Benchmarking Harp-DAAL: High Performance
Hadoop on KNL Clusters

IEEE Cloud Computing Conference
June 27, 2017

Judy Qiu

Intelligent Systems Engineering Department, Indiana University
Email: xqiu@indiana.edu

Outline

@ Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

@ Optimization Methodologies

@ Results (configuration, benchmark)
Code Optimization Highlights
@ Conclusions and Future Work

e (7 = -

Biomolecular / 5
Simulations

= ic
> %

Polar Science

HPC-ABDS

| . Pathology

DATANET: CIF21 DIBBS:
Middleware and High Performance
Analytics Libraries for Scalable Data Science
Progress Report August 2016

i/) ﬁ > p—s
Crandall, v "Wl asze a‘/// » (Jha v ;/ ,/ lx/
T?’.\"T/ N, 7# ‘lﬂ"' Td“- ,['I outan

rizona Ste - af'}

N €

Motivation for faster and bigger problems

 Machine Learning (ML) Needs high performance
— Big data and Big model
— lterative algorithms are fundamental in learning a non-trivial model

— Model training and Hyper-parameter tuning steps run the iterative
algorithms many times

e Architecture for Big Data analytics
— to understand the algorithms through a Model-Centric view
— to focus on the computation and communication patterns for optimizations
— Trade-offs of efficiency and productivity

* linear speedup with an increasing number of processors
* easier to be parallelized on multicore or manycore computers

High Performance — Apache Big Data Stack

Classic Parallel Runtimes
(MPI)

[MapReduce }

Data Centered, QoS Efficient and

{E}, {é} Proven techniques

cx

Expand the Applicability of MapReduce to more classes of Applications

Sequential Map-Only MapReduce Iterative MPI and Point-to-
Input Input Input “f:gl'fteduce iterations| FOINt N

+ 7)
@ ™ <i> <j>”‘"’“’ §> o K —
°o o o o o o < PI] >
Output Output °© o reduce °© o° reduce /
4

The Concept of Harp Plug-in

Parallelism Model Architecture
MapReduce Model MapCollective Model
o MapReduce MapCollective
l l l Application Applications Applications
B Framework
Shuffle CoIIectlve Communication MapReduce V2
Resource
Manager

Harp is an open-source project developed at Indiana University [6], it has:
* MPI-like collective communication operations that are highly optimized for big data problems.
* Harp has efficient and innovative computation models for different machine learning problems.

[6] Harp project. Available at https://dsc-spidal.github.io/harp

intel) Developer Zone

Data Management

Data sources
Data dictionaries
Data model
Numeric tables & matrices
Compression

Services

Memory allocation
Error handling
Collections
Shared pointers

Algorithms

Analysis
Training
Prediction

DAAL: Intel® Data Analytics Acceleration Library

DAAL is an open-source project that provides:

* Algorithms Kernels to Users

e Batch Mode (Single Node)
* Distributed Mode (multi nodes)
* Streaming Mode (single node)

Data Management & APIs to Developers

» Data structure, e.g., Table, Map, etc.
 HPC Kernels and Tools: MKL, TBB, etc.
* Hardware Support: Compiler

Intel Parallel Computing Center

at Indiana University

Harp-DAAL enable faster Machine Learning Algorithms
with Hadoop Clusters on Multi-core and Many-core architectures

ML Applications Data Analysis

Harp Computation Models

Hadoop and Harp Collective Communication

Intel DAAL Kernels: MF-SGD, K-Means, ALS

HPC Kernels: BLAS, MKL, TBB, OpenMP

HPC Hardware Platforms: Haswell CPU, KNL Xeon PHlI

LB\

Bridge the gap between HPC
hardware and Big data/Machine
learning Software

Support Iterative Computation,
Collective Communication, Intel
DAAL and native kernels

Portable to new many-core
architectures like Xeon Phi and
run on Haswell and KNL clusters

Outline

Q Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

@ Optimization Methodologies

@ Results (configuration, benchmark)
Code Optimization Highlights
@ Conclusions and Future Work

General Reduction in Hadoop, Spark, Flink

Map Tasks

Reduce Tasks

Follow by Broadcast for
AllReduce which is a common
approach to support iterative
algorithms

For example, paper [7] 10
learning algorithms can be
Output partitioned written in a certain “summation
with Key form,” which allows them to be
easily parallelized on multicore
computers.

