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Abstract: In this perspectives paper, we review the current state of Cyberinfrastructure 
and illustrate opportunities that we see if Cloud Computing strategies are adopted. In 
summary, Cloud Computing provides elastically provisioned computing, software, and 
service infrastructure, typically implemented on a foundation of virtual machine and 
virtual data storage technologies.  This elasticity allows users to outsource their 
computing infrastructure, growing or shrinking it as necessary.  Commercial investments 
in Cloud infrastructure make it likely that these systems will dominate large-scale 
computing hardware and software in the next decade.  Furthermore, open source Cloud 
software makes it possible for universities and research laboratories to investigate and 
build open-architecture clouds for scientific computing and other uses.  Given these 
general advantages, we consider the applicability of the approach to scientific computing 
generally and Spatial Cyberinfrastructure specifically through two case studies (flood 
modeling and radar image processing).  We map these projects’ requirements to both 
infrastructure and runtime capabilities typically provided by Clouds. Based on these case 
studies, we discuss gaps and research opportunities in Cloud Computing from the 
geospatial point of view. Our preliminary conclusion from this review is that Spatial 
Cyberinfrastructure’s requirements are a good match for many common capabilities of 
Clouds, warranting a larger scale investigation and research by the community.  
 
\body 
 

Introduction 
This perspectives piece summarizes our views on the next generation of 

Cyberinfrastructure (CI) generally and Spatial Cyberinfrastructure specifically.  We base 
these views on experiences from number of relevant projects, including the NASA-
funded QuakeSim project (1,2), the USGS-funded FloodGrid project (described here), 
and the NSF-funded PolarGrid project (www.polargrid.org).  Our lab has developed 
Cyberinfrastructure software to support these distributed spatial applications, building on 
our general investigations of Cyberinfrastructure architectures (3).    Previous 
applications include Geospatial Information System (GIS) Grid services based on Open 
Geospatial Consortium standards (4) and real-time streaming Global Positioning System 
processing infrastructure (5,6).  

We take a broad view of the problems that Cyberinfrastructure (CI) must support.  
High performance computing and data storage are just two aspects; we also need to 
manage real-time data streams, integrate third party capabilities (such as geographic 
map and data providers), and build interactive user interfaces that act as Science 
Gateways (7).  We believe the next generations of major Cyberinfrastructure 
deployments (such as the NSF TeraGrid (8)) need to provide a broader scope of 
infrastructure capabilities to their user communities. Cloud Computing approaches 
discussed here are good candidates for offering the infrastructure and services needed 
for both deep (computationally intense) science, such as is discussed by Wang in this 
special issue; and wide (non-traditional) usage, such the wide area GIS service networks 
discussed by Yang et al. and the GIS field worker case studies discussed by Poore, also 
both in this special issue.  Spatial CI thus provides a subset of capabilities that spans 
many of the requirements of CI in general and so is a good test case for evaluating 
general CI architectures. 

Cyberinfrastructure is the hardware, software, and networking that enables 
regionally, nationally, and globally scalable, sharable, distributed computing, data and 
information management, and collaboration.  Grid computing is an important subset of 
Cyberinfrastructure. In the US, the NSF-funded TeraGrid and the NSF/DOE Open 
Science Grid (9) are examples of national-scale computing infrastructure. Internationally, 



the European Grid Initiative (http://www.egi.eu/) is a prominent example, and the Open 
Grid Forum (http://ogf.org/) provides international community leadership and standards. 
An important characteristic of Grid deployments is that they provide middleware with 
network-accessible programming interfaces (such as Web services) that allow remote, 
programmatic access for executing science applications on large clusters and 
supercomputers, managing files and data archives, and getting information about the 
states of the system resources. Prominent examples of software (middleware) used to 
provide these capabilities include the Globus Toolkit (10), Condor (11), and gLite 
(glite.web.cern.ch).  Higher-level capabilities can be built on these basic services.  
Examples include workflow composing tools (12,13), which compose basic services into 
higher order applications; and science gateways (7), which provide Web interfaces to 
services and workflows that are suitable for a broad range of users (researchers, 
students, and the general public).  This service-oriented approach is generally 
compatible with, for example, the Open Geospatial Consortium’s suite of service 
specifications, particularly the Web Feature Service and Web Map Service, as discussed 
by Yang et al. in this issue.  Ideally, one may build higher-level applications out of a 
toolbox of third party services backed up by persistent Cyberinfrastructure; we formerly 
termed this the “Grid of Grids” approach (3). 

