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HOW EDGE
COMPUTING WORKS

Edge computing allows data w0 internet
from internet of things devices ' of Things
to be analyzed at the edge . £
of the network before being sent
to a data center or cloud.
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Back to the Future

Client-Server
Distributed
1980-2000

Edge Intelligence
Distributed
2020

Mainframe Mobile-Cloud
Centralized Centralized
1960-1970 2005-2020

By Peter Levine

Future of Cloud Computing




HPC-Cloud
Software Tools: Harp-DAAL

For High Performance Data Analytics and Machine Learning
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Virtual machines and Cloud Services (optional)

System Software

Linux OS variant

Linux OS variant
C dity X86 ini
Cluster Hardware | =050 0 hie=5 ommoaity Infnmban(.:l y R ET Ak
Racks Ethernet Switches or Accelerators

Data Analysis Ecosystem Computational Science Ecosystem

Daniel Reed and Jack Dongarra, Communications of the ACM, vol. 58, no. 7, p.58, July 2015

HPC-Cloud
Data Analytics and Computing Ecosystem Compared



‘ Big Data Batch Processing ‘ ‘ Node Analytics Kernel ‘ ‘ Classic Parallel Runtimes ‘

(MapReduce) (DAAL) (MPI)
Data Centered, QoS Efficient and Proven

techniques

| ~ |
Expand the Applicability of MapRed;T:E-t)c?r_nﬁﬁa classes of Applications on HPC-Cloud
Platforms (Multicore, Manycore, other Accelerators, ...)
Sequential Map-Only MapReduce Iterative MapReduce MPI and Point-to-Point
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Harp and Harp-DAAL allow our data analytics to be scalable and interoperable across a range of
computing systems, including clouds (Azure, Amazon), clusters (Haswell, Knights Landing) and
supercomputers (IU Big Red ).

Harp-DAAL: interoperable software for
H PC'CIOUd ‘ High Performance Data Analytics
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HPC-Cloud:

Tailored Communication Operations for High Performance
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Example: K-means Clusterin

The Allreduce Computation Model
Model
$

When the model size is small

When the model size is large but can still be held in each
machine’s memory

When the model size cannot
be held in each machine’s
memory

broadcast

allreduce

reduce

Process 0 Process 1

I Processz
I rrocesso [ rrocess 1+ [ orecessa @

Process 0
broadcast

3 oo =
o e

reduce

Process 0

allgather

Local Tables

— - - — Partition 3
Partition 0 Partition 0 Partition 0 Partition 0

Partition 1 Partition 1 Partition 1

Partition 3 Partition 3 Partition 3 Partition 3

Process 1 Process 2

Process 0

Global Table

Partition 0 Partition 1 Partition 2

Global Table

Process 0 Process 2

Process 0

Process 1

Process 1 Process 2 Process 3

Process 0

Partition 0 Partition 0 Partition 0 Partition 0 :
Partition 1 Partition 1 Partition 1 Partition 1 i
Partition 2 Partition 2 Partition 2 Partition 2

Process 1 Process 2

Local Tables

Partition 0 Partition 0
Partition 1 Partition 1
Partition 2 Partition 2

push & pull

Process 3

Partition 3

Process 3

Process 3

Partitiun 1
Partitiun 2

otate

Global Table

Partition 0 Partition 1 Partition 2 Partition 3

= T T

Partition 0 Partition 1 Partition 2 Partition 3




I Data Loading 5,255 0 10 Nodes 75 IsTemplate u10-2 7,142
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Harp-DAAL Spark Harp-DAAL NOMAD Harp-DAAL MPI-Fascia
K-means MF-SGD Subgraph Counting
Yahoo! Flickr, including 100 million images, Twitter with 44 million vertices, 2 billion edges, Twitter with 44 million vertices, 2 billion edges,
each with 4096 dimensional deep features subgraph template size of 10 to 12 vertices subgraph templates of 10 to 12 vertices
(30x speedup) (3x speedup) (1.5x to 4x speedup)

Harp-DAAL provides fast machine learning solutions for Big Data applications. By leveraging Harp’s inter-node
communication innovation and Intel’s highly optimized computation kernel, it delivers 2x to 15x speedups over
other frameworks on Intel high-end servers.

