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Communication in the Banded Algorithm

 To update the elements in the computational win-
dow we need to be able to communicate,
o Livi = Ausis (i = 0,1,...,7 — 1) to the other

processors in the same row of the template.

o Upi; = Ases (7 = 0,1,...,7 — 1) to the other
processors in the same column of the template.

o This ication can be perfc d by a pipe

broadcast using the vread/vwrite communication

routines. (
For example, for rows, if Tow_pos is 0, 1 or 2 de-

pending on whether a processor is in the first row, a

middle row, or the last row of the current window:

if ( row_pos == 0 )
vurite(Abuf,down,fsize,offset,mhat);

else if ( row_pos 1
vread(U,up,dovn,fsize,fsize ,mmax) ;

else if ( row_pos ==
vread(U,up,0,fsize,fsize,mmax);

Ll



Banded Matrix Decomposition

Scattered decomposition of a 20 x 20 matrix with
band-width b = 11 for a 16 processor hypercube.
A similar decomposition can be used for meshed-

connected topologies.

n
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Banded LU Decomposition

If the matrix, A, is banded with bandwidth, b, and
half-width m given by b = 2m — 1, then:

o The sequential algorithm is similar to the full ma-
trix case, except at each stage only those elements
within a computational “window” of m rows and

m columns are updated

Partial pivoting can cause the number of columns
in the computational window to be greater than
m. This necessitates some extra bookkeeping in
both the jal and parallel al

The parallel banded and full algorithms are sim-
ilar, but use a different decomposition. To get
better load balance a scattered decomposition over
both rows and columns is used in the banded algo-
rithm. In the full case a scattered decomposition

over just rows was used.

4i520



(4)

If the pivot row is in the same processor as row
k then columns k to M — 1 of the pivot row are
overwritten by the corresponding entries in row
k. If the pivot row and row k are not in the same
processor columns k to M —1 of row k are sent (by
the shortest possible pipe) to the processor which
had the pivot row, and are used to overwrite the
corresponding pivot row entries.

In the processor containing row k, columns k to
M —1 of row k are overwritten by the entries in

the array pivot.

ulsie



Parallel Pivoting

At step k pivot selection is performed in parallel as
follows:
(1) Each processor checks its rows and chooses a pivot
candidate.
(2) Bach candidate passes the absolute value of its

pivot candid

and the corresponding row num-
ber, to the CrOS III routine combine. This gives
the pivot row number.

(3) The entries in the pivot row from column k to
column M — 1 are piped (or broadcast) to all pro-

cessors, and is stored in the array pivot.

(continued...)

lsos



int select_pivot ( pdatal, pdata2, size )
struct { float pval; int prow; } *pdatal, *pdata2;
int size;
{
if ( pdata2->pval > pdatai->pval ){
pdatai->pval = pdata2->pval;
pdatal->prow = pdata2->prow;

return 0;

INTEGER FUNCTION SELPIV ( PDATA1, PDATA2, ISIZE )
REAL PDATA1(2), PDATA2(2)
INTEGER ISIZE

IF ( PDATA2(1) .GT. PDATA1(1) ) THEN
PDATA1(1) = PDATA2(1)
PDATA1(2) = PDATA2(2)

ENDIF

SELPIV = 0

RETURN
END

" lehe
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Communication in the Parallel

LU Decomposition Algorithm

We can perform the broadcast of the pivot row by
means of the pipe algorithm, as used in the matrix
multiplication algorithm.

If pivoting is necessary at step k we can send row
k to the appropriate processor using the shortest
available pipe.

The pivot row can be selected by using the CrOS
III combine routine with the combining function
shown on the next page.

We decompose over rows, rather than columns,
since this is more convenient if we subsequently
want to do forward reduction and back substitu-

tion.

ulugo



Scattered Row Decomposition

Work is i ly load bal d as

tional window moves down diagonal.
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Parallel Pseudocode (

for_begin ( each step, k =0,1,...,M —1)
select pivot row, r
broadcast columns k to M — 1 of pivot row
to other processors
replace columns k to M — 1 of row r with
those of row k
for _begin ( each row,i=1,2,...,M ~1—k)
Avvin = Auvin Ak (
for_end
for _begin ( each column, j =1,...,M —1—k )
M -1-k)

Avvine; = Akrigss = Arsin * Avpj

for_begin ( each row, i =

for_end
for_end

for_end



Block Row Decomposition

Not load balanced. When computational window is
as shown shaded above processor 0 is idle for the rest
of the algorithm.
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Decomposition

We must choose a decomposition which is load bal-

anced throughout the algorithm, and which mini-

mizes communication.

o Contiguous blocks of rows or columns? - Won't
work since not load balanced. Once processing
of a block of rows or columns is completed the

corresponding processor will have nothing to do.

