this overhead does decrease as 
the grain size increases. 

IVC: Matrix Multiplication 

We now consider a simple matrix algorithm which is not  the most  important but  exhibits interesting con- 
trasts with the previous two cases. Take the multiplication of  large full matrices 

C = Z • B 0 5 )  

where each matrix is ~ × n x / ~ .  The basic ideas in this section are the same as in Refs. [2, Ig, 23, 31]. 

(a) Homogeneous Hypercube 

Here one considers a simple decomposition dividing each matrix into N r ~  square subblocks each o f  size 
V ' ~ g ~  x v / n g , ~  where the dimensions are given by ~ = ~ / x/N~o~. As discussed in Ref. [18], 
there is an efficienl algorithm in which the subblocks of A and B are respectively broadcast  (along a subcube) 
and shifted along nearest  neighbor links of the hypercube.  The basic calculation at each stage involves sub- 
block multiplication with 

Tea, _ ,. a/2 , %,~',~ "ca, (16a) 

and overhead 

T~o,,~ o~ ng ,~  t~o,~ (16b) 

One obtains a conventional overhead formula 

f G  

corresponding to connection dimension d = 2, 

(b) Hierarchical Machines 

1 t¢or~rt~ 
n l/Z t~a, (16c) grh/n 

The interesting feature now is that one does not  need to modify the algorithm at all because the cache 
loading time is 

Teach ~ e~ ng~n t,~m (16d) 

and so we obtain, with an unchanged algorithm 
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1 t~.~ (16e) 
f s N .. i/2 t ~ .  

¢tgfaltt 

The constant in (16e) can be affected by the exact algorithm used as it depends on the number  of  blocks 
read in between cache stores; this is analogous to the M dependence in Sec. IVA. 

Let  us compare this case with that of  the finite difference algorithm in Sec. IVB. As shown in Eqs. (14c) 
and (16c), both have similar overheads in the case of  the hypercube. However,  the matrix multiplication 
naturally retains this result for hierarchical machines while for IVB, we needed to change the algorithm to 
reduce the memory overhead fR .  We can understand the issue by comparing Eqs. (14a) and (16a). In the fin- 
ite difference case, we have a small communication overhead because we are transmitting a few (pc ~ 1/2 
variables but  doing little (0(1) per variable) work with them. In matrix multiplication, we communicate more 

" ~/~) for each transmitted variable. The algorithms obtain the variables (o~ ngna,.) but  do a lot of  work t c~ n g ~ .  
same result for f c  but for different reasons. In fact the matrix multiplication algorithm "succeeds" on the 
hierarchical memory machines  for the same reason as the long range problem. Both do a lot of  work per fun- 
damental  entity; in IVA, the work is proportional to no.an and in IVC, proportional to ng~. .  This is the origin 
of  the different connection dimensions shown in Eqs. (12c) and (16c). 
IVD: LU Decomposition 

Now let us consider, a more important matrix algorithm; namely L U  decomposition of  full matrices or 
the related problem of  matrix inversion. This has been studied in detail on the hypercube in Refs. [2, 19, 20- 
24] and we will find that the issues are more similar to those of Sec. IVB than those of IVC. We will not con- 
sider pivoting here; this is an interesting and tricky complication which leaves the results below qualitatively 
unchanged [2, 23]. We note that the issues discussed here and in Sec. IVC are closely related to the important 
work on the "Level-3 BLAS" discussed by Dongarra at this conference [25]. 

(a) Homogeneous Hypercube 

We use the same square subblock decomposition introduced in INC. At  a typical stage of  LU decompo- 
sition, one is subtracting the row containing the eliminated variable from all other rows. There is a separate 
multiplier for each row calculated from the column containing the eliminated variable. This is illustrated in 
Fig. 11 and one sees a situation rather similar to that of  Sec. IVB. 

