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Motivation
● Data volume generated per day is increasing in a very high rate. 
● Low latency is a must for increasing consumer demand on various services. 
● Existing batch algorithms need to be optimized for online learning. 
● Machine learning algorithms has become very important when formulating 

most of the supervised learning problems with less computing power.  



How to design Streaming Machine Learning 
algorithms?
● Simply need to do train a machine learning algorithm in real-time without 

storing a large batches of data.
● Some algorithms can be trained by just observing a datapoint only once. 

○ Initialization stage: Observe a number of data points (K elements at least if it is a clustering 
problem, depending on the algorithm this must be well-defined).

○ Model Evaluation: Calculate a gradient or model value for the observed elements.
○ Model Synchronization: Synchronize the model value across all the processes when using 

distributed training.
○ Re-do the whole process per element after the initialization stage.

● Some algorithms need an iterative streaming algorithm to ensure the 
accuracy to be in an expected level. 

○ Model evaluation: Here we observe w number of elements by formulating a window in a 
stream and do an iterative computation on it for t iterations. Here t <<< T, T refers to the 
number of iterations required in batch mode to compute the optimum model. 



Convergence of HPC and Big Data

Reference: https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf

https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf


Objective
● Design low-latency training on big data systems and identifying effective 

systems for online training
● Provide API solutions to design streaming applications on both HPC and 

dataflow programming models. 
● Evaluate the importance of HPC frameworks for strengthening the big data 

stack for intensive computations. 



Streaming Machine Learning Algorithms
● Non-Iterative Setting

○ KMeans Clustering

● Iterative Setting
○ Support Vector Machine (Linear Kernel for Binary classification)



Streaming SVM



Streaming KMeans



Discretization of a Stream



Tumbling Windows



Sliding Windows



Workflow of a Streaming ML Algorithm



Streaming Platforms

Iterative Streaming 
Support

         

Dataflow Model

HPC Model

Apache Storm v1.2.8
Apache Flink v1.9.0
Twister2 v0.3.0



Experiment Configuration
● Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10 GHz (250 GB RAM)
● Streaming SVM :Binary Classification on 49K long stream for training and 90K 

sample for model testing.
● Streaming KMeans: Clustering 1000 centroids, 49K long stream for training)
● 8 Physical nodes each with 16 processes (128 parallelism). 
● Use count-based window setting to do a stress test on each big data 

framework used. 



Tumbling Windowing

Streaming SVM

Sliding Windowing

*5,10 refers to sliding length,window length. 
Obtained after experimenting with different configs towards optimum results obtained in batch mode. 



Tumbling Windowing

Streaming KMeans

Sliding Windowing

*5,10 refers to sliding length,window length. 
Obtained after experimenting with different configs towards optimum results obtained in batch mode. 



Conclusions and Future Work
● Windowing APIs are vital for designing iterative streaming applications. 
● High performance computing model can be adopted in Big Data frameworks 

to provide better performance for streaming applications. 
● Experimenting with a larger data stream (minimum of 1 Million of more data 

points per a job)
● Structured data streaming with stream discretization.
● Expanding experiment configurations for testing window config sensitivity on 

algorithm convergence. 
● Scaling for a bigger experiment setting (1024+ cores)
● Extending experiments for more machine learning algorithms.
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