Publish/Subscribe Systems on Node and Link Error-Prone Mobile Environments

Wireless and Mobile Systems Workshop, Atlanta May 24th 2005

Sangyoon Oh, Sangmi Lee Pallickara, Sunghoon Ko, Jai-Hoon Kim, Geoffrey C. Fox Community Grids Laboratory and Computer Science Indiana University, School of Information and Communication Ajou University

Contents

- Introduction
- Cost model
- Cost analysis
- Performance comparison
- Conclusion

http://grids.ucs.indiana.edu/ptliupages/hhms/pub-sub.html

Introduction

- Advantages of publish/subscribe systems in mobile computing
 - Intermittent and high-latency
 - Decoupling publisher and subscriber
 - Appropriate in mobile and ubiquitous environments
 - Data dissemination services
 - Information sharing
 - Service discovery

Motivations

- Mobile environments are error prone
 - Wireless link disconnection, Power Exhaustion
- In the presentation, we analyze the influence of error
 - Mobile link and node
 - Comparison pub/sub to clientserver
 - and polling models

System model

System parameters

 α (publish rate) β (request rate or process (reference access) rate) $c_{ps}(\alpha)$ (publish/subscribe cost per event) $\mathbf{c}_{rr}(\boldsymbol{\beta})$ (cost per request and reply) $c_{poll}(\alpha,T)$ (cost of periodic publish or polling) **s(n)** (effect of sharing among n subscribers) **t**_{ps} (time delay for publish/subscribe) \mathbf{t}_{rr} (time delay for request and reply) λ , λ_s , λ_c (failure rate of communication link, server, and client) μ , μ_s , μ_c (recovery rate of communication link, server, and client)

Considerations and Assumptions

- Analyzing four models: Disconnection (failure) and reconnection (recovery) of link and node failure
 Publish/subscribe
 - 1. Publish/subscribe
 - 2. Event (broker) based request/reply
 - 3. Conventional request/reply
 - 4. Periodic polling
- Cost metric → time delay to transfer message and additional time required due to failure of communication links and nodes of servers and clients
- Persistent files

for events are sharable among servers. When a server fails, the another server can take over the role and publish/server model can continue its transactions.

Durable database

saves events log and provides clients events history after clients recovers from failures.

Characteristics on Failures

Models	Types	Link failures	Server failures	Client failures
publish /subscribe	publish /subscribe	Wait until link reconnection, transaction is preserved	Server is replicated and transaction can be continued with sharable persistent file	After recovery, client can access events occurred during failure using events log on durable database
Event message based request/reply	request /reply	Wait until link reconnection, transaction is preserved	Server is replicated and transaction can be continued with sharable persistent file	After recovery, client can access events occurred during failure using events log on durable database
request/reply (RPC)	request /reply	Wait until link reconnection, transaction needs to restart	Transaction needs to restart after recovery	Lost event or data during client failure
periodic polling	any	Wait until link reconnection	Depends on system	Depends on system

Cost Analysis I Publish/subscribe model

- Cost of message transfer = $(c_{pub} + n s(n)c_{sub})$, plus delay time from link and/or node failure
- Failure of communication link
 - 1. Probability of disconnection during transaction $(\mu/(\lambda+\mu)(1/\lambda+\mu))$ 2. Probability of communication link disconnection $(\lambda/(\lambda+\mu))$

$$t_{pub} + t_{sub} + \{\mu/(\lambda + \mu) (1 - \varepsilon^{-(t_{pub} + t_{sub})\lambda}) + \lambda/(\lambda + \mu)\} \{\beta/(\mu + \beta)\}(1/\mu)$$

Aver. Delay time

Probability of subscriber access event before reconnection

 $\mathcal{E}^{-(t_{pub}+t_{sub})\lambda}$

Probability of disconnection

- Failure of server
 - Assumption: 1) Another server takes over the failed server, 2) ignores the cost required for transaction from failed server to backup server

$$t_{ps} = t_{pub} + t_{sub}$$

- Failure of client
 - Assumption: Durable data \rightarrow Client get any information after recovery (n_{log})
 - Probability of *i* event occurred between failure and recovery $\rightarrow \left(\underline{\alpha} \right)^{i} \underline{\mu_{c}}^{i}$

If , i - n_{log} events are lost due to exceeding limitation of capacity for event log Thus, aver. number of lost events per client failure \rightarrow

$$\sum_{i=n_{log}+I}^{\infty} \left(\frac{\alpha}{\alpha+\mu_c}\right)^i \frac{\mu_c}{\alpha+\mu_c} (i-n_{log}) = \left(\frac{\alpha}{\alpha+\mu_c}\right)^{n_{log}} \frac{\alpha}{\mu_c}$$

Cost Analysis II Event (broker)-based request/reply

- Cost of message transfer = c_{rr} , plus delay time from link and/or node failure
- Failure of communication link

Probability of disconnection

- 1. Probability of disconnection during transaction ($\mu/(\lambda+\mu)$ (1 $\mathcal{E}^{-t_{rr}\lambda}$
- 2. Probability of communication link disconnection $(\lambda/(\lambda+\mu))$

$$t_{rr} + \{ \mu / (\lambda + \mu) (1 \varepsilon^{-t_{rr}\lambda}) + \lambda / (\lambda + \mu) \} (1/\mu)$$

Aver. Delay time

Failure of server

Assumption: 1) Another server takes over the failed server, 2) ignores the cost required for transaction from failed server to backup server

t_{rr}

- Failure of client
 - Assumption: Durable data → Client gets any information after recovery
 - Probability of *i* event occurred between failure and recovery

 \rightarrow

$$\left(\frac{\alpha}{\alpha+\mu_c}\right)^i\frac{\mu_c}{\alpha+\mu_c}$$

Cost Analysis III RPC Based Request/Reply model

• Assumption

- No-persistent, No-durable
- Additional overhead → 'useless computation' (re-generating request/reply, which is < t_{rr} + t_{proc})
- Server recovery overhead' is ignored like other models.