 The problem that we see is that there is no national scale infrastructure to provide 
the foundation for the comprehensive cyberinfrastructure vision of the well-known Atkins 
report (14); that is, as we will elaborate, there is no "Infrastructure as a Service" in 
today's Cyberinfrastructure. The current flagship deployments of Cyberinfrastructure in 
the US are dominated by the requirements of closely coupled, high-end, high 
performance computing using batch queuing.  This computing infrastructure is not well 
suited for many Spatial CI applications, which are dominated by database-driven 
applications, and is also ill suited for on-demand and real-time processing, such as is 
required in emergency response.  Arguably the NSF DataNet funded projects such as 
DataONE (https://dataone.org/) may address the data-centric needs of 
Cyberinfrastructure that are crucial to much of Spatial CI, such as long-term storage and 
preservation of observational and experimental data and their processing pipelines, but 
this NSF program is in its earliest stages.   

Cyberinfrastructure and Cloud Computing 
There is an ongoing debate about the precise definitions of Cloud Computing and 

how (or if) it can be differentiated from Grid Computing. Following (15), clouds are 
notable for their elasticity (ability for users to scale resources up and down) and for new 
platform features such as distributed table data storage and the map-reduce 
programming model. These are not inconsistent with goals of Grid Computing. Some 
concepts, including service oriented architectures and workflows for scientific computing, 
were pioneered by Grids and are equally important for Clouds.  

Academic surveys and initial investigations of clouds are available from (16,17,18), 
and Clouds from a Grid perspective are discussed in (19). A key distinguishing feature of 
Grids is the “virtual organization” (20).  Grids are designed to support virtual 
organizations that federate multiple real, independent organizations with heterogeneous 
resources. In contrast, commercial Clouds are controlled by single entities (corporations 
such as Amazon, Google, or Microsoft), and so the virtual organization problem is not 
central. This may change as more resource-limited organizations (such as universities) 
stand up campus Clouds.  In any case, Clouds expose a more user-centric view of their 
infrastructure: service agreements are between the user and the cloud provider, rather 
than between two resource providers attempting to federate themselves, as Grids 
attempt to do.  



Ultimately, however, we believe the distinctions and similarities between Clouds, 
Grids, Service Oriented Architecture systems, and so on are best illustrated positively 
through case studies that illustrate the problems these systems attempt to solve, rather 
than through negative proofs or exclusionary arguments. With this in mind, we will focus 
on two specific aspects of the elastic capabilities of Cloud services: Infrastructure as a 
Service and runtime Software as a Service.  

Infrastructure as a Service  
At the lowest and simplest level, clouds are typically implemented using virtual 

machines and virtual storage devices deployed on large, centralized computing facilities 
and data centers. Users control the lifecycle of their virtual infrastructure through Web 
service-exposed programming APIs and Web user interfaces.  A virtual machine is a 
software implementation of a computer than runs on a real computer; it can have a 
different operating system, software stack, and network address from its host.  Clouds 
providers use vast collections of virtual machines to provide "Infrastructure as a 
Service". Through Web service and similar programming interfaces, users create and 
control their own virtual computing resources on remote cloud centers.  A simple but 
powerful extension of this idea is for the virtual machines to come with software 
packages preinstalled and preconfigured.  For example, a user may instantiate a virtual 
machine or cluster image that comes pre-configured with geospatial software (Web Map 
and Web Feature services, collections of data sets such as demographic and 
environmental data, and analysis software) needed for a particular investigation or to 
provide a particular service to a community.    