Comparison of Reductions:

Separate Map and Reduce Tasks
Switching tasks is expensive

MPI only has one sets of tasks for
map and reduce

MPI achieves AllReduce by
interleaving multiple binary trees

MPI gets efficiency by using
shared memory intra-node (e.g.
multi-/manycore, GPU)

[7] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng and Kunle Olukotun, Map-Reduce for Machine Learning on Multicore,

in NIPS 19 2007.

HPC Runtime versus ABDS distributed Computing Model on Data Analytics

Hadoop writes to disk and is slowest; Spark and Flink spawn many processes and do not
support allreduce directly; MPI does in-place combined reduce/broadcast

Spark/Flink All Reduction MPI All Reduction

: . : :Time

Iteration

N

O Message
O Partially reduced result
@ All reduced result

Ilteration with
Broadcast

I Parallel map tasks I Reduce task I] MPI Processes

lllustration of In-Place AlIReduce in MPI

Processes

Why Collective Communications for Big Data Processing?

e (Collective Communication and Data Abstractions
o Optimization of global model synchronization

o ML algorithms: convergence vs. consistency
o Model updates can be out of order

o Hierarchical data abstractions and operations
* Map-Collective Programming Model
o Extended from MapReduce model to support collective communications
o BSP parallelism at Inter-node vs. Intra-node levels
* Harp Implementation
o A plug-in to Hadoop

Harp APIs

e DynamicScheduler e MPI collective communication e getEvent
e StaticScheduler * broadcast e waitEvent
* reduce e sendEvent
e allgather
¢ allreduce

e MapReduce “shuffle-reduce”
e regroup with combine
e Graph & ML operations

e “push” & “pull” model parameters
e rotate global model parameters
between workers

Collective Communication Operations

Operation Name Algorithm Time Complexity?

broadcast — chain . np

minimum spanning tree (logy p)np

reduce minimum spanning tree (logy p)np
allgather bucket pnf3

allreduce bi-directional exchange (log, p)np
regroup point-to-point ng

point-to-point plus routing
push & pull optimization nB
rotate exchange date? between neighbors nB
on a ring topology

a . LI . n . - . .
Note in “time complexity”, p is the number of processes, n is the number of input data items per worker, (3
is the per data item transmission time, communication startup time is neglected and the time complexity of the
“point-to-point” based algorithms are estimated regardless of potential network conflicts.

Taxonomy for Machine Learning Algorithms

. . .| . Structure Dimension
Task |
Lovel Classification ICIusterlng .Regressnn JRecommendatlon) Leaming | Reduction
’\S/'t()det' . General | Kemel | Nearest | Decision |Factorization | Graphical | Neural
Ler\lfje(;l 4 | Linear Model | Method Neighbor | Tree Machine | Model | Networks

' SWDPCALRQR, GD,SGDLBFGS, | gmvB ~ Gibbs Sampling,
Solver | || CCD... ' "~ | Metropolis-Hastings,...
Level Linear Algebra Numerical Expectation Markov Chain

Kemel Optimization Maximization Monte Carlo

Optimization and related issues
* Task level only can't capture the traits of computation

* Model is the key for iterative algorithms. The structure (e.g. vectors, matrix, tree,
matrices) and size are critical for performance

* Solver has specific computation and communication pattern

We investigate different computation and communication patterns of important ml algorithms

Parallel Machine Learning Application
Implementation Guidelines

Application

e Latent Dirichlet Allocation, Matrix Factorization,
Linear Regression...

Algorithm

e Expectation-Maximization, Gradient Optimization,
Markov Chain Monte Carlo...