High Performance Data Analytics




o . : Recommendati Structure Dimension
Task Level Classification Clustering Regression ! :
on Learning Reduction

General - S :
Model Structure e Nearest Decision Factorizatio | Graphical Neural
Level

Model Neighbor Tree n Machine Model Networks

. I-
SVD, PCA, LR, QR | GD, SGD, LBFGS, CCD EM, VB .... Gibbs Sampling,
. . . Metropolis-Hastings
Linear Algebra Numerical Expectation

o T Markov Chain Monte
Kernel Optimization Maximization Carlo

Solver Level

Optimization and related issues
e Task level only can't capture the traits of computation

 Model is the key for iterative algorithms. The structure (e.g. vectors, matrix, tree, matrices) and
size are critical for performance

e Solver has specific computation and communication pattern

Taxonomy for Machine Learning Algorithms




Explore Algorithms .

K-Means Neural Networks

Bioinformatics

RandomForest

. Latent Dirichlet Allocation
Complex Networks Text Mining SubGraph Counting




Real-Time Analytics

Anomaly Detection

IndyCar Project & Preliminary Results _




* The IndyCar Series is the premier level of
open-wheel racing in North America.The
series' premier event is the Indianapolis 500.

* Computing System and Data analytics is
critical to the game, both in improving the
performance of the team to make it faster
and in helping the race control to make it
safer.

IndyCar



https://en.wikipedia.org/wiki/IndyCar_Series
https://en.wikipedia.org/wiki/Indianapolis_500

Transmitter placed equally on all cars (35 inches from tip of nose)

T4 T

PL/PO: Pit Lane Entrance & Exit

T1-T2-T3-T4: Intermediate Sectors SF/SFP: Start Finish Line (Track & Pit Lane)
TIT/T3T: Velocity Trap (Top Speed Measurement) ~ $S1-§52: Short Shoot Intermediators (Indy)

Detection Antenna <A Track
under the track (Coax) Side
24 inches wide — up to 65 feet across Decoder

% inch below the surface (TSU)

Main Back-up
System System
- 4
_—
Database Module - .
(Pit Feed) Results Module ... | , e
(Live Internet) (Pit Video)
(Historical data) (Track Video)
Distribution Module
(ABC/ESPN) L Operétor
Track scoreboards sl (eleULs (Main) Operator
sl s (tearp reports) (Backup)
Gameboy Systems {media reports)

Timing and Score Data

e Sensors in the cars and under the
track.

* Antenna and communication
system.

* Telemetry data(including the

many performance information
of the cars like speed, gear,
brake, throttle,etc) stream into
the on-site computer system in a
real-time fasion.




Command| Count |Protocol Description Frequency
A 2052 | MLP Announcement Every 60 seconds
C 19432 | MLP Completed Lap Results Upon Event (new and repeated)
D 2652 RP Invalidated Lap Information Every 30 seconds
E 7737 | MLP Entry Information Every 60 seconds
F 725 MLP Flag Information Upon Event (new and repeated)
G 7892 RP [Car Display Pit Stop Timer Information Every 120 seconds
H 17260 | MLP Heart beat Every Second
[ 53 MLP Invalidated Lap Information Upon Event (new and repeated)
L 79884 | MLP Line Crossing Information Upon Event
M 1738 eRP Messages Upon Event
N 3861 MLP New Leader Information Upon Event
0] 33263 RP Overall Results Upon Event

R 701 MLP Run Information Every 20 seconds

S 102272 | MLP Completed Section Results Upon Event (new and repeated)
T 233 MLP Track Information Every 60 seconds

U 235 RP Track Information Every 30 seconds

\' 117 MLP Version Stream Information Every 120 seconds

W 287 RP Weather Data Every 60 seconds

X 12124 RP Heart beat Every Second

Dataset

* The INDYCAR Timing system

supports retrieving timing data
from the primary timing system —
serial or sequential data feed for
live data and report querying for
historical or archived data.

* The Results Protocol is designed to

deliver more detailed results
information through the use of a
single record command.

