
Cloud Computing and Spatial Cyberinfrastructure
Marlon E. Pierce1*, Geoffrey C. Fox1,2, Yu Ma1, Jun Wang1,

1Community Grids Laboratory, Pervasive Technology Institute

Indiana University
501 North Morton Street
Bloomington, IN 47404

2School of Informatics

901 E. 10th St.
Bloomington, IN 47408

* Corresponding Author

Email: mpierce@cs.indiana.edu
Phone: 812-856-1212

Fax: 812-856-7972

Classification: Physical Sciences, Computer Sciences

Abstract: In this perspectives paper, we review the current state of Cyberinfrastructure
and illustrate opportunities that we see if Cloud Computing strategies are adopted. In
summary, Cloud Computing provides elastically provisioned computing, software, and
service infrastructure, typically implemented on a foundation of virtual machine and
virtual data storage technologies. This elasticity allows users to outsource their
computing infrastructure, growing or shrinking it as necessary. Commercial investments
in Cloud infrastructure make it likely that these systems will dominate large-scale
computing hardware and software in the next decade. Furthermore, open source Cloud
software makes it possible for universities and research laboratories to investigate and
build open-architecture clouds for scientific computing and other uses. Given these
general advantages, we consider the applicability of the approach to scientific computing
generally and Spatial Cyberinfrastructure specifically through two case studies (flood
modeling and radar image processing). We map these projects’ requirements to both
infrastructure and runtime capabilities typically provided by Clouds. Based on these case
studies, we discuss gaps and research opportunities in Cloud Computing from the
geospatial point of view. Our preliminary conclusion from this review is that Spatial
Cyberinfrastructure’s requirements are a good match for many common capabilities of
Clouds, warranting a larger scale investigation and research by the community.

\body

Introduction
This perspectives piece summarizes our views on the next generation of

Cyberinfrastructure (CI) generally and Spatial Cyberinfrastructure specifically. We base
these views on experiences from number of relevant projects, including the NASA-
funded QuakeSim project (1,2), the USGS-funded FloodGrid project (described here),
and the NSF-funded PolarGrid project (www.polargrid.org). Our lab has developed
Cyberinfrastructure software to support these distributed spatial applications, building on
our general investigations of Cyberinfrastructure architectures (3). Previous
applications include Geospatial Information System (GIS) Grid services based on Open
Geospatial Consortium standards (4) and real-time streaming Global Positioning System
processing infrastructure (5,6).

We take a broad view of the problems that Cyberinfrastructure (CI) must support.
High performance computing and data storage are just two aspects; we also need to
manage real-time data streams, integrate third party capabilities (such as geographic
map and data providers), and build interactive user interfaces that act as Science
Gateways (7). We believe the next generations of major Cyberinfrastructure
deployments (such as the NSF TeraGrid (8)) need to provide a broader scope of
infrastructure capabilities to their user communities. Cloud Computing approaches
discussed here are good candidates for offering the infrastructure and services needed
for both deep (computationally intense) science, such as is discussed by Wang in this
special issue; and wide (non-traditional) usage, such the wide area GIS service networks
discussed by Yang et al. and the GIS field worker case studies discussed by Poore, also
both in this special issue. Spatial CI thus provides a subset of capabilities that spans
many of the requirements of CI in general and so is a good test case for evaluating
general CI architectures.

Cyberinfrastructure is the hardware, software, and networking that enables
regionally, nationally, and globally scalable, sharable, distributed computing, data and
information management, and collaboration. Grid computing is an important subset of
Cyberinfrastructure. In the US, the NSF-funded TeraGrid and the NSF/DOE Open
Science Grid (9) are examples of national-scale computing infrastructure. Internationally,

the European Grid Initiative (http://www.egi.eu/) is a prominent example, and the Open
Grid Forum (http://ogf.org/) provides international community leadership and standards.
An important characteristic of Grid deployments is that they provide middleware with
network-accessible programming interfaces (such as Web services) that allow remote,
programmatic access for executing science applications on large clusters and
supercomputers, managing files and data archives, and getting information about the
states of the system resources. Prominent examples of software (middleware) used to
provide these capabilities include the Globus Toolkit (10), Condor (11), and gLite
(glite.web.cern.ch). Higher-level capabilities can be built on these basic services.
Examples include workflow composing tools (12,13), which compose basic services into
higher order applications; and science gateways (7), which provide Web interfaces to
services and workflows that are suitable for a broad range of users (researchers,
students, and the general public). This service-oriented approach is generally
compatible with, for example, the Open Geospatial Consortium’s suite of service
specifications, particularly the Web Feature Service and Web Map Service, as discussed
by Yang et al. in this issue. Ideally, one may build higher-level applications out of a
toolbox of third party services backed up by persistent Cyberinfrastructure; we formerly
termed this the “Grid of Grids” approach (3).

 The problem that we see is that there is no national scale infrastructure to provide
the foundation for the comprehensive cyberinfrastructure vision of the well-known Atkins
report (14); that is, as we will elaborate, there is no "Infrastructure as a Service" in
today's Cyberinfrastructure. The current flagship deployments of Cyberinfrastructure in
the US are dominated by the requirements of closely coupled, high-end, high
performance computing using batch queuing. This computing infrastructure is not well
suited for many Spatial CI applications, which are dominated by database-driven
applications, and is also ill suited for on-demand and real-time processing, such as is
required in emergency response. Arguably the NSF DataNet funded projects such as
DataONE (https://dataone.org/) may address the data-centric needs of
Cyberinfrastructure that are crucial to much of Spatial CI, such as long-term storage and
preservation of observational and experimental data and their processing pipelines, but
this NSF program is in its earliest stages.