Less well known than the virtual machine but at least as important for Spatial CI is 
the virtual block storage device.  An example of this is Amazon’s Elastic Block Store, 
which can be attached to a virtual machine to provide additional file space. These 
attached file systems do not need to be empty. As Amazon’s public data sets illustrate 
(aws.amazon.com/publicdatasets/), data providers can create libraries of public and 
community data sets (both files and databases) that can be checked out from the Cloud 
by individual users.  An open-architecture approach to virtual block stores is described in 
(44). The applicability of these services for hosting legacy (pre-cloud), distributed GIS 
data sets and services (see again for example Yang et al in this issue) is apparent.  
Additionally, the major Cloud vendors all have very scalable (if non-relational) data 
management capabilities as part of their infrastructure. Examples include Google’s 
BigTable, Microsoft Azure’s Table Service, and Amazon’s SimpleDB.  These data 
management systems lack the full functionality of relational databases but work very well 
as extremely scalable spreadsheets.  Google Maps and Google Earth are prominent GIS 
applications using BigTable, and Google Fusion Tables includes an interesting set of 
GIS capabilities.  

Although we have focused on commercial cloud infrastructure above, it is possible to 
set up a cloud using Open Source software on existing server farms and clusters.  
Example software includes Eucalyptus (23), Nimbus (21), OpenStack, and OpenNebula. 
Academic cloud installations and test-beds base on these and related technologies are 
becoming available.  The NanoHUB project at Purdue University, based on HUBzero 
middleware, is one of the most prominent (22).  Examples of test-beds investigating 
Clouds include the NSF-funded FutureGrid, the NASA-funded Nebula, and the DOE-
funded Magellan test-beds.  

Virtualization does come with a price: virtual machines currently introduce significant 
communication overhead and do not support the fastest network connections such as 
Infiniband. Further, the virtualized networking currently used in the virtual machines in 
today’s commercial clouds together with jitter from complex operating system functions 
increase synchronization/communication costs. This will effect closely coupled parallel 



applications built with the Message Passing Interface (MPI), such as those commonly 
run on the NSF TeraGrid. This is especially serious in large scale parallel computing and 
leads to significant overheads in many MPI applications (52, 53). Indeed the usual (and 
attractive) fault tolerance model for clouds runs counter to the tight synchronization 
needed in most MPI applications. We review these overheads in (27).  We expect that 
the largest, most closely coupled scientific parallel problems will continue to run on very 
large clusters built with advanced rather than commodity architectures (see for example 
the NSF funded Blue Waters supercomputer, http://www.ncsa.illinois.edu/BlueWaters/), 
but there remain many problems in scientific computing that are better suited for running 
on Cloud resources, as we discuss next.  Finally, Clouds are not exclusively dependent 
on virtualization.  Amazon's Cluster Computing Service provides access to real 
hardware.  The FutureGrid project is also developing the infrastructure to provide real 
hardware as a service to support distributed computing research that is performance 
sensitive. 

Infrastructure as a Service Case Study: Flood Grid  
We first consider a somewhat typical Web service-based system built in a traditional 

(non-Cloud fashion) using a Service Oriented Architecture approach.  We will use this to 
evaluate Cloud approaches by adapting it to use elastic Infrastructure as a Service 
approaches while retaining its overall architecture. The Flood Grid pilot study focuses on 
inundations of the White River at Ravenswood area in Indianapolis using the 2D 
hydraulic model, FaSTMECH (30), calibrated for the region. Real-time forecast data from 
the National Weather Service's Advanced Hydrologic Predication Service 
(http://water.weather.gov/ahps2/hydrograph.php?wfo=ind&gage=nori3) provide initial 
conditions of the simulation. The Computational Fluid Dynamics General Notation 
System (CGNS) (31) bridges the computation model and its environmental surface-
water applications by providing a standard data format and the framework for 
exchanging data. Figure 1 outlines the service interactions of the system’s workflow.  We 
next review the steps in the workflow. 

The river data monitoring service at the start of the workflow constantly monitors the 
NWS real-time forecast and starts recording both the flow gauge and the river stage data 
up to 6 days into the future once a pre-defined flood condition is met. During a flood 
study, the CGNS input process service provides initial conditions into the pre-calibrated 
regional model represented by a CGNS file. The updated CGNS file is then fed to the 
flood simulation service as its input to perform the FaSTMECH simulation, which stores 
computation results by updating the given CGNS file. The CGNS output process service 
parses the FaSTMECH simulation results and produces rectilinear flood depth grids 
using nearest neighbor clustering techniques. The loss calculation service overlays the 
generated flood grids with parcel property data and calculates percentage damages 
using Hazards U.S. Multi-Hazard (HAZUS-MH) (www.fema.gov/prevent/hazus) analysis 
tools. Finally the map tile cache service visualizes the study results in Google Maps. 

