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Abstract

Dimension reduction is a useful tool for visualization of such high-dimensional data
to make data analysis feasible for such vast volume and high-dimensional scientific data.
Among the known dimension reduction algorithms, multidimensional scaling algorithm is
investigated in this proposal due to its theoretical robustness and high applicability. Mul-
tidimensional scaling is known as a non-linear optimization problem so that it is easy to
be trapped in local optima if EM-like hill-climbing approach is used to solve it. In order
to avoid local optima, the author has applied deterministic annealing (DA) approach to
the well-known EM-like multidimensional scaling algorithm called SMACOF. Furthermore,
the MDS algorithm is necessary to be parallelized to deal with large amount of data via
distributed-memory environment, such as multicore cluster systems, since multidimensional
scaling requires O(N2) physical memory as well as O(N2) computational resources. Al-
though parallelization enables SMACOF algorithm to deal with tens of thousands or even
hundreds of thousands points, it is still difficult to run parallel SMACOF algorithm with
millions points, since it requires too much memory and computation to execute. Thus, the
author proposes an interpolated approach to utilizing the known mapping of only a subset
of the given data, named in-sample data. This approach effectively reduces computational
complexity. With minor trade-off of approximation, interpolation method makes it possi-
ble to process millions of data points with modest amounts of computation and memory
requirement. Since huge amount of data are dealt, the author presents how to parallelize
proposed interpolation algorithms, as well. As we expected, the applying DA approach to
SMACOF algorithm enables the proposed algorithm not to be stucked in the local optima
but to find better results consistently with tested biological sequence data. Also, applying
distributed parallelism to SMACOF algorithm helps to run with bigger data size which is
not apt to a single compute node. The author is going to compare pure MPI parallel model
with hybrid (MPI-Threading) parallel model to aim at finding better parallel model for the
SMACOF (and DA-SMACOF) algorithm. Also, the experimental results illustrate that the
quality of interpolated mapping results are comparable to the mapping results of original
algorithm only. In parallel performance aspect, the interpolation method is parallelized
with high efficiency. With the proposed interpolation method, it is possible to construct a
configuration of two-million out-of-sample data into the target dimension, and the number
of out-of-sample data can be increased further. The affect of the weight function in the
STRESS value will also be investigating with several non-uniform weight function as well
as uniform weight function.

1 Motivation

Due to the advancement of technology and sciences for last several decades, a huge amount
of data are generated in every minute in the world from every technical and scientific fields.
Nowadays are called data deluge era. In reflection of data deluge era, data-intensive scientific
computing [10] has been emerging in the scientific computing fields and getting more interested
by many people. Dealing with a huge amount of data is a major challenge in most of data mining
and machine learning community. In addition, the invention of multicore chip has affected to
the modern computing society since its invention. Now, parallelism is a key feature of software
design and implementation for the high-performance computing. Due to the above facts, it is
important to have high performance parallel data mining algorithms.
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Most of the scientific data are high-dimensional data, so it is hard to understand data dis-
tribution in the original data space. Thus, it is beneficial to reduce their dimensionality to
the visible dimension, i.e. two- or three-dimension. That is the reason why many dimension
reduction algorithms have been proposed and applied to many applications. Many dimen-
sion reduction algorithms, such as principal component analysis (PCA), generative topographic
mapping (GTM) [3, 4], and self-organizing map (SOM) [16], assume that the given data are
presented in the form of vectors. However, for certain data, like biological sequences, it is hard
to be represented by feature vectors though we could have some proximity information, such as
distance or dissimilarity. Due to the above listed reasons, it is really interesting and useful to
have high performance parallel dimension reduction algorithms, such as multidimensional scal-
ing (MDS) [5,18], which build a configuration of the given data (points) in the target dimension
based on proximity information, but not necessary to have feature vectors.

MDS algorithm is well-known as a non-linear optimization problem to configure a target
dimensional mappings of high-dimensional data with respect to the given proximity informa-
tion, whose Euclidean distance between two mapping points are similar to the corresponding
proximity information as much as possible. Therefore, if we apply hill-climbing approach (or
gradient descent approach) to MDS problem for finding optimal mapping, it will generally be
kept at local optima. Since the local optima problem of hill-climbing approach is a typical
issue of optimization problems, lots of alternative method has been proposed and used a lot in
many applications. Here, deterministic annealing (DA) [22, 23] approach is one of the alterna-
tives which shows two merits: (1) faster execution than stochastic approach, and (2) ability of
escaping local optima.

In addition, MDS requires O(N2) computation and memory, which becomes huge if we
apply to large data set. Due to the memory resource limitation, it can be thought of as an
memory-bounded application for large data set. For the purpose of dealing with large data
set, it is essential to parallelize MDS algorithms in distributed memory model which results
in utilizing distributed memory systems, such as cluster systems, to overcome out of memory
problem.

Though we parallelize MDS application, it is impractical to run MDS with millions of points
since the MDS algorithms requires memory O(N2) as well as computation. This hinders to run
even parallel MDS algorithm with millions of points due to out of memory. From that initiative,
the interpolated approach of MDS is also proposed here to reduce the memory requirement
dramatically so that it is possible to run MDS with even millions points with trade-off of a little
quality deficience.

Based on the above motivations, the remainder of this paper is organized as follows. In Sec-
tion 2, the overviews of the background methods are explained. Section 3 describes how to
apply DA method to MDS problem based on SMACOF algorithm followed by explanation
of how to apply Out-of-Sample approach to MDS in Section 4. The meaning of non-uniform
weights are briefly introduced in Section 5 and parallelization is provided in Section 6. Section 7
illustrates the experimental results of those proposed methods followed by contribution of this
study in Section 8.
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2 Background and Related Work

2.1 Multidimensional Scaling (MDS)

Multidimensional scaling(MDS) [5, 18] is a general term for the techniques of configuration of
the given high dimensional data into target dimensional space based on the pairwise proximity
information of the data, while each Euclidean distance between two points becomes as similar
to the corresponding pairwise dissimilarity as possible. In other words, MDS is a non-linear
optimization problem that pursues a mapping in the target dimension whose pairwise distances
are as similar as possible to the original proximity information.

