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Motivation for	faster	and	bigger	problems

• Machine	Learning	(ML)	Needs	high	performance	
– Big	data and	Big	model
– Iterative	algorithms are	fundamental	in	learning	a	non-trivial	model
– Model	training	and	Hyper-parameter	tuning steps	run	the	iterative	
algorithms	many	times

• Architecture	for	Big	Data	analytics
– to	understand	the	algorithms	through	a	Model-Centric view
– to	focus	on	the	computation	and	communication	patterns	for	optimizations
– Trade-offs	of	efficiency	and	productivity

• linear	speedup	with	an	increasing	number	of	processors
• easier	to	be	parallelized	on	multicore	or	manycore computers	



High	Performance	– Apache	Big	Data	Stack

Input

Output

map

Map-Only

Input
map

reduce

MapReduce

Input
map

reduce

iterations

Iterative	
MapReduce

Pij

MPI	and	Point-to-
Point

Sequential
Input

Output

map

MapReduce
Classic	Parallel	Runtimes	

(MPI)

Data	Centered,	QoS Efficient	and	
Proven	techniques

Expand	the	Applicability	of	MapReduce	to	more	classes of	Applications



The	Concept	of	Harp	Plug-in
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Harp	is	an	open-source	project	developed	at	Indiana	University	[6],	it	has:
• MPI-like	collective	communication	operations	that	are	highly	optimized	for	big	data	problems.
• Harp	has	efficient	and	innovative	computation	models	for	different	machine	learning	problems.	

[6]	Harp	project.	Available	at	https://dsc-spidal.github.io/harp



DAAL	is	an	open-source	project	that	provides:

• Algorithms	Kernels	to	Users
• Batch	Mode	(Single	Node)
• Distributed	Mode	(multi	nodes)
• Streaming	Mode	(single	node)

• Data	Management	&	APIs	to	Developers
• Data	structure,	e.g.,	Table,	Map,	etc.
• HPC	Kernels	and	Tools:	MKL,	TBB,	etc.
• Hardware	Support:	Compiler



Harp-DAAL	enable	faster	Machine	Learning	Algorithms
with	Hadoop	Clusters	on	Multi-core	and	Many-core	architectures	

• Bridge	the	gap	between	HPC	
hardware	and	Big	data/Machine	
learning	Software

• Support	Iterative	Computation,		
Collective	Communication,		Intel	
DAAL	and	native	kernels

• Portable	to		new	many-core	
architectures	like	Xeon	Phi	and	
run	on	Haswell	and	KNL	clusters
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Comparison	of	Reductions:
• Separate	Map	and	Reduce	Tasks
• Switching	tasks	is	expensive
• MPI	only	has	one	sets	of	tasks	for	
map	and	reduce

• MPI	achieves	AllReduce by	
interleaving	multiple	binary	trees

• MPI	gets	efficiency	by	using	
shared	memory	intra-node	(e.g.	
multi-/manycore,	GPU)

General	Reduction	in	Hadoop,	Spark,	Flink

Map	Tasks

Reduce	Tasks

Output	partitioned	
with	Key

Follow	by	Broadcast	for	
AllReduce which	is	a	common	
approach	to	support	iterative	
algorithms

For	example,	paper	[7]	10	
learning	algorithms	can	be	
written	in	a	certain	“summation	
form,”	which	allows	them	to	be	
easily	parallelized	on	multicore	
computers.

[7]	Cheng-Tao	Chu,	Sang	Kyun Kim,	Yi-An	Lin,	YuanYuan Yu,	Gary	Bradski,	Andrew	Y.	Ng	and	Kunle Olukotun,	Map-Reduce	for	Machine	Learning	on	Multicore,	
in	NIPS	19	2007.



HPC	Runtime	versus	ABDS	distributed	Computing	Model	on	Data	Analytics

Hadoop	writes	to	disk	and	is	slowest;	Spark	and	Flink	spawn	many	processes	and	do	not	
support	allreduce directly;	MPI	does	in-place	combined	reduce/broadcast



Illustration	of	In-Place	AllReduce in	MPI



Why	Collective	Communications	for	Big	Data	Processing?