Failure of communication link

Cost Analysis III RPC Based Request/Reply model

Cost Analysis IV Periodic (Polling) model

Assumption

- Polling is delayed until communication link is recovered.
- the persistent file and durable database

• Link was disconnected or is disconnected during the transaction

Time delay =

$$t_{\text{poll}}(\alpha,T) + \{\mu/(\lambda+\mu) \ \varepsilon^{-t_{poll}(\alpha,T)\lambda} + \lambda T(\lambda+\mu)\}(1/\mu)$$

- Conceptual cost = $c_{\text{poll}}(\alpha, T) + [1 - \{\mu/(\lambda + \mu) \ \varepsilon^{-t_{\text{poll}}(\alpha, T)\lambda} + \lambda/(\lambda + \mu)\}] c_{\text{delay}}(\alpha, T)$ $+ \{\mu/(\lambda + \mu) \ \varepsilon^{-t_{\text{poll}}(\alpha, T)\lambda} + \lambda/(\lambda + \mu)\} c_{\text{delay}}(\alpha, T + 1/\mu)$
- Failure of communication link

$$\mathcal{E}_{rr} + \{ \mu / (\lambda + \mu) (1 - \varepsilon^{-t_{rr}\lambda}) + \lambda / (\lambda + \mu) \} (1/\mu)$$

Probability of disconnection

• Failure of server

• Failure of client

$$\left(\frac{\alpha}{\alpha+\mu_c}\right)^i\frac{\mu_c}{\alpha+\mu_c}$$

Performance Comparisons by parametric analysis

- Publish/subscribe system requires less communication delay.
- Assumption

Models	Delays	
Publish/subscribe system & Event-based request/reply	Only need communication delay ← Backup server	
RPC-based request/reply system	Need additional time delay and lost communication ← Server failure	

System parameters				
Param.	Values			
α, β	0.5			
C _{ps,} C _{rr}	2			
C _{pub} , C _{sub}	1			
c _{poll} (α, T)	1 or α T			
c _{delay} (α,T)	0, T, or a T			
s(n)	1/n - 1			
λ , $\lambda_{\rm s,}\lambda_{\rm c}$	0.0001 – 0.5			
μ, μ _s	0.1			
μ_{c}	0.05 - 0.1			
t _{ps} ,t _{rr}	1			
t _{proc}	1 or 5			
t _{poll} (α, T)	1, Τ, or α Τ			

Performance comparisons II

 $(\alpha=0.5, s(n)=1, t_{ps}=1, t_{rr}=1, \mu=0.1,$ and β =0.5 for pub/sub and req/reply and β =0.2 for pub/sub2)

 $(\alpha=0.5, t_{ps}=1, t_{rr}=1, \beta=0.5, and$ µs=0.1)

Performance comparisons III

Experimental Setup

- Using NaradaBrokering as message brokering system -- MOM (Message Oriented Middleware) <u>for publish/subscribe</u>
- Using HHMS (Handheld Message Service) as primary application level transport protocol <u>for publish/subscribe</u> between mobile device and conventional wired environment
- Conventional RPC code using J2SE and J2ME MIDP 2.0 <u>for</u> <u>request/reply</u>
- Experimental Specifications
 - Treo600:

PalmOS 5.2 144MHz ARM, 32MB, Sprint PCS Service (<14.4kbps)

- HHMS Gateway and NaradaBrokering:
 - Linux 7.3, Pentium III 1GHz, 512MB
- Timer: Linux native timer by JNI

NaradaBrokering

 Developed by Community Grids Laboratory of Indiana University

Message Oriented Middleware (MOM)

- Multiple protocol transport support: In publish-subscribe Paradigm with different Protocols on each link
- Subscription Formats
- Reliable delivery
- Ordered delivery
- Recovery and Replay
- Security
- Message Payload options
- Messaging Related Compliance
- Grid Feature Support
- Web Services supported

Handheld Messaging Service

- Light-weight publish/subscribe message service framework for mobile devices
- Optimized application level transport protocol using byte message format
- Provide core-subset of JMS API

Experiment results

- Simple server \rightarrow sending 10 bytes messages
- Echo client \rightarrow return the message back
- Round Trip Time (RTT)

 \leftarrow median is chosen among 2000 iteration

• It shows matching result with our parametric analysis

$$t_{ps} = t_{rr} = 1$$

Delay time of sending message

	Wireless	Wired	Total (msec.)
RPC	1290.7 (client – gateway)	39.9 (gateway – server)	1330.6 (t _{rr})
Pub/Sub	1448.4 (ED – EBS)	89.7 (EBS – ES)	1538.1 (t_{ps})

Conclusion

- Advantages of publish/subscribe system in push based mobile applications.
- Problem: Error-prone mobile environments
 - Link disconnection
 - Power exhaustion
- Publish/subscribe system has improved performance and effectiveness on failure of client and server node, and disconnection of communication link.
- Our analysis shows publish/subscribe system is more durable than client/server model in mobile environments