Formally, the pairwise proximity information is given as an N ×N matrix (∆ = [δij ]), where
N is the number of points and δij is the given dissimilarity value of the original data space
between point i and j. Dissimilarity matrix ∆ has the following constraints: (1) Symmetric
(δij = δji), (2) non-negative (δij ≥ 0), and (3) zero diagonal (δii = 0). By MDS algorithm,
the lower dimensional mapping is generated in target dimension, say L dimension, and the
generated mapping could be also represented as an N × L matrix (X), and each data point
xi ∈ R

L (i = 1, . . . , N) resides in i-th rows of X.
The evaluation of the constructed configuration is done by the well-known objective func-

tions of MDS, namely STRESS [17] or SSTRESS [25]. Below equations are the definition of
STRESS (1) and SSTRESS (2):

σ(X) =
∑

i<j≤N

wij(dij(X) − δij)
2 (1)

σ2(X) =
∑

i<j≤N

wij [(dij(X))2 − (δij)
2]2 (2)

where 1 ≤ i < j ≤ N and wij is a weight value, so wij ≥ 0. As STRESS and SSTRESS describe,
the MDS problem is a non-linear optimization problem to find a mapping in target dimension
which minimize the given objective function.

2.2 Scaling by MAjorizing a COmplicated Function (SMACOF)

Scaling by MAjorizing a COmplicated Function (SMACOF) [7, 8] is an iterative majorization
algorithm to solve MDS problem with STRESS criterion. The iterative majorization procedure
of the SMACOF is essentially the Expectation-Maximization (EM) [9] approach. Although
SMACOF has a tendency to find local minima due to its hill-climbing attribute, it is still a
powerful method since it is guaranteed to decrease STRESS (σ) criterion monotonically. Instead
of mathematical detail explanation of SMACOF algorithm, the SMACOF procedure is shown
in Alg. 1. The mathematical details of SMACOF algorithm is described well in [5].

Alg. 1 illustrates the SMACOF algorithm for MDS solution. The main procedure of SMA-
COF is iterative matrix multiplications, called Guttman transform, as shown at Line 9 in
Alg. 1, where V † is the Moore-Penrose inverse [19, 20] (or pseudo-inverse) of matrix V . The
Guttman transform is induced by the stationary equation ∇σ(X) = 0 which can be written as
V X = B(Z)Z. The N × N matrices V and B(Z) are defined as follows:
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Algorithm 1 SMACOF algorithm

Input: ∆,V †

1: Generate random initial mapping X [0].
2: k ⇐ 0;
3: ε ⇐ small positive number;
4: MAX ⇐ maximum iteration;
5: Compute σ[0] = σ(X [0]);
6: while k = 0 or (∆σ > ε and k ≤ MAX) do
7: k ⇐ k + 1;
8: Update B(X [k−1]).
9: X [k] = V †B(X [k−1])X [k−1]

10: Compute σ[k] = σ(X [k])
11: Z ⇐ X [k];
12: end while
13: return Z;

V = (vij) (3)

vij =

{
−wij if i 6= j
∑

i6=j wij if i = j
(4)

B(Z) = (bij) (5)

bij =






−wijδij/dij(Z) if dij(Z) 6= 0, i 6= j

0 if dij(Z) = 0, i 6= j

−∑i6=j bij if i = j

(6)

If the weights are equal to one (wij = 1) for all pairwise dissimilarity, then

V = N

(
I − eet

N

)
(7)

V † =
1

N

(
I − eet

N

)
(8)

where e = (1, . . . , 1)t is one vector whose length is N .
As in Alg. 1, SMACOF algorithm requires O(N2) computation, since Guttman transform

performs multiplication of N × N matrix and N × L matrix twice, typically N ≫ L, and
computing STRESS value, B(X [k]), and D(X [k]) also take O(N2). In addition, the SMACOF
algorithm requires O(N2) memory because it needs several N×N matrices as in Table 1. There-
fore, it is impossible to run SMACOF for large data set under a typical single node computer
due to the memory requirement increases in O(N2). In order to overcome the memory shortage
in a single node and to obtain computational benefit, it is essential to utilize distributed mem-
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ory systems, i.e. cluster systems, with process level parallelism via message passing interface
(MPI). It is illustrated in Section 6.1.

2.3 Deterministic Annealing Approach (DA)

SMACOF is a quite powerful algorithm, since it will monotonically decrease the STRESS cri-
terion. However, the well-known problem of the gradient descent approach is to be kept easily
by a local optima due to its hill-climbing property. Stochastic optimization approaches, such
as simulated annealing (SA) [14] and genetic algorithms (GA) [11,13], have been used in order
to avoid local optima, but those algorithms generally also suffer from using a huge amount of
running time due to their random movement property.

Since the simulated annealing (SA) was introduced by Kirkpatrick et al. [14], people widely
accepted SA and other stochastic maximum entropy approach to solve optimization problems
for the purpose of finding global optimum instead of hill-climbing deterministic approaches. SA
is a Metropolis algorithm, which accepts not only the better proposed solution than previous
solution but even worse proposed solution than the previous solution based on a certain prob-
ability which is related to computational temperature (T ). Also, it is known that Metropolis
algorithm converges to an equilibrium probability distribution known as Gibbs probability dis-
tribution. If we denote H(X) as the energy (or cost) function and F as a free energy, then
Gibbs distribution density is following:

PG(X) = exp

(
− 1

T
(H(X) −F)

)
, (9)

F = −T log

∫
exp

(
− 1

T
H(X)

)
dX. (10)

and the free energy (F), which is an objective function, is minimized by the Gibbs probability
density PG. Also, free energy can be written as following:

FP =< H >P −TS(P ) (11)

where < H >P represents the expected energy and S(P ) is entropy of the system with prob-
ability density P . Here, T is used as a Lagrange multiplier to control the expected energy.
Eq. (11) illustrates the analogy of physical annealing of solids, which solutions for the opti-
mization problem are affected by the computational temperature (T ). With high temperature,
the problem space is dominated by the entropy term which make the problem space become
smooth. As temperatures is getting cooler, however, the problem space is gradually revealed as
the landscape of the original cost functions. To avoid trapped in local optima, people usually
start with high temperature and slowly decrease temperature in the process of finding solution.

SA relies on random sampling with Monte Carlo method to estimate the expected solution,
e.g. expected mapping in target dimension for MDS problem, so that it suffers from long running
time. In contrast, deterministic annealing (DA) [22, 23] method actually tries to calculate
the expected solution exactly or approximately with respect to the Gibbs distribution as an
amendment of SA’s long running time, while it follows computational annealing process using
Eq. (11), which T decreases from high to low.
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DA method is used for many optimization problems, including clustering [22, 23], pairwise
clustering [12], and MDS [15]. Since it is intractable to calculate F in Eq. (10) exactly, an
approximation technique called mean field approximation is used for solving MDS problem by
DA in [15], in that Gibbs distribution PG(X) is approximated by a factorized distribution with
density

P 0(X |Θ) =
N∏

i=1

qi(xi|Θi). (12)

where Θi is a vector of mean field parameter of xi and qi(xi|Θi) is a factor serves as a
marginal distribution model of the coordinates of xi. To optimize parameters Θi, Klock and
Buhmann [15] minimized Kullback-Leibler (KL) divergence between the approximated density
P 0(X) and the Gibbs density PG(X) through EM algorithm [9]. The alternatively proposed
DA-MDS algorithm is described at Section 3.