Computation Model

e Locking, Rotation, Allreduce, Asynchronous

System Optimization

* Collective Communication Operations

e Load Balancing on Computation and Communication
® Per-Thread Implementation

Computation Models

* Synchronized algorithm * Synchronized algorithm
e The latest model * The latest model

* Synchronized algorithm e Asynchronous algorithm
» Stale model e Stale model

[8] B.Zhang, B. Peng, and J. Qiu, “Model-centric computation abstractions in machine learning applications,” in Proceedings of
the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016

Harp Solution to Big Data Problems

/ Distributed Memory \
Computation Models
Model-Centric Synchronization Paradigm push & pull
/ ™~ allgather
Computation Models
- |
N ' ! Communication Operations
T BT 1 AN /
Locking Rotation
x 4*\ / Shared Memory \
k uce Asynchronous g Schedulers A
Dynamic Harp-DAAL
Scheduler High Performance
Static Library
& Scheduler /

Example: K-means Clustering

-

o

The Allreduce Computation Model

| Model
== E /

\

When the model size is small

When the model size is large but can still be held
in each machine’s memory

When the model size
cannot be held in each
machine’s memory

broadcast

allreduce

ox=m =3
° Process 0 I Process 1 Process 2 I Process 3

reduce

Process 0
broadcast

=0 0 2
= K

reduce

Process 0

Local Tables

allgather

Partition 0 Partition 0 Partition 0 Partition 0
Partition 1 Partition 1 Partition 1 Partition 1

Global Table

Partition 0 Partition 2 Partition 3

Global Table

Partition 0 Partition 1 Partition 2 Partition 3
Process 0 Process 1 Process 2 Process 3

Process 0 Process 1 Process 2 Process 3

Local Tables

rotate

Global Table

Partition 0 Partition 1 Partition 2 Partition 3

Process 0 Process 1 Process 2 Process 3

Partition 0 Partition 1 Partition 2 Partition 3

Outline

Q Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

@ Optimization Methodologies

@ Results (configuration, benchmark)
Code Optimization Highlights
@ Conclusions and Future Work

Hardware specifications

Table I SPECIFICATION OF XEON PHI 7250 KNL

Cores Memory Node Spec Misc Spec
Cores 68 DDR4 190 GB Network Omni-path Instruction Set 64 bit
Base Freq 1.4GHz MCDRAM 16 GB Peak Port Band 100 Gbps IS Extension AVXS512
L1 Cache 2 MB DDR4-Band 90 Gbps Socket | Max Threads 271
L2 Cache 34 MB MCDRAM-Band 400 Gbps Disk 1 TB VPUs 136

Table I Specification of Haswell Xeon E5 2699 v3
Cores Memory Node Spec Misc Spec
Cores 36 DDR4 130 GB Network InfiniBand Instruction Set 64 bit
Base Freq 2.3GHz HBM none Peak Port Band 56 Gbps IS Extension AVX2
L1/L2 Cache 32/256 KB DDR4-Band 90 Gbps Socket 2 Max Threads 72
L3 Cache 45 MB HBM-Band none Disk 8 TB VPUs 168

All scalability tests run on the above Haswell (128 node) and KNL (64 node) clusters.

Harp-SAhad SubGraph Mining

VT and IU collaborative work
Relational sub-graph isomorphism problem: find sub-graphs in G which are isomorphic to the given template T.

SAhad is a challenging graph application that is both data intensive and communication intensive.
Harp-SAhad is an implementation for sub- graph counting probler_lr_1 based on SAHAD algorithm and Harp

framework.