The core flood simulation service wraps the FaSTMECH FORTRAN computation 
program using the Swarm job scheduling service framework (32).  Swarm provides a set 
of Web Services for standard computation job management such as submission, status 
query, and output retrieval. The simulation service is deployed on the Gateway Hosting 
Service at Indiana University (33), a virtual machine-based hosting infrastructure service. 
Flood damage estimation and visualization services are developed with Visual Basic 
.NET, and deployed under Internet Information Services (IIS) by the Polis Center.  

FloodGrid, as described above, is an example of a "Grid of Grids" federation of 
several services, rather than a Cloud. However, we will now use FloodGrid to illustrate 
the advantages of using Infrastructure as a Service. We map the Flood Grid 
infrastructure requirements to Cloud Computing infrastructure in Table 1.  An important 



requirement for FloodGrid’s infrastructure is reliable service hosting to make sure that 
the services illustrated in Figure 1 are persistently available, with redundancy and load 
balancing. For related work, see (29). 

Clouds would also be useful as providers of standard data libraries (CGNS files of 
hydrological models) through virtual block stores. For FloodGrid, the central piece is a 
validated CGNS input mesh that models a particular section of a river.  Although only 
one such model was available for the study, one may envision a library of calibrated 
models for different geographic areas available for checkout from virtual block storage 
services.  Similarly, standard GIS data sets (parcel and demographic information) can 
also be delivered in this fashion, coupled to a Web Feature Service that provides them. 
That is, one would not need to rely upon a third party Web service with its own reliability 
concerns.  Instead, GIS data providers could provide virtual images of their data and 
software that can be instantiated by other developers on a Cloud as needed. Finally, we 
note that the system could use pre-configured virtual machines that include FaSTMECH, 
Swarm, and all supporting software to distribute the system to other groups wanting to 
run their own versions of the FloodGrid processing pipeline.   

FloodGrid and Elastic Clouds: As described above, FloodGrid can support both 
automated and on-demand usage scenarios. Both are motivating case studies for elastic 
resources, since the infrastructure usage levels are very low on average but spike during 
flood events. The core flood simulation is the FaSTMECH computation program; it is the 
most computationally intensive and time-consuming part of FloodGrid project. When a 
flood is happening, FloodGrid will automatically start the flood simulation through its 
flood monitoring service for all regions of interest.  Users responsible for disaster 
planning and emergency response will also place increased demands on the system to 
simulate different flood scenarios. Computing power demand thus peaks in a narrow 
period of the flood event. We illustrate how elastic resources may be used in this 
scenario.  

Our simulation service is deployed as Xen virtual machines (VM) on an in-house 
cloud hosting testbed (see Figure 2). We estimate the computing power requirement for 
FaSTMECH by the simulation field size and length of flood input. Virtual machines are 
allocated by the service running on Xen master node accordingly. We use the Virtual 
Block Store (VBS) System (44), an open source version of Amazon's Elastic Block 
Store, to meet our storage requirements.  VBS is accessed by the VMs as if it was a 
local disk.  VBS is independent of the VM instances, so the simulation results can be 
accessed even after VM instances have been destroyed. In this “Infrastructure as a 
Service” configuration, the detail of FaSTMECH computing is invisible to FloodGird 
users; the workflow is always the same for flood simulation job.    

To test this configuration, 10 flood scenarios with the different flood forecast 
parameters (based on the historical flood data) are added to the flood simulation queue. 
Four virtual machines with the FaSTMECH computing service are allocated 
automatically according to the computing time estimation.  The estimated FaSTMECH 
running time ranges from 30 minutes to several hours. To provide rapid simulation result 
delivery with cloud computing resource cost in consideration, 4 virtual machines are 
allocated based on the estimation. 10 flood simulations are sent into the queue in 
random order. With 4 virtual machines, all the FaSTMECH jobs finished in 205 minutes. 
For comparison, 10 jobs take 739 minutes on a single virtual machine.   

