# GPU Passthrough Performance: A Comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL Applications

John Paul Walters<sup>1</sup>, Andrew J. Younge<sup>2</sup>, Dong-In Kang<sup>1</sup>, Ke-Thia Yao<sup>1</sup>, Mikyung Kang<sup>1</sup>, Stephen P. Crago<sup>1</sup>, and Geoffrey C. Fox<sup>2</sup>

<sup>1</sup> USC / Information Sciences Institute {jwalters,dkang,kyao,mkkang,crago}@isi.edu

<sup>2</sup> Indiana University {ajyounge,gcf}@indiana.edu



#### **Outline**



- Motivation
- Background and related work
- GPU performance across hypervisors
- Lessons learned
- Future work



#### **Motivation**



- Scientific workloads demand increasing performance with greater power efficiency
  - Architectures have been driven towards specialization, heterogeneity
- Infrastructure-as-a-Service (laaS) clouds can democratize access to the latest, most powerful accelerators
  - Most of today's clouds homogeneous
  - Of the major providers, only Amazon offers virtual machine access to GPUs in the public cloud



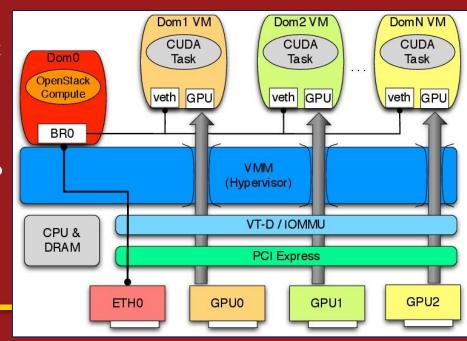
### **Background and Related Work**



- Options for GPU access in the cloud:
  - API remoting
    - Split driver into front-end/back-end
    - Interpose CUDA library and execute on behalf of the VM
      - Useful for sharing GPUs across networks
      - Performance implications for IO-sensitive applications
    - rCUDA, vCUDA, GViM, and gVirtus are examples
  - PCI Passthrough
    - Use host's IOMMU to pass disassociate physical device from host and attach to the guest
      - Advantage in performance
      - Disadvantage in flexibility (GPU bound to a single VM only)



## **Cloud Computing and GPUs**




- GPU passthrough has historically been hard
  - Specific to particular GPUs, hypervisors, host OS
  - Legacy VGA BIOS support, etc.

Today we can access GPUs through most of the major

hypervisors

- KVM, VMWare ESXi, Xen, LXC
- What are the performance implications?
- What are the lessons learned?





## **Experimental Methodology**



- Benchmarks
  - Microbenchmarks: SHOC OpenCL
  - Application benchmarks:
    - LAMMPS: measures hybrid multicore CPU + GPU
    - GPU-LIBSVM: characteristic of big data applications
    - LULESH: hydrodynamics exascale proxy application
- Platforms
  - Westmere with Fermi C2075
  - Sandy Bridge with Kepler K20m
- Virtual machines: CentOS 6.4 with 2.6.32-358.23.2 kernel,
  20 GB RAM, and 1 CPU socket
  - Control for NUMA effects



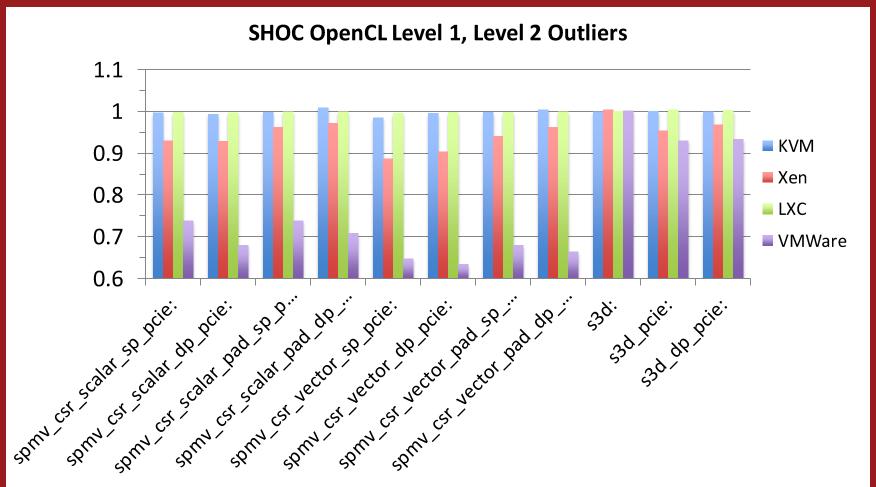
# **Hardware Setup**



|             | Westmere + Fermi | Sandy Bridge + Kepler |
|-------------|------------------|-----------------------|
| CPU (cores) | 2xX5660 (12)     | 2xE5-2670 (16)        |
| Clock Speed | 2.6 GHz          | 2.6 GHz               |
| RAM         | 192 GB           | 48 GB                 |
| NUMA Nodes  | 2                | 2                     |
| GPU         | 2xC2075          | 1xK20m                |
| PCI-Express | 2.0              | 3.0                   |
| Release     | ~2011            | ~2013                 |



