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● HPCforML: Using HPC to execute and enhance ML performance, or using 
HPC simulations to train ML algorithms (theory guided machine learning), 
which are then used to understand experimental data or simulations.

● MLforHPC: Using ML to enhance HPC applications and systems; Big Data 
comes from the computation

● Context: Computational Science Effective consumer of HPCforML; innovative 
producers of MLforHPC

Learning EveryWhere: Classification



HPCforML can be further subdivided
● HPCrunsML: Using HPC to execute ML with high performance
● …
● ...
● SimulationTrainedML: Where the simulations are performed to directly train 

an AI system, rather than the AI system being added to learn a simulation. 
○ Train ML algorithms, which are then used to understand experimental data 

or simulations. 

HPCforML: Classification



MLforHPC: Using ML to enhance HPC applications and systems
● MLAutoTuning: Using ML to configure (autotune) ML or HPC simulations.
● MLafterHPC: ML analyzing results of HPC as in trajectory analysis and 

structure identification in biomolecular simulations 
● MLaroundHPC: Using ML to learn from simulations and produce learned 

surrogates for the simulations or parts of simulations. 
● MLControl: Using HPC simulations in control of experiments and in objective 

driven computational campaigns. Simulation surrogates allow real-time 
predictions. 

● Latter two arguably most important, rewarding (“effective perf”), difficult

MLforHPC: Classification 



● MLAutoTuningHPC: Learning Configurations (classic auto-tuning)
○ Optimizes mix of performance & quality of results
○ Includes initial values, dynamic choices, e.g., block sizes for cache 

use, variable step sizes in space and time. 
○ Also include discrete choices as to the type of solver to be used.

● MLAutoTuningHPC: Active Learning
○ Choose the best set of computation defining parameters to achieve 

some goal, e.g., providing the most efficient training set with 
defining parameters spread well over the relevant phase space.

● MLAutoTuningHPC: Learning Model Setups from Observation 
○ Seen when simulation set up as a set of models; parameters to 

optimize outputs to available empirical data presents one of the 
greatest challenges in model construction.

MLAutoTuning: Examples



● MLaroundHPC: Learning Outputs from Inputs: 
○ Simulations performed to directly train an AI system, rather than AI system 

being added to learn a simulation (includes SimulationTrainedML)
● MLaroundHPC: Learning Simulation Behavior 

○ ML learns behaviour replacing detailed computations by ML surrogates. 
● MLaroundHPC: Learning Effective Potentials

○ Effective potential is analytic, quasi-empirical or quasi-phenomological 
potential that combines multiple effects into a single potential. 

○ Classic Coarse-graining: Effective potential typically defined using physical 
intuition, e.g., a model specified at a microscopic scale, define coarse 
graining to a different scale with macroscopic entities defined to interact 
with effective dynamics specified in some fashion such as an effective 
potential or effective interaction graph

MLaroundHPC: Examples 



● MLaroundHPC: Learning Agent Behavior – a Predictor-Corrector 
approach 
○ At each step optimize the parameters to minimize divergence between 

simulation and ground truth data. The ground truth here may be in the 
form of experimental data, or from highly detailed (and expensive) 
quantum or micro-scale calculations. The time series of parameter 
adjustments define information missing from the model.. This is an 
extended data assimilation approach.

● MLaroundHPC: Inference of Missing Model Structure:
○ In this case we aggregate the Learned Predictor Corrector MLs, 
○ Infer unknown model structure from the aggregation of individual learned 

predictor corrector models. Add inferred mechanisms to the base model 
structure and repeat the basic predictor-corrector steps. 

MLaroundHPC: Further Examples 



● MLControl: Using HPC simulations in control of experiments and in objective 
driven computational campaigns

● MLControl: Experiment Control 
○ Using HPC simulations in control of experiments and in objective driven 

computational campaigns. 
○ Simulation surrogates are very valuable to allow real-time predictions. 