Cyberinfrastructure and Cloud Computing
There is an ongoing debate about the precise definitions of Cloud Computing and

how (or if) it can be differentiated from Grid Computing. Following (15), clouds are
notable for their elasticity (ability for users to scale resources up and down) and for new
platform features such as distributed table data storage and the map-reduce
programming model. These are not inconsistent with goals of Grid Computing. Some
concepts, including service oriented architectures and workflows for scientific computing,
were pioneered by Grids and are equally important for Clouds.

Academic surveys and initial investigations of clouds are available from (16,17,18),
and Clouds from a Grid perspective are discussed in (19). A key distinguishing feature of
Grids is the “virtual organization” (20). Grids are designed to support virtual
organizations that federate multiple real, independent organizations with heterogeneous
resources. In contrast, commercial Clouds are controlled by single entities (corporations
such as Amazon, Google, or Microsoft), and so the virtual organization problem is not
central. This may change as more resource-limited organizations (such as universities)
stand up campus Clouds. In any case, Clouds expose a more user-centric view of their
infrastructure: service agreements are between the user and the cloud provider, rather
than between two resource providers attempting to federate themselves, as Grids
attempt to do.

Ultimately, however, we believe the distinctions and similarities between Clouds,
Grids, Service Oriented Architecture systems, and so on are best illustrated positively
through case studies that illustrate the problems these systems attempt to solve, rather
than through negative proofs or exclusionary arguments. With this in mind, we will focus
on two specific aspects of the elastic capabilities of Cloud services: Infrastructure as a
Service and runtime Software as a Service.

Infrastructure as a Service
At the lowest and simplest level, clouds are typically implemented using virtual

machines and virtual storage devices deployed on large, centralized computing facilities
and data centers. Users control the lifecycle of their virtual infrastructure through Web
service-exposed programming APIs and Web user interfaces. A virtual machine is a
software implementation of a computer than runs on a real computer; it can have a
different operating system, software stack, and network address from its host. Clouds
providers use vast collections of virtual machines to provide "Infrastructure as a
Service". Through Web service and similar programming interfaces, users create and
control their own virtual computing resources on remote cloud centers. A simple but
powerful extension of this idea is for the virtual machines to come with software
packages preinstalled and preconfigured. For example, a user may instantiate a virtual
machine or cluster image that comes pre-configured with geospatial software (Web Map
and Web Feature services, collections of data sets such as demographic and
environmental data, and analysis software) needed for a particular investigation or to
provide a particular service to a community.

Less well known than the virtual machine but at least as important for Spatial CI is
the virtual block storage device. An example of this is Amazon’s Elastic Block Store,
which can be attached to a virtual machine to provide additional file space. These
attached file systems do not need to be empty. As Amazon’s public data sets illustrate
(aws.amazon.com/publicdatasets/), data providers can create libraries of public and
community data sets (both files and databases) that can be checked out from the Cloud
by individual users. An open-architecture approach to virtual block stores is described in
(44). The applicability of these services for hosting legacy (pre-cloud), distributed GIS
data sets and services (see again for example Yang et al in this issue) is apparent.
Additionally, the major Cloud vendors all have very scalable (if non-relational) data
management capabilities as part of their infrastructure. Examples include Google’s
BigTable, Microsoft Azure’s Table Service, and Amazon’s SimpleDB. These data
management systems lack the full functionality of relational databases but work very well
as extremely scalable spreadsheets. Google Maps and Google Earth are prominent GIS
applications using BigTable, and Google Fusion Tables includes an interesting set of
GIS capabilities.

Although we have focused on commercial cloud infrastructure above, it is possible to
set up a cloud using Open Source software on existing server farms and clusters.
Example software includes Eucalyptus (23), Nimbus (21), OpenStack, and OpenNebula.
Academic cloud installations and test-beds base on these and related technologies are
becoming available. The NanoHUB project at Purdue University, based on HUBzero
middleware, is one of the most prominent (22). Examples of test-beds investigating
Clouds include the NSF-funded FutureGrid, the NASA-funded Nebula, and the DOE-
funded Magellan test-beds.

Virtualization does come with a price: virtual machines currently introduce significant
communication overhead and do not support the fastest network connections such as
Infiniband. Further, the virtualized networking currently used in the virtual machines in
today’s commercial clouds together with jitter from complex operating system functions
increase synchronization/communication costs. This will effect closely coupled parallel

applications built with the Message Passing Interface (MPI), such as those commonly
run on the NSF TeraGrid. This is especially serious in large scale parallel computing and
leads to significant overheads in many MPI applications (52, 53). Indeed the usual (and
attractive) fault tolerance model for clouds runs counter to the tight synchronization
needed in most MPI applications. We review these overheads in (27). We expect that
the largest, most closely coupled scientific parallel problems will continue to run on very
large clusters built with advanced rather than commodity architectures (see for example
the NSF funded Blue Waters supercomputer, http://www.ncsa.illinois.edu/BlueWaters/),
but there remain many problems in scientific computing that are better suited for running
on Cloud resources, as we discuss next. Finally, Clouds are not exclusively dependent
on virtualization. Amazon's Cluster Computing Service provides access to real
hardware. The FutureGrid project is also developing the infrastructure to provide real
hardware as a service to support distributed computing research that is performance
sensitive.