2.4 Out-of-Sample Problems

Embedding new points with respect to previously configured points, or known as out-of-sample
problem, has been actively researched for recent years, aimed at extending the capability of
various dimension reduction algorithms, such as LLE, Isomap, multidimensional scaling (MDS),
generative topographic mapping (GTM), to name a few. Among many efforts, a recent study by
S. Xiang et. al. in [29] provides a generalized out-of-sample solutions for non-linear dimension
reduction problems by using coodinate propagation. In sensor network localization field, one of
the interesting problem is how to find out the locations of the remaining sensors, when there
are only a subset of pairwise distances between sensors and a subset of anchor locations are
available. For that problem, semi-definite programming relaxation approaches and its extended
approaches has been proposed to solve it by Wang et. al. in [28].

Also, Out-of-sample approach have been investigated in MDS research community by several
people, specially based on classical multidimensional scaling (CMDS) [26]. CMDS [26] generates
the embeddings in the configured space based on spectral decomposition of a symmetric positive
semidefinite matrix (or the approximation of positive semidefinite matrix), and the out-of-
sample extensions of CMDS are proposed in [2, 27]. [2] projected the new point x onto the
principal components, and [27] extends the CMDS algorithm itself to the out-of-sample problem.
Trosset and Priebe proposed a new embedding mechanism of a new point with respect to the
pre-mapped configurations of the sampled n objects by modifying the original CMDS equations
in [27], in that it preserves the mappings of the original n objects based on (n+1)×(n+1) matrix
A2 instead of n × n matrix ∆2, and extends to embedding a number of points simultaneously.

In contrast to applying out-of-sample problem to CMDS, we extend out-of-sample problem to
general MDS results with STRESS criteria in Eq. (1), which finds embeddings of approximating
to the distance (or dissimilarity) rather than the inner product as in CMDS, with an EM-
like optimization method, called iterative majorization. The proposed iterative majorizing
interpolation approach for the MDS problem will be explained in Section 4.
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3 Deterministic Annealing SMACOF

If we use STRESS (1) objective function as an expected energy (cost) function in Eq. (11), then
we can define HMDS and H0 as following:

HMDS =
N∑

i<j≤N

wij(dij(X) − δij)
2 (13)

H0 =
N∑

i=1

(xi − µi)
2

2
(14)

where H0 corresponds to an energy function based on a simple multivariate Gaussian distri-
bution and µi represents the average of the multivariate Gaussian distribution of i-th point
(i = 1, . . . , N) in target dimension (L-dimension). Also, we define P 0 and F0 as following:

P 0(X) = exp

(
− 1

T
(H0 −F0)

)
, (15)

F0 = −T log

∫
exp

(
− 1

T
H0

)
dX = −T log (2πT )L/2 (16)

We need to minimize FMDS(P 0) =< HMDS − H0 > +F0(P
0) with respect to µi. Since

− < H0 > +F0(P
0) is independent to µi, only < HMDS > part is necessary to be minimized

with regard to µi. If we apply < xixi >= µiµi + TL to < HMDS >, then < HMDS > can be
deployed as following:

< HMDS > =
N∑

i<j≤N

wij(< ‖xi − xj‖ > −δij)
2 (17)

≈
N∑

i<j≤N

wij(‖µi − µj‖ +
√

2TL − δij)
2 (18)

where ‖a‖ is Norm2 of a vector a. Eq. (17) can be approximated to Eq. (18), since the bigger
T , the smaller ‖µi − µj‖ and vice versa.

In [15], Klock and Buhmann tried to find an approximation of PG(X) with mean field
factorization method by minimizing Kullback-Leibler (KL) divergence using EM approach. The
found parameters by minimizing KL-divergence between PG(X) and P 0(X) using EM approach
are essentially the expected mapping in target dimension under current problem space with
computational temperature (T ).

In contrast, we try to find expected mapping, which minimize FMDS(P 0), directly with new
objective function (σ̂) which is applied DA approach to MDS problem space with computational
temperature T by well-known EM-like MDS solution, called SMACOF [7, 8]. Therefore, as T
varies, the problem space also varies, and SMACOF algorithm is used to find expected mapping
under each problem space at a corresponding T . In order to apply DA method to SMACOF
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algorithm, we substitute the original STRESS equation (1) with Eq. (18). Note that µi and
µj are the expected mappings we are looking for, so we can consider ‖µi − µj‖ as dij(XT ),
where XT represents the embedding results in L-dimension at T and dij means the Euclidean
distance between mappings of point i and j. Thus, the new STRESS (σ̂) is following:

σ̂ =
N∑

i<j≤N

wij(dij(XT ) +
√

2TL − δij)
2 (19)

=
N∑

i<j≤N

wij(dij(XT ) − δ̂ij)
2 (20)

with defined δ̂ij as following:

δ̂ij =

{
δij −

√
2TL if δij >

√
2TL

0 otherwise
(21)

In addition, T is a lagrange multiplier so it can be thought of as T = T̂ 2, then
√

2TL = T̂
√

2L
and we will use T instead of T̂ for the simple notation. Thus, Eq. (21) can be written as
following:

δ̂ij =

{
δij − T

√
2L if δij > T

√
2L

0 otherwise.
(22)

Now, we can apply DA approach to SMACOF algorithm by adapting the problem space
based on computational temperature T via new STRESS (20). The MDS problem space could
be smoother with higher T than with lower T , since T represents the portion of entropy to
the free energy F as in Eq. (11). Generally, DA approach starts with high T and gets cool
down T as time goes on, like physical annealing process. However, if starting computational
temperature (T0) is very high which results in all δ̂ij become ZERO, then all points will be
mapped at origin (O). Once all mappings are at the origin, then the Guttman transform which
is shown at Line 9 in Alg. 1 is unable to construct other mapping except the mapping of all
at the origin, since Guttman transform does multiplication iteratively with previous mapping
to calculate current mapping. Thus, we need to calculate T0 which makes at least one δ̂ij is
bigger than ZERO, so that at least one of the points is not located at O. If δmax denotes the
max(δij), where 0 < i < j ≤ N , then we can compute T0 like:

T0 =
α√
2L

δmax (23)

where α (0 < α < 1) is the cooling parameter to reduce computational temperature, as DA
method proceeds. With computed T0, the ∆̂0 = [δ̂ij ] can be calculated, and we are able to
run SMACOF algorithm with respect to Eq. (20). After new mapping generated with T0 by
SMACOF algorithm, say X0, then we will cool down the temperature in exponential way, like
T1 = αT0, and keep doing above steps until T becomes too small. Finally, we set T = 0 and
then run SMACOF by using the latest mapping as an initial mapping with respect to original
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Algorithm 2 DA-SMACOF algorithm

Input: ∆,V † and α
1: Compute T0 in Eq. (23).
2: Compute ∆̂0 with T0 based on Eq. (22)
3: Generate random initial mapping X0.
4: k ⇐ 0;
5: while Tk ≥ Tmin do
6: Xk+1 = output of SMACOF in Alg. 1 with ∆̂k,V

† and Xk. Xk is used for initial
mapping of the current SMACOF running.

