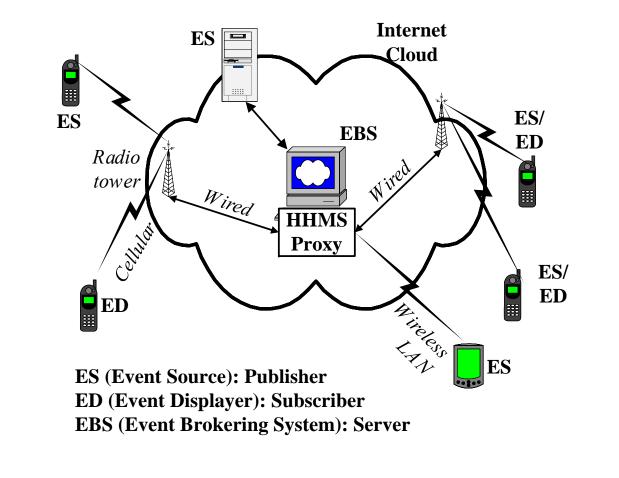
Cost Model and Adaptive Scheme for Publish/Subscribe Systems on Mobile Grid Environments

APGAC 2005, Atlanta May 24th 2005

Sangyoon Oh, Sangmi Lee Pallickara, Sunghoon Ko, Jai-Hoon Kim, Geoffrey C. Fox Community Grids Laboratory and Computer Science Indiana University, School of Information and Communication Ajou University

Contents

- Introduction
- Cost model
- Cost analysis
- Adaptive scheme
- Experiments
- Conclusion


http://grids.ucs.indiana.edu/ptliupages/hhms/pub-sub.html

Introduction

- Advantages of publish/subscribe systems in mobile computing
 - Intermittent and high latency wireless connections
 - Decoupling publisher and subscriber
 - Data dissemination services
 - Information sharing
 - Service discovery
 - Stock Ticker
- In this presentation:
 - Performance modeling
 - Cost analysis
 - Proposing an adaptive scheme
 - \rightarrow And its experiments

Pub/sub system configuration

Adaptive scheme

- Various types of mobile devices
 - Performance, Resources constrains, Application domain, Usage patterns
- Model selection

(publish/subscribe, request/reply)

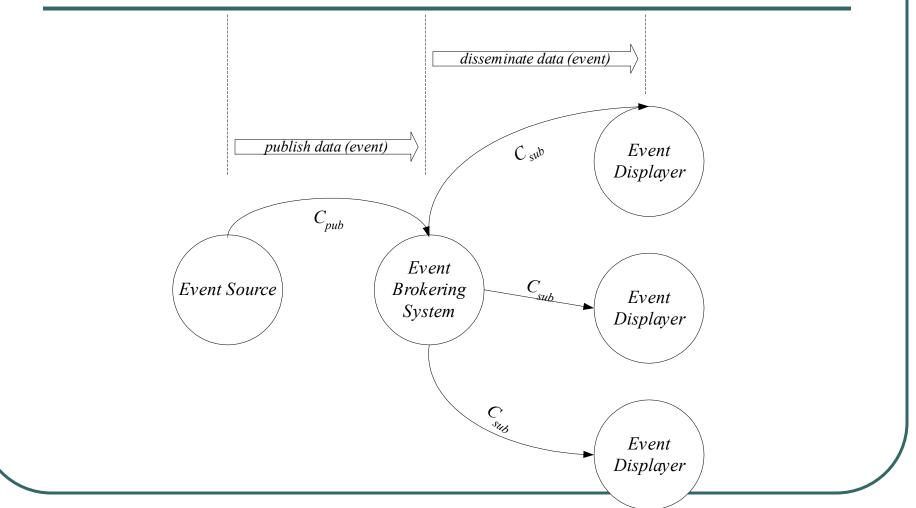
- 1. Static model selection
- 2. Hybrid model selection

Each device adopts appropriate model independently

3. Dynamic model selection

Model can be changed during a service depending on change of status of system and network

