
Streaming Machine
Learning Algorithms with Big

Data Systems
Vibhatha Abeykoon, Supun Kamburugamuve, Kannan Govendrarajan,
Pulasthi Wickramasinghe, Chathura Widanage, Niranda Perera, Ahmet

Uyar, Gurhan Gunduz, Selahattin Akkas and Gregor Von Laszewski

Indiana University Bloomington

Motivation
● Data volume generated per day is increasing in a very high rate.
● Low latency is a must for increasing consumer demand on various services.
● Existing batch algorithms need to be optimized for online learning.
● Machine learning algorithms has become very important when formulating

most of the supervised learning problems with less computing power.

How to design Streaming Machine Learning
algorithms?
● Simply need to do train a machine learning algorithm in real-time without

storing a large batches of data.
● Some algorithms can be trained by just observing a datapoint only once.

○ Initialization stage: Observe a number of data points (K elements at least if it is a clustering
problem, depending on the algorithm this must be well-defined).

○ Model Evaluation: Calculate a gradient or model value for the observed elements.
○ Model Synchronization: Synchronize the model value across all the processes when using

distributed training.
○ Re-do the whole process per element after the initialization stage.

● Some algorithms need an iterative streaming algorithm to ensure the
accuracy to be in an expected level.

○ Model evaluation: Here we observe w number of elements by formulating a window in a
stream and do an iterative computation on it for t iterations. Here t <<< T, T refers to the
number of iterations required in batch mode to compute the optimum model.

Convergence of HPC and Big Data

Reference: https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf

https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf

Objective
● Design low-latency training on big data systems and identifying effective

systems for online training
● Provide API solutions to design streaming applications on both HPC and

dataflow programming models.
● Evaluate the importance of HPC frameworks for strengthening the big data

stack for intensive computations.

Streaming Machine Learning Algorithms
● Non-Iterative Setting

○ KMeans Clustering

● Iterative Setting
○ Support Vector Machine (Linear Kernel for Binary classification)

Streaming SVM

Streaming KMeans

Discretization of a Stream

Tumbling Windows

Sliding Windows

Workflow of a Streaming ML Algorithm

Streaming Platforms

Iterative Streaming
Support

Dataflow Model

HPC Model

Apache Storm v1.2.8
Apache Flink v1.9.0
Twister2 v0.3.0

Experiment Configuration
● Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10 GHz (250 GB RAM)
● Streaming SVM :Binary Classification on 49K long stream for training and 90K

sample for model testing.
● Streaming KMeans: Clustering 1000 centroids, 49K long stream for training)
● 8 Physical nodes each with 16 processes (128 parallelism).
● Use count-based window setting to do a stress test on each big data

framework used.

Tumbling Windowing

Streaming SVM

Sliding Windowing

*5,10 refers to sliding length,window length.
Obtained after experimenting with different configs towards optimum results obtained in batch mode.

Tumbling Windowing

Streaming KMeans

Sliding Windowing

*5,10 refers to sliding length,window length.
Obtained after experimenting with different configs towards optimum results obtained in batch mode.

Conclusions and Future Work
● Windowing APIs are vital for designing iterative streaming applications.
● High performance computing model can be adopted in Big Data frameworks

to provide better performance for streaming applications.
● Experimenting with a larger data stream (minimum of 1 Million of more data

points per a job)
● Structured data streaming with stream discretization.
● Expanding experiment configurations for testing window config sensitivity on

algorithm convergence.
● Scaling for a bigger experiment setting (1024+ cores)
● Extending experiments for more machine learning algorithms.

Thank you
● NSF
● Future Systems Team @ IU (Allan Streib et. al)
● Digital Science Center