Example: one Indianapolis 500 car
race on the 28th of May 2017
which contained 750 MB of data
and total of 3986170 records.




Real-time data analysis is heeded

"We want to know if it’s an expected event or a " And we want to know the data corresponding to
minor deviation that we need to be worried the anomaly; when car got into problems

about. Helps race control people. what kind of event it is and what is causing it."

Problem




P \ f————— - * Anomaly Detection: Learning
I
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pee noma noma | .
| Detoction T . . only find the abnormal pattern
. ) )
R in the data with best efforts
| . .
| N a— | under predefined assumption
Data | Ste@ming | Speed :-_ Anomaly Anomaly Correlation | | S\o;;i:;?;l of what is “normal”.
Source | Detection Analysis I .
P — | e Correlation Analysis: Learning
Other : ( R | algorithms can find out the
Metrics Anomaly Anomaly I “« ” i
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——————— ’ S —— the events.
Task 1 Task 2

Tasks







neuron cell body

synapse
N * Neurons have specialized projections
axon of nuclens called dendrites and axons.
evious axon - . . . .
i = * Dendrites bring information to the

cell body and axons take information
away from the cell body.

neuron
neuron cell body \

axon  dendrites of * Information from one neuron flows
tips  Mext meuron to another neuron across a synapse.
The synapse contains a small gap

synapse electrical separating neurons.
signal

dendrites

Axon, Dendrite and Synapse




A .
A. The neuron model used in
most artificial neural
networks has few synapses
C Feedback

B  Feedback 1 and no dendrites
7

B. Different source of input:
feedforward, feedback and
context

""" Context
GRGrrrrer 4 C. HTM sequence memory
' e models dendrites with an
. array of coincident detectors
° I h each with a set of synapses
Feedforward Feedforward

Hierarchical Temporal Memory(HTM)




A Cellular layers learn

sequences

B Before learning

Same columns,
but only one cell active per
column.

C After learning '

A B’
X : B”
D Prediction of next input

A input ' B’ predictéd

Representing High-order Context

« Active cells
« Predictive cells
Inactive cells

B input

'C’ predicted

The layer consists of a set of mini-columns,
with each mini-column containing multiple
neurons.

Each sequence element invokes a sparse set
of mini-columns, only three in this illustration.

Learning with context input, the inputs invoke
the same mini-columns but only one cell is
active in each column. Because C'and C"are
unique, they can invoke the correct high-
order prediction of either Y or D depending
on the input from two time steps ago.

Learn connections to nearby neurons to
predict the next input, which works as the
context input.




HTM a(x;)

Prediction |—p| ANOMaly | __
error likelihood

* The input time series x, are fed to the HTM component. It models temporal patterns in a(x,) and
output a prediction in mt(x,).

* Then by building a statistical model on the prediction error, 1t(x,) - a(x,,), anomaly likelihood
score can be calculated on x..

Anomaly Detection Based on HTM




EngineSpeed(RPM)
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(a). Car#9 in middle of the race
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(b). Car#9 at end of the race

EngineSpeed(RPM)

=

* Detection algorithm used has the capability to detect certain type of anomaly in few seconds
ahead of the time.

Anomaly Detection




EngineSpeed(RPM) Car#24

* The anomaly occurs

IIIIIllllllllllllIllllll!llllIlllllllllllIlIllllllllIlIllIlllIIlllIlllllll NRRNENNNNERENNNNNNNNNNNNENANNNNNNONENEE'Y arOU nd 15:03 pm,

I I Loy § ettt T L b where the RPM of car

EngineSpeed(RPM) Car#77 #9 totally disappeared.
..-,wwmvi In fact, car #9 got

totaled due to a

4
[ TTT] LT L T CO||iSi0n W|th car #77.

EngineSpeed(RPM) Car#9 InCIUding car #24, a”

s R A A A s sogers slowed down after the
crash.
NERRRRRREREN RN NN ERERRRRAENINY |

M LI I T 1T T |ﬂ

Correlation of “events” among different cars: #9 #77 and #24

Correlation Analysis



Ambient Temp Relative Humidity
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Real Time Analysis on Data Streams
(Storm, Herron, Flink, etc.)