No. Of Nodes No. Of Edges Size
Network (in million) (in million) (MB)
Web- 0.9 43 65
google
Miami 2.1 512 740
Nyc 18 480 7856

Table IVNetworks of Graph Applications

000 00000
uU3s-1 uUs-1
i) @ @ ¢ ©
0o o0 o o o)
(&) ® C
Us-2 Us-3 U7-1

Figure Sub-graph Templates

[9] Zhao Z, Wang G, Butt A, Khan M, Kumar VS Anil, Marathe M. SAHad: Subgraph analysis in massive networks using hadoop. Shanghai, China:
IEEE Computer Society; 2012:390-401. Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

Speedup

16

Harp-SAHad Performance Results

VT and IU collaborative work

Execution time break-down

Speedup on nyc datasest

1]
0
°
o
€
Y
Z o
o
2
5
-
P -
-
o
[4
1 2) 8 16 0 5 10 15 20 25 30 35 40
Number of Nodes Time (mins)
=u3-l ==®==u5-1 ——=u7-1 readgraph " color graph Mcomputel Mrotatel Mcompute2 Mrotate2 MWallreduce Mother

= & = y3-1-estimate™ ® = y5-1-estimate= ® = y7-1-estimate

Figure Speedup on nyc dataset Figure Running time break-down on u3-1 tempalte.

45

Intel Parallel Computing Center

at Indiana University

LA

Test Plan and Datasets

Table Il DATASETS USED IN K-MEANS, MF-SGD, AND ALS

Dataset ~ Kmeans-Single Kmeans-Multi Movielens Netflix Yahoomusic Enwiki Hugewiki
#Training 5000000 20000000 9301274 99072112 252800275 609700674 3074875354
#Test none none 698780 1408395 4003960 12437156 365998592
#centroid 10000 100000 none none none none none
Dim 100 100 40 40 100 100 1000
A none none 0.05 0.05 1 0.01 0.01

¥ none none 0.003 0.002 0.0001 0.001 0.004

Intel Parallel Computing Center

at Indiana University "

Harp-DAAL Applications

Harp-DAAL-SGD Harp-DAAL-ALS

nxk kxm
. ek EEE=zRD

X
nxm

5 B -

4 5 3 4

e 08 D Ddd
e 08 e

 Clustering * Matrix Factorization * Matrix Factorization
* Vectorized computation * Huge model data * Huge model data
« Small model data * Random Memory Access °* Regular Memory Access
 Regular Memory Access * Easy toscale up * Easy to parallelize
* Hard to parallelize * Hard to scale up

[10] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert Henschel, Craig Stewart, Zhang Zhang, Emily Mccallum, Zahniser Tom, Omer Jon, Judy Qiu,
Benchmarking Harp-DAAL: High Performance Hadoop on KNL Clusters, in the Proceedings of the International Conference on Cloud Computing (CLOUD 2017), June 25-30, 2017.

Computation models for K-means

Harp-DAAL-Kmeans L: procgdure - o
2 Given (z*,z°,...,2™), Vi,x' € R"
. Inter-node: Allreduce, Easy to implement, 3 Initialize centroids randomly: g1, pio, ..., ur € R™
efficient when model data is not large 4 Repgat until convergence
5: Vi, ¢ = argmin;||z" — p;|)?
— . o >y 1{ci:j}:13i
° Process 0 @@ 0 \V/j, Hj = >ty Y=y}
7 End Repeat
8: end procedure

into matrix-matrix multiplication,
higher computation intensity (BLAS-3)

0 1 EI — .
* Intra-node: Shared Memory, matrix- n X —

matrix operations, xGemm: aggregate

vector-vector distance computation

C' < aop(A)op(B) + pC

Computation models for MF-SGD

* Inter-node: Rotation

* Intra-node: Asynchronous

9 Iteration Control

o

Worker 0

o Rotate Model

Worker 2

LI WL

Cached Training
Data D

Local Compute

Rotation: Efficent when the mode data
Is large, good scalability

Cached Training
Data D4

Cached Training
Data Dz

\\://

\i/

f Load & Initialize

procedure
R e R™*" P c R¥X™ and Q € RFX”
while true do
select randomly a point 7;; from R
Cij = Tij = DP; 4;
pi < pi +7(€ijq5 — Appi
qj < qj +(€ijpi — AQyj
if P, () converged then
Exit While loop

end if
end while
end procedure
o © © o © o O
\\\ \MOd\eI W\(Iocal)‘_ __—O O O O O
@) : = _*:.f ------ - Model ;—i—(;o_t;t_et;)_ _O O
S . O
F T LA
© o =i o
TR AT e
o o P B P i 0
- —r’:———~—/:;_’_’_’_/ ______ / O
@) A) /’// @) O O
RS o ©
P @)
© ¥ o © ©
O O O Each training point will update
O One row ofI r:lr;(;d:ls)\f\rl1 :;rci sgfsr\?vgyof model H