Namely in a typical stage, one has a calculation 

a O. --, aij  - -c i  rj, (17) 

taking time 

Te,ae = 2ng~,, t~,ae (i8a) 

and a communicat ion 

T°o,~. = 2 x / n u ~ .  too,,,,. (ISb) 

with our s tandard form 

1 tco,~,~ (18c) 

Actually Eqs. (18a, b) ignore certain overheads connected with the calculation of the cl and r i as well as 
load imbalance overhead and the effect of  the reduction in value of  n a ~  as one eliminates rows and columns. 
These effects alter the cons tan t  in Eq. (3) but  leave the form (18c) unchanged.  

(b) Hierarchical Memory 

We are faced with the same problem as in Sec. IVB, with a "cache" load and store time which has the 
same n g ~  dependence as the calculation in Eq. (18a). The solution is similar to that of  IVB and involves 
eliminating several, say M,  rows (and columns) at the same time. One can show that the M values of  r~ and cj 
can be calculated in a separate concurrent  step which itself can be efficiently implemented. Given this, one 
will find a simple block algorithm in which the times in Eqs. (18a, b) are both increased by a factor M 

.~ 1 / 2  whereas the "cache" loading is still given by a time t,,~m ng~n. Choosing M c~ ng,~.~, one will find overheads 
f n  of  comparable form to f c  and a total overhead that is proportional to n ~  as in the original homogeneous 

hypercube case. 
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IVE: Fast Fourier Transform (FFT) 

Originally we implemented the FFT in a natural fashion on the hypercube [2] using local communicat ion 
in the hypercube topology where necessary. It is well known that the hypercube architecture exactly matches 
the pattern of  the binary FFT. However, the discussion here will be easier using a formulation due to Fur- 
manski  [2, 33] which ingeniously lumps all the communicat ion into a single stage and avoids any communica-  
tion during the calculation steps. 

(a) Homogeneous Hypercube 

We will consider a one dimensional F F T  and we can label the variables by a binary digit B illustrated in 
Fig. 12. This example shows the case ntoua = 2 ~4 and Nr,,~ = 2 s. Five digits go-4 of  B are used to label pro- 
cessor number  and the remaining nine digits lo--s the position within the local memory of the node. The FFT 
algorithms systematically alters the variable starting at the highest digit of  B (lo in Fig. 12(a)) and ending at 
the lowest (g 4 in Fig. 12a). There are log nta, a steps each of  which takes calculation time nu~,a. 

Furmanski ' s  algorithm does the first nine steps, each altering one digit, as labelled in Fig. 12(a); then it 
transforms the data to the situation of Fig. 12(b) where the lower order bits are now stored locally. This is 
performed by a communicat ion primitive called i n d e x  in Ref. [33]. After the transformation the remaining 
five digits are processed locally in each node. The calculation is load balanced at each stage and takes total 
time 

1 
T,,a~ ~ ~ n ~  log(n~a)  t~a, (19a) 

= n,~a, log(nt,~a) t,~, 

while the communicat ion primitive i n d e x  takes time 

T,o,~,~ ~ n,,oa, log(Nmo, ) t , o ~  (19b) 

In this formula the log N m  dependence just  represents the typical distance (1/2 log Nr~,o~ ) between 
points in a hypercube topology. This communicat ion time could be reduced on machines  with automatic rout- 
ing. One finds an overhead 

f o ~ log(N~,,~) t,o,,~ 
log(nu~,a) t~a ~ (19c) 

which corresponds to infinite connection dimension in Eq.(3). 