Infrastructure as a Service Case Study: Flood Grid
We first consider a somewhat typical Web service-based system built in a traditional

(non-Cloud fashion) using a Service Oriented Architecture approach. We will use this to
evaluate Cloud approaches by adapting it to use elastic Infrastructure as a Service
approaches while retaining its overall architecture. The Flood Grid pilot study focuses on
inundations of the White River at Ravenswood area in Indianapolis using the 2D
hydraulic model, FaSTMECH (30), calibrated for the region. Real-time forecast data from
the National Weather Service's Advanced Hydrologic Predication Service
(http://water.weather.gov/ahps2/hydrograph.php?wfo=ind&gage=nori3) provide initial
conditions of the simulation. The Computational Fluid Dynamics General Notation
System (CGNS) (31) bridges the computation model and its environmental surface-
water applications by providing a standard data format and the framework for
exchanging data. Figure 1 outlines the service interactions of the system’s workflow. We
next review the steps in the workflow.

The river data monitoring service at the start of the workflow constantly monitors the
NWS real-time forecast and starts recording both the flow gauge and the river stage data
up to 6 days into the future once a pre-defined flood condition is met. During a flood
study, the CGNS input process service provides initial conditions into the pre-calibrated
regional model represented by a CGNS file. The updated CGNS file is then fed to the
flood simulation service as its input to perform the FaSTMECH simulation, which stores
computation results by updating the given CGNS file. The CGNS output process service
parses the FaSTMECH simulation results and produces rectilinear flood depth grids
using nearest neighbor clustering techniques. The loss calculation service overlays the
generated flood grids with parcel property data and calculates percentage damages
using Hazards U.S. Multi-Hazard (HAZUS-MH) (www.fema.gov/prevent/hazus) analysis
tools. Finally the map tile cache service visualizes the study results in Google Maps.

The core flood simulation service wraps the FaSTMECH FORTRAN computation
program using the Swarm job scheduling service framework (32). Swarm provides a set
of Web Services for standard computation job management such as submission, status
query, and output retrieval. The simulation service is deployed on the Gateway Hosting
Service at Indiana University (33), a virtual machine-based hosting infrastructure service.
Flood damage estimation and visualization services are developed with Visual Basic
.NET, and deployed under Internet Information Services (IIS) by the Polis Center.

FloodGrid, as described above, is an example of a "Grid of Grids" federation of
several services, rather than a Cloud. However, we will now use FloodGrid to illustrate
the advantages of using Infrastructure as a Service. We map the Flood Grid
infrastructure requirements to Cloud Computing infrastructure in Table 1. An important

requirement for FloodGrid’s infrastructure is reliable service hosting to make sure that
the services illustrated in Figure 1 are persistently available, with redundancy and load
balancing. For related work, see (29).

Clouds would also be useful as providers of standard data libraries (CGNS files of
hydrological models) through virtual block stores. For FloodGrid, the central piece is a
validated CGNS input mesh that models a particular section of a river. Although only
one such model was available for the study, one may envision a library of calibrated
models for different geographic areas available for checkout from virtual block storage
services. Similarly, standard GIS data sets (parcel and demographic information) can
also be delivered in this fashion, coupled to a Web Feature Service that provides them.
That is, one would not need to rely upon a third party Web service with its own reliability
concerns. Instead, GIS data providers could provide virtual images of their data and
software that can be instantiated by other developers on a Cloud as needed. Finally, we
note that the system could use pre-configured virtual machines that include FaSTMECH,
Swarm, and all supporting software to distribute the system to other groups wanting to
run their own versions of the FloodGrid processing pipeline.

FloodGrid and Elastic Clouds: As described above, FloodGrid can support both
automated and on-demand usage scenarios. Both are motivating case studies for elastic
resources, since the infrastructure usage levels are very low on average but spike during
flood events. The core flood simulation is the FaSTMECH computation program; it is the
most computationally intensive and time-consuming part of FloodGrid project. When a
flood is happening, FloodGrid will automatically start the flood simulation through its
flood monitoring service for all regions of interest. Users responsible for disaster
planning and emergency response will also place increased demands on the system to
simulate different flood scenarios. Computing power demand thus peaks in a narrow
period of the flood event. We illustrate how elastic resources may be used in this
scenario.

Our simulation service is deployed as Xen virtual machines (VM) on an in-house
cloud hosting testbed (see Figure 2). We estimate the computing power requirement for
FaSTMECH by the simulation field size and length of flood input. Virtual machines are
allocated by the service running on Xen master node accordingly. We use the Virtual
Block Store (VBS) System (44), an open source version of Amazon's Elastic Block
Store, to meet our storage requirements. VBS is accessed by the VMs as if it was a
local disk. VBS is independent of the VM instances, so the simulation results can be
accessed even after VM instances have been destroyed. In this “Infrastructure as a
Service” configuration, the detail of FaSTMECH computing is invisible to FloodGird
users; the workflow is always the same for flood simulation job.