7: Cool down computational Temperature Tk+1 = αTk

8: Update ∆̂k+1 w.r.t. Tk+1.
9: k ⇐ k + 1;

10: end while

/* Finally, we will run SMACOF with original dissimilarity matrix (∆) by using Xk as the
initial mapping. */

11: X = output of SMACOF based on ∆,V † and Xk.
12: return: X;

STRESS (1). We will assume the uniform weight ∀wij = 1 where 0 < i < j ≤ N , so that Eq. (8)
is used to SMACOF running. The proposed deterministic annealing SMACOF algorithm, called
DA-SMACOF is illustrated in Alg. 2.

4 Majorizing Interpolation MDS (MI-MDS)

One of the main limitation of most MDS applications is that it requires O(N2) memory as well
as O(N2) computation. Thus, though it is possible to run them with small data size without
any trouble, it is impossible to execute it with large number of data due to memory limitation,
so it could be considered as memory-bound problem. For instance, Scaling by MAjorizing
of COmplicated Function (SMACOF) [7, 8], a well-known MDS application via Expectation-
Maximization (EM) [9] approach, uses six N × N matrices. If N = 100, 000, then one N × N
matrix of 8-byte double-precision numbers requires 80 GB of main memory, so the algorithm
needs to acquire at least 480 GB of memory to store six N × N matrices. It is possible to run
parallel version of SMACOF with MPI in Cluster-II in Table 2 with N = 100, 000. If the data
size is increased only twice, however, then SMACOF algorithm should have 1.92 TB of memory,
which is bigger than total memory of Cluster-II in Table 2 (1.536 TB), so it is impossible to
run it within the cluster. Increasing memory size will not be a solution, even though it could
increase the runnable number of points. It will encounter the same problem as the data size
increases.

To solve this obstacle, the author developed a simple interpolation approach based on pre-
mapped MDS result of the sample of the given data. The suggested interpolation algorithm
is similar to k nearest neighbor (k-NN) classification [6], but it aims to find a new mapping
position of the new point based on the positions of k-NN, among pre-mapped subset data,
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instead of classifying it. For the purpose of deciding new mapping position in relation to the
k-NN positions, iterative majorization method is used as in SMACOF [7, 8] algorithm, with
modified majorization equation, as shown in below. The algorithm proposed in this section is
called Majorizing Interpolation MDS (MI-MDS).

The proposed algorithm is implemented as follows. We are given N data in high-dimensional
space, say D-dimension, and proximity information (∆ = [δij ]) of those data as in Section 2.1.
Among N data, the configuration of the n sample points in L-dimensional space, x1, . . . ,xn ∈
R

L, called X, are already constructed by an MDS algorithm, here we use SMACOF algorithm.
Then, we select k nearest neighbors, p1, . . . ,pk ∈ P , of the given new point among n pre-mapped
points with respect to corresponding δix, where x represents the new point. Finally, the new
mapping of the given new point x in R

L is calculated based on the pre-mapped position of
selected k-NN and corresponding proximity information δix. The finding new mapping position
is considered as a minimization problem of STRESS (1) as similar as normal MDS problem
with k + 1 points in S, where S = P ∪ x. However, only one point x is movable among k + 1
points, so we can summarize STRESS (1) as belows, and we set wij = 1, for ∀i, j in order to
simplify.

σ(S) =
∑

i<j≤k+1

(dij(S) − δij)
2 (24)

= C +
k∑

i=1

d2
ix − 2

k∑

i=1

δixdix (25)

where δix is the original dissimilarity value between pi and x, dix is the Euclidean distance in
L-dimension between pi and x, and C is constant part. The second term of Eq. (25) can be
deployed as following:

k∑

i=1

d2
ix = k‖x‖2 +

k∑

i=1

‖pi‖2 − 2xtq (26)

where qt = (
∑k

i=1 pi1, . . . ,
∑k

i=1 piL), pij represents j-th element of pi, and k means the number
of nearest neighbors. In order to establish majorizing inequality, we apply Cauchy-Schwarz
inequality to −dix of the third term of Eq. (25). Please, refer to chapter 8 in [5] for details
of how to apply Cauchy-Schwarz inequality to −dix. Since dix = ‖pi − x‖, −dix could have
following inequality based on Cauchy-Schwarz inequality:

−dix ≤ (pi − x)t(pi − z)

diz
(27)

where zt = (zi, . . . , zL) and diz = ‖pi−z‖. The equality in Eq. (27) occurs if x and z are equal.
If we apply Eq. (27) to the third term of Eq. (25), then we obtain

−
k∑

i=1

δixdix ≤ −xt
k∑

i=1

δix

diz
(z − pi) + Cρ (28)
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where Cρ is a constant. If Eq. (26) and Eq. (28) are applied to Eq. (25), then it could be like
following:

σ(S) = C +
k∑

i=1

d2
ix − 2

k∑

i=1

δixdix (29)

≤ C + k‖x‖2 − 2xtq +
k∑

i=1

‖pi‖2 − xt
k∑

i=1

δix

diz
(z − pi) + Cρ (30)

= τ(x,z) (31)

where both C and Cρ are constants. In the Eq. (31), τ(x,z), a quadratic function of x, is a
majorization function of the STRESS. Through setting the derivative of τ(x,z) equal to zero,
we can obtain minimum of it; that is

∇τ(x,z) = 2kx − 2q − 2
k∑

i=1

δix

diz
(z − pi) = 0 (32)

x =
q +

∑k
i=1

δix

diz
(z − pi)

k
. (33)

The advantage of the iterative majorization algorithm is that it guarantees to produce
a series of mapping with non-increasing STRESS value as proceeds, which results in local
minima. It is good enough to find local minima, since the proposed MI algorithm simplifies the
complicated non-linear optimization problem as a small non-linear optimization problem, such
as k + 1 points non-linear optimization problem, where k ≪ N . Finally, if we substitute z with
x[t−1] in Eq. (33), then we generate an iterative majorizing equation like following:

x[t] = p +
1

k

k∑

i=1

δix

diz
(x[t−1] − pi) (34)

where diz = ‖pi − x[t−1]‖ and p is the average of k-NN’s mapping results. Eq. (34) is an
iterative equation used to embed newly added point into target-dimensional space, based on pre-
mapped positions of k-NN. The iteration stop condition is essentially same as that of SMACOF
algorithm, which is

∆σ(S[t]) = σ(S [t−1]) − σ(S [t]) < ε, (35)

where S = P ∪ {x} and ε is the given threshold value.
Process of the out-of-sample MDS could be summarized as following steps: (1) Sampling,

(2) Running MDS with sample data, and (3) Interpolating the remain data points based on the
mapping results of the sample data.