Model Selection


	models			
	publish/ subscribe	request/ reply	remarks	
Number of node	large	small	Pub/sub model has advantage when system is large and data transfer is shared among many clients	
Number of event (data update) per client's access	small	large	Pub/sub model is appropriate when events or data update occurs infrequently.	
Access rate of client	high	low	When clients seldom use published data, pub/sub model is not appropriate.	
Degree of common interest	high	low	Pub/sub model is appropriate to disseminate data of common interest	
Cost of user's intervention	high	low	Pub/sub model requires less user's intervention than request/reply model	
delay cost of event (data) transfer to user	high	low	<i>Events (data update) are immediately delivered to subscribers.</i>	

Examples publish/subscribe system

- Broadcast notification services in many areas such as real-time sports news, stock market, etc. (publish/subscribe model)
- Many applications such as location based services are available using many types of devices and communication protocols (adaptive scheme: hybrid model selection).
- Users can alternatively choose on/off-line or power on/off to save communication cost or batter power, or during their movement (publish/subscribe model, adaptive scheme: dynamic model selection).
- Users can alternatively use wired or wireless connection (Ethernet or GPRS) during services (adaptive scheme: dynamic model selection)
- Programmer can choose model according to data access patterns and system parameters for designing application (adaptive scheme: static model selection)
- System manager can choose model according to service characteristics (adaptive scheme: static model selection)
- Users can choose model according to their preferences (adaptive scheme: hybrid model selection)
- System can automatically choose model for each user according to his/her reference or use pattern (adaptive scheme: hybrid model selection)

System model

System parameters

 $\begin{array}{l} \alpha \ (\text{publish rate}) \\ \beta \ (\text{request rate or process} \\ (\text{reference access}) \ \text{rate}) \\ \textbf{c}_{ps}(\alpha) \ (\text{publish/subscribe cost per event}) \\ \textbf{c}_{rr}(\beta) \ (\text{cost per request and reply}) \\ \textbf{c}_{poll}(\alpha, \textbf{T}) \ (\text{cost of periodic publish or polling}) \\ \textbf{c}_{d}(\alpha, \textbf{T}) \ (\text{cost of delaying publish}) \\ \textbf{s(n)} \ (\text{effect of sharing among n subscribers}) \\ \textbf{t}_{ps} \ (\text{time delay for publish/subscribe}) \\ \textbf{t}_{rr} \ (\text{time delay for request and reply}) \end{array}$

Assumption and consideration

• Assumption:

"No communication link or node failure"

- Consideration
 - Conceptual total cost per unit time
 - Cost for each access by client (or subscriber)
 - Time delay for access after subscriber's intension
 - Time delay between event occurrence and notification to subscriber (or recognition by client)
 - Cost can be number of message, amount of message or time delay

Cost of publish/subscribe model

Conceptual total cost per time unit

- Cost of each publish/subscribe event: $(c_{pub} + n c_{sub})$
- Sharing effect among n nodes: s(n)
- Publish rate: a

• Total cost per time unit = $\alpha (c_{pub} + n s(n)c_{sub})$

Performance metrics

1. Conceptual cost for each access:

- aver. number of event before each access = $\sum_{i=0}^{\infty} \frac{\beta}{\alpha + \beta} \left(\frac{\alpha}{\alpha + \beta}\right)^{i} = \frac{\alpha}{\beta}$
- c_{pub} is shared among n subscriber and c_{sub} is for each subscriber
- aver. cost for each access = $\alpha / \beta (c_{pub} / n + c_{sub})$
- *2. Time delay between intention and access*

 \leftarrow No time delay, since the event is already received

Time delay for occurrence and notification/recognition (or access)

$$t_{ps} = t_{pub} + t_{sub}$$

Cost of request/reply model

Conceptual total cost per time unit

- Cost for each request/reply is assumed as c_{rr}
- Request rate: β , number of client: n
- Total cost per time unit = β n c_{rr} .