• Collective	Communication	and	Data	Abstractions
o Optimization	of	global	model	synchronization

o ML	algorithms:	convergence	vs.	consistency
o Model	updates	can	be	out	of	order	

o Hierarchical	data	abstractions	and	operations
• Map-Collective	Programming	Model

o Extended	from	MapReduce	model	to	support	collective	communications
o BSP	parallelism	at	Inter-node	vs.	Intra-node	levels	

• Harp	Implementation
o A	plug-in	to	Hadoop



Harp	APIs

Scheduler

• DynamicScheduler
• StaticScheduler

Collective

• MPI	collective	communication
• broadcast
• reduce
• allgather
• allreduce

• MapReduce	“shuffle-reduce”
• regroup	with	combine

• Graph	&	ML	operations
• “push”	&	“pull”	model	parameters
• rotate	global	model	parameters	
between	workers

Event	Driven

• getEvent
• waitEvent
• sendEvent



Collective	Communication	Operations



Taxonomy	for	Machine	Learning	Algorithms

Optimization	and	related	issues
• Task	level	only	can't	capture	the	traits	of		computation	
• Model	is	the	key	for	iterative	algorithms. The structure (e.g.	vectors,	matrix,	tree,	
matrices) and	size	are	critical	for	performance

• Solver	has	specific	computation	and	communication	pattern



Parallel	Machine	Learning	Application	
Implementation	Guidelines

Application
• Latent	Dirichlet Allocation,	Matrix	Factorization,		
Linear	Regression…

Algorithm
• Expectation-Maximization,	Gradient	Optimization,	
Markov	Chain	Monte	Carlo…

Computation	Model
• Locking,	Rotation,	Allreduce,	Asynchronous

System	Optimization
•Collective	Communication	Operations
• Load	Balancing	on	Computation	and	Communication
•Per-Thread	Implementation



Computation	Models

[8]		B.	Zhang,	B.	Peng,	and	J.	Qiu,	“Model-centric	computation	abstractions	in	machine	learning	applications,”		in	Proceedings	of	
the	3rd	ACM	SIGMOD	Workshop	on	Algorithms	and	Systems	for	MapReduce	and	Beyond,	BeyondMR@SIGMOD 2016



Computation	Models
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Example:	K-means	Clustering
The	Allreduce Computation	Model

Model

Worker Worker Worker

broadcast

reduce
allreduce

rotate

push	&	pull

allgather

regroup

When	the	model	size	is	small When	the	model	size	is	large	but	can	still	be	held	
in	each	machine’s	memory

When	the	model	size	
cannot	be	held	in	each	
machine’s	memory
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Hardware	specifications

All	scalability	tests	run	on	the	above	Haswell	(128	node)	and	KNL	(64	node)	clusters.



Harp-SAhad SubGraph Mining
VT	and	IU	collaborative	work

Relational	sub-graph	isomorphism	problem:	find	sub-graphs	in	G	which	are	isomorphic	to	the	given	template	T.
SAhad is	a	challenging	graph	application	that	is	both	data	intensive	and	communication	intensive.
Harp-SAhad is	an	implementation	for	sub-graph	counting	problem	based	on	SAHAD	algorithm	and	Harp	
framework.	
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[9]	Zhao	Z,	Wang	G,	Butt	A,	Khan	M,	Kumar	VS	Anil,	Marathe M.	SAHad:	Subgraph	analysis	in	massive	networks	using	hadoop.	Shanghai,	China:	
IEEE	Computer	Society;	2012:390–401.	Proceedings	of	the	2012	IEEE	26th	International	Parallel	and	Distributed	Processing	Symposium.



Harp-SAHad Performance	Results
VT	and	IU	collaborative	work



Test	Plan	and	Datasets



Harp-DAAL	Applications

• Clustering
• Vectorized computation
• Small	model	data
• Regular	Memory	Access

• Matrix	Factorization	
• Huge	model	data
• Random	Memory	Access
• Easy	to	scale	up
• Hard	to	parallelize

• Matrix	Factorization	
• Huge	model	data
• Regular	Memory	Access
• Easy	to	parallelize
• Hard	to	scale	up

Harp-DAAL-Kmeans Harp-DAAL-SGD Harp-DAAL-ALS

[10]	Langshi Chen,	Bo	Peng,	Bingjing Zhang,	Tony	Liu,	Yiming Zou,	Lei	Jiang,	Robert	Henschel,	Craig	Stewart,	Zhang	Zhang,	Emily	Mccallum,	Zahniser Tom,	Omer	Jon,	Judy	Qiu,	
Benchmarking	Harp-DAAL:	High	Performance	Hadoop	on	KNL	Clusters,	in	the	Proceedings	of	the	International	Conference	on	Cloud	Computing	(CLOUD	2017),	June	25-30,	2017.