To test this configuration, 10 flood scenarios with the different flood forecast
parameters (based on the historical flood data) are added to the flood simulation queue.
Four virtual machines with the FaSTMECH computing service are allocated
automatically according to the computing time estimation. The estimated FaSTMECH
running time ranges from 30 minutes to several hours. To provide rapid simulation result
delivery with cloud computing resource cost in consideration, 4 virtual machines are
allocated based on the estimation. 10 flood simulations are sent into the queue in
random order. With 4 virtual machines, all the FaSTMECH jobs finished in 205 minutes.
For comparison, 10 jobs take 739 minutes on a single virtual machine.

Software as a Service
Although one may want to use Cloud Computing to outsource infrastructure at the

operating system level, it is also desirable to have higher-level tools and services
available on top of the cloud infrastructure. For example, scientific computing needs to
have tools that simplify running computing tasks on clouds, especially if these scale

extremely well. This is an example of what is commonly dubbed "Software as a
Service". Apache Hadoop is relevant software. Hadoop is an implementation of two
ideas promulgated by Google: the Google File System and MapReduce (25). Strictly
speaking, Hadoop and its competitors do not need to run on elastic, virtual machine-
based infrastructure, but the two are a good match (see for example Amazon's Elastic
Map Reduce, aws.amazon.com/elasticmapreduce/).

MapReduce and its competitors (prominently, Microsoft’s Dryad (26)) are designed
to solve very large, data-file parallel information retrieval problems that arise in Internet-
scale searching and indexing. MapReduce is designed to manage computing tasks in
distributed environments for certain classes of parallel problems: those associated with
fragmentable data sets. Although MapReduce can be applied to a wide range of
problems (24), it generally is designed to support data-file parallelism; that is, we need to
apply an operation or a sequence of operations to huge input files or file collections that
can be split into smaller fragments on distributed file systems. The individual operations
need little or no communication with each other. In contrast, traditional parallel
programming, based around the Message Passing Interface (MPI), is better suited for
tightly coupled applications with significant inter-process communication. The notion of
file parallelism can be generalized to include memory, network, and other standard
input/output mechanisms. Processing and mining sensor streams in a large sensor Web
are obvious applications for stream data parallelism in Spatial CI. Although not
supported by Hadoop, this is an intended feature of Dryad and has been explored by
research groups (27, 28).

There are certain obvious advantages in applying MapReduce to spatial data
processing. First, MapReduce scales well for appropriate problems, enabling data
processing procedures to move smoothly from smaller test-beds during development
and debugging to larger cluster and cloud environments. This scalable geospatial
processing is crucial to spatial applications that deal with large volumes of spatial data.
Second, the HDFS distributed file system makes it easy to handle a large volume of
spatial data. Third, existing image processing binaries can be deployed on the cloud
through Hadoop streaming. Finally, tiled spatial data system, such as Google Maps and
Microsoft Bing Maps are well suited for MapReduce. We will examine these issues in
our PolarGrid case study below.

The MapReduce programming model can be used in several different ways to
support data-intensive spatial processing; there are three basic execution styles (38).
Map only applications: only the mapper is present, it is suitable for one-step spatial data
transformation operations, e.g. map projection and image filtering. MapReduce
applications: both mapper and reducer are used. This can be used to build spatial index,
performance querying and obtain statistical information (39,40,41). Iterative MapReduce
applications: MapReduce steps run iteratively until certain criteria are met. It is suitable
for spatial clustering and data mining algorithms, such as K-means clustering (42).

MapReduce as a programming model for clouds has received significant attention
from the academic community. However, it is not a panacea, and it will not meet all the
computing requirements of Spacial CI. MapReduce is a batch-processing approach for
processing files registered with a fault-tolerant overlay file system (the Google File
System or the Hadoop Distributed File System). In Spatial CI, problems such as large-
scale image processing are the best fits for this programming style. However, relational
database-centric geospatial problems are not well suited for MapReduce, and relational
data processing on a cloud is an open problem. Instead of relational databases, cloud
data management systems focus on highly scalable but not relational, "NoSQL"
approaches that sacrifice strong consistency for scalability. In contrast, a great deal of

geospatial processing is associated with geospatial databases that extend classic
relational database systems such as PostgreSQL and Oracle.

From the Spatial CI point of view, MapReduce's reliance on files as an implicit data
model and its close integration with the file system are important limitations. Quadtree-
modeled data (often used for indexing collections of two-dimensional images such as
map tiles) can be adapted straightforwardly, but the more geospatial object-centric R-
tree encoded data (such as geospatial features) are not a good match. As perhaps an
intermediate step from the Spatial CI point of view, many commercial clouds are
beginning to offer relational databases as services. Microsoft Azure's SQL Service
(based on SQL Server) and Amazon RDS (based on MySQL) are two examples.

Research into extremely scalable relational database systems and intermediate
systems between the relational and NoSQL extremes are very active areas, although to
our knowledge no work specifically on the requirements of Spatial CI has taken place.
HadoopDB (48), for example, is a hybrid between relational databases and MapReduce.
Naturally supporting R-tree data models in MapReduce-style programming and more
generally supporting relational databases in Cloud infrastructure are open academic
problems (55). Google has recently published a description of its new, real-time indexing
system, Percolator (49), which has replaced MapReduce as its internal mechanism for
calculating search rankings. Unlike MapReduce, Percolator maintains state, avoiding
the need to completely recalculate ranking indices. Related systems from Yahoo and
Microsoft are described in (50) and (51), respectively. These systems are potentially
interesting models for real-time geospatial processing.