Scattered (or wrap) row decomposition? - Each
processor gets a set of non-contiguous rows. We
use the gridmap routines to map the processors
onto a line. If processor p is at position B(p) on
the line, then it handles rows,

B(p), B(p) + N, B(p) + 2N, ...

Yleue



Sequential Pseudocode

for_begin ( each step, k =0,1,...,M —1)
select pivot row
exchange columns k to M — 1 of row k with
those of pivot row
for_begin ( each row,i=1,2,...,M —1—k)
Avvin = Aurin] Ars

for_end
for -begin ( each column, j =1,...,M ~1—k )
for_begin ( eachrow,i=1,...,M~1—k)"

Asier; = Avvinrs — Arsip * Apr
for_end
for_end

for_end

Gly3o



Pivot Selection at Step k

Exchange columns
k to

t
Pivot is selected
from shaded entries

Factorization After k Steps

Already factored
o into rows of U
£ ~row k
3
S ‘| Only entries in shaded
8% computational window
b 2 are updated at step k
)
55
=3
T e —
column k
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Sequential LU Algorithm

Algorithm proceeds in M steps.

o At the start of step k we identify the row, r, con-
taining the largest value of | ;| for k <i < M—1.
If r # k then rows r and k are exchanged. This
is called partial pivoting, and is done to improve
the numerical stability. After the exchange the
element that is now Ay is called the pivot.

o At each step k column number k of L and row
number k of U are found:

L=1

Luvix = Awvis/ Ay for
Upr; = Agps;  for j=0,1,...,M—1—k
Then the rows and columns > k are modified as

follows:

Assigr; = Avsiirs = DisislUriss

fori=1,...,M-1-kandj=1,....M -1k

tluoe



o After step k the first k rows and columns of A
are not used again. We can therefore overwrite A
with the columns of L and the rows of U as we
find them. The diagonal of L does not have to be
explicitly stored since it is all 1's.



Some References

The following papers deal with parallel algorithms
for the LU decomposition of full matrices, and con-
tain useful references to other work:

G. A. Geist and M. T. Heath, 1986, “Matrix Fac-

on a Hyper Multi ” in Hy-
percube Multiprocessors 1986, published by SIAM
Press, Philadelphia.

E. Chu and A. George, 1987, “Gaussian Elimina-
tion With Partial Pivoting and Load Balancing on a
Multip: " Parallel Ce ing, 5:65.
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Full LU Decomposition

We wish to decompose the matrix A into the product

LU, where L is a lower triangular matrix with 1's

on the main diagonal, and U is an upper triangular

matrix.

e We assume A is a full M by M matrix.

o In general pivoting is necessary to ensure numeri-
cal stability.

e LU decomposition is often used in the solution of
systems of linear equations, Az = b. The equa-

tions can be written as two triangular systems,
Ly=b, and Uz =y

The first equation is solved for y by forward re-
duction, and the solution z is then obtained from

the second equation by back substitution.
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Performance Analysis

Time to pipe A = (m? + (VN — 2))tmm
Time to roll B = m*,gnn

Time to doC = C + TB = 2m’t.,

Total time, Ty(m) = VN([2m*teuct(2m*+VN—-2)t com]
The efficiency is given by,
_T(M) _ 2mvV Nt

Ty(m) ~ N3 2mdtey, + (2m? + VN — 2)tenn]
The overhead is therefore,

1 VN-

2m*

€

PIn

€

where T = t,ynm/tec. If g = m? is the grain size, then

fx

NG
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Comparison of Pipe and Broadcast

+
Time for naive broadcast = ’"7(\/17 = Dtcmm

Time for log broadcast = mTzdt,,,,_,,_
Time for pipe broadcast = Mm% umm + (VN = 2)tcomm
where,
t.omm = Time to exchange a floating-point number
m = Order of square sub-block matrix
d = Dimension of hypercube

N = Number of processors = 2¢

Note:

For sufficiently large grai

better than the logarithmic broadcast,
vN-2) .