The summary of proposed MI algorithm for interpolation of a new data, say x, in relation
to pre-mapping result of the sample data is described in Alg. 3. Note that the algorithm uses
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Algorithm 3 Majorizing Interpolation (MI) algorithm

1: Find k-NN: find k nearest neighbors of x, pi ∈ P i = 1, . . . , k of the given new data based
on original dissimilarity δix.

2: Gather mapping results in target dimension of the k-NN.
3: Calculate p, the average of pre-mapped results of pi ∈ P .
4: Generate initial mapping of x, called x[0], either p or a random point.
5: Compute σ(S [0]), where S[0] = P ∪ {x[0]}.
6: while t = 0 or (∆σ(S[t]) > ε and t ≤ MAX ITER) do
7: increase t by one.
8: Compute x[t] by Eq. (34).
9: Compute σ(S [t]).

10: end while

11: return x[t];

p as an initial mapping of the new point x[0] unless initialization with p makes dix = 0, since
the mapping is based on the k-NN. If p makes dix = 0 (i = 1, . . . , k), then we use a random
generated point as an initial position of x[0].

5 Non-uniform Weights

The STRESS equation (1) could be considered as the sum of weighted squared error. Due to
the simplicity and easy computation, uniform weight (where ∀wij = 1, 1 ≤ i, j ≤ N) is assumed
in many case. However, the MDS mapping result can be quite different with respect to weight
function, as in [15,24]. Generally, uniform weight method will do more focus on larger distance
entries than smaller distances, but reciprocal weight method (wij = 1/δij) gives more weights
on the shorter distance. However, it is hard to say which weight function is generally better
than the other. It depends on the purpose of the finding embeddings of the given data in target
dimension. In this dissertation, the author will investigate various weight function, such as 1/δ2

and 1/
√

δ as well as uniform and reciprocal weight which is used for Sammon’s mapping [24].

6 Parallel MDS algorithms

We have observed that processing very large dataset with a data mining algorithm is no more
cpu-bounded computation but rather it is memory-bounded in that memory consumption is
beyond the ability of a single process or even a single machine. Thus, running machine learning
algorithms to process large dataset, including MDS, in a distributed fashion is crucial so that we
can utilize multiple processes and distributed resources to handle very large data which usually
not fit in the memory of a single process or a compute node. The problem becomes more
obvious if the running OS is 32-bit which can handle at most 4GB virtual memory per process.
To process large data with efficiency, parallel version of MDS has been developed by using
Message Passing Interface (MPI) fashion. Also, the author is studying hybrid (MPI-Threading)
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Table 1: Main matrices used in SMACOF
Matrix Size Description

∆ N × N Matrix for the given pairwise dissimilarity [δij ]

D(X) N × N Matrix for the pairwise Euclidean distance of

mapped in target dimension [dij ]

V N × N Matrix defined the value vij in (3)

V
† N × N Matrix for pseudo-inverse of V

B(Z) N × N Matrix defined the value bij in (5)

W N × N Matrix for the weight of the dissimilarity [wij ]

X
[k] N × L Matrix for current L-dimensional configuration

of N data points x
[k]
i

(i = 1, . . . , N)

X
[k−1] N × L Matrix for previous L-dimensional configuration

of N data points x
[k−1]
i

(i = 1, . . . , N)

parallel model MDS.

6.1 Message Passing Model SMACOF

Table 1 describes frequently used matrices in SMACOF algorithm, and memory requirement
of SMACOF algorithm increases quadratically as N increases. For the small dataset, memory
would not be any problem. However, it turns out to be critical problem when we deal with large
data set, such as thousands or even millions. For instance, if N = 10, 000, then one N×N matrix
of 8-byte double-precision numbers consumes 800 MB of main memory, and if N = 100, 000, then
one N × N matrix uses 80 GB of main memory. To make matters worse, SMACOF algorithm
generally needs six N ×N matrices, so at least 480 GB of memory is required to run SMACOF
with 100,000 data points without considering two N × L configuration matrices in Table 1. If
the weight is uniform (wij = 1, ∀i, j), we can use only four constants for representing N ×N V

and V † matrices in order to saving memory space. We, however, still need at least three N ×N
matrices, i.e. D(X), ∆, and B(X), which requires 240 GB memory for the above case, which
is still infeasible amount of memory for a typical computer. That is why we have to implement
parallel version of SMACOF with MPI.

To parallelize SMACOF, it is essential to ensure load balanced data decomposition as much
as possible. Load balance is important not only for distribution of memory but also for distri-
bution of computation, since parallelization makes implicit benefit to computation as well as
memory distribution, due to less computing per process. One simple approach of data decompo-
sition is that we assume p = n2, where p is the number of processes and n is an integer. Though
it is relatively less complicated decomposition than others, one major problem of this approach
is that it is a quite strict constraint to utilize available computing processors (or cores). In
order to release that constraint, we decompose an N ×N matrix to m×n block decomposition,
where m is the number of block rows and n is the number of block columns, and the only
constraint of the decomposition is m × n = p, where 1 ≤ m,n ≤ p. Thus, each process requires
only approximately 1/p of full memory requirements of SMACOF algorithm. The matrix M

in Fig. 1 illustrates how we decompose each N ×N matrices with 6 processes and m = 2, n = 3.
Without loss of generality, we assume N%m = N%n = 0 in Fig. 1.

14



x =

M

M00 M01 M02

M10 M11 M12

X0

X1

X2

C0

C1

CX

Figure 1: Parallel matrix multiplication of N × N matrix and N × L matrix with 6 processes
and m = 2, n = 3.

A process Pk, 0 ≤ k < p (sometimes, we will use Pij for matching M ij) is assigned to one
rectangular block M ij with respect to simple block assignment equation in (36):

k = i × n + j (36)

where 0 ≤ i < m, 0 ≤ j < n. For N × N matrices, such as ∆,V †,B(X [k]), and so on, each
block M ij is assigned to the corresponding process Pij , and for X [k] and X [k−1] matrices,
N ×L matrices, each process has full N ×L matrices because these matrices are relatively much
small size and it results in reducing a number of additional message passing. By scattering
decomposed blocks to distributed memory, now we are able to run SMACOF with huge data set
as much as distributed memory allows in the cost of message passing overheads and complicated
implementation.

