Grappling Cloud Infrastructure Services with a Generic
Image Repository

Javier Diaz, Andrew J. Younge, Gregor von Laszewski, Fugang Wang and Geoffrey C.

Fox

Pervasive Technology Institute. Indiana University
2719 East Tenth Street, Bloomington, IN 47408, USA

{javidiaz,ajyounge,gvonlasz,fuwang,gcfl@indiana.edu

ABSTRACT

With the advent of Cloud computing, a wide variety of In-
frastructure as a Service models have grown to provide users
with one of the greatest benefits of Clouds: a customized
system environment. These services, while extremely use-
ful, often suffer from their ability to interoperate and com-
municate across administratively separate domains. Within
FutureGrid, an experimental cloud and grid testbed, we look
to mitigate these challenges by providing stratosphere-level
image repository and management tools. These systems will
enable users to more easily generate images and manage
them within an independent image repository, eventually
enabling users to take full advantage of both private and
public clouds with ease.

1. INTRODUCTION

FutureGrid (FG) [1] provides a capability that makes it
possible for researchers to tackle complex research challenges
in Computer Science related to the use and security of grids
and clouds. These include topics ranging from authentica-
tion, authorization, scheduling, virtualization, middleware
design, interface design and cybersecurity, to the optimiza-
tion of grid-enabled and cloud-enabled computational schemes
for researchers in Astronomy, Chemistry, Biology, Engineer-
ing, Atmospheric Science and Epidemiology. The project
team will provide a significant new experimental computing
grid and cloud test-bed to the research community, together
with user support for third-party researchers conducting ex-
periments on FutureGrid.

As part of the test-bed, we will have pre-installed frame-
works exposed through endpoints to provide users an easy
access to them. This includes Infrastructure as a Service
(IaaS) frameworks such as Nimbus [7], Eucalyptus [8], Open-
Nebula [6], and OpenStack [3] and look to provide Platform
as a Service (PaaS) frameworks and additional services and
tools like Unicore [4] and Genesis II [2]. However, we will
also provide additional functionality to instantiate and de-
ploy such frameworks on demand through a provisioning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

subsystem that is called RAIN [9]. In this way, users can
get a customized version of a particular software to fit with
their experiments requirements.

Although, we will allow users to run their experiments
on both virtual and bare-metal systems, most of the frame-
works and services that will be offered by FG are based on
virtualization technologies or make use of them. Hence, the
image management become a key component in the context
of this project. For this reason, in this paper, we present
the catalog and repository of images that will be provided
by FG. These tools offer a unique and common interface
that can distinguish image types for different purposes like
an specific IaaS framework or just general HPC. Moreover,
it will include base images set up by the project team as
well as images generated by the users, if they wish to share
them. The images will be described with information about
the various software installed in them (including versions,
libraries, etc), available services, etc. This information will
be maintained in the catalog and be searchable by the users
and/or other FG services. Users looking for an specific image
will be able to discover the available images and find their
location in the repository using the catalog interface. In
addition, users can also register customized images, share
them among other users, and choose any of them for the
provisioning subsystem [9].

The development of a customized image repository not
only provide functional advantages, but it also provides struc-
tural advantages aimed to make a more efficient use of the
resources. In particular, we have the possibility to choose
the most suitable storage mechanism for FG. We can also
maintain specific data that could assist performance moni-
toring and accounting. Finally, we can use mechanisms that
may actually not just store the image, but rather describe
how we generate an image. In this way, we can save a signif-
icant amount of time and space for both users and system
administrators alike.

2. IMAGE REPOSITORY SERVICE

The FutureGrid image repository provides a service to
query, store, and update images through a unique and com-
mon interface. Nevertheless, it also maintains data related
with the usage of the image repository to assist performance
monitoring and user accounting.

We have identified some essential requirements that we
need to consider in our design. These requirement include
a simple, intuitive and user friendly environment, a unified,
extensible, integrated and secure system design, and built
in fault tolerance with proper accounting and information

tools. Considering these requirements, we have designed a
flexible and modular architecture for the FG image reposi-
tory, see Figure 1.

Image Repositary Client Provisialil ' Mor;i;%ring
! !

Portal cul | Subsyeigy ii Information
i RAIN - gupsystem

Image Repository Service Interface
FG
Security

Accounting Image Metadata User
Management | [Management Quota

Image Repository Functionality (Core)

Image Repaository
Storage and Access

3rd Party
Image Store

Figure 1: Image Repository Architecture

At the bottom of the Figure 1 we have Storage and Access
layer, that defines an interface to create plugins to support
different storage systems in a transparent way. Therefore,
this layer acts as a bridge between the storage systems and
the image repository core functionality. The core is rep-
resented by the Functionality layer. This is a centralized
component manages the images and the user access. The
image management is focused to handle the image files and
the associated information (metadata) in such a way that
the image catalog is always updated and consistent. This
is designed to be independent of the storage system used.
Moreover, it registers the image usage and keep track of the
images generated using existing ones. In this way, we can
know which images are useful and detect security problems
identifying those images that need to be updated or even
removed. On the other hand, the core also manages users
to control the use that they do of the image repository. In
particular, it handles image permission, user roles, quotas,
etc.