Asynchronous: Random access to model data
Good for thread-level workload balance.

Computation Models for ALS

* Inter-node: Allreduce

0CD £3 G3 &3

Q Process 0 Process 1 Process 2 . Process 3

Intra-node: Shared Memory, Matrix operations

xSyrk: symmetric rank-k update

O« aAAT 1 BC
A arzl + A

procedure
Load R, RT
Initialize X, Y
repeat
for:=1,2,...,ndo
Vi =Y, R (i, I;)
end for
for j=1,2,...,m do
Uj = XIjR(Ij7j)
Bj = X[jX}I; +)\nij

until convergence
end procedure

Time Per Iteration (s)

600

SN
o
o

('
S
=]

300

200

100

Performance on KNL Single Node

‘ - 60 ‘ ‘ 7
InHarp-DAAL ItHarp-DAAL 2,500 | |InHarp-DAAL
0o Spark 1 50l f8 Nomad 1 B8 Spark
= = 2,000/ 1
- | &
: 5 1,500 | |
| = 30 1 A
g d‘? 1,000 | .
| % 201 18.6 1 ’
£ £
= 1ol | E 500| |
§ . 157
266} i oL 0201 L1214 ol 09163 7.2 I
PEM-C10K-D100 MovieLens Netflix Yahoomusic Enwiki MovieLens Netflix Yahoomusic
Harp-DAAL-Kmeans vs. Spark-Kmeans: Harp-DAAL-SGD vs. NOMAD-SGD Harp-DAAL-ALS vs. Spark-ALS
~ 20x speedup 1) Small dataset (MovieLens, 20x to 50x speedup
1) Harp-DAAL-Kmeans invokes MKL matrix Netflix): comparable perf 1) Harp-DAAL-ALS invokes MKL at
operation kernels at low level 2) Large dataset (Yahoomusic, low level
2) Matrix data stored in contiguous Enwiki): 1.1x to 2.5x, depending 2) Regular memory access, data
memory space, leading to regular access on data distribution of matrices locality in matrix operations

pattern and data locality

Harp-DAAL has much better single node performance than Java solution (Spark-Kmeans, Spark-ALS) and
comparable performance to state-of-arts C++ solution (NOMAD-SGD)

Time Per Iteration (s)

80| R
2.500 -o- Harp-DAAL-Kmeans | ,- 30 -o- Harp-DAAL-SGD /?g} I35 1,400 |- =46
’ A Spark-Kmeans ‘) — A NOMAD-SGD —
2T & & 1,200 15
2,000 A P 130 g
3 -2 1,000]
: 5 14
1,500 1 = g 1259 8 -]
12 i = § i z 800 15
n g w £ 600]
1,000 | ~ 120 - 12
115 £ 20) b £ 400)
500 1 3 115 3 200 11
0 10 0 < = 10 0
10 20 30
Number of Nodes Number of Nodes Number of Nodes
‘EE Harp-DAAL-Kmeans 00 Spark-Kmeans ‘ﬂﬂ Harp-DAAL-SGD [0 NOMAD-SGD ‘EE Harp-DAAL-ALS 08 Spark-ALS
Harp-DAAL-Kmeans: Harp-DAAL-SGD: Harp-DAAL-ALS:
15x to 20x speedup over Spark-Kmeans 2x to 2.5x speedup over NOMAD-SGD 25x to 40x speedup over Spark-ALS
1) Fast single node performance 1) Comparable or fast single node 1) Fast single node performance
2) Near-linear strong scalability from 10 to 20 performance 2) ALS algorithm is not scalable (high
nodes 2) Collective communication operations in communication ratio)
3) After 20 nodes, insufficient computation Harp-DAAL outperform point-to-point
workload leads to some loss of scalability MPI communication in NOMAD

Performance on KNL Multi-Nodes

Harp-DAAL combines the benefits from local computation (DAAL kernels) and communication operations
(Harp), which is much better than Spark solution and comparable to MPI solution.