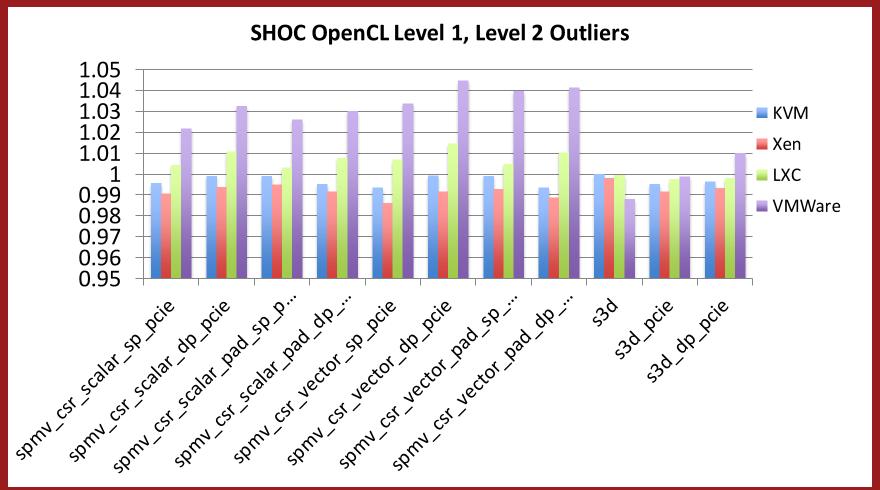
# **Hypervisor Configuration**




| Hypervisor        | Linux Kernel    | Linux Distro    |
|-------------------|-----------------|-----------------|
| KVM               | 3.12            | Arch 2013.10.01 |
| Xen 4.3.0-7       | 3.12 (dom0)     | Arch 2013.10.01 |
| VMWare ESXi 5.5.0 | N/A             | N/A             |
| LXC               | 2.6.32-358.23.2 | CentOS 6.4      |



#### C2075 Results – SHOC Outliers








#### **K20 Results – SHOC Outliers**

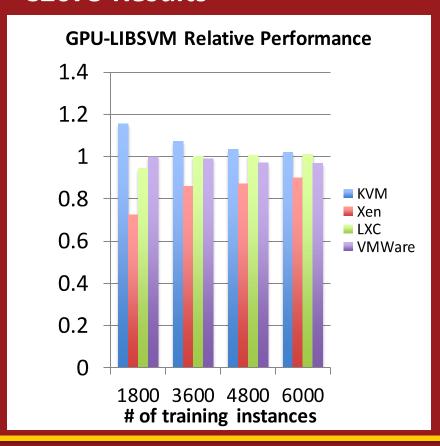




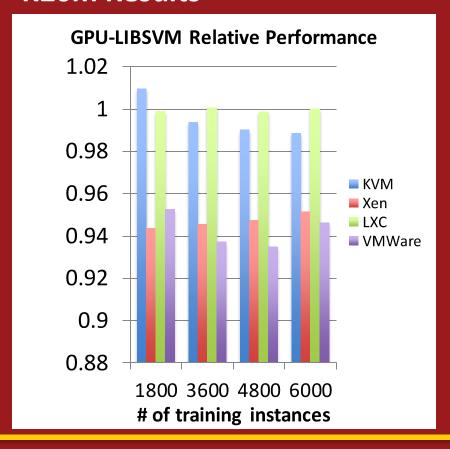


#### **SHOC Observations**




- Overall both Fermi and Kepler systems perform nearnative
  - KVM and LXC showed no notable performance degredation
- Xen on the C2075 system shows some overhead
  - Likely because Xen couldn't activate large page tables
- VMWare results vary significantly between architecture
  - Kepler shows greater than base performance
  - Fermi shows largest overhead
- Some unexpected performance improvement for Kepler Spmv