Software as a Service Case Study: SAR Image Pipelines
In this case study, we examine the cloud computing requirements of a common

Spatial CI problem: image processing. The sub-glacial terrain images acquired from
Synthetic Aperture Radar (SAR) reveal ice sheet thickness and the details of internal ice
layers over vast areas beneath the 3 KM-thick Greenland ice sheet (34, 35).
Approximately 25 TB of raw SAR data are available for processing Polar Grid resources
from the 2008-2009 campaigns (45). Batch processing on clusters is typically used to
produce initial data products from raw data. These may require additional re-processing
as the image processing algorithms are improved. Furthermore, it is desirable to create
more specialized, higher-level data products, such as improving the SAR image qualities
in post-processing and flight line calculations. We will examine both filtering and flight
line calculations as MapReduce problems, although we note there is a larger problem to
be addressed by Spatial CI pipelines.

For this test, we developed a sample Matlab application that implements the
specially tailored Douglas-Peucker algorithm (47) to simplify flight line data and generate
SAR images. We compiled it as a standalone executable. Again, the MCR allows us to
port our compiled program to a cluster running our Hadoop installation. Flight line
simplification is a data-parallel problem and well suited for MapReduce. Hadoop
streaming is used to run MapReduce tasks. We had to develop a Python script to
overcome the mismatch between Matlab's standard input/output mechanisms and the
Hadoop Distributed File System. This script also acts as a Hadoop reader to read the
flight line’s native binary format; this eliminates the needs to convert the data into text
format in advance.

Greenland flight path data, https://www.cresis.ku.edu/data/greenland, serve as our
input. Figure 3 shows the overview of the 2007 flight lines. Flight lines are organized by
the flight date; each flight line is broken into smaller sections, each section is distributed
as a Matlab mat file, the file size is around 10M to 50M, and the total size of one day’s
flight line ranges from 500M to 1G. Flight path data are stored as (Latitude, Longitude)

pairs; the radar data that measured the underground ice structures are stored in the
variable “Data” as a 2D array.

Data Processing: The main application is developed in Matlab, and the data is
processed in the following procedure. Steps 1-4 are in the map stage; step 5 is the
reduce step. 1) Simplify the flight lines using Douglas-Peucker algorithm; 2) export the
simplified flight lines as Google KML; 3) generate radar images; 4) combine KML and
radar images to the self-contained Google KMZ file; and 5) generate the overall
simplified flight lines and radar images for the on-going visualization project (reduce
stage). The sample output is shown in Figure 3. The left image shows the overall
simplified flight line; the broken part in the middle is due to a missing data set. One
sample radar image is shown in the right; it clearly indicates the underground ice bed
exists around 2000m deep.

Testing Environment and Procedure: Software used includes Hadoop 0.20.2, Maltab
2009a, and Python 2.6. All computations were performed on IU’s Quarry cluster using
himem (high memory) nodes obtained through the PBS scheduler. The testing is carried
out by the combination of the number of the flight lines (1, 2, 3), and the number of
computing nodes (3, 6, 9, 12, 15). We obtain one computing core for each node, since
there is very limited multi-core support in Matlab Compiler Runtime. A Java program is
used to generate the Hadoop configuration files on the fly. We then reformat the Hadoop
namenode, copy data files from local files system to Hadoop HDFS. The compiled
Matlab application is managed by Hadoop streaming. The processing time measured
here is only the running time of Hadoop streaming jobs, rather than the whole testing
process. It usually takes 2-3 minutes to start up Hadoop system on himem queue. The
running time for individual tasks ranges from 60 to 90 seconds. Results are given in
Table 2.

Three computing-node Hadoop runs are the smallest feasible size, so we calculate
speedup and efficiency against these. We plot Table 2’s values in Figures 4 and 5.
Figure 4 shows the overall processing time, which decreases for all flight lines with
increasing nodes as expected. The efficiency and speedup measurements provide
better measurements of relative performance. Figure 5 plots the speedups for increasing
node sizes. All three flight line calculations collapse to the same line, indicating
independence of problem size, as expected for a data parallel problem. Efficiency
values from Table 2 also collapse to the same line.

MapReduce implementations such as Hadoop are subject to overheads, test-bed
specific effects, and related implementation inefficiencies and artifacts that do not
concern us here. We note that 60 seconds is, as a rule of thumb, a lower bound for
efficient (or scalable) individual tasks run with Apache Hadoop. We observed great
variability in Hadoop’s overheads (such as task scheduling), on the order of seconds.
These results depend greatly on the testing environment and become negligible for
longer running tasks. Other tests show parallel efficiencies over 95% are possible for
larger data-parallel problems (54).

Conclusions
In this paper, we surveyed requirements that Spatial Cyberinfrastructure places on

Cloud Computing. We focused on Cloud Computing's "Infrastructure as a Service" and
"Software as a Service" models. We illustrated these requirements using two small
projects initially developed in a pre-Cloud fashion: the Flood Grid and Polar Grid
projects. Our key observation is that Clouds grant more control over the environment to
developers through virtualization. This allows, for example, developers to install and
control their own software without worrying about version conflicts with developers on
unrelated projects. MapReduce, a common programming model for clouds, does provide

a powerful way to do some Spatial CI tasks (particularly image processing), but current
implementations are a poor fit for geospatial problems that are not file-based, particularly
those closely tied to geospatial database applications.