Data Stream
Source

—

Sensors

Pub-Sub
System

Data DE]F]
Collector Preprocessor Detection

7 7 7

Anomaly

Data collector

Batch Analysis on Historical Data
(Hadoop, Harp, Spark, Giraph, etc.)

e collects the input from the multiple sensors

¢ ¢ 1

e stores data HDFS or MongoDB

Data Preprocessor
e accesses and filters data
» stores preprocessed data in HDFS or MongoDB

Anomaly Detection Engine

* involves high performance batch and streaming
data processing frameworks

* detects anomalies from preprocessed data pipeline

System Architecture

Storage Substrate
DN 1 DN2 || DN 3 DN 4

HDFS MongoDB HPC Resources

T Cemong,,,

Driver Info

Anormaly Detection
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* Performance metrics for single node execution with parallelism =1 for two input rates: 10 and 20
message/sec

* Initial execution time of roughly 210 millisecond incurred in both cases to initiate the HTM
network APl and feed input from telemetry spout

Streaming Results using Apache Storm




@ SFHNCN HancBIO

nano HUB AN INDIANA UNIVERSITY RESEARCH NODE

Trajectory Data:
1 million time series
(x,y,z, time)

Nano App: > Nano App:
NP Self-Assembly Lab Harp-DAAL Clustering

* These Harp-DAAL HPC kernels could well serve in accelerating the process of clustering the nanoBIO
simulation results to obtain different nanoparticle trajectories.

* NP Self-Assembly Lab simulates assembly of nanoparticles and generates 1 million high dimensional
trajectory data. Harp-DAAL takes the input data and runs clustering over different nanoparticle
trajectories that can be visualized for NP distribution.

Real-Time Simulation Data Analysis




GitHub  Mailing List

Harp-DAAL: Prototype and Production Code

Source codes became available on

Available at https://dsc-spidal.github.io/harp Github in February, 2017.
DSC-SPIDAL / harp OUmwatch - | 13 | | JStar | 1 | | YFork |6 * Harp-DAAL follows the same
standard of DAAL's original codes
<> Code Issues 1 Pull requests 2 Projects 0 Wiki Pulse Graphs Settings
* Twelve Applications
Branch: master - harp / harp-daal-app /src/edu/iu/ Create new file  Upload files Find file = History " Ha rp—DAAL Kmeans
B Chen add codes for harp-daal-als Latest commit 158789 5 days ago = Harp-DAAL MF-SGD
= Harp-DAAL MF-ALS
benchmark re-structure the codes 2 months ago u Harp-DAAL SVD
daal add daal_kmeans codes 2 months ago " Ha rp-DAAL PCA
daal_als add codes for harp-daal-als 5 days ago u Harp—DAAL Neural Networks
daal_kmeans/regroupallgather add daal_kmeans codes 2 months ago n Harp-DAAL Naive Bayes
daal_sgd re-structure the codes 2 months ago = Harp-DAAL Linear Regression
dymoro re-structure the codes 2 months ago = Harp-DAAL Ridge Regression
fileformat re-structure the codes 2 months ago [ ] Harp_DAAL QR Decomposition
kmeans re-structure the codes 2 months ago [ Harp—DAAL Low Order
train re-structure the codes 2 months ago Moments

wdamds re-structure the codes 2 months ago = Ha rp-DAAL Covariance




Open Source Github Website (https://dsc-spidal.github.io/harp)

Harp DAAL

in collaboration with (in te

is a high performance framework with the fastest machine
learning algorithms on Intel's Xeon and Xeon Phi
architectures.

( See how it works ) ( Performance )

(Explore algorithms) ( Hands on )
( Slide deck )



https://dexterrules.github.io/SC-Demo-17/SC-Demo.html

We gratefully acknowledge support from NSF, IU and Intel Parallel Computing Center (IPCC) Grant.

Langshi Cheng, Bo Peng, Supun Kamburugamuve, Sahil Tyagi, Sabra Ossen, Lynne Wang, Tiana Deckard,

Robert Henschel, Craig Stewart, Shaojuan Zhu, Lisa Smith

Intelligent Systems Engineering
School of Informatics and Computing
Indiana University

Acknowledgements