Next to the Functionality layer we have the Service Inter-
face one, see Figure 1. This layer expose all the previously
mentioned functionality through a common interface to al-
low developers to create applications that interact with the
image repository. In this sense, we have designed a command
line interface (CLI) and a web portal to facilitate the access
to the image repository. Other FG subsystems or external
systems can get access to the image repository through this
interface. As for example, in Figure 1, we show two Future-
Grid subsystems, the Provisioning and the Monitoring and
Information ones [9].

Finally, the security aspect is an essential component to
be considered in the design. Thus, the image repository will
provide the security functionality needed to integrate the
authentication and authorization with the FG ones (based
on LDAP). In this way, we contribute to maintain a single
sign on system for FG, avoiding the duplication of services
and databases.

3. IMAGE GENERATOR SERVICE

The image generator service is another central component
for the FutureGrid imaging system, and is the key feature
for adapting workflows with the pretence of a custom user
environment to Clouds. The image generator is responsible

for taking in user requirements about image size, type, and
kind to format a new image that, once vetted and stored,
can be deployed on FG hardware. The image generator will
start with a base image that is selected by the user. This
image is specifically crafted by FG administrators to enhanse
stronger security and integration with the rest of FG. It is
also designed to be the smallest image footprint possible, to
minimize wait time and network traffic when deploying new
images. Images are next mounted and the software stack
selected is deployed onto the system, along with any other
files specified. The image generator then links the new image
to BCFG2 [5] and submits it to the image repository.

BCFG2 retains a major component of the image man-
agement system. In fact, it does most of the management
actions for all the images deployed throughout FG. BCFG2
itself is a critical tool to help system administrators produce
a consistent, reproducible, and verifiable description of their
environment, and offers visualization and reporting tools to
aid in day-to-day administrative tasks. Within FG’s BCFG2
deployment, a number of base deployment groups are setup
that correspond to the pre-supported OS types added by
administrators to the Image Generator. From there, a given
image will be assigned another unique group which contains
the software stack specified by the user. This allows for all
software and files installed on the image to be managed, up-
dated, and verified by BCFG2. This group is created and
defined by the image generator before initial deployment.

As described above, there are a number of base images
that are supported within FG. These UNIX-based images
represent the minimal installation possible within the OS
itself. Because many of these image will be leveraged to
provide platform-level services, there is no need to add ex-
tra packages and bloat to images, especially when the images
are to be deployed and migrated throughout FG resources.
The base OS is created as a separate .img file by FG ad-
ministrators with the necessary BCFG2 client pre-installed
along with any other monitoring software deemed fit by the
FG Performance group.

From a process perspective, a given user selects specific
features of the image as needed including the target deploy-
ment selection such as OS, and hardware, as well as base
software, FG software, Cloud software, user application soft-
ware and other software. This creates then a base image.
This base image is than deployed on a test server and up-
dated and checked for security. The result is a deployable
image on FG hardware. At time of deployment additional
security updates are conducted. It is clear that the time be-
tween the creation of a deployable and deployed image has
an impact on security. Images found insecure could still be
deployed, but the network connectivity to such an image is
restricted.

4. CONCLUSION

In this paper we have introduced our design for a generic
image repository and image generation tools for use within
the FutureGrid testbed. In an attempt to open discussion
within the community, we mainly focus on the requirements
and design to establish the important features that we look
to support. We consider that a key aspect of these image ser-
vices is the ability to provide a unique and common interface
to manage any kind of image, and any kind of cloud infras-
tructure. Moreover, its design is flexible enough to be eas-
ily integrable not only with FutureGrid but also with other

frameworks, can will help alleviate both the user burden of
creating and storing images, but also avoid interoperability
issues between different Cloud deployments.

S.
1]

2

[6]

[7]

8]

[9]

REFERENCES

Futuregrid portal. http://portal.futuregrid.org, Last
access Mar. 2011.

Genesis 1T webpage.
http://www.cs.virginia.edu/~vcgr/wiki/
index.php/The_Genesis_II_Project, Last access Mar.
2011.

Openstack webpage. http://openstack.org/, Last access
Mar. 2011.

Unicore webpage. http://www.unicore.eu/, Last access
Mar. 2011.

N. Desai, R. Bradshaw, J. Hagedorn, C. Lueninghoener,
et al. Directing change using Bcfg2. In Proceedings of
the 20th Large Installation System Administration
(LISA) Conference, pages 215-220, 2006.

J. Fontan, T. Vazquez, L. Gonzalez, R. S. Montero, and
I. M. Llorente. OpenNEbula: The Open Source Virtual
Machine Manager for Cluster Computing. In Open
Source Grid and Cluster Software Conference, San
Francisco, CA, USA, May 2008.

K. Keahey, I. Foster, T. Freeman, X. Zhang, and

D. Galron. Virtual Workspaces in the Grid. Lecture
Notes in Computer Science, 3648:421-431, 2005.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,

S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-source Cloud-computing System.
Proceedings of Cloud Computing and Its Applications,
2008.

G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Voeckler,

R. J. Figueiredo, J. Fortes, K. Keahey, and E. Delman.
Design of the futuregrid experiment management
framework. In GCE2010 at SC10, New Orleans, 2010.
IEEE, IEEE.