Computation	models	for	K-means

Harp-DAAL-Kmeans

• Inter-node:	Allreduce,	Easy	to	implement,	
efficient	when	model	data	is	not	large

1: procedure

2: Given (x

1
, x

2
, . . . , x

m

), 8i, xi 2 Rn

3: Initialize centroids randomly: µ1, µ2, . . . , µk

2 Rn

4: Repeat until convergence

5: 8i, ci := argmin

j

kxi � µ

j

k2

6: 8j, µ
j

:=

Pm
i=1 1{ci=j}xi

Pm
i=1 1{ci=j}

7: End Repeat

8: end procedure

• Intra-node:	Shared	Memory,	matrix-
matrix	operations,	xGemm:	aggregate	
vector-vector	distance	computation	
into	matrix-matrix	multiplication,	
higher	computation	intensity	(BLAS-3)



Computation	models	for	MF-SGD

• Inter-node:	Rotation
• Intra-node:	Asynchronous

Model W (local)

Model H (rotated)

Each training point will update 
One row of model W and one row of model H

In an asynchronous wayRotation:	Efficent when	the	mode	data
Is	large,	good	scalability	

Asynchronous:	Random	access	to	model	data	
Good	for	thread-level	workload	balance.

procedure

R 2 Rm⇥n
, P 2 Rk⇥m

, and Q 2 Rk⇥n

while true do

select randomly a point rij from R
eij = rij � pTi qj
pi  pi + �(eijqj � �P pi
qj  qj + �(eijpi � �Qqj
if P,Q converged then

Exit While loop

end if

end while

end procedure



Computation	Models	for	ALS

• Inter-node:	Allreduce
procedure

Load R,R

T

Initialize X, Y

repeat

for i = 1, 2, . . . , n do
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end for

until convergence

end procedure

Intra-node:	Shared	Memory,	Matrix	operations
xSyrk:	symmetric	rank-k	update



Performance	on	KNL	Single	Node
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Harp-DAAL-Kmeans vs.	Spark-Kmeans:

~	20x	speedup
1) Harp-DAAL-Kmeans invokes	MKL	matrix	

operation	kernels	at	low	level
2) Matrix	data	stored	in	contiguous	

memory	space,	leading	to	regular	access	
pattern	and	data	locality

Harp-DAAL-SGD	vs.	NOMAD-SGD

1) Small	dataset	(MovieLens,	
Netflix):	comparable	perf

2) Large	dataset (Yahoomusic,	
Enwiki):	1.1x	to	2.5x,	depending	
on	data	distribution	of	matrices

Harp-DAAL-ALS	vs.	Spark-ALS

20x	to	50x	speedup
1) Harp-DAAL-ALS	invokes	MKL	at	

low	level
2) Regular	memory	access,	data	

locality	in	matrix	operations

Harp-DAAL	has	much	better	single	node	performance	than	Java	solution	(Spark-Kmeans,	Spark-ALS)	and	
comparable	performance	to	state-of-arts	C++	solution	(NOMAD-SGD)



Performance	on	KNL	Multi-Nodes
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Harp-DAAL-Kmeans:
15x	to	20x	speedup	over	Spark-Kmeans
1) Fast	single	node	performance
2) Near-linear	strong	scalability	from	10	to	20	

nodes
3) After	20	nodes,	insufficient	computation	

workload	leads	to	some	loss	of	scalability

Harp-DAAL-SGD:
2x	to	2.5x	speedup	over	NOMAD-SGD
1) Comparable	or	fast	single	node	

performance
2) Collective	communication	operations	in	

Harp-DAAL	outperform	point-to-point	
MPI	communication	in	NOMAD

Harp-DAAL-ALS:
25x	to	40x speedup	over	Spark-ALS
1) Fast	single	node	performance
2) ALS	algorithm	is	not	scalable	(high	

communication	ratio)

Harp-DAAL	combines	the	benefits	from	local	computation	(DAAL	kernels)	and	communication	operations	
(Harp),	which	is	much	better	than	Spark	solution	and	comparable	to	MPI	solution.	