Performance metrics

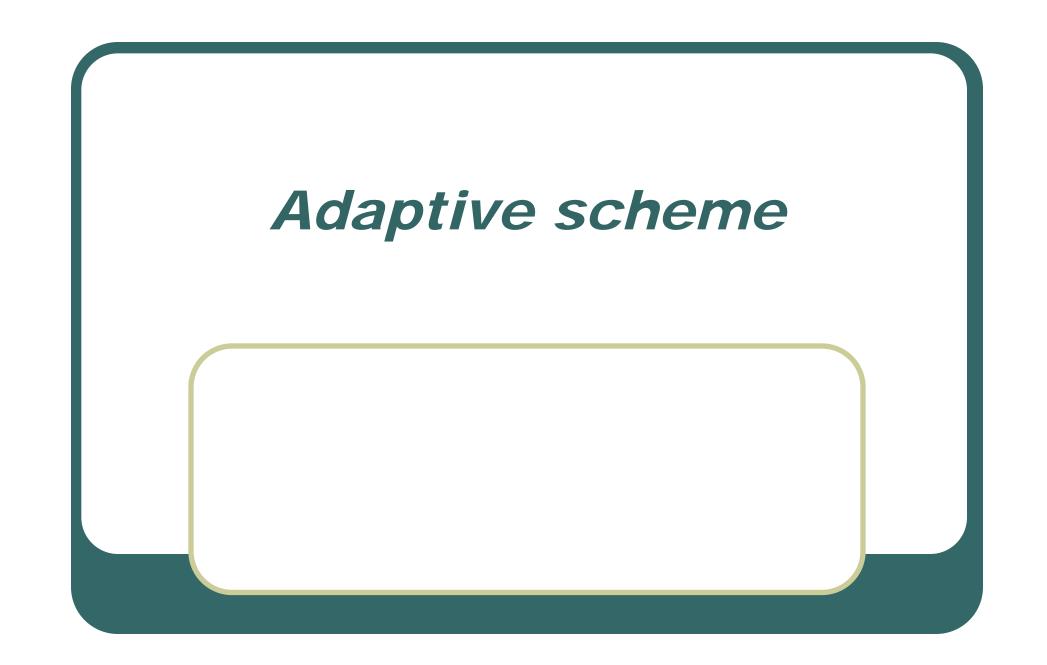
- *1.* Cost for each access = c_{rr}
- *2. Time delay between intention and access = t_{rr}* (assumed)
- 3. Time delay for occurrence and recognition = $1 / (2 \beta)$ (depends on request rate)

Periodic (polling) model

 Appropriate for applications where delayed message is acceptable

Conceptual total cost per time unit

• Cost for each polling = $c_{poll}(\alpha, T) + c_{delay}(\alpha, T)$


• Total cost per time unit = $(c_{poll}(\alpha, T) + c_{delay}(\alpha, T)) / T$ where $c_{rr} < c_{poll}(\alpha, T) < \alpha T c_{rr}$

Performance metrics

- 1. Cost for each access = $(c_{pub}(\alpha, T) + n c_{sub}(\alpha, T)) + c_{delay}(\alpha, T)) / T$ where $c_{pub} < c_{pub}(\alpha, T) < \alpha T c_{pub}$ and $c_{sub} < c_{sub}(\alpha, T) < \alpha T c_{sub}$
- 2. Aver. time delay between intention and access = T/2
- *3.* Aver. time delay for occurrence and recognition = T/2

Summary of Cost Analysis

Model	Publish/Subscribe	Request/Reply	Polling
conceptual total cost per time unit	$a (c_{pub} + n s(n)c_{sub})$	$\beta n c_{rr}$	$(c_{poll}(a,T) + c_{delay}(a,T)) / T$
cost for each access	$\alpha / \beta (c_{pub} / n + c_{sub})$	C _{rr}	$c_{poll}(\alpha,T) + c_{delay}(\alpha,T)$
time delay between intention and access	0	t _{rr}	T/2
time delay between event occurrence and potification/recognition (or access) $t_{ps} = t_{pub} + t_{sub}$ $(t_{ps} = t_{pub} + t_{sub} + 1 / \beta)$		1 / 2 β	T/2

Adaptive scheme I

- Choosing appropriate model among publish/subscribe and request/reply models
 - Hybrid model: each client can select its own model independently
 - Dynamic model: change model during its service
- Considering cost for each client's access a
 cost metric
 Aver. Number of event occur