The discussion of  hierarchical memory machines is now straightforward. We will use the same idea of 
calculating a certain number  of  bits in B at a time. Clearly we can perform a number  of  steps corresponding 
to at most log (n~,~a~) bits at any one time and we find a set of  calculations each taking time 

T a , , , ~ , ~ y  log(ng,~,) t,a~ (19d) a le  ~ F/gra~'n 

and a cache load and store time of  

T~h~ ~ n,,~,~ t,,~,~ (19e) 

Thus,  we perform log (n~,~,,) steps for each cache loading and obtain an overhead 

f s oc 1 t,,~,~ 
log(n~,~) t ,a ,  (19f) 

We have found a slightly different overhead formula from the original case, Eq. (19c), but  fortunately we have 
been able to use the same decomposition to deal with distributed and hierarchical memories.  This 
equivalence would not have been direct i f  one had used the traditional hypercube FFT  approach. 

IVF: Neural Networks 

We have a growing interest at Caltech in using the hypercube to model both biological and applied 
(theoretical) neural  networks. In general, distributed memory machines  are welt suited to modelling nature 's  
own distributed memory  "computers". It turns out that the optimal decomposition of the neural network is 
sensitive to the structure of  the interconnection between the neurons [26]. Some cases have a rather full inter- 
connect and the hypercube decomposition resembles the long range force algorithm described in Sec. IVA; 
other cases have a dominant  short range structure and the analysis is then similar to that in Sec. IVB. The 
issues in neural  network simulation are of  course related to those in other circuit simulations. 
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We can discuss a recent explicit implementation on the hypercube of a model  of  the piriform cortex [27]. 
This corresponds to a nearly full interconnect but  an interesting subtlety that changes the analysis from that in 
IVA. One is calculating the effect G ~  s of  neuron i on j .  A symmetry of the propagation Green's  function 
( G ~  s) means that it is optimal to associate the calculation o f  G ~ .  with i and not the target neuron j .  In the 
particle dynamics  case in IVA we made the opposite choice o f  shipping the information to the target particle 
and then doing the calculation. The calculation of  all the Green 's  functions ( G ~ . )  is local to each grain and 
involves no communication. The latter is needed as one forms the global sums 

~] G ~ j  for each j (20) 
i 

Thus,  the problem is reduced to the calculation of a large number  of  sums. The components of the sum 
(i) and the storage o f  the final result ( j )  are both uniformly distributed throughout  the hypercube. This prob- 
lem was solved in Ref. [33] in terms of  a hypercube communicat ion primitive called fold. It is straightforward 
to implement fold on a hierarchical memory; the issues are similar to those in Sec. IVA. 

We see that the neural network decomposition can be unified over the various architectures as long as it 
is implemented in terms of the basic primitives fold which is then separately implemented in an optimal 
fashion on each architecture. 

V: Conclusions 

We have considered the issues involved in a unified approach to distributed and hierarchical memory 
machines. Our techniques also allow optimal implementations of  message passing on shared memory parallel 
processors. We have discussed the general approach in See. III and the prettiest result is inclusion of both 
space and time in the description of complex systems. In Sec. IV, we worked through six problem classes and 
were able to show decompositions that effected our desired unifications. In all cases, the overheads were 
small as long as the "cache" size n ~ ,  was big enough and that the communicat ion performance of the com- 
puter, measured by t,,~m/t,ol~, t,o,,~/t¢ac was good enough. Another  way of summarizing our results is to say 
that problems are associated with data domains. Homogeneous machines just  need the decomposition of this 
domain; this is often a spatial decomposition. Hierarchical computers also need one to consider the label (e.g., 
DO loop index) of  the processing of elements in the domain. These machines  require both spatial (data 
domain) decomposition and that associated with this new label; this label often corresponds to time i.e., 
hierarchical machines need "space-time" and not just "spatial" decompositions. Our results contain the essen- 
tial information to make the necessary tradeoffs between memory/communica t ion  bandwidth and "cache" size. 
We note that technology improvements  should permit "cache" sizes to increase in the future. This will 
increase the applicability of  our techniques. 

In future papers, we will present  details of  the ideas sketched in IV and describe the implementation 
issues in providing the desired portable high performance environments.  