Spatial CI is an important subset of a more general CI, spanning the both "deep"
(traditional, tightly coupled high performance computing) and "wide" (non-traditional or
even disruptive) usage requirements. We have shown that a number of Spatial CI
requirements, such as service hosting, elastic virtual clusters, and virtual data sets, map
well to Cloud Computing's "Infrastructure as a Service" model. This important
requirement (see for examples the service-oriented Spatial CI (Yang et al), human-
centered CI (Siebar et al and Poore), and data management CI described by companion
articles) is unmet by current CI deployments such as the TeraGrid. We also examined
modeling and processing services with data-file parallelism (such as image processing
pipelines), which are examples of common Cloud Computing "Software as a Service"
models such as MapReduce. Cloud computing models still need to be applied to a
broader class of Spatial CI problems, such as those discussed by Wang and by Helly et
al in this special issue.

Large commercial vendors dominate Clouds, but there is a growing collection of
open source software that can be used to build research clouds. A challenge for core
Cyberinfrastructure research will be to investigate and document open architecture
Cloud systems. Spatial CI can and should provide a wide range of important test cases.

Acknowledgments
The FloodGrid project is funded by the Federal Geographic Data Committee's

National Spatial Data Infrastructure, Cooperative Agreements Program Category 2: Best
Practices in Geospatial Service Oriented Architecture (SOA), Agreement
#08HQAG0026. PolarGrid is funded by NSF through the award, "MRI: Acquisition of
PolarGrid: Cyberinfrastructure for Polar Science", award # 0723054. We thank Thilina
Gunarathne for assistance with Hadoop tests.

References

1. Atkas, M., et al. (2006), iSERVO: Implementing the International Solid Earth Virtual
Observatory by Integrating Computational Grid and Geographical Information Web
Services, Pure and Applied Geophysics, Volume 163, Numbers 11-12, 2281-2296.

2. Donnellan, A., et al (2006) QuakeSim and the Solid Earth Research Virtual
Observatory, Pure and Applied Geophysics, Volume 163, Numbers 11-12, 2263-
2279.

3. Fox, G., Lim, S., Pallickara, S., Pierce, M. (2005) Message-based Cellular Peer-to-
Peer Grids: Foundations for Secure Federation and Autonomic Services, Journal of
Future Generation Computer Systems, 21(3), 401–415. (2005).

4. Aydin, G., et al., (2008) Building and applying geographical information system
Grids. Concurrency and Computation: Practice and Experience 20(14): 1653-1695.

5. Aydin, G., Qi, Z., Pierce, M.E., Fox, G.C., and Bock, Y., Architecture, Performance,
and Scalability of a Real-Time Global Positioning System Data, Grid 17 January
2007, Special issue on Computational Challenges in Geosciences in PEPI (Physics
of the Earth and Planetary Interiors) 163: 347-359 (2007).

6. Granat, R., Aydin, A., Pierce, M.E., Qi, Z., and Bock, Y. (2007) Analysis of streaming
GPS measurements of surface displacement through a web services environment,
CIDM: 750-757 (2007).

7. Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., Pamidighantam, S. (2008):
TeraGrid Science Gateways and Their Impact on Science. IEEE Computer 41(11):
32-41.

8. Catlett, C., et al. (2004) TeraGrid: Analysis of Organization, System Architecture, and
Middleware Enabling New Types of Applications, HPC and Grids in Action, Ed. Lucio
Grandinetti, IOS Press 'Advances in Parallel Computing' series, Amsterdam.

9. Foster, I. et al., (2004) The Grid2003 Production Grid: Principles and Practice,
HPDC: 236-245.

10. Foster, I. (2006) Globus Toolkit Version 4: Software for Service-Oriented Systems. J.
Comput. Sci. Technol. 21(4): 513-520.

11. Thain, D., Tannenbaum, T., Livny, M. (2005) Distributed computing in practice: the
Condor experience. Concurrency - Practice and Experience 17(2-4): 323-356.

12. Gil, Y., et al (2007) Examining the Challenges of Scientific Workflows. IEEE
Computer 40(12): 24-32.

13. Fox, G., Gannon, D. (2006) Special Issue: Workflow in Grid Systems. Concurrency
and Computation: Practice and Experience 18(10): 1009-1019.

14. Atkins DE, et al. (2003) Revolutionizing Science and Engineering through Cyber-
infrastructure: Report of the National Science Foundation Blue-Ribbon Advisory
Panel on Cyberinfrastructure, National Science Foundation Publication NSF0728
(National Science Foundation, Washington, DC), 84 pp.

15. Fox, Geoffrey (2010) Clouds and Map Reduce for Scientific Applications. Technical
Report. Available from
http://grids.ucs.indiana.edu/ptliupages/publications/CloudsandMR.pdf

16. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, Matei Zaharia: A view of cloud computing. Commun. ACM 53(4): 50-58
(2010)

17. Youseff, L.; Butrico, M.; Da Silva, D (2008) Toward a Unified Ontology of Cloud
Computing. Page(s): 1-10 Digital Object Identifier 10.1109/GCE.2008.4738443.

18. Jha, S., Merzky, A., Fox, G (2009) Using clouds to provide grids with higher levels of
abstraction and explicit support for usage modes. Concurrency and Computation:
Practice and Experience 21(8): 1087-1108.