Aver. number of event per client's access

=
$$\alpha / \beta (c_{pub} / n + c_{sub})$$
 and c_{rr}

Aver. number of event and number of subscriber are obtained experimentally

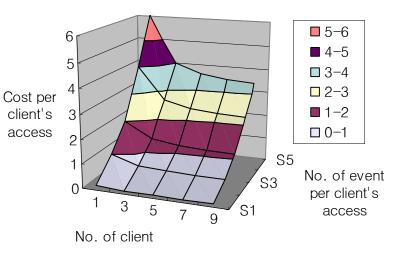
Number of subscriber

Adaptive scheme II

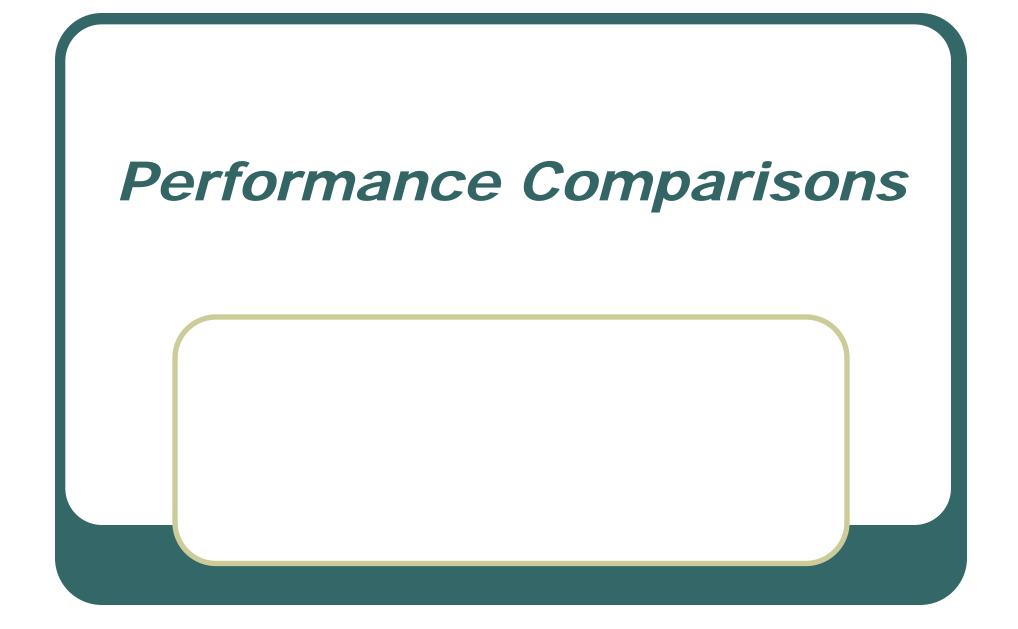
- Number of event per client's access
 - Request/reply: increment of counter for each client's access
 - Publish/subscribe: using event ID and client ID

Steps

- 1. During the period of time, average number of event occurred per client's access is measured for each client.
- 2. If $\alpha / \beta (c_{pub} / n + c_{sub}) > c_{rr}$, choose request/reply model for the next period.
- 3. else, choose publish/subscribe model.
- 4. Repeat step1 and step3


Illustration of adaptive scheme

Assumption


•
$$c_{rr} = 2$$

• $c_{pub} = 1$ and $c_{sub} = 1$

- Conclusion
 - number of client is large
 - number of event per client access is small
 - → Use publish/subscribe model,