Breakdown of Intra-node Performance

|
4’.?;8_2 ItHarp-DAAL-Kmeans 300 291 InHarp-DAAL-SGD | | 3,500 3?.3.—.41 IiHarp-DAAL-ALS | |
3 - i E - i1 il -
~ 4,000 | Bz Spark-Kmeans | % om0l 8 NOMAD-SGD | —~ 3,000 Spark-ALS |
5 E 5 2,500 .
8000 - I -
g & g g 2,000 1,766 *
= 2,027 = 150 1 = 1635
g 2,000 |- ST y E 10 Oq? 1,500 | 7 1,389 1,380 1,371
SH I 5 33 o g
o) S 1,259 o 100 . Q B
E i = E R B e |
= 1,000 3 i il SR 55 =
HEN 396 307 I it 20 | 500\ S N S N |
0 Lo 84l 44)5 42 36 0] 0 80044 450 4200 445 431
1 1 — \ — — 1 1 1 1 1 1 1 — — — — \
8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256
Number of Threads Number of Threads Number of Threads

Thread scalability:
* Harp-DAAL best threads number: 64 (K-means, ALS) and 128 (MF-SGD), more than 128 threads no
performance gain
O communications between cores intensify
o cache capacity per thread also drops significantly
* Spark best threads number 256, because Spark could not fully Utilize AVX-512 VPUs
* NOMAD-SGD could use AVX VPU, thus has 64 its best thread as that of Harp-DAAL-SGD

Breakdown of Intra-node Performance

~~ B !]
n B N
~ f I |
& 10%
E - — .
= i |
21 -
g].O B .
B P— :
© i |
Q 1 - P— —
5 10} E
Q - N
é i i
100 S 0 o o S 1S
’\dﬂea ¢ me? daa\,e% ad,e% ’daa\,a %2
22" r% rP” po® P s
" a‘f?’d sp? no na

[l Retiring L1 L1 Bound H L2 Bound M Memory Bound B Misc

Spark-Kmeans and Spark-ALS dominated by Computation (retiring), no AVX-512 to reduce
retiring Instructions, Harp-DAAL improves L1 cache bandwidth utilization due to AVX-512

Intel Parallel Computing Center

at Indiana Unlver5|ty

Code Optimization nghllghts

Data Conversion

DAAL Java DAAL Native

Harp Data

=)

Kernel

e Table<Obj> * NumericTable * MicroTable
* Data on JVM Heap * Dataon JVM heap * Data on Native Memory
* Data on Native Memory A single DirectByteBuffer

has a size limite of 2 GB

Two ways to store data using DAAL Java API

* Keep Data on JVM heap * Keep Data on Native Memory
O no contiguous memory access requirement O contiguous memory access requirement
o Small size DirectByteBuffer and parallel copy o Large size DirectByteBuffer and bulk copy

(OpenMP)

Data Structures of Harp & Intel’s DAAL

r

Table

~N

Used in collective com-
munication operations

>

Partition 1

Avd

>

Partition 2

Partition 3

L First partition in Table

]
J

Second partition in Table
-

v

L Third partition in Table J

(7 1) (~Z 1) (~ 0 (~ 7 (7 7 (N 0 (~ 0 (7 1) (~ 0
ID ID ID ID ID ID ID ID ID
Array Array Array Array Array Array Array Array Array
Data Data Data Data Data Data Data Data Data
Mem Mem Mem Mem Mem Mem Mem Mem Mem
JVM JVM JVM JVM JVM JVM JVM JVM JVM
- J - J - J - J - J - J - J - J - J

