Towards Energy Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS

Author: Lizhe Wang, Gregor von

Laszewski, Jai dayal

Speaker: Jong Youl Cho

Community Grids Lab, Indian University

Outlook

- Background
- Problem definition
- Proposed algorithm
- Evaluation
- Conclusion

Background

- Parallel task scheduling
 - Static scheduling
 - Dynamic scheduling
- Dynamic voltage and frequency scaling (DVFS)
- Power aware task scheduling with DVFS

DVFS model

$$V = \bigcup_{1 \le m \le M} \{v_m\} \tag{1}$$

$$F = \bigcup_{1 \le m \le M} \{f_m\} \tag{2}$$

where,

 v_m is the m-th processor operating voltage;

 f_m is the m-th processor operating frequency;

$$v_{min} = v_1 \le v_2 \le \dots \le v_M = v_{max};$$

$$f_{min} = f_1 \le f_2 \le \dots \le f_M = f_{max};$$

 $1 \leq m \leq M$, M is the total number of processor operating points.

Energy model

The energy consumption

$$\xi = \sum_{\triangle t} (\delta \cdot v^2 \cdot f \cdot \triangle t) \tag{8}$$

Where,

 δ is a constant determined by the PE.

v is the processor operating voltage during $\triangle t$;

f is the processor operating frequency during $\triangle t$; $\triangle t$ is a time period.

Cluster model

- $pe_k.v^{op} \in V$ is the processor operating voltage
- $pe_k.f^{op} \in F$ is the processor operating frequency

 $1 \le k \le K$, K is the total number of PEs.

A cluster C is defined by its set of processing elements

$$C = \bigcup_{1 \le k \le K} \{ p e_k \} \tag{9}$$

Job model

DAG model: T= (J, E)

$$J = \bigcup_{1 \le n \le N} \{job_n\} \tag{10}$$

A job, job_n , has 3 properties:

- weight is the instruction number of job_n .
- t^{st} is the starting time of job_n .
- t is the execution time of job_n . if job_n is executed on pe_k , the job execution time is calculated as follows:

$$job_n.t = \frac{job_n.weight \cdot CPI}{pe_k.f^{op}}$$
 (11)

Job model

E: a set of precedence constraints (edges in a DAG)
E defines partial orders (operational precedence constraints) on J. e_{ij} is an edge between job_i and job_j, it means that job_i must be completed before job_j can begin, 1 ≤ i, j ≤ N, job_i, job_j ∈ J. e_{ij} sometime can also be represented job_i < job_j.

e has one property:

 $e_{ij}.cost \ge 0$, is the amount of data required to be transferred from job_i to job_j , $1 \le i, j \le N$, $job_i, job_j \in J$. Data are transferred from the PE where job_i is executed to the PE where job_i is executed.

Problem definition (1)

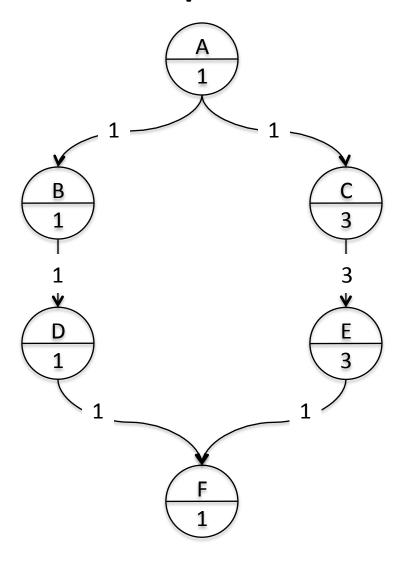
- Problem 1: Best-effort scheduling
 - Schedule parallel tasks to a cluster
 - Minimize the makespan
 - Reduce energy consumption without increasing the makespan

Problem definition (2)

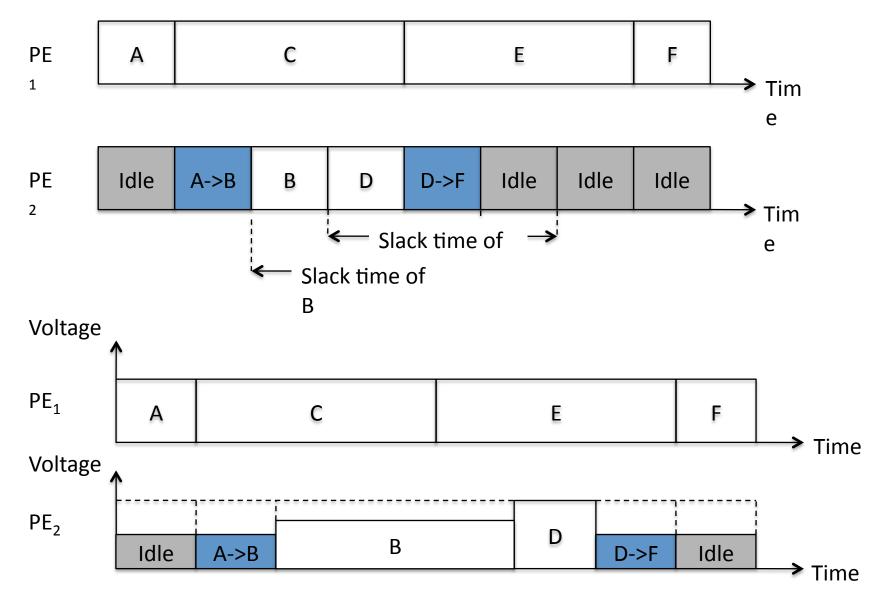
- energy-performance tradeoff scheduling
 - Users can adopt some performance loss, for example, increase the makespan
 - Schedule tasks to a cluster, minimize the energy consumption