Breakdown	of	Intra-node	Performance

Thread	scalability:
• Harp-DAAL	best	threads	number:	64	(K-means,	ALS)	and	128	(MF-SGD),	more	than	128	threads	no	
performance	gain
o communications	between	cores	intensify	
o cache	capacity	per	thread	also	drops	significantly	
• Spark	best	threads	number	256,	because	Spark	could	not	fully	Utilize	AVX-512	VPUs
• NOMAD-SGD	could	use	AVX	VPU,	thus	has	64	its	best	thread	as	that	of	Harp-DAAL-SGD
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Breakdown	of	Intra-node	Performance
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Spark-Kmeans and	Spark-ALS	dominated	by		Computation	(retiring),	no	AVX-512	to	reduce	
retiring		Instructions,	Harp-DAAL	improves	L1	cache	bandwidth	utilization	due	to	AVX-512



Data	Conversion

Harp	Data DAAL	Java	
API

DAAL	Native	
Kernel

• Table<Obj>	
• Data	on	JVM	Heap

• NumericTable
• Data	on	JVM	heap	
• Data	on	Native	Memory

• MicroTable
• Data	on	Native	Memory

Two	ways	to	store	data	using	DAAL	Java	API
• Keep	Data	on	JVM	heap	

o no	contiguous	memory	access	requirement	
o Small	size	DirectByteBuffer and	parallel	copy	

(OpenMP)

A	single	DirectByteBuffer
has	a	size	limite of	2	GB

Code	Optimization	Highlights

• Keep	Data	on	Native	Memory	
o contiguous	memory	access	requirement
o Large	size	DirectByteBuffer and	bulk	copy	



Table

Used in collective com-

munication operations

Partition 2

Second partition in Table
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Data Storage at Native side

Member
Functions
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getColumn
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Memory Space

SOANumericTable
Data Storage at Java side

Data
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Data
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Functions
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others

JVM
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Data	Structures	of	Harp	&	Intel’s	DAAL

Harp	Table	consists	of	Partitions

DAAL	Table	has	different	types	of	Data	storage

Table<Obj>	in	Harp	has	a	three-level	data	
Hierarchy

• Table:	consists	of	partitions
• Partition:	partition	id,	container
• Data	container:	wrap	up	Java	objs,	

primitive	arrays

Data	in	different	partitions,	non-contiguous	in	
memory

NumericTable in	DAAL	stores	data	either	in
Contiguous	memory	space	(native	side)	
or	non-contiguous	arrays	(Java	heap	side)

Data	in	contiguous	memory	space	favors	matrix
operations	with	regular	memory	accesses.	



Data in Harp Table
JVM memory

Data
Data
Data

Data
Data
Data

Data
Data
Data

Data
Data
Data

Data
Data
Data

Java Primitive
Array

Java Threads Copy in Parallel

DirectByteBuffer

Java NIOBulk Copy

Daal Table
Contiguous
C++ side Na-
tive Memory

JNI MethodBulk Copy

Data in Harp Table
JVM memory
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Data
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Data
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DAAL Java API
SOANumericTable

Pass by Reference

BufferBufferBuffer Buffer Buffer DirectByteBuffer

Data Copy by Omp Threads

Omp Threads Copy via JVM

Daal Table
Contiguous Native
Memory C++ side

Two	Types	of	Data	Conversion

JavaBulkCopy:	
Dataflow:	Harp	Table<Obj>	-----
Java	primitive	array	---- DiretByteBuffer ----
NumericTable (DAAL)
Pros:	Simplicity	in	implementation
Cons:	high	demand	of	DirectByteBuffer size

NativeDiscreteCopy:
Dataflow:	Harp	Table<Obj>	----
DAAL	Java	API	(SOANumericTable)
---- DirectByteBuffer ---- DAAL	native	memory
Pros:	Efficiency	in	parallel	data	copy	
Cons:	Hard	to	implement	at	low-level	kernels
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Conclusions