d is

the pipe b

I m'>2
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Pseudocode for Pipe Broadcast

proc_begin pipe_A ( pipe A sub-block )
determine source processor for pipe
determine last processor in the pipe
if_begin ( this processor is source ) then
copy Ato T
send T to processor on right
else_if ( this processor is not end of pipe ) then
receive T*from processor on left
send T to processor on right -
else
receive T from processor on left
if_end
proc_end



Step0.
Step1
Step2
Step3
Step4
Steps
Step 6
Step7
Step8
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Step 13
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Schematic representation of a split pipe.
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Source Destination
Processor P

Step0

0 san
Step 1 O
Step2 D
Step3 O vioe
s W-H-E-E-E OO O (5
sos l-H-E-E-8-E O O
seps l-H-E-E-E-E-FE O

s li-H-E-E-B-B-E-E
sos [li-H-E-E-E-E-E-8 (
so [l-H-H-H-H-B-B-B
seo0 [li-H-H-E-EH-E-E-B
st [} I--E-E-E-B-B
sz [l I H-H-H-H-B-8
se [l H H H-EH-EH-H-H
so [l l'H H H-E-E-H
ses [l H H H B H-H-H
st [l I T H H B BB e

Schematic representation of a simple linear pipe.
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The Use of broadcast

“int broadcast ( buffer, origin, bmask, mbytes )
char sbuffer; /+ data to be broadcast  */
int origin; /* node mumber of source %/
int bmask;  /* specifies subcube /
int nbytes; /% number of bytes to send */

In this case buffer points to the storage for T'.
If processor is in row i, then origin is the proces-
sor at position (i, j), where j = (i +n) mod vN.
bmask is VIV — 1.

nbytes is just the size of a sub-block in bytes.

L3



Pseudocode for bcast_A f

proc_begin beast_A ( broadcast A sub-block )

! source for broad

if_begin ( this processor is source ) then
copy A to T
broadcast T' to row

else_if ( this processor is not source ) then
receive sub-block and store in T'

if_end

proc_end



Pseudocode for Matrix Multiplication

proc_begin mat.mult (find C = AB)
initialize sub-block matrix C' to zero
for_begin (n=0to VN —1)
proc_call bcast_A ( send appropriate 4
sub-block along rows, store in T )
C—C+TB
proc_call roll B ( roll B upwards )
for_end

proc_end

Llzow



A Look At What Happens

Consider the case where IV = 16, and look at what
happens in a particular processor. We choose the

one at position (2, 1).

T =A% B=5B,
C = Anpn

T =A% B=ph",

C = Anpn 4 AnEn

T=A4» B=5B", {
C = AB 4+ ABBY 4 AnF0

T=A4% B=5B",

C = AnpBn 4 gnpn 4 gugo 4 pufgu
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The Algorithm

If C* is the sub-block at position (I, k) then the prob-
lem can be stated in block matrix form:
‘/’E;‘ A

1) Initialize C =0, n = 0.

2) In each row, i, of processors broadcast the sub-
block A% to the other processors in the row, where
j = (i +n) mod VN. Each processor stores the
broadcast sub-block in T

&

Multiply T' in each processor by the current B
sub-block, and add result to C.

3) Each processor sends its current B sub-block to
the processor above. At the same time it receives
a sub-block from the processor below and makes
this the new current B sub-block. Processors in
the top row communicate with those in the bottom

row.

4) Setn =n+1. If n < VN then go to (2), else quit.



Matrix Multiplication

Suppose we want to multiply the matrices A and B
together to form the matrix C:
C=AB

o We will assume all matrices are square — the algo-
rithm can be lized to deal with 1

matrices.

o The input matrices, A and B, are decomposed into
rectangular sub-blocks. If we have N processors
we have v/N rows and columns of sub-blocks. This
means N must be a perfect square, i.e., that the

. hypercube dimension is even. The algorithm can
easily be generalized for hypercubes of odd dimen-
sion.

e One sub-block is assigned to each processor by

means of the gridmap decomposition routines.

The algorithm ensures that the output matrix C

has the same decomposition as A and B.