At the iteration k in Alg. 1, the application should be possible to acquire following infor-
mation to do Line 9 and Line 10 in Alg. 1: ∆, V †, B(X [k−1]), X [k−1], and σ[k]. One good
feature of SMACOF algorithm is that some of matrices are invariable, i.e. ∆ and V †, through
the iterations. On the other hand, B(X [k−1]) and STRESS (σ[k]) value keep changing at each
iteration, since dij(X

[k]) varies every iteration. In addition, in order to update B(X [k−1]) and
STRESS (σ[k]) value in each iteration, we have to take N×N matrices information into account,
so related processes should communicate via MPI primitives to obtain necessary information.
Therefore, it is necessary to design message passing schemes to do parallelization for calculating
B(X [k−1]) and STRESS (σ[k]) value as well as parallel matrix multiplication in Line 9 in Alg. 1.

Computing STRESS in (1) can be implemented simply through MPI_Allreduce. On the
other hand, calculation of B(X [k−1]) and parallel matrix multiplication is not simple, specially
for the case of m 6= n. Fig. 1 depicts how parallel matrix multiplication applies between an
N × N matrix M and an N × L matrix X. Parallel matrix multiplication for SMACOF
algorithm is implemented in three-step of message communication via MPI primitives. Block
matrix multiplication of Fig. 1 for acquiring Ci (i = 0, 1) can be written as follows:

Ci =
∑

0≤j<3

M ij · Xj (37)

Since M ij of N×N matrix is accessed only by the corresponding process Pij , computing M ij·Xj
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Algorithm 4 Pseudo-code for distributed parallel matrix multiplication in SMACOF algorithm

Input: M ij ,X
1: /* m = Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: T ij = M ij · Xj

4: if j 6= 0 then
5: Send T ij to Pi0

6: else
7: for j = 1 to n − 1 do
8: Receive T ij from Pij

9: end for
10: Generate Ci

11: end if

12: if i == 0 and j == 0 then
13: for i = 1 to m − 1 do
14: Receive Ci from Pi0

15: end for
16: Combine C with Ci where i = 0, . . . ,m − 1
17: Broadcast C to all processes
18: else if j == 0 then
19: Send Ci to P00

20: Receive Broadcasted C

21: else
22: Receive Broadcasted C

23: end if

part is done by Pij , and the each computed sub-matrix, which is N
2 × L matrix for Fig. 1, is

sent to the process assigned M i0 by MPI primitives, such as MPI_Send and MPI_Receive. Then
the process assigned M i0, say Pi0, sums the received sub-matrices to generate Ci, and send Ci

block to P00. Finally, P00 combines sub-matrix block Ci (0 ≤ i < m) to construct N ×L matrix
C, and broadcast it to all other processes by MPI_Broadcast. Each arrows in Fig. 1 represents
message passing direction. Thin dashed arrow lines describes message passing of N

2 × L sub-
matrices by MPI_Send and MPI_Receive, and message passing of matrix C by MPI_Broadcast

is represented by thick dashed arrow lines. The pseudo code for parallel matrix multiplication
in SMACOF algorithm is in Alg. 4

For the purpose of parallel computing B(X [k−1]), whose elements bij is defined in (6),
message passing mechanism in Fig. 2 should be applied under 2 × 3 block decomposition as
in Fig. 1. Since bss = −∑s 6=j bsj, a process Pij who is assigned to Bij should communicate a
vector sij , whose element is the sum of corresponding rows, with processes assigned sub-matrix
of the same block-row Pik, where k = 0, . . . , n − 1, unless the number of column blocks is 1
(n == 1). In Fig. 2, the diagonal dashed line indicates the diagonal elements, and the green
colored blocks are diagonal blocks for each block-row. Note that the definition of diagonal blocks
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Figure 2: Calculation of B(X [k−1]) matrix with regard to the decomposition of Fig. 1.

is a block which contains at least one diagonal element of the matrix B(X [k]). Also, dashed
arrow lines illustrate message passing direction.

6.2 Hybrid Model SMACOF

In the above, the author discussed the pure MPI model SMACOF implementation. The MPI
model has been widely accepted by parallel computing community in order to utilize distributed
memory computing resources, such as cluster, since it enables us to run such programs that
require too large computation and memory to run in a single node. Though MPI model is
still used very much and shows good performance, you should note that the model proposed
several decades ago, when the increase of clock speed is the main method of improving CPU
performance. After Multicore chip was invented, most of the cluster systems are actually
composed of multicore compute nodes. For instance, both Cluster-I and Cluster-II in Table 2
are multicore cluster systems whose compute nodes contain 16 and 24 cores, correspondingly.

In [10], the authors investigated the overhead of pure MPI and hybrid (MPI-Threading)
model with multicore cluster systems. In the paper, pure MPI outperforms hybrid model for
the application with relatively fast message passing synchronization overhead. However, for
the case of high MPI synchronization time, hybrid model outperforms pure MPI model with
high parallelism. Not only collective MPI operations but also pairwise MPI operations, such as
MPI_SENDRECV, are used for implementing parallel SMACOF, so that it is worth to investigate
hybrid model SMACOF. For this dissertation, the author will analyze which parallel model is
better-fitted to SMACOF algorithm.

6.3 Parallelization of MI-MDS

Suppose that, among N points, mapping results of n sample points in the target dimension, say
L-dimension, are given so that we could use those pre-mapped results of n points via MI-MDS
algorithm which is described in Section 4 to embed the remaining points (M = N −n). Though
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Table 2: Compute cluster systems used for the performance analysis
Features Cluster-I Cluster-II

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

# CPU 4 4

# Cores per node 16 24

Total Cores 128 768

L2 Cache per core 512 KB 2 MB

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC
Edition (Service Pack 2) - 64 bit

Windows Server 2008 HPC
Edition (Service Pack 2) - 64 bit

interpolation approach is much faster than full running MDS algorithm, i.e. O(Mn + n2) vs.
O(N2), implementing parallel MI algorithm is essential, since M can be still huge, like millions.
In addition, most of clusters are now in forms of multicore-clusters after multicore-chip invented,
so we are using hybrid-model parallelism, which combine processes and threads together.

In contrast to the original MDS algorithm that the mapping of a point is influenced by the
other points, interpolated points are totally independent one another, except selected k-NN in
the MI-MDS algorithm, and the independency of among interpolated points makes the MI-MDS
algorithm to be pleasingly-parallel. In other words, there must be minimum communication
overhead and load-balance can be achieved by using modular calculation to assign interpolated
points to each parallel unit, either between processes or between threads, as the number of
assigned points are different at most one each other.