if cost per access <= 2

Cost per client's access of publish/subscribe model

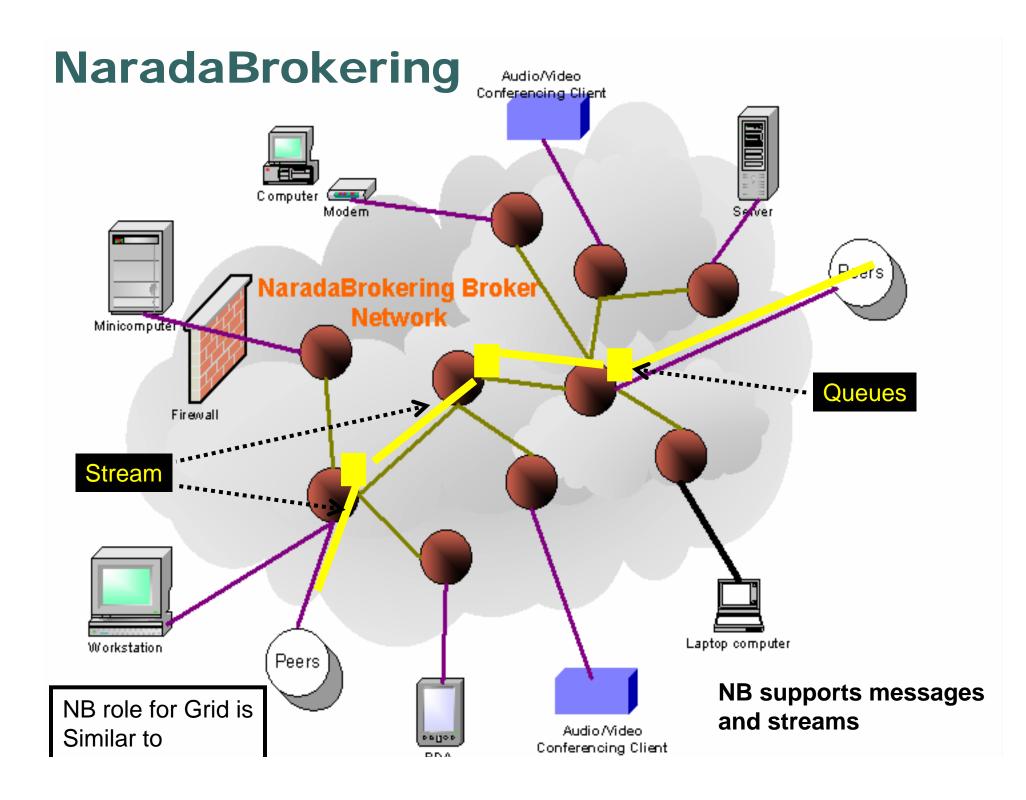
Parametric Analysis of Performance comparison

Param.	Values	Cost Comparisons		
а,	0.5			
β	0.5	14 - red/reply periodic 2		
C _{ps}	2			
c _{pub}	1	° 8 − − − − − − − − −		
C _{sub}	1	6		
C _{rr}	2	4 2		
$c_{poll}(a, T)$	1 or aT	0		
c _{delay} (a, T)	0, T, or aT	1 3 5 7 9 11 13 15 n (number of nodes)		
<i>s(n)</i>	1	n (number of nodes)		
t_{ps}	1	Communication cost per transaction by varying		
t _{proc}	1 or 5	number of clients		
t _{rr}	1	$c_{pub}(\alpha, T) = c_{pub}, c_{sub}(\alpha, T) = c_{sub}, and c_{delay}(\alpha, T) = 0 \leftarrow For \ periodic \ 1$		
$t_{poll}(a, T)$	1, T, or aT	$c_{pub(\alpha,T)} = \alpha T c_{pub}, c_{sub}(\alpha,T) = \alpha T c_{sub}, c_{delay}(\alpha,T) = 2\alpha T c_{delay} \leftarrow For \ periodic2$		

Experimental Setup

- Using NaradaBrokering as message brokering system -- MOM (Message Oriented Middleware) <u>for publish/subscribe</u>
- Using HHMS (Handheld Message Service) as primary application level transport protocol <u>for publish/subscribe</u> between mobile device and conventional wired environment
- Conventional RPC code using J2SE and J2ME MIDP 2.0 <u>for</u> <u>request/reply</u>
- Benchmarking Applications

Measures Round Trip Time (RTT) \rightarrow RTT/2 for pub/sub and RTT for request/reply