We would also point out that the basic ideas presented here are the message passing version of principles 
that have been used for some time in the field of  vectorizing and decomposing compilers [28, 29, 30]. The 
manipulat ion of DO loops described by Gannon at this conference are similar in spirit to the physical 
transformations suggested here. 
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ski, September 1, 1986, published in proceedings of 1986 Knoxville Hypercube Conference, edited by 
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Table 1: Hardware Parameters of Some Concurrent Supereomputers 

NCUBE 
Hypercube 
M~rk/l~p 

optim~l 

tcat¢ 
lO ,us 

0.1 ,us 

tcomm 

13 ,US 

2.5/~S * 

t¢orlm~ tree m 
teoge Main Memory tmem "Cache" 

tca/e 
Size M Byte Size M Byte 

1.3 0,5 

25 4 1.5 16 0,13 

*Operation concurrent with calculation 

General Field 

Applied Math & 
Computer Science 

Biology 

Chemistry and 
Chemical Engineering 

Engineering 

T a b l e  2: S o m e  Hypercube  Implementa t ions  a t  Cal teeh 

Associated Scientists Topic 

A. Barr 
J. Goldsmith (JPL) 

B, Beckman (JPL) 
D. Jefferson (UCLA) 

M. Buehler (JPL) 

G. Fox 

H. Keller 
P. Saffman 

C. Seitz 

J. Bower 
J. Hopfield 
C. Koch 

Computer Graphics 

Time Warp Event Driven 
Simulation 

Computer Aided Design 

Matrix Algorithms 
Load Balancing Algorithms 
Optimization 
Computer Chess 

Parallel Shooting 
Multigrid Adaptive Meshes 

Mathematics and Logic 
Computer Aided Design 

Modelling of 
Cortex and Applied 
Neural Networks 

J. Brady 

W. Goddard 

A. Kuppermann 

N. Corngold 

R. Gould 
P. Liewer (JPL) 

J. Halt 

W. Johnson 

Flow of Porous Media 

Protein Dynamics 

Chemical Reaction Dynamics 

Turbulence 
(strange attractors) 

Plasma Physics 
(PIC) 

Finite Element Analysis 
of Earthquake Engineering 

Condensed Matter 
Simulations for 
Material Science 
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Geophysics 

Physics 

Figure Captions 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 4. 

Fig. 5. 

Fig 6. 

A. Leonard 
B. Sturtevant 

R. McEliece 
E. Posner 
F. Pollara (JPL) 

J. Solomon (JPL) 

R. Clayton 

B. Hager 

T. Tanimoto 

R. Blandford 
D. Meier (JPL) 

M. Cross 

G. Fox 

S. Koonin  

A. Readhead 
T. Prince 

T. Tombrello 

Fluid Turbulence 
in Computational Aerodynamics 

Convolution Decoding 

Image Processing 

Seismic Waves 

Tomography 

Geodynamics 

Normal Modes of Earth 

Fluid Jets in 
Astrophysics 

Condensed Matter 
Two Dimensional Melting 

High Energy Physics 
Lattice Gauge Theory  

Nuclear Matter 

Astronomical Data Analysis 

Granular  Physics 
Molecular Dynamics 

Block diagram of the three machine architectures considered in this paper. We allow either a 
hardware controlled cache or user local memory to be the lowest level of  the memory hierarchy. 
We ignore the important issues concerning the network connecting the global memory in (b) to the 
local "cache" and CPU's  of  the shared memory architecture. 

Block Diagrams of the NCUBE and Mark IIIfp hypercube nodes. We do not show a 68020/68882 
based applications controller in (b) as it is irrelevant for this paper. The WEITEK XL unit  is a 
complete computer.  

64 node N C U B E b o a r d  and packaging into a 1024 node system 

The  two printed circuit boards making up the Mark IIIfp node. The WEITEK board is functional 
but  will be cleaned up for the production unit. 

(a) Main board with 4 megabytes of  memory and two 68020's. 