Applied in Material Science and Fusion
● MLControl: Experiment Design 

○ Challenges is uncertainty in precise model structures and parameters. 
○ Model-based design of experiments (MBDOE) assists in the planning of 

highly effective and efficient experiments. MBDOE with ML assistance 
identifies the optimal conditions for stimuli and measurements that yield 
the most information about the system given practical limitations on 
realistic experiments

MLControl: Examples
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Case Study: Enhanced Conformational Sampling

● Adaptive Sampling
○ Better, Faster, Greater sampling

● Better Sampling
○ Drive systems towards unexplored 

regions, don’t waste time sampling 
behaviour already observed

● Faster Sampling
○ Statistically equivalent parts of 

conformational space sooner.
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Adaptive Ensemble MD (MLaroundHPC)



• Using DL to improve MD simulations 
• Deep clustering of protein folding simulations using CVAE (ORNL) and Bayesian 

Hyperparameter Optimization using  RADICAL-Cybertools on Summit 
• Building low dimensional representations of states from simulation trajectories.

• CVAE can transfer learned features to reveal novel states across simulations 
• HPC Challenge: DL approaches to achieve near real-time training & prediction!

Deep Clustering of Protein Folding (MLafterHPC) 

Deep clustering of protein folding 
simulations, Debsindhu Bhowmik et 
al, https://doi.org/10.1101/339879



● Chemical space of drug design in 
response to mutations very large. 
10K -100K mutations; too large for 
HPC simulations alone!

● Developed methods that use: (i) 
simulations to train machine 
learning (ML) models to predict 
therapeutic effectiveness; (ii)  use 
ML models to determine which 
drug candidates to simulate.

INSPIRE: Integrated (ML-MD) Scalable Prediction of REsistance

A collaboration between BNL/Rutgers (Jha), Chicago (Stevens), Memorial Sloan Kettering (Chodera), UCL (Coveney) 

Early Science Project on NSF Frontera. DD Award on Summit.
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MLAutoTunning and MLaroundHPC: ML for performance 
enhancement with Surrogates of MD Simulations

● Integration of ANN based regression model 
for prediction for MD simulations of ions near 
polarizable nanoparticles

● Predict dynamics of ions for  10 million steps 
● Reduced computational time of simulating 

systems with 1000 of ions and induced 
charges from 1000 of hours to 10 of hours, 
yielding a maximum speedup of  3 from 
MLAutoTuning and a maximum speedup of  
600 from the combination of ML and parallel 
computing.

● ANN based regression model learns desired 
features of ionic density distribution

● Integration of ANN with simulations allows 
real time and any time engagement with 
simulation framework



Effective Performance
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MLforHPC: For all four scenarios
● Reference Architecture: 

○ NL (L =  Learning Element)
○ NS (S = Simulation Element)
○ ND (E = Exp. Data Source) 
○ NL / NS / ND can be time dependent 

and so is the coupling between them.
● Coupling:

○ I: E couples to S or L 
○ II: L couples to S
○ III : E controlled by L (III-A) or S (III-B)

● Control: Temporal constraints determine 
scaling considerations

Learning EveryWhere: Reference Architecture



Reference Architecture: Scaling Considerations

● Strong Scaling Considerations:
○ Strong Scaling of individual L: Enabling L to achieve near real-time training 

and prediction to control or steer S
■ Build low dimensional representation of states from trajectory analysis

○ Strong Scaling  of Integrated L + S: Enabling simulation-trained models to 
determine where to sample in space
■  INSPIRE -- where space / number of drug candidates is very large.

● Weak Scaling Considerations:
○ Weak Scaling of individual L:  Many learning models concurrently

■ Multiple surrogates, may the best surrogate win 
○ Weak Scaling of Integrated L + S: Multiple instantiations of L and S

■ Model-based design of experiments (MBDOE), objective driven 
experiments and learning effective potentials



Reference Architecture: Resource Management Considerations

● Resource Management Considerations:
○ Must consider streaming data so as to include experimental and 

observational data
○ General Properties of applications

■ Adaptive: Task graph and plan will change based upon intermediate 
results and data availability

■ Dynamic: Resource availability and performance is time dependent
■ Heterogeneous workflows: Multiple distinct components (E, L and S), 

and different instances of each component
○ Resource management and system software challenges are similar to 

adaptive + streaming workflow!



● Which learning methods are most effective?
● New algorithmic approaches based upon “effective learning” ?
● Is there a general multi-scale approach using surrogates (MLaroundHPC) ?
● Advances in Uncertainty Quantification 
● What are appropriate system frameworks to implement interaction between E, S 

and L components? 
○ Single reference architecture for all 4 categories? 

● Runtime system challenges for balanced execution of real & surrogate models?
○ Workload management, resource management and scheduling 
○ Strong and weak scaling challenges

● Application / scenario agnostic definition of Effective Performance
● …. 

Open Issues and Challenges
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Thank You!