7 Performance Analysis

In this section, the author analyzes the experimental results of those proposed methods, such
as parallelization, DA-SMACOF, and MI-MDS. All the applications are implemented in C#
language and tested at multicore cluster systems in Table 2.

7.1 SMACOF vs. DA-SMACOF

In this section, the quality difference between EM-like SMACOF algorithm and the DA-SMACOF
proposed in Section 3 is analyzed with respect to the well-known objective function STRESS (1).
Biological sequence data, such as ALU sequence data and meta genomics sequence data, is used
for the experiments. Note that it is difficult to find a vector representation of those biologi-
cal sequence data, but the pairwise dissimilarity information between two different sequence is
available.

The comparison between DA-SMACOF and EM-SMACOF with respect to the average
mapping quality of 30 runs of ALU sequences with random initialization is illustrated in Fig. 3.
There is a clear difference between EM-SMACOF and DA-SMACOF for both 2D and 3D
mapping results which describes that every DA-SMACOF tests surpasses EM-SMACOF.
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Figure 3: The normalized STRESS comparison between EM-SMACOF and DA-SMACOF with
ALU sequence data with 3000 sequences for mapping in 2D and 3D space. Bar graph illustrates
the average of 30 runs with random initialization and the corresponding error bar represents the
minimum and maximum of the normalized STRESS value of EM-SMACOF and DA-SMACOF
with different cooling parameters (α = 0.9, 0.95, and 0.99). Note that the x-axis of both plots
is the threshold value for the stop condition of SMACOF algorithm.

EM-SMACOF shows variation in quality for all experimental results. You should also note
that the minimum of EM-SMACOF in 2D mapping results is clearly larger than average of all
DA-SMACOF experiments. Even in 3D mapping comparison, the minimum of EM-SMACOF
is still larger than the average of DA-SMACOF, although it seems to be similar to the average
of DA-SMACOF in Fig. 3b. The results illustrates that the DA-SMACOF shows better and
more reliable than the normal SMACOF with ALU sequence data.

Fig. 4 is the comparison between the average of 10 random initial runs of DA-SMACOF
(DA-exp95) and EM-SMACOF with metagenomics data set. The threshold value of the stop
condition for SMACOF algorithm is 10−8. As expected, EM-SMACOF shows a tendency to
be trapped in local optima by depicting some variation and larger STRESS values, and even
the minimum values are bigger than any results of DA-exp95. In contrast to EM-SMACOF,
all of the DA-exp95 results are very similar to each other. In fact, for 3D mappings, all of the
DA-exp95 mappings reach at 0.0368854.

7.2 Parallel Performance of MPI-SMACOF

For the performance analysis of MPI-SMACOF discussed in Section 6.1, the author has ap-
plied the parallel algorithm for visualization of high-dimensional data into low-dimension to
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Figure 4: The normalized STRESS comparison between SMACOF and DA-SMACOF with
Metagenomics sequence data with 30000 sequences for mapping in 2D and 3D space. Bar graph
illustrates the average of 10 runs with random initialization and the corresponding error bar
represents the minimum and maximum of the normalized STRESS value of EM-SMACOF and
DA-SMACOF with α = 0.95.

the dataset obtained from PubChem database1, which is a NIH-funded repository for over 60
million chemical molecules and provides their chemical structure fingerprints and biological ac-
tivities, for the purpose of chemical information mining and exploration. Among 60 Million
PubChem dataset, the author has used randomly selected up to 100,000 chemical subsets and
all of them have a 166-long binary value as a fingerprint, which corresponds to maximum input
of 100,000 data points having 166 dimensions. With those data as inputs, we have performed
our experiments on our two decent compute clusters as summarized in Table 2.

In the following, the performance results of the parallel SMACOF are shown with respect
to 10,000, 20,000, 50,000 and 100,000 data points having 166 dimensions, represented as 10K,
20K, 50K, and 100K dataset respectively.

Fig. 5 shows the performance comparisons for 10K and 20K PubChem data with respect
to how to decompose the given N × N matrices with 32, 64, and 128 cores in Cluster-I and
Cluster-II. A significant characteristic of those plots in Fig. 5 is that skewed data decomposi-
tions, such as p × 1 or 1 × p, which decompose by row-base or column-base, are always worse
in performance than balanced data decompositions, such as m × n block decomposition which
m and n are similar as much as possible. The reason of the above results is cache line effect
that affects cache reusability, and generally balanced block decomposition shows better cache
reusability so that it occurs less cache misses than the skewed decompositions [1, 21]. As in
Fig. 5, Difference of data decomposition almost doubled the elapsed time of 1× 128 decomposi-

1PubChem,http://pubchem.ncbi.nlm.nih.gov/
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Figure 5: Performance of Parallel SMACOF for 10K and 20K PubChem data with 32,64, and
128 cores in Cluster-I and Cluster-II w.r.t. data decomposition of N × N matrices.

tion compared to 8×16 decomposition with 10K PubChem data. From the above investigation,
it is derived that the balanced data decomposition is generally good choice. Furthermore,
Cluster-II performs better than Cluster-I in Fig. 5, although the clock speed of cores is simi-
lar to each other. There are two different factors between Cluster-I and Cluster-II in Table 2
which we believe that those factors result in Cluster-II outperforms than Cluster-I, i.e. L2
cache size and Networks, and the L2 cache size per core is 4 times bigger in Cluster-II than
Cluster-I. Since SMACOF with large data is memory-bound application, it is natural that the
bigger cache size results in the faster running time.

In addition to data decomposition experiments, the parallel performance of pure MPI SMA-
COF is measured in terms of the number of processes p. The author investigates the scalability
of parallel SMACOF by running with different number of processes, e.g. p = 64, 128, 256,
and 384. On the basis of the above data decomposition experimental result, the balanced de-
composition has been applied to this process scaling experiments. As p increases, the elapsed
time should be decreased, but linear performance improvement could not be achieved due to
the parallel overhead. In Fig. 6, both 50k and 100k data sets show the performance gain as p
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Figure 6: Performance of parallel SMACOF for 50K and 100K PubChem data in Cluster-
II w.r.t. the number of processes. Based on the data decomposition experiment, we choose
balanced decomposition as much as possible, i.e. 8 × 8 for 64 processes. Note that both x and
y axes are log-scaled.

increases. However, performance enhancement ratio is reduced, because the ratio of message
passing overhead over the assigned computation per each node increases due to more messag-
ing and less computing per node as p increases. Note that we used 16 computing nodes in
Cluster-II (total number of cores in 16 computing nodes is 384 cores) to perform the scaling
experiment with large data set, i.e. 50k and 100k PubChem data, since SMACOF algorithm
requires 480 GB memory for dealing with 100,000 data points, as we disscussed in Section 6.1,
and Cluster-II is only feasible to perform this experiment with more than 10 nodes.