The two printed circuit boards making up the Mark IIIfp node. The WEITEK board is functional 
but will be cleaned up for the production unit. 

(b) Floating Point coprocessor built around WEITEK XL chip set. 

Definitions of the three hardware parameters tc,a¢, t,,~,,~, and t,o~o discussed in Sec. II. 

The complex system corresponding to a short range force particle dynamics problem with its 
decomposition into four grains. 



Fig. 7. 

Fig. 8. 

Fig, 9, 

Fig. i0. 

Fig. 11. 

Fig. 12, 
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A complex system in space and time that corresponds to a regular nearest  neighbor problem in one 

spatial dimension; the finite difference solution of 0 ~  2 = c 0~2~- would lead to such a complex sys- 
Ox ~ Ot 2 

tern. 

The boundaries of  a space-time complex system of  the type illustrated in Fig. 7, Edges of the 
graph crossed by spatial boundaries correspond to messages with neighboring systems. Those 
crossed by temporal boundaries corresponding to the loading and ejection of the grain to and from 
cache and main memory, 

Two stencils for the solution of Poisson's equation in two dimensions. 

Three decompositions in space and time of  the one dimensional wave equation discussed in the 
text of  Sec. IVB. 

A typical step in L U  decomposition discussed in Sec. IVD, 

The i n d e x  transformation used in the FFT discussion of Sec. IVE. 
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(a) Generic Sequential Computer 
With Hierarchical Memory 

Main I 
Memory[ 

(b) Shared Memory Computer 
With Hierarchical Memory 

Global 

[ I 

(Shared) Memory 

I I 
N E T W O R K  . . . . . . . . . . .  

Fig. 1. Block diagram of the three machine architectures considered in this paper. We 
allow either a hardware controlled cache or user local memory to be the lowest 
level of the memory hierarchy. We ignore the important issues concerning the net- 
work connecting the global memory in (b) to the local "cache" and CPU's of the 
shared memory architecture. 
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(c) Hierarchical Memory Hypercube (d=2) 

Node 1 

Node | 
Memory] 

Communication 
Channels 

Node 1 
Memory / 

i Node ] 
Memory I 

may be a true cache or user controlled memory 

Fig. 1. Block diagram of the three machine architectures considered in this paper. We 
allow either a hardware controlled cache or user local memory to be the lowest 
level of the memory hierarchy. We ignore the important issues concerning the net- 
work connecting the global memory in (b) to the local "cache" and CPU's of the 
shared memory architecture. 
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Contrasting Hypercube Nodes 

(a) Commercial NCUBE 

Each Node is 7 Chips 

CUSTOM CHIP 
with CPU 
including floating point 
and 11 communication 
channels 

Six 
1 megabit 

memory chips 

(b) Mark IIIfp Constructed at JPL 

Each Node is 2 Printed Circuit 
Boards and a Total of 440 Chips 

I 
68020 based 

Communication 
Controller 

I I I ! ! ! 1  
8 Communication 

Channels 

4 Megabytes Main 
Node Memory 

I 
WEITEK XL 

3 Chip Set 
FPU and 

Controller 

Fig. 2. Block Diagrams of the NCUBE and Mark Illfp hypercube nodes. We do not  show 
a 68020/68882 based applications controller in (b) as it is irrelevant for this paper. 
The WEITEK XL unit is a complete computer. 
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Basic  H a r d w a r e  Parameters  

Calculation Time 

tcalc = Time for basic floating point operation. 

"Cache" - Main (Global) Memory  Transfer  Time 

M a i n [  
Memory t 

;T 

tca 

tmem Time spent to read AND write word 
in "cache" from and to main memory. 