Yl
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() A High Edge/Arca Ratio In The Time Direction

Time

N Boundary of a Complex System
Space

(b)A Better Edge/Area Ratio With Modest Communication

Time : 4 N
Space

() A More Practical D ition With More C

Time : P

Space

space and time of

Fig. 10, it
cussed in the text of Sec. IV,
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Communication in the Banded Algorithm.

o To update the elements in the computational win-
dow we need to be able to communicate,
o Lisi = Apuip (i = 0,1,...,72 — 1) to the other
processors in the same row of the template.
o Uii; = Awss; (j = 0,1,...,7 — 1) to the other
processors in the same column of the template.
fc d by a pipe
broadcast using the vread /vwrite communication

e This ication can be p

routines.

For example, for rows, if row_pos is 0, 1 or 2 de-
pending on whether a processor is in the first row, a

middle row, or the last row of the current window:

if ( row_pos == 0 )
vwrite(Abuf,down,fsize,offset,mhat);

else if ( row_pos == 1)
vread(U,up,down,fsize,fsize,mmax);

else if ( row_pos == 2
vread(U,up,0,fsize,fsize,mmax);

ulsse



[ Banded Matrix Decomposition

Scattered decomposition of a 20 x 20 matrix with
band-width b = 11 for a 16 processor hypercube.
A similar decomposition can be used for meshed-

connected topologies.
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Banded LU Decomposition

If the matrix, A, is banded with bandwidth, b, and

half-width m given by b = 2m — 1, then:

o The sequential algorithm is similar to the full ma-
trix case, except at each stage only those elements
within a computational “window” of m rows and
m columns are updated

e Partial pivoting can cause the number of columns
in the computational window to be greater than
m. This necessitates some extra bookkeeping in
both the sequential and parallel algorithms.

e The parallel banded and full algorithms are sim-
ilar, but use a different decomposition. To get
better load balance a scattered decomposition over
both rows and columns is used in the banded algo-
rithm. In the full case a scattered decomposition

over just rows was used.
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(4)

(5)

If the pivot row is in the same processor as row
k then columns k to M — 1 of the pivot row are
overwritten by the corresponding entries in row
k. If the pivot row and row k are not in the same
processor columns k to M —1 of row k are sent (by
the shortest possible pipe) to the processor which
had the pivot row, and are used to overwrite the

corresponding pivot row entries.

In the p ining row k, col k to
M — 1 of row k are overwritten by the entries in

the array pivot.
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[ ] " Parallel Pivoting

At step k pivot selection is performed in parallel as
follows:
(1) Each processor checks its rows and chooses a pivot
candidate.

(2) Each candidate passes the absolute value of its

pivot did and the ding row num-
ber, to the CrOS III routine combine. This gives

. the pivot row number.
(3) The entries in the pivot row from column k to
column M — 1 are piped (or broadcast) to all pro-

cessors, and is stored in the array pivot.

[ ] (continued...)
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int select_pivot ( pdatal, pdata2, size )
struct { float pval; int prow; } spdatai, +pdata2; @
int size;

if ( pdata2->pval > pdatai->pval ){
pdatai->pval = pdata2->pval;
pdatal->prow = pdata2->prow;

return 0;

}

INTEGER FUNCTION SELPIV ( PDATA1, PDATA2, ISIZE )
REAL PDATA1(2), PDATA2(2)
INTEGER ISIZE

IF ( PDATA2(1) .GT. PDATA1(1) ) THEN

PDATA1(1) = PDATA2(1) [}
PDATA1(2) = PDATA2(2)

ENDIF

SELPIV = 0

RETURN

END
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Communication in the Parallel

LU Decomposition Algorithm

‘We can perform the broadcast of the pivot row by
means of the pipe algorithm, as used in the matrix
multiplication algorithm.

If pivoting is necessary at step k we can send row
k to the appropriate processor using the shortest
available pipe.

The pivot row can be selected by using the CrOS
III combine routine with the combining function
shown on the next page.

We decompose over rows, rather than columns,
since this is more convenient if we subsequently
want to do forward reduction and back substitu-

tion.
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Parallel Pseudocode ()

.for_begin ( each step, k=0,1,...,M —-1)
select pivot row, r
broadcast columns k to M — 1 of pivot row
to other processors
replace columns k to M — 1 of row r with
those of row k
for_begin (eachrow,i=1,2,..., M —1—k)
Avvip = Ansia/ Ars [
for_end
for_begin ( each column, j=1,..., M —1—k)
for_begin (eachrow,i=1,..., M -1-k)
Avrinsi = Arvikri = Arvis * Ais
for_end
for_end
for_end
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[ Scattered Row Decomposition