Best Effort Scheduling Algorithm (1)

- schedule tasks via the ETF scheduling algorithm
- scale down PE's voltages for all non-critical jobs

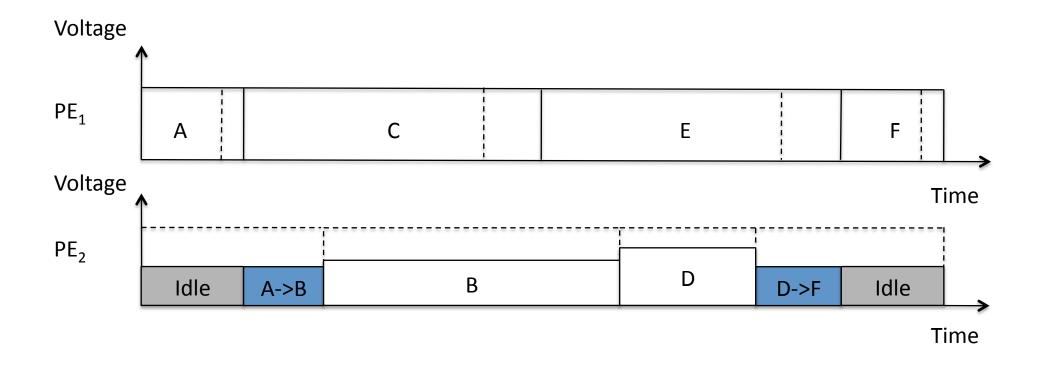

ETF scheduling algorithm

- ETF: Early task first algorithm
- Compute priorities for all tasks
 - Currently we use b_level, which is the long length from a task to the exist node
- Sort all tasks
- Put tasks that ready to execute in the ready queue with task priority
- Select the first task from ready queue
- Select a resource for this task, so as to give the earliest task finish time
- Loop this scheduling till all tasks are scheduled


Scale down non-critical tasks

- for all PEs
 - for all time slots in this PE
 - If this time slot executes a communication or this time slot is idle
 - Then scale down the voltage of this PE in this time slot
 - If this time slot execute a non-critical task
 - Then scale down the voltage of this PE in this time slot

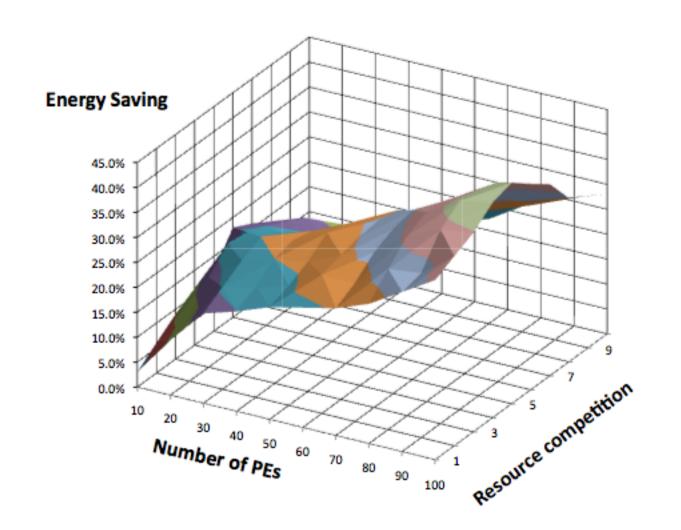
Example DAG


Gantt Chart

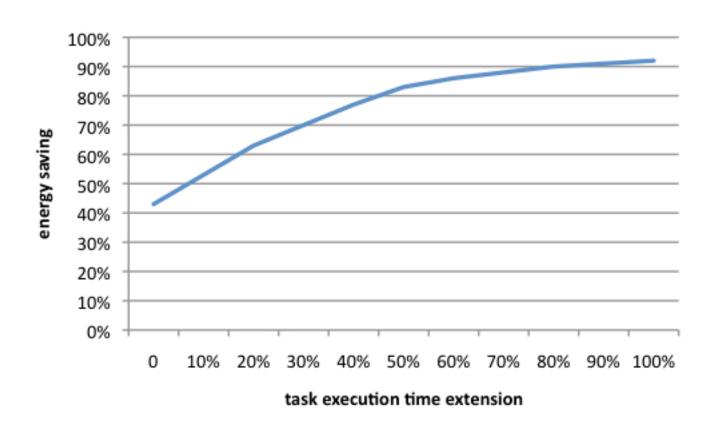
Energy-performance tradeoff scheduling algorithm

- Execute Early task first algorithm (ETF)
- Scale down PE's voltages for critical tasks with the predefined acceptable performance loss rate.
- Scale down PE's voltages for non-critical jobs

Example



Evaluation (1)


- Simulation study:
 - MT43 processor
 - Use synthetic DAG generation tool

Results

Energy aware DAG	Maximum
scheduling algorithm	energy saving
EADUS & TEBUS [28]	16.8%
Energy Reduction Algorithm [31]	25%
LEneS [22]	28%
ECS [30]	38%
Our algorithm	44.3%

Result(2)

Conclusion and future work

- We study energy aware cluster scheduling algorithms
- Two research issues are studied
 - Best-effort scheduling issue
 - Energy-performance tradeoff issue
- We proposed two algorithms
- Future work
 - Workload characterization
 - Runtime support and implementation