Free energy calculations with *alchemlyb*

Oliver Beckstein Arizona State University

SPIDAL Teleconference 2019-02-01

- measure of how strong a protein P and a "ligand" X stick together
- key quantity in quantitative mechanistic explanations of biological processes and in drug discovery
- free energy (i.e., averaged over all other degrees of freedom (such as solvent, protein motions, ...))

$$\exp[-A(T,V,N)/kT] = \int dp^{3N} dx^{3N} e^{-H(p,x)/kT} \qquad H(p,x) = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m_i} + U(x)$$

• free energy difference

$$\Delta A = A_{\text{bound}} - A_{\text{unbound}}$$
$$\Delta A = -\ln \frac{\int dx^{3N} \exp[-U(x)/kT] \chi_{\text{bound}}(x)}{\int dx^{3N} \exp[-U(x)/kT] \chi_{\text{unbound}}(x)}$$

Alchemical free energy calculations

- force fields for H, molecular dynamics (MD) simulations for sampling
- free energy is a state function: generate non-physical paths between physical end states (bound/unbound)
- use stratification ("windows") of path with parameter λ

$$H(\lambda) = (1 - \lambda)H_{\text{bound}} + \lambda H_{\text{unbound}}, \quad 0 \le \lambda \le 1$$

$$U_{\text{Coulomb}}(\mathbf{x}_1, \mathbf{x}_2; \lambda) = \frac{1}{4\pi\epsilon_0} \frac{(1 - \lambda)q_1q_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

$$\lambda_1 = 0$$

Methods

• "Free Energy Perturbation" (FEP): Zwanzig FEP, BAR, MBAR (overlaps of distributions) $\Delta U(x) = U_{\lambda_{n+1}}(x) - U_{\lambda_n}(x)$

 $\Delta A = -kT \ln \langle \exp[-\Delta U(x)/kT] \rangle_1$, with $\Delta U(x) = U_1(x) - U_0(x)$ FEP

$$\exp(-\Delta A/kT) = \frac{\langle 1 + \exp[(\Delta U - C)/kT]^{-1} \rangle_0}{\langle 1 + \exp[(\Delta U - C)/kT]^{-1} \rangle_1} \exp(-C/kT)$$

$$\Delta A/kT = C/kT - \ln\frac{n_1}{n_2}$$
BAR

(MBAR is more complicated: uses overlaps between all windows)

Thermodynamic Integration (TI): TI

$$\Delta A = \int_0^1 d\lambda \left\langle \frac{\partial H(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$
TI

C. Chipot and A. Pohorille, editors. Free energy calculations. Number 86 in Springer Series in Chemical Physics. Springer, Berlin, 2007.

Thermodynamic cycle for absolute binding free energy calculations

$$P + X \stackrel{\Delta F}{\rightleftharpoons} PX$$

- 5 50 λ-windows
 per free energy
 component
- 10 ns 250 ns per window

D. L. Mobley, J. D. Chodera, and K. A. Dill. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. 125:084902, 2006.

Simulation output

Per timestep• FEP: ΔU $\Delta U_{\lambda_i,\lambda_j} \forall j$ for window i• TI: $\partial U/\partial \lambda$ $\frac{\partial U(x;\lambda)}{\partial \lambda} \Big|_{\lambda_i}$

But: different file formats for different codes (Gromacs, Amber, NAMD, ...)

solution: common interface via *alchemlyb*

Image: Selence Imag	()	Search or jump to			Pull reque	sts Issues	Marketplace	Explore			Á	++	۹-
Code Issues 15 Pull requests 0 Projects 2 Wiki Insights Settings the simple alchemistry library https://alchemlyb.readthedocs.io Edite science free-energy python library molecular-dynamics Manage topics ED 157 commits Is 2 branches E 2 releases IS 2 contributors at BSD-3-Clause	alch 🛛	nemistry / alch	emlyb					O Unwatch -	14	🛨 Unstar	19	¥ Fork	10
Edit science free-energy python library molecular-dynamics Manage topics Image: Splip Commits % 2 branches Splip 2 releases \$\$ 7 contributors sk BSD-3-Clause	<> Co	de 🕕 lssues	15 Î) Pull reque	ests 0 🔲 Projec	rts 2	Wiki 🔟 Ins	ights 🔅 Sel	ttings				
science free-energy python library molecular-dynamics Manage topics In the second state of the second stat	the simple alchemistry library https://alchemlyb.readthedocs.io								[Edit			
🕞 157 commite 💱 2 branches 🔍 2 releases 👫 7 contributors 👘 850–3–Clause	science	e free-energy	python	library	molecular-dynamics	Manage topics	8						
	157 commits 2 branches					🛇 2 releas	es	😫 7 contribu	tors	ন্	BSD-3	3-Clause	

alchemlyb

- O Beckstein (ASU), D Mobley (UC Irvine), M Shirts (U Colorado, Boulder)
- David Dotson (ASU), Dominik Wille (Freie Univ. Berlin)
- Silicon Therapeutics (STX) (Bryce Allen, Shuai Liu)