• Identification	of	Apache	Big	Data	Software	Stack	and	integration	with	High	
Performance	Computing	Stack to	give	HPC-ABDS
o ABDS	(Many	Big	Data	applications/algorithms	need	HPC	for	performance)

o HPC	(needs	software	model	productivity/sustainability)

• Identification	of	4	computation	models	for	machine	learning	applications
o Locking,	Rotation,	Allreduce,	Asynchroneous

• HPC-ABDS:	High	performance	Hadoop (with	Harp-DAAL)	on	KNL	and	Haswell	
clusters



Hadoop/Harp-DAAL:	Prototype	and	Production	Code

Source	codes	became	available	on	
Github in	February,	2017.

• Harp-DAAL	follows	the	same	
standard	of	DAAL’s	original	codes

• Six	Applications	
§ Harp-DAAL	Kmeans
§ Harp-DAAL	MF-SGD	
§ Harp-DAAL	MF-ALS
§ Harp-DAAL	SVD
§ Harp-DAAL	PCA
§ Harp-DAAL	Neural	Networks

Open	Source	Available	at	https://dsc-spidal.github.io/harp



Algorithm Category Applications Features Computation	
Model

Collective	
Communication

K-means Clustering Most	scientific	domain Vectors AllReduce

allreduce,	
regroup+allgather,	
broadcast+reduce,	
push+pull

Rotation rotate

Multi-class	Logistic	
Regression Classification Most	scientific	domain Vectors,	words Rotation

regroup,
rotate,	
allgather

Random	Forests Classification Most	scientific	domain Vectors AllReduce allreduce
Support	Vector	
Machine

Classification,	
Regression Most	scientific	domain Vectors AllReduce allgather

Neural	Networks Classification Image	processing,	
voice	recognition Vectors AllReduce allreduce

Latent	Dirichlet
Allocation

Structure	learning		
(Latent	topic	model)

Text	mining,	Bioinformatics,	
Image	Processing

Sparse	vectors;	Bag	of	
words Rotation rotate,	

allreduce

Matrix	Factorization Structure	learning	
(Matrix	completion) Recommender	system Irregular	sparse	Matrix;	

Dense	model	vectors Rotation rotate

Multi-Dimensional	
Scaling Dimension	reduction

Visualization	and	nonlinear	
identification	of	principal	
components

Vectors AllReduce allgarther,	allreduce

Subgraph	Mining Graph

Social	network	analysis,	
data	mining,	
fraud	detection,	chemical	
informatics,	bioinformatics

Graph,	subgraph Rotation rotate

Force-Directed	Graph	
Drawing Graph Social	media	community	

detection	and	visualization Graph AllReduce allgarther,	allreduce

Scalable	Algorithms	implemented	using	Harp



Future	Work

• Harp-DAAL	machine learning	and	data	analysis	applications	with	optimal	

performance.		

• Online	Clustering	with	Harp or	Storm integrates	parallel	and	dataflow	

computing	models

• Start	HPC	Cloud	incubator	project	in	Apache	to	bring	HPC-ABDS	to	community



Six	Computation	Paradigms	for	Data	Analytics
(1)	 Map	Only (4)	Point	to	Point	or	

Map-Communication
(3)	 Iterative	 Map	Reduce	or	

Map-Collective
(2)	 Classic	
Map-Reduce

Input

map

reduce

Input

map

reduce

Iterations
Input

Output

map

Local

Graph

(5)	Map-Streaming

maps brokers

Events

(6)	Shared	memory	
Map-Communication

Map		&	Communication

Shared	 Memory

Pleasingly	Parallel

₋ BLAST	Analysis
₋ Local	Machine	
Learning

₋ Pleasingly	Parallel

₋ High	Energy	Physics	
(HEP)	Histograms,

₋ Web	search
₋ Recommender	Engines

₋ Expectation	Maximization
₋ Clustering	
₋ Linear	Algebra
₋ PageRank

₋ Classic	MPI
₋ PDE	Solvers	and	
Particle	Dynamics

₋ Graph

₋ Streaming	images	from	
Synchrotron	sources,	
Telescopes,	
Internet		of	Things

₋ Difficult	to	parallelize		
₋ asynchronous	parallel	
Graph

These	3	Paradigms	are	our	Focus
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