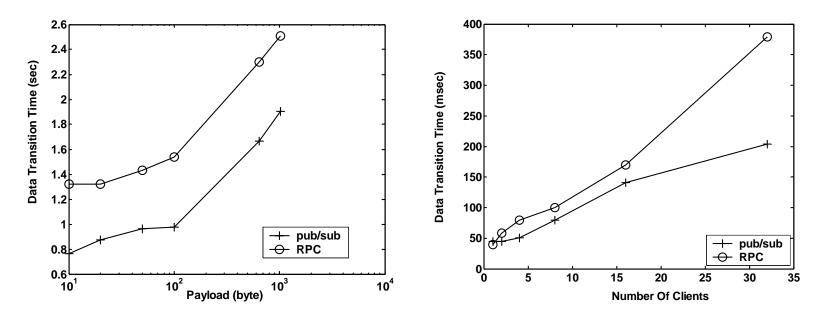

- Echo clients for cost (time) per message by varying size of message
- ACK clients for message publishing cost for various number of clients
- Experimental Specifications
 - Treo600:
 - PalmOS 5.2 144MHz ARM, 32MB, Sprint PCS Service (<14.4kbps)
 - HHMS Gateway and NaradaBrokering:
 - Linux 7.3, Pentium III 1GHz, 512MB
 - Timer: Linux native timer by JNI

NaradaBrokering

 Developed by Community Grids Laboratory of Indiana University

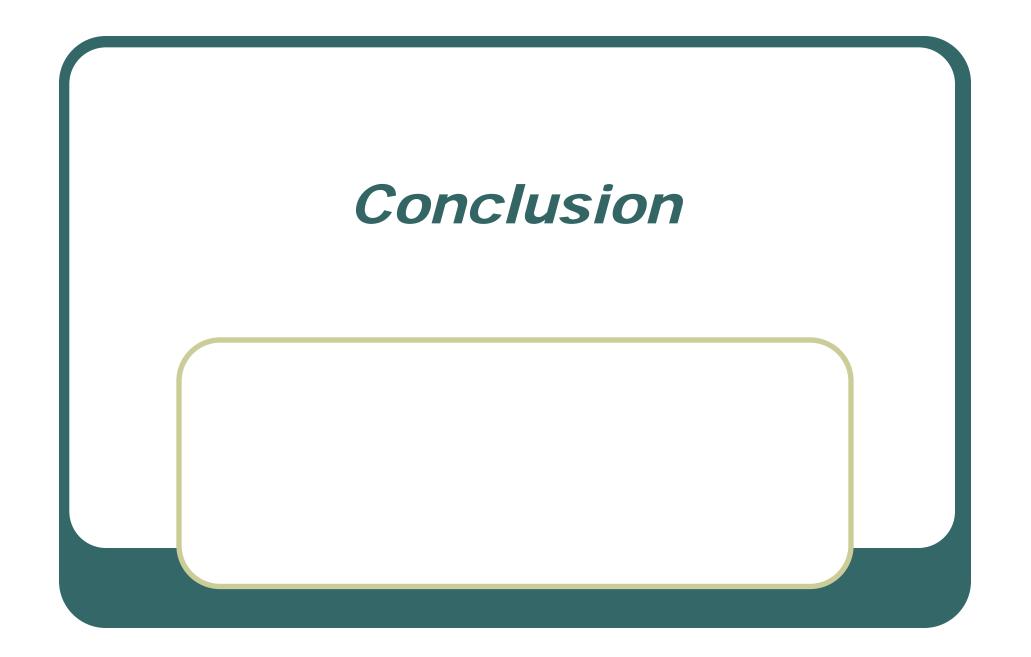
Message Oriented Middleware (MOM)

- Multiple protocol transport support: In publish-subscribe Paradigm with different Protocols on each link
- Subscription Formats
- Reliable delivery
- Ordered delivery
- Recovery and Replay
- Security
- Message Payload options
- Messaging Related Compliance
- Grid Feature Support
- Web Services supported



Handheld Messaging Service

- Light-weight publish/subscribe message service framework for mobile devices
- Optimized application level transport protocol using byte message format
- Provide core-subset of JMS API



Experimental Results

Delay time by Payload (Treo 600 Smart phone Over Sprint PCS cellular connection)

Delay Time by Number of Clients (J2ME Wireless Toolkit Emulator over 802.11b WLAN)

Conclusion

- We presents cost model and cost analysis for publish/subscribe system, request/reply, and polling model
- Our proposed adaptive scheme improves the communication performance based on the dynamic parameters for individual mobile clients
- Experiments show a matching result with the theoretical analysis.