19. Foster, I. T., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-
Degree Compared CoRR abs/0901.0131: (2009).

20. Ian T. Foster, Carl Kesselman, Steven Tuecke: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. IJHPCA 15(3): 200-222 (2001)

21. Foster, I., et al. (2006) Virtual Clusters for Grid Communities, CCGRID: 513-520.
22. Klimeck, G., et al (2008), nanoHUB.org: Advancing Education and Research in

Nanotechnology, IEEE Computers in Engineering and Science (CISE), Vol. 10, 17-
23 (2008).

23. Nurmi, D., et al (2008) The Eucalyptus Open-source Cloud-computing System, in
Proceedings of Cloud Computing and Its Applications, Chicago, IL (October 2008).

24. Chu C-T, et al (2006). Olukotun, Map-Reduce for Machine Learning on Multicore,
NIPS: 281-288.

25. Dean, J., Ghemawat, S. (2008) MapReduce, Simplified Data Processing on Large
Clusters. Commun, ACM 51(1): 107-113.

26. Isard, M., Budiu, M., Yu Y., Birrell, A., Fetterly, D. (2007) Dryad, Distributed Data-
Parallel Programs from Sequential Building Blocks, EuroSys: 59-72.

27. Ekanayake, J.; Pallickara, S.; Fox, G. (2008) MapReduce for Data Intensive
Scientific Analyses. IEEE Fourth International Conference on eScience '08
7-12 Dec. 2008 Page(s):277 - 284 Digital Object Identifier 10.1109/eScience.2008.59

28. Pallickara, S.; Ekanayake, J.; Fox, G. (2008) An Overview of the Granules Runtime
for Cloud Computing. IEEE Fourth International Conference on eScience '08, 7-12
Dec. 2008 Page(s): 412 - 413 Digital Object Identifier 10.1109/eScience.2008.101.

29. Nadine Alameh: Chaining Geographic Information Web Services. IEEE Internet
Computing 7(5): 22-29 (2003)

30. Nelson, J.M., Bennett, J.P., and Wiele, S.M., 2003, Flow and Sediment Transport
Modeling, Chapter 18, p.539-576. In: Tools in Geomorphology, eds. M. Kondolph
and H. Piegay, Wiley and Sons, Chichester, 688 pp.

31. CGNS: Legensky, S.M., Edwards, D.E., Bush, R.H., Poirier, D.M.A., Rumsey, C.L.,
Cosner, R.R., and Towne, C.E. (2002), CFD General Notation System (CGNS)—Status
and future directions: American Institute of Aeronautics and Astronautics , 2002-
0752.

32. Pallickara, S.L.; Pierce, M. (2008) SWARM: Scheduling Large-Scale Jobs over the
Loosely-Coupled HPC Clusters. IEEE Fourth International Conference on eScience
'08. 7-12 Dec. 2008 Page(s):285 - 292 Digital Object Identifier
10.1109/eScience.2008.64.

33. Lowe, J. M., et al (2009) Gateway Hosting at Indiana University. Online Proceedings
of TeraGrid 2009 June 22-25, Arlington, VA. Available from
http://archive.teragrid.org/tg09/files/tg09_submission_47.pdf

34. Paden, J., et al (2010), Ice-Sheet Bed 3-D Tomography, Journal of Glaciology, Vol.
56, No. 195.

35. Allen, C., and J. Paden (2007), Synthetic-Aperture Radar Images Polar Ice-Sheet
Bed, SPIE Newsroom [DOI: 10.1117/2.1200706.0780].

36. Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, Geoffrey Fox Twister: A Runtime for Iterative MapReduce Proceedings of the
First International Workshop on MapReduce and its Applications of ACM HPDC
2010 conference, Chicago, Illinois, June 20-25, 2010.

37. Judy Qiu, Thilina Gunarathne, Jaliya Ekanayake, Jong Youl Choi, Seung-Hee Bae,
Hui Li, Bingjing Zhang, Yang Ryan, Saliya Ekanayake, Tak-Lon Wu, Scott Beason,
Adam Hughes, Geoffrey Fox Hybrid Cloud and Cluster Computing Paradigms for Life
Science Applications Technical Report April 17 2010 submitted to the 11th Annual
Bioinformatics Open Source Conference BOSC 2010.

38. J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, and G. Fox, (2010). "High
Performance Parallel Computing with Cloud and Cloud Technologies," Cloud
Computing and Software Services: Theory and Techniques, CRC Press (Taylor and
Francis), pp. 1-39.

39. A. Cary, Z. Sun, V. Hristidis, and N. Rishe, (2009) "Experiences on Processing
Spatial Data with Using MapReduce in Practice," Lecture Notes In Computer
Science: Proceedings of the 21st International Conference on Scientific and
Statistical Database Management, vol. 5566, pp. 302-319.

40. S.W. Schlosser, M.P. Ryan, R. Taborda, J. Lopez, D.R. O'Hallaron, and J. Bielak,
(2008). "Materialized community ground models for large-scale earthquake
simulation," 2008 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-12.

41. S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, (2009). "SJMR: Parallelizing spatial
join with MapReduce on clusters," 2009 IEEE International Conference on Cluster
Computing and Workshops, pp. 1-8.

42. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. Fox, (2010).
"Twister : A Runtime for Iterative MapReduce," The First International Workshop on
MapReduce and its Applications (MAPREDUCE'10) - HPDC2010, pp. 1-8.