Work is i ly load bal d as

tional window moves down diagonal.
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Block Row Decomposition Y

Not load balanced. When computational window is
as shown shaded above processor 0 is idle for the rest
of the algorithm.
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Decomposition

‘We must choose a decomposition which is load bal-
anced throughout the algorithm, and which mini-
mizes communication.

e Contiguous blocks of rows or columns? — Won't
work since not load balanced. Once processing
of a block of rows or columns is completed the
corresponding processor will have nothing to do.

o Scattered (or wrap) row decomposition? - Each
processor gets a set of non-contiguous rows. We
use the gridmap routines to map the processors
onto a line. If processor p is at position B(p) on
the line, then it handles rows,

B(p), B(p) + N, B(p) + 2N, ...
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Sequential Pseudocode PY

for_begin ( each step, k =0,1,...,M —1)
select pivot row
exchange columns k to M — 1 of row k with
those of pivot row
for_begin (eachrow,i=1,2,...,. M —-1-k)
Apip = Asin/Ack

for_end
for_begin ( each column, j =1,...,M —1—k )
for_begin ( each row, i = ,.4.,M—1~k).

Avsinss = Arripr; = Avsis * Aipss
for_end
for_end

for_end
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[ ] Pivot Selection at Step k

Exchange columns
k to M-1

pivotrow

Pivot is 'selecwd
[ from shaded entries

Factorization After k Steps

Already factored
° into rows of U
£ erowk
§ o Only entries in shaded
g5 computational window
b 2 are updated at step k
)
PY <8
;
column k
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o After step k the first k rows and columns of A @
are not used again. We can therefore overwrite A
with the columns of L and the rows of U as we
find them. The diagonal of L does not have to be
explicitly stored since it is all 1’s.
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Sequential LU Algorithm

Algorithm proceeds in M steps.

o At the start of step k we identify the row, r, con-
taining the largest value of [A4;,| for k <i < M —1.
If r # k then rows r and k are exchanged. This
is called partial pivoting, and is done to improve
the numerical stability. After the exchange the
element that is now A, is called the pivot.

e At each step k column number k of L and row

number k of U are found:

Ly=1
Livir = Avsin/Ark for i=1,....M-1-k
Uips; = Aup;  for j=0,1,...,M—1—k
Then the rows and columns > k are modified as
follows:
Avvikej = Arsipr; = LisialUipr

fori=1,...,.M-1-kandj=1,...,.M-1-k.
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Some References

The following papers deal with parallel algorithms
for the LU decomposition of full matrices, and con-

tain useful references to other work:

G. A. Geist and M. T. Heath, 1986, “Matrix Fac-
torization on a Hypercube Multiprocessor,” in Hy-
percube Multij 1986, published by SIAM
Press, Philadelphia.

E. Chu and A. George, 1987, “Gaussian Elimina-
tion With Partial Pivoting and Load Balancing on a
Multip ,” Parallel C ing, 5:65.
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Full LU Decomposition

‘We wish to decompose the matrix A into the product

LU, where L is a lower triangular matrix with 1’s

on the main diagonal, and U is an upper triangular

matrix.

o We assume 4 is a full M by M matrix.

o In general pivoting is necessary to ensure numeri-
cal stability.

e LU decomposition is often used in the solution of
systems of linear equations, Az = b. The equa-

tions can be written as two triangular systems,
Ly=b, and Uz=y
The first equation is solved for y by forward re-

duction, and the solution z is then obtained from

the second equation by back substitution.



Performance Analysis

Time to pipe A = (m? + (VN — 2))t.omm
Time to roll B = m*.,mm

Time to doC = C + TB = 2m®t .

Total time, Ty(m) = VN([2mtewct(2m*+VN=2)tcomn]

The efficiency is given by, §
T _ 2(mvN )t L d
T Tu(m) T N22mitey + (2m? + VN — 2)temm]

The overhead is therefore,

N -2
ol (L YE7)
€ m 2m?
where T = t,mm/teac. If g = m? is the grain size, then
T
f~\/§
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Comparison of Pipe and Broadcast

:
Time for naive broadcast = '%(\/17 = Dteomm

Time for log broadcast = mTzdt,,,,m
Time for pipe broadcast = Mt emm + (VN = 2)tcomm
where,
t.omm = Time to exchange a floating-point number
m = Order of square sub-block matrix
d = Dimension of hypercube