Search or jump to			alchemlyb: the simple alchemistry library					
<> Code	() Issues (15	DOI 10).5281/zenodo.5	83647 docs	passing build passing	Codecov 98%	
the simple	alchemistry	library	https://al	chemlyb.readthedd	ocs.io		Edit	
science	free-energy	python	library	molecular-dynamics	Manage topics			
©1	57 commits		∦ 2 br	anches		11 7 contributors	រាំ្ម≊ BSD-3-Clause	

alchemlyb: basic idea

As a usage example, we'll use **TI** to calculate the free energy of solvation of benzene in water. We'll use the benzene-in-water dataset from **alchemtest.gmx**:

```
>>> from alchemtest.gmx import load_benzene
>>> bz = load_benzene().data
```

and parse the datafiles separately for each alchemical leg using

```
alchemlyb.parsing.gmx.extract_dHdl() to obtain dHdl gradients:
```

```
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> import pandas as pd
>>> dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']]
>>> dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
```

We can now use the \top estimator to obtain the free energy differences between each λ window sampled. The fit() method is used to perform the free energy estimate, given the gradient data:

```
>>> from alchemlyb.estimators import TI
>>> ti_coul = TI()
>>> ti_coul.fit(dHdl_coul)
TI(verbose=False)
# we could also just call the `fit` method
# directly, since it returns the `TI` object
>>> ti_vdw = TI().fit(dHdl_vdw)
```

https://alchemlyb.readthedocs.io/en/latest/estimators-ti.html

The sum of the endpoint free energy differences will be the free energy of solvation for benzene in water. The free energy differences (in units of $k_B T$) between each λ window can be accessed via the delta_f_ attribute:

>>> 1	<pre>>>> ti_coul.delta_f_</pre>							
	0.00	0.25	0.50	0.75	1.00			
0.00	0.00000	1.620328	2.573337	3.022170	3.089027			
0.25	-1.620328	0.00000	0.953009	1.401842	1.468699			
0.50	-2.573337	-0.953009	0.00000	0.448832	0.515690			
0.75	-3.022170	-1.401842	-0.448832	0.00000	0.066857			
1.00	-3.089027	-1.468699	-0.515690	-0.066857	0.00000			

So we can get the endpoint differences (free energy difference between $\lambda = 0$ and $\lambda = 1$) of each with:

>>> ti_coul.delta_f_.loc[0.00, 1.00]
3.0890270218676896
>>> ti_vdw.delta_f_.loc[0.00, 1.00]
-3.0558175199846058

giving us a solvation free energy in units of $k_B T$ for benzene of:

```
>>> ti_coul.delta_f_.loc[0.00, 1.00] + ti_vdw.delta_f_.loc[0.00, 1.00]
0.033209501883083803
```

https://alchemlyb.readthedocs.io/en/latest/estimators-ti.html

Ł

In addition to the free energy differences, we also have access to the errors on these differences via the d_delta_f_ attribute:

<pre>>>> ti_coul.d_delta_f_</pre>							
	0.00	0.25	0.50	0.75	1.00		
0.00	0.000000	0.009706	0.013058	0.015038	0.016362		
0.25	0.009706	0.000000	0.008736	0.011486	0.013172		
0.50	0.013058	0.008736	0.00.000	0.007458	0.009858		
0.75	0.015038	0.011486	0.007458	0.000000	0.006447		
1.00	0.016362	0.013172	0.009858	0.006447	0.000000		

NapA elevator mechanism

Nature Struct. Mol. Bol., 23 (2016):248-255

ion binding in different states?

Nature, 501 (2013):573-577.

Na⁺ ion

Absolute binding free energies: alchemistry

- Windowed alchemical free energy calculations (TI or MBAR)
- 150 ns 250 ns per lambda window (Coulomb/vdW decoupling) for 21+21 windows... ~8 µs (!)
- Position restraints (and analytical removal)
- Additional repulsive ion-ion potential to enforce one-ion occupancy (rigorously removed in calculation)

Amount of raw free energy data

	windows	time µs	size GB	total time μs	total size (GB)	
VDW	21	0.25	3.865	5.25	81.165	
Coulomb	21	0.25	3.865	5.25	81.165	
repulsion	3	0.01	0.16	0.03	0.48	
restraint	11	0.01	0.16	0.11	1.76	
				10.64	164.57	

NapA FEP simulations (one free energy)

- conformations: IF and OF (2)
- protonation states: 3
- repeats: x2 (some)
- ~12 sets of simulations: ~2 TB (in ~130,000 files)

Absolute binding free energies: alchemistry

https://github.com/alchemistry/alchemlyb

$$\Delta G_i^0 = \Delta G_{\text{protein+ion},i}^0 - \Delta G_{\text{hydration}}^0$$

NapA IF	D156	D157	K305	∆G ⁰ (kJ/mol)	
	Ø	Ø	Ø	-103±1	
	Ø	Ø	Н	-44.6±0.9	
	Ø	Н	Н	-24.2±13.0	(not bindi ignore sta

Convergence of ion hydration calculation

Na⁺ ion in CHARMM TIP3P water

ΔG _{hydration} (kJ/mol)					
Coulomb	-382.7±0.2				
VdW	8.81±0.05				
repulsion	-0.258±0.005				
restraint	-17.84				
total	-392.0±0.2				

Convergence of protein-ion calculations

- Very slow convergence of Coulomb
- Slow degrees of freedom (e.g., D157 χ₁ dihedral)

Challenge

- data analysis is cumbersome and slow(ish), even with dask on a 6 core workstation (hours)
- on-demand analysis with all current data/while new data is coming in?
- run on HPC system (e.g. XSEDE PSC Bridges)?