7.3 Interpolation Performance

To measure the quality and parallel performance of the proposed MI-MDS discussed in Section 4,
we have used 166-dimensional chemical dataset obtained from PubChem project database as
in Section 7.2. In this section, the author has used randomly selected up to 2 million out-of-
sample chemical subsets for interpolation testing.

In the following, The author will show i) the quality of the interpolation result of perform-
ing MI-MDS, and ii) performance measurement of the parallelized MI-MDS on the clustering
systems as listed in Table 2.

Generally, the quality of k-NN (k-nearest neighbor) classification (or regression) is related to
the number of neighbors. For instance, if we choose larger number for the k, then the algorithm
shows higher bias but lower variance. On the other hands, the k-NN algorithms show lower bias
but higher variance with respect to smaller number of neighbors. The purpose of the MI-MDS
algorithm is to find appropriate embeddings for the new points based on the given mappings of
the sample data, so it is better to be sensitive to the mappings of the k-NN of the new point
than to be stable with respect to the mappings of whole sample points. Thus, in this paper,
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Figure 7: (a) Quality comparison between Interpolated result upto 100k based on the sample
data and 100k MDS result. (b) Elapsed time of parallel MI-MDS upto 100k data w.r.t. the
sample size using 16 nodes of the Cluster-II in Table 2. Note that the computational time
complexity of MI-MDS is O(Mn) where n is the sample size and M = N − n.

the authors use 2-NN for the MI algorithm.
Fig. 7-(a) shows the comparison of quality between interpolated results upto 100K data with

different sample size data by using 2-NN and MDS (SMACOF) only result with 100k pubchem
data. The y-axis of the plot is STRESS (1) normalized with

∑
i<j δ2

ij , and the difference between
MDS only results and interpolated with 50k is only around 0.004. Even with small portion of
sample data (12.5k data is only 1/8 of 100k), the proposed MI-MDS algorithm produces good
enough mapping in target dimension using very smaller amount of time than when we run MDS
with full 100k data. Fig. 7-(b) shows the MI-MDS running time with respect to the sample
data using 16 nodes of the Cluster-II in Table 2. The plot demonstrates that the running time
is fitted to O(Mn). The running time of SMACOF with the sampled data (i.e. 12.5k, 25k,
and 50k) and MI-MDS upto 100k data is substantially faster than running SMACOF with full
100k data. Note that the full MDS running time with 100k using 16 nodes of the Cluster-II
in Table 2 is around 27006 sec.

Above we discussed about the MI-MDS quality of the fixed total number (100k) and with
respect to the different sample data size, compared to MDS running result with total number
of data (100k). Now, the opposite direction of test, which tests scalability of the proposed
interpolation algorithm, is performed as following: we fix the sample data size to 100k, and
the interpolated data size is increased from one millions (1M) to two millions (2M). Then, the
STRESS value is measured for each running result of total data, i.e. 1M + 100k, 2M + 100k,
and so on. The measured STRESS value is shown in Fig. 8. There are some quality lost between

23



Total size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

500000 1000000 1500000 2000000

Figure 8: The normalized STRESS value of Interpolation larger data, such as 1M and 2M data
points, with 100k sample data. The STRESS value of pre-mapped MDS result of 100k data is
0.0719.

the full MDS running result with 100k data and the 1M interpolated results based on that 100k
mapping, which is about 0.007 difference in normalized STRESS criteria. However, there is no
much difference between the 1M interpolated result and 2M interpolated result, although the
sample size is quite small portion of total data and the out-of-sample data size increases as
twice. From the above result, we could consider that the proposed MI-MDS algorithm works
well and scalable if we are given a good enough pre-configured result which represents well the
structure of the given data. Note that it is not possible to run SMACOF algorithm with only
200k data points due to memory bound, within the systems in Table 2.

Here, the author would like to investigate the parallel performance of the proposed paral-
lel MI-MDS implementation in terms of efficiency with respect to the running results within
Cluster-I and Cluster-II in Table 2.

Both plots in Fig. 9 illustrate the efficiency of the parallel MI-MDS running results with
different sample size - 12.5k, 25k, and 50k - with respect to the number of parallel units using
Cluster-I and Cluster-II, correspondingly. Equations for the efficiency is following:

f =
pT (p) − T (1)

T (1)
(38)

ε =
1

1 + f
(39)

where p is the number of parallel units, T (p) is the running time with p parallel units, and T (1)
is the sequential running time. In practice, Eq. (38) can be replaced with following:
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Figure 9: Efficiency of runtime in parallel MI-MDS application with respect to different sample
data size using Cluster-I and Cluster-II in Table 2. Total data size is 100K.

f =
αT (p1) − T (p2)

T (p2)
(40)

where α = p1/p2 and p2 is the smallest number of used cores for the experiment, so alpha ≥ 1.
Here, Eq. (40) is used for calculating f in (39).

In Fig. 9-(a), 16 to 128 cores are used to measure parallel performance with 8 processes,
and 32 to 384 cores are used to evaluate the performance of the proposed parallel MI-MDS
with 16 processes in Fig. 9-(b). Processes communicate via MPI primitives and each process is
also parallelized in thread level. Both Fig. 9-(a) and Fig. 9-(b) show very good efficiency with
appropriate degree of parallelism.

8 Contributions

The main goal of this dissertation is to find low dimensional mapping of the given large high-
dimensional data as good as possible and as many as possible using multicore cluster systems
based on pairwise dissimilarity information. For this ultimate purpose, the author has proposed
several methods to improve a well-known MDS algorithm, called SMACOF [7,8], with respect to
both runtime and quality of mappings. Those efforts result in the following contributions. First,
the author has applied DA approach [22,23] to SMACOF algorithm so that it helps to prevent
trapping local optima, and the experimental results in Section 7.1 verify that DA-SMACOF
outperforms SMACOF in quality and shows consistent result. Second, both SMACOF and

25



DA-SMACOF algorithms are parallelized via pure MPI and hybrid parallel model so that it is
possible not only to run faster but also to deal with larger data.

Though parallelization of SMACOF and DA-SMACOF enable us to run those algorithms
with large data set using distributed memory resources, it is still difficult to run them with
a huge amount of data, such as millions since those algorithms require O(N2) memory. The
interpolation algorithm called MI-MDS is proposed as an amendment of the above obstacle,
in that MI-MDS is able to deal with millions of data points based on pre-mapped result of
the subset of the given data (in-sampled data) without using O(N2) computation and memory
requirement. In Section 7.3, it is shown that the MI-MDS produces configuration of very
large data with similar quality of running normal SMACOF. Last but not least, the proposed
dissertation will investigate and analyze how weight values affect to the MDS mapping.
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