Harp Table consists of Partitions
HomogenNumericTable W (SOANumericTable

Data Storage at Native side

J

Data Storage at Java side

~— 1

Member
Functions

S~

getRow
setRow

getColumn
setColumn

-

others

/

Native Contiguous
Memory Space

Member

Functions

jvm pointer

Accessor

mutator

-

AN

AN

Data Data Data
Data Data Data
Data Data Data
Data Data Data
Data Data Data
Data Data Data

v

JVM heap Mem
Non-contiguous

others

DAAL Table has different types of Data storage

Table<Obj> in Harp has a three-level data
Hierarchy

* Table: consists of partitions

e Partition: partition id, container

e Data container: wrap up Java objs,
primitive arrays

Data in different partitions, non-contiguous in
memory

NumericTable in DAAL stores data either in
Contiguous memory space (native side)
or non-contiguous arrays (Java heap side)

Data in contiguous memory space favors matrix
operations with regular memory accesses.

Two Types of Data Conversion

Data in Harp Table
JVM memory

(Data | [Data) [Data) [Data | [Data |
Data Data Data Data Data
| Data | | Data | (Data | (Data] | Data |

N\ |

Java Threads Copy in Parallel

y L L L <

Bulk Copy Java NIO

Java Primitive
Array

DirectByteBuffer

Bulk Copy JNI Method

Contiguous
C++ side Na-
tive Memory

} Daal Table

JavaBulkCopy:

Dataflow: Harp Table<Obj> -----

Java primitive array ---- DiretByteBuffer ----
NumericTable (DAAL)

Pros: Simplicity in implementation

Cons: high demand of DirectByteBuffer size

Data in Harp Table

JVM memory

(Data | [Data) [Data | [Data) [Data)
Data Data Data Data Data
L Data)L Data)L Data L Data)L Data)
1 1 1 1 1
1 1 1 1 1
hv.d hv.d hvd hv.d hv.d
Data Data Data Data Data
Data Data Data Data Data
Data Data Data Data Data

Data Copy by Omp Threads

i o o

=

Omp Threads Copy via JVM)

e

NativeDiscreteCopy:
Dataflow: Harp Table<Obj> ----

DAAL Java APl (SOANumericTable)

} Daal Table

Pass by Reference

DAAL Java API
SOANumericTable

% DirectByteBuffer

Contiguous Native
Memory C++ side

---- DirectByteBuffer ---- DAAL native memory

Pros: Efficiency in parallel data copy

Cons: Hard to implement at low-level kernels

Outline

@ Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

@ Optimization Methodologies

@ Results (configuration, benchmark)
Code Optimization Highlights
@ Conclusions and Future Work

Conclusions

|dentification of Apache Big Data Software Stack and integration with High
Performance Computing Stack to give HPC-ABDS

©)

ABDS (Many Big Data applications/algorithms need HPC for performance)
HPC (needs software model productivity/sustainability)

Identification of 4 computation models for machine learning applications
Locking, Rotation, Allreduce, Asynchroneous
clusters

HPC-ABDS: High performance Hadoop (with Harp-DAAL) on KNL and Haswell

Twister¥ 75t

ure=

Hadoop/Harp-DAAL: Prototype and Production Code

Open Source Available at https://dsc-spidal.github.io/harp

[DSC-SPIDAL / harp @Unwatch~ 13 HStar 1 YFork 6 Source codes became available on
Github in February, 2017.