N = Number of processors = 2¢

Note:
For sufficiently large grain-size the pipe broadcast is
better than the logarithmic broadcast,

VN -2
d-2

I m*> 2( ] pipe wins
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Pseudocode for Pipe Broadcast [ ]

proc_begin pipe_A ( pipe A sub-block )
determine source processor for pipe
determine last processor in the pipe
if_begin ( this processor is source ) then
copy AtoT
send T' to processor on right
else_if ( this processor is not end of pipe ) then

receive T from processor on left

send T to processor on right [ J
else
receive T from processor on left
if_end
proc_end
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Steps
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Step 13
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Schematic representation of a split pipe.
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Source Destination

Processor Processors

Step0
Step1
Step2
Step3
Step4
Steps
Step6
Step7
Step8
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Step 10
Step 11
Step 12
Step13
Step 14
Step 15

Step 16

—_——
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-0 00
m-0-0 0
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Schematic representation of a simple linear pipe.
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The Use of broadcast

“int broadcast ( buffer, origin, bmask, mbytes )

char sbuffer; /+ data to be broadcast  x/
int origin; /% node number of source */
int bmask; /% specifies subcube */
int nbytes; /* number of bytes to send */

In this case buffer points to the storage for T.
If processor is in row i, then origin is the proces-
sor at position (i, j), where j = (i + n) mod VN.
bmask is \/IV —-1.

nbytes is just the size of a sub-block in bytes.
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Pseudocode for bcast_A [ )

proc_begin beast_A ( broadcast A sub-block )

1 broad

source p for

if_begin ( this processor is source ) then
copy Ato T
broadcast T to row
else_if ( this processor is not source ) then
receive sub-block and store in 7'
if_end [

proc_end

Ul



@ Pseudocode for Matrix Multiplication

proc_begin mat.mult ( find C = AB)
initialize sub-block matrix C to zero
for_begin (n=0to VN —1)
proc_call beast A ( send appropriate 4
sub-block along rows, store in T' )
C—C+TB
R proc_call roll_B ( roll B upwards )
[ ] for_end

proc_end

[ALER)



A Look At What Happens
[ ]
Consider the case where N = 16, and look at what
happens in a particular processor. We choose the
one at position (2,1).
n=0: T=A® B=5B"
C = A»B*
T=4 B=ph"
C = AnBn 4 qnpn
T=4® B=B", o
C = A2B» +;1”B'" + A0
T=4n, B=p,
C = Ampn 4 jnpn 4 Ampn 4 Angn
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[ J The Algorithm

If C* is the sub-block at position (I, k) then the prob-
lem can be stated in block matrix form:
s VN1~
o = $t A
(1) Initialize C =0, n =0.
(2) In each row, i, of processors broadcast the sub-
block A¥ to the other processors in the row, where
j = (i + n) mod V'N. Each processor stores the
@  broadcast sub-block in T.
(2) Multiply T in each processor by the current B
sub-block, and add result to C.

(3) Each processor sends its current B sub-block to

)

the processor above. At the same time it receives
a sub-block from the processor below and makes
this the new current B sub-block. Processors in
the top row communicate with those in the bottom
row.

@ (1) Setn=n+1. Ifn < v/N then go to (2), else quit.

@2t



Some References ®
This is by no means a complete list:

S. Lennart Joh 1987, “C ication Effi-
cient Basic Linear Algebra Computations on Hy-
percube Architectures,” Journal of Parallel and Dis-
tributed Computing, 4:133.

G. C. Fox, S. W. Otto, and A. J. G. Hey, 1987,
“Matrix Algorithms on a Hypercube, I: Matrix Mul- @
iplication,” Parallel C¢ ing, 4:17.
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Matrix Multiplication

Suppose we want to multiply the matrices A and B
together to form the matrix C:

C=AB

e We will assume all matrices are square — the algo-
rithm can be lized to deal with 1

matrices.

o The input matrices, A and B, are decomposed into
rectangular sub-blocks. If we have N processors
we have vV rows and columns of sub-blocks. This
means N must be a perfect square, i.e., that the

is even. The can

hypercube

easily be generalized for hypercubes of odd dimen-
sion.

One sub-block is assigned to each processor by

.

means of the gridmap decomposition routines.