Node to Node Communication Time 

Main 
Node 

Memory 

tcomm -- Time spent to communicate (read 
and write) a word between nodes. 

t/•em 

tcalc [-~I'U----~ 

Fig. 5. Definitions of the three hardware parameters t ~ ,  t,~,~, and t ~  discussed in Sec. 
II. 
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ii /" 
I I I I 

I 
I I 

# i /  
I I • 
I / I  

I I 
I I 
I I 

I ii ! 
I I 

I / ,' 
1 / ! 
I / 

® i o / o ,,' ® 

• Particle 
-- ~ Interacting 

Particles 

D o m a i n  D e c o m p o s i t i o n  In to  4 G r a i n s  

Fig 6. The complex system corresponding to a short range force particle dynamics prob- 
lem with its decomposition into four grains. 
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g 
Time 

tl 

to 

. - ' - - - " - .  A Complex System 
/ X 

," ", c//" In Space And Time 
I X 

I 

t 1 

O O O O • • • Q O O Q O O O O 

Q O Q O Q Q Q Q O O O O O O Q 

O O O • • • • Q O O O O O O Q 

O O Q • Q • • Q O O Q O O O O 

Space > 

Fig. 7. A complex system in space and time that corresponds to a regular nearest neighbor 

problem in one spatial dimension; the finite difference solution of 02~b = c 92~b 
Ox 2 Ot 2 

would lead to such a complex system. 
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Time 

Messages 

Store Final Values 
At Time tl 

? 
I o  

t 
/ o  

J 
l e  

J 

J 

• • • 

• • • o~  

• • • o~ 

• • • o~ 

r l)- 
Load Previous Conditions 

At Time to 

Space > 

Messages With 
Neighboring Systems 

Fig. 8. The boundaries of a space-time complex system of the type illustrated in Fig. 7. 
Edges of the graph crossed by spatial boundaries correspond to messages with 
neighboring systems. Those crossed by temporal boundaries corresponding to the 
loading and ejection of the grain to and from cache and main memory. 
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(a) Simple Stencil 

(b) Higher Order Stencil 

1 
I 

• • • • • 

I 
I 

Fig, 9. Two stencils for the solution of Poisson's equation in two dimensions. 
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(a)  A H i g h  E d g e / A r e a  R a t i o  I n  T h e  T i m e  D i r e c t i o n  

T i m e  

T" /- 
S p a c e  

• • [ • • • • • • ] • • • 

~" B o u n d a r y  o f  a C o m p l e x  S y s t e m  

(b)  A B e t t e r  E d g e / A r e a  R a t i o  W i t h  M o d e s t  C o m m u n i c a t i o n  

. . . . . . . . . . .  . . . . . . . . .  

• e o ~  • • ~ o • • • • • • • • • • • 

l m e  ° . ~ / •  • • • • • • • • • • • • T • • • • ° • • • . • • • • • • 

S p a c e  

(c)  A M o r e  P r a c t i c a l  D e c o m p o s i t i o n  W i t h  M o r e  C o m m u n i c a t i o n  

O O O O O O O O O Q O O O O O O O O O O O O O O  

O O O O O O O O O O O O O O O O O O O O O g O O  
T i m e  Q ® I Q I Q Q Q O O Q ~ O S O O O t O O O Q Q Q  

T O O O O O O O g O O O O O O O O Q O O O O O O O  

f 
S p a c e  

Fig. 10. Three decompositions in space and time of  the one dimensional wave equation dis- 
cussed in the text of  Sec. IVB. 
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> Column 

Eliminated 
Row @ Variable 

Column 
Multiplierci 

$> 

Eliminated Row Element 

/ / / M a t r i x E l e m e n t  aij 

• " " " - -Tvnica lguhhlock 
• • • • In A Single Node 

~-" (-n grain > 

A Typical Step In LU Decomposition 

Fig, 11. A typical step in LU decomposition discussed in Sec, IVD. 
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(a) Initial Storage 

(b) After Communication 

goJ ~,l ~2 

(index) 

,ol ',4,21 '~1 ',1 
The digits of a binary index B labelling variables to be 
further transformed 

Fig. 12. The index transformation used in the FFT discussion of Sec. IVE. 