<> Code Issues 1 Pull requests 2 Projects 0 Wiki Pulse Graphs Settings
e Harp-DAAL follows the same
Branch: master~ harp / harp-daal-app /src /edu/iu/ Create new file Upload files Find file = History standard of DAAL’s original codes
H Chen add codes for harp-daal-als Latest commit 158f8e9 5 days ago . . .
* Six Applications
= Harp-DAAL Kmeans
B benchmark re-structure the codes 2 months ago
= Harp-DAAL MF-SGD
i daal add daal_kmeans codes 2 months ago
] - -
B daal_als add codes for harp-daal-als 5 days ago Harp DAAL ME-ALS
8 daal_kmeans/regroupallgather add daal_kmeans codes 2 months ago - Harp'DAAL SVD
8 daal_sgd re-structure the codes 2 months ago u Harp-DAAL PCA
8 dymoro re-structure the codes 2 months ago] Harp_DAAL Neural Networks
i fileformat re-structure the codes 2 months ago
B kmeans re-structure the codes 2 months ago
i train re-structure the codes 2 months ago

B wdamds re-structure the codes 2 months ago

Scalable Algorithms implemented using Harp

Algorithm Categor Applications Features Computation Collective
g gory PP Model Communication
allreduce,
regroup+allgather,
. e . AllIReduce groupratie
K-means Clustering Most scientific domain Vectors broadcast+reduce,
push+pull
Rotation rotate
. . .. regroup,
Multi-class Logistic e N . .
) & Classification Most scientific domain Vectors, words Rotation rotate,
Regression
allgather
Random Forests Classification Most scientific domain Vectors AllReduce allreduce
Support Vector Classification, o .
PP . _ Most scientific domain Vectors AllReduce allgather
Machine Regression
e as Image processing,
Neural Networks Classification) ge P . g Vectors AllIReduce allreduce
voice recognition
Latent Dirichlet Structure learning Text mining, Bioinformatics, Sparse vectors; Bag of Rotation rotate,
Allocation (Latent topic model) Image Processing words allreduce
, L. Structure learnin Irregular sparse Matrix; .
Matrix Factorization i .g Recommender system g P Rotation rotate
(Matrix completion) Dense model vectors
A . Visualization and nonlinear
Multi-Dimensional e .
scalin Dimension reduction identification of principal Vectors AllReduce allgarther, allreduce
& components
Social network analysis,
. . data mining :
Subgraph Minin Graph g . Graph, subgraph Rotation rotate
grap & P fraud detection, chemical P grap
informatics, bioinformatics
Force-Directed Graph Social media communit
P Graph y Graph AllReduce allgarther, allreduce

Drawing

detection and visualization

OOOOOOOOOOOOOOOOOO

Future Work

Harp-DAAL machine learning and data analysis applications with optimal

performance.

Online Clustering with Harp or Storm integrates parallel and dataflow

computing models

Start HPC Cloud incubator project in Apache to bring HPC-ABDS to community

Six Computation Paradigms for Data Analytics

(1) mMap Only
Pleasingly Parallel

(2) Classic
Map-Reduce

Input

vy

v

map

]

]

o

reduce

o

(3) Iterative Map Reduce or
Map-Collective

Iterations

Input

v

o o

reduce

(4) Point to Point or
Map-Communication

(5) Map-Streaming

brokers

Evénts

(6) Shared memory
Map-Communication

Shared Memory

M%Cfmumca ion

00 -00

_ BLAST Analysis - High Energy Physics - Expectation Maximization |- Classic MPI - Streaming images from [_ Difficult to parallelize
_ Local Machine (HEP) Histogrames, _ Clustering - PDE Solvers and Synchrotron sources, _ asynchronous parallel
Learning - Web search - Linear Algebra Particle Dynamics Telescopes, Graph
- Pleasingly Parallel - Recommender Engines - PageRank - Graph Internet of Things
= — These 3 Paradigms are our FOCUS =)

Acknowledgements

We gratefully acknowledge support from NSF, IU and Intel Parallel Computing Center (IPCC) Grant.

Langshi Cheng Bingjing Zhang Bo Peng Kannan Govindarajan

Supun Kamburugamuve Yiming Zhou Ethan Li Mihai Avram Vibhatha Abeykoon

Intelligent Systems Engineering
School of Informatics and Computing
Indiana University

intel) @; 1)