43. J. Dean and S. Ghemawat, (2004). "MapReduce: Simplified data processing on large
clusters," OSDI'04: Sixth Symposium on Operating System Design and
Implementation, pp. 1-13.

44. X. Gao, M. Lowe, Y. Ma, and M. Pierce, 2009. "Supporting cloud computing with the
virtual block store system," 2009 5th IEEE International Conference on E-Science
Workshops, pp. 71-78.

45. L. Hayden, J.H. Powell, and E. Akers, (2009). "Establishing field and base camp
servers for remote sensing of ice sheets in ilulissat, Greenland," 2009 IEEE
International Geoscience and Remote Sensing Symposium, IEEE, pp. 571-573.

46. MathWorks, (2010). MATLAB Distributed Computing Server 5.0,
http://www.mathworks.com/products/distriben/

47. D. Douglas and T. Peucker, "Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature," The Canadian Cartographer,
vol. 10, 1973, pp. 112-122.

48. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, Avi
Silberschatz: HadoopDB: An Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. PVLDB 2(1): 922-933 (2009)

49. Daniel Peng and Frank Dabek, "Large-scale Incremental Processing Using
Distributed Transactions and Notifications", 9th USENIX Symposium on Operating
Systems Design and Implementation, Vancouver, October 4-6, 2010.

50. D. Logothetis, C. Olston, B. Reed, K. C. Webb and K. Yocum. Stateful Bulk
Processing for Incremental Algorithms. ACM Symposium on Cloud Computing
(SOCC), Indianapolis, Indiana, June 2010.

51. Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan Yu,
and Li Zhuang, "Nectar: Automatic Management of Data and Computation in Data
Centers", Microsoft Research Technical Report, MSR-TR-2010-55, May 2010

52. Edward Walker, Benchmarking Amazon EC2 for High Performance Scientific
Computing, USENIX ;login, vol. 33(5), Oct 2008
http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf

53. Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne, Scott Beason, Geoffrey Fox
High Performance Parallel Computing with Clouds and Cloud Technologies to appear as a
book chapter to Cloud Computing and Software Services: Theory and Techniques,
CRC Press (Taylor and Francis), ISBN-10: 1439803153.
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-
diagrams.pdf

54. Thilina Gunarathne, Tak-Lon Wu, Jong Youl Choi, Seung-Hee Bae, Judy Qiu, “Cloud
Computing Paradigms for Pleasingly Parallel Biomedical Applications”. To appear in
Proceedings of CloudCom 2010, Indianapolis, IN Nov 30-Dec 3.

55. Afsin Akdogan, Ugur Demiryurek, Farnoush Banaei-Kashani and Cyrus
Shahabi, “Voronoi-based Geospatial Query Processing with MapReduce”. To
appear in Proceedings of CloudCom 2010, Indianapolis, IN Nov 30-Dec 3.

Figure Legends

Figure 1 Flood Grid Service Stack and Workflow. Each component (gray box) is a
network accessible service with well-defined inputs and outputs expressed using the Web

Service Description Language.

Figure 2 Virtualization is used to elastically increase the Flood Grid simulation service
to handle greater demand during flood events.

Figure 3 Sample Output of 2009-9-17 Flight Line

Figure 4 Processing time versus number of computing nodes for different flight lines.

Figure 5 Speedup versus number of nodes for different flight lines

Table Legends

Table 1 Mapping Flood Grid infrastructure requirements to Cloud Computing.

Table 2 Haoop Test Results. P=Processing time (s). Relative Speedup S=T(3 nodes)/T
(x nodes). E=Efficiency per node, S(nodes)*3/nodes

Figure 1 Flood Grid Service Stack and Workflow. Each component (gray box) is a network
accessible service with well-defined inputs and outputs expressed using the Web Service
Description Language.

Figure 2 Virtualization is used to elastically increase the Flood Grid simulation service to handle
greater demand during flood events.

Figure 3 Sample Output of 2009-9-17 Flight Line

Table 1 Mapping Flood Grid infrastructure requirements to Cloud Computing.

Flood Grid Requirement Cloud Computing Capability

Web Service hosting Virtual machine infrastructure
CGNS mesh model data Virtual block storage
GIS data (WFS parcel
information, HAZUS-MH)

Virtual block storage

FaSTMECH Hosting
Virtual machine infrastructure; Map-Reduce style
computation management (optional)

Table 2 Haoop Test Results. P=Processing time (s). Relative Speedup S=T(3 nodes)/T (x nodes).
E=Efficiency per node, S(nodes)*3/nodes

1 Flight Line 2 Flight Lines 3 Flight Lines

P S E P S E P S E

C
om

puting nodes

3 1221 100.0% 1.00 2357 100.0% 1.00 3431 100.0% 1.00

6 644 189.6% 0.95 1233 191.2% 0.96 1837 186.8% 0.93

9 469 260.3% 0.87 874 269.7% 0.90 1260 272.3% 0.91

12 364 335.4% 0.84 702 335.8% 0.84 1041 329.6% 0.82

15 303 403.0% 0.81 590 399.5% 0.80 847 405.1% 0.81

Figure 4 Processing time versus number of computing nodes for different flight lines.

Figure 5 Speedup versus number of nodes for different flight lines.

	Manuscript File 1
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Figure 4
	Figure 5