#### **GPU-LIBSVM Results**



#### C2075 Results



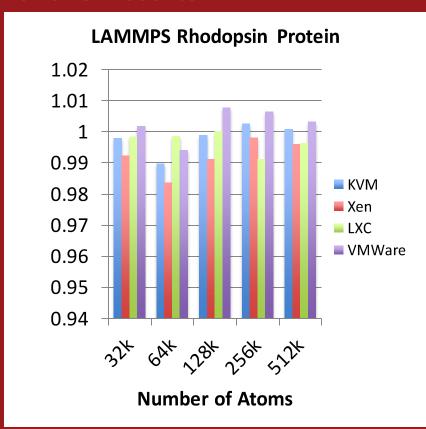
#### **K20m Results**



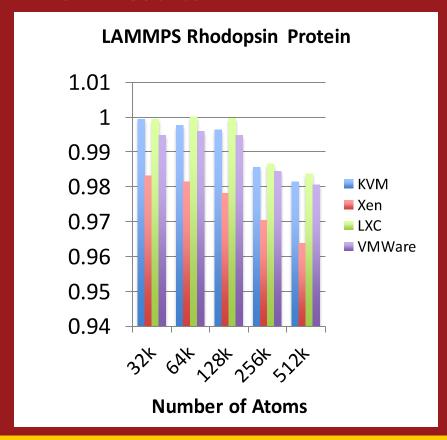


#### **GPU-LIBSVM Observations**




- Unexpected performance improvement for KVM on both systems
  - Most pronounced on Westmere/Fermi platform
- This is likely due to the use of transparent hugepages (THP)
  - Back the entire guest memory with hugepages
  - Improves TLB performance
  - More investigation needed to confirm




#### **LAMMPS** Rhodopsin Protein Results



#### C2075 Results



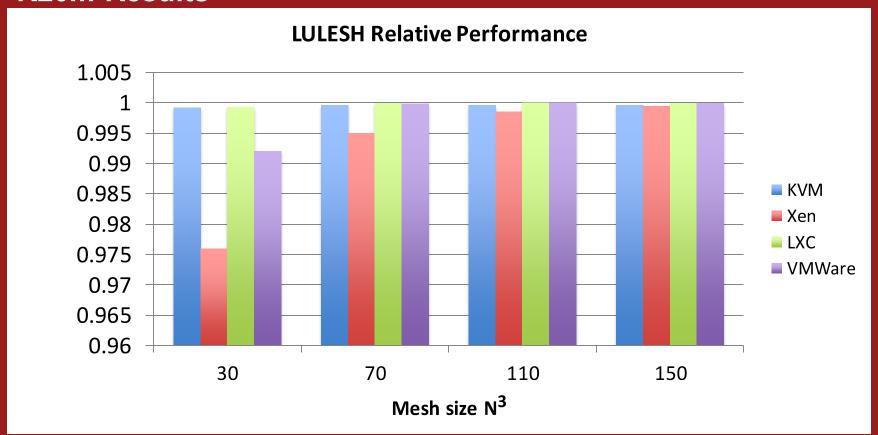
#### **K20m Results**





#### **LAMMPS Observations**




- Unique among the benchmarks
  - Exercises multiple CPU cores in addition to GPU
- Demonstrates high efficiency across both platforms
  - Unexpectedly higher efficiency for Westmere architecture
- Implications for heterogeneous workloads:
  - SMP CPU + GPU efficiency remains high
  - More research needed to generalize results



# **LULESH Hydrodynamics Performance**



#### **K20m Results**





#### **LULESH Observations**



- LULESH (K20m only)
- Highly compute-intensive, little data movement
  - Expect little virtualization overhead
- Initially slight overhead from Xen
  - Decreases as mesh resolution (N³) increases



#### **Lessons Learned – Virtualized HPC**



- Virtualization of high performance workloads historically controversial
  - Westmere results suggest this was sometimes legitimate
  - More than 10% overhead common
- Recent architectures (e.g. Sandy Bridge) have nearly erased those overheads
  - Lowest performing hypervisor (Xen) within 95% of native
  - Improved CPU integration with PCI-Express bus

Time to reconsider old arguments against virtualized HPC



# **Lessons Learned – Hypervisor Performance**



- KVM consistently yields near-native performance across architectures
- VMWare's performance inconsistent
  - Near-native on Sandy Bridge, high overhead on Westmere
- Xen performed consistently average across both architectures
- LXC performed closest to native
  - Unsurprising, given LXC's design
  - Trades performance for flexibility
- Given these results we see KVM as holding a slight edge for GPU passthrough



#### **Future Work**



- Evaluate new hardware when available
- Combine with SR-IOV Interconnect work
  - Test multi-node GPU + InfiniBand deployment
  - Initial results promising
- Introduce mechanisms into Cloud Infrastructure
- NUMA-friendly cloud scheduling