The algorithm ensures that the output matrix C

has the same decomposition as A and B.
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Block Row Decomposition

Not load balanced. When computational window is
as shown shaded above processor 0 is idle for the rest
of the algorithm.
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Scattered Row Decomposition

Work is approximately load balanced as

tional window moves down diagonal.
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" Parallel Pseudocode

for_begin ( each step, k =0,1,...,M —1)

select pivbt row,

broadcast columns k to M — 1 of pivot row
to other processors

replace columns k to M — 1 of row r with
those of row k

for_begin (eachrow,i=1,2,... M -1-k)

Avvix = Ausis/ Ak
for_end

for_begin ( each column, j=1,..., M —1~k)
for_begin ( each row,i=1,...,.M —1—k)
Avvigr = Arvinss = Avin * Aipr
for_end
. for_end
for_end
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Communication in the Parallel

LU Decomposition Algorithm

e We can perform the broadcast of the pivot row by
means of the pipe algorithm, as used in the matrix
multiplication algorithm.

o If pivoting is necessary at step k we can send row

k to the appropriate processor using the shortest

available pipe.

The pivot row can be selected by using the CrOS

III combine routine with the combining function

shown on the next page.

We decompose over rows, rather than columns,

since this is more convenient if we subsequently
want to do forward reduction and back substitu-

tion.
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int select_pivot ( pdatal, pdata2, size )
struct { float pval; int prow; } *pdatal, *pdata2;
int size;
if ( pdata2->pval > pdatal->pval ){
pdatai->pval = pdata2->pval;
pdatai->prow = pdata2->prow;

return 0;

INTEGER FUNCTION SELPIV ( PDATA1, PDATA2, ISIZE )
REAL PDATA1(2), PDATA2(2)
INTEGER ISIZE

IF ( PDATA2(1) .GT. PDATA1(1) ) THEN
PDATA1(1) = PDATA2(1)
PDATA1(2) = PDATA2(2)
IF

SELPIV = 0
RETURN
END

lyse
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Parallel Pivoting

At step k pivot selection is performed in parallel as
follows:
(1) Each processor checks its rows and chooses a pivot
candidate.
(2) Each candidate passes the absolute value of its

pivot did and the ding row num-

ber, to the CrOS III routine combine. This gives
the pivot row number.

(3) The entries in the pivot row from column & to
column M — 1 are piped (or broadcast) to all pro-

cessors, and is stored in the array pivot.

(continued...)
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If the pivot row is in the same processor as row
k then columns k to M — 1 of the pivot row are
overwritten by the corresponding entries in row

k. If the pivot row and row k are not in the same

* processor columns k to M —1 of row k are sent (by

(5)

the shortest possible pipe) to the processor which
had the pivot row, and are used to overwrite the
corresponding pivot row entries.

In the p: ining row k, col k to

M —1 of row k are overwritten by the entries in

the array pivot.
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Banded LU Decomposition

If the matrix, 4, is banded with bandwidth, b, and

half-width m given by b= 2m — 1, then:

« The sequential algorithm is similar to the full ma-
trix case, except at each stage only those elements
within a computational “window” of m rows and
m columns are updated

o Partial pivoting can cause the number of columns
in the computational window to be greater than
m. This necessitates some extra bookkeeping in
both the sequential and parallel algorithms.

® The parallel banded and full algorithms are sim-
ilar, but use a different decomposition. To get
better load balance a scattered decomposition over
both rows and columns is used in the banded algo-
rithm. In the full case a scattered decomposition

over just rows was used.
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Some References
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Banded Matrix Decomposition

. Scattered decomposition of a 20 x 20 matrix with
band-width b = 11 for a 16 processor hypercube.
A similar decomposition can be used for meshed-

connected topologies.
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Communication in the Banded Algorithm

e To update the elements in the computational win-
dow we need to be able to communicate,
® Liyi = Aix (i = 0,1,...,7m — 1) to the other
processors in the same row of the template.
o Upy; = Auasj (7 = 0,1,...,72 — 1) to the other
processors in the same column of the template.

e This ication can be perfc d by a pipe

broadcast using the vread/vwrite communication
routines.
For example, for rows, if row_pos is 0, 1 or 2'de-
pending on whether a processor is in the first row, a

middle row, or the last row of the current window:

if ( row_pos == 0 )

vurite(Abuf ,down,fsize,offset,mhat);
else if ( row_pos ==

vread(U,up,dovn, fsize,fsize,mmax) ;
else if ( row_pos == 2 )

vread(U,up,0,fsize,fsize,mnax);
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