Software as a Service 
Although one may want to use Cloud Computing to outsource infrastructure at the 

operating system level, it is also desirable to have higher-level tools and services 
available on top of the cloud infrastructure.  For example, scientific computing needs to 
have tools that simplify running computing tasks on clouds, especially if these scale 



extremely well.  This is an example of what is commonly dubbed "Software as a 
Service".  Apache Hadoop is relevant software. Hadoop is an implementation of two 
ideas promulgated by Google: the Google File System and MapReduce (25). Strictly 
speaking, Hadoop and its competitors do not need to run on elastic, virtual machine-
based infrastructure, but the two are a good match (see for example Amazon's Elastic 
Map Reduce, aws.amazon.com/elasticmapreduce/).  

MapReduce and its competitors (prominently, Microsoft’s Dryad (26)) are designed 
to solve very large, data-file parallel information retrieval problems that arise in Internet-
scale searching and indexing. MapReduce is designed to manage computing tasks in 
distributed environments for certain classes of parallel problems: those associated with 
fragmentable data sets. Although MapReduce can be applied to a wide range of 
problems (24), it generally is designed to support data-file parallelism; that is, we need to 
apply an operation or a sequence of operations to huge input files or file collections that 
can be split into smaller fragments on distributed file systems.  The individual operations 
need little or no communication with each other. In contrast, traditional parallel 
programming, based around the Message Passing Interface (MPI), is better suited for 
tightly coupled applications with significant inter-process communication. The notion of 
file parallelism can be generalized to include memory, network, and other standard 
input/output mechanisms. Processing and mining sensor streams in a large sensor Web 
are obvious applications for stream data parallelism in Spatial CI.  Although not 
supported by Hadoop, this is an intended feature of Dryad and has been explored by 
research groups (27, 28).  

There are certain obvious advantages in applying MapReduce to spatial data 
processing.  First, MapReduce scales well for appropriate problems, enabling data 
processing procedures to move smoothly from smaller test-beds during development 
and debugging to larger cluster and cloud environments. This scalable geospatial 
processing is crucial to spatial applications that deal with large volumes of spatial data. 
Second, the HDFS distributed file system makes it easy to handle a large volume of 
spatial data. Third, existing image processing binaries can be deployed on the cloud 
through Hadoop streaming. Finally, tiled spatial data system, such as Google Maps and 
Microsoft Bing Maps are well suited for MapReduce.  We will examine these issues in 
our PolarGrid case study below. 

The MapReduce programming model can be used in several different ways to 
support data-intensive spatial processing; there are three basic execution styles (38). 
Map only applications: only the mapper is present, it is suitable for one-step spatial data 
transformation operations, e.g. map projection and image filtering. MapReduce 
applications: both mapper and reducer are used. This can be used to build spatial index, 
performance querying and obtain statistical information (39,40,41). Iterative MapReduce 
applications: MapReduce steps run iteratively until certain criteria are met. It is suitable 
for spatial clustering and data mining algorithms, such as K-means clustering (42).  

MapReduce as a programming model for clouds has received significant attention 
from the academic community.  However, it is not a panacea, and it will not meet all the 
computing requirements of Spacial CI. MapReduce is a batch-processing approach for 
processing files registered with a fault-tolerant overlay file system (the Google File 
System or the Hadoop Distributed File System).  In Spatial CI, problems such as large-
scale image processing are the best fits for this programming style.  However, relational 
database-centric geospatial problems are not well suited for MapReduce, and relational 
data processing on a cloud is an open problem. Instead of relational databases, cloud 
data management systems focus on highly scalable but not relational, "NoSQL" 
approaches that sacrifice strong consistency for scalability. In contrast, a great deal of 



geospatial processing is associated with geospatial databases that extend classic 
relational database systems such as PostgreSQL and Oracle. 

From the Spatial CI point of view, MapReduce's reliance on files as an implicit data 
model and its close integration with the file system are important limitations. Quadtree-
modeled data (often used for indexing collections of two-dimensional images such as 
map tiles) can be adapted straightforwardly, but the more geospatial object-centric R-
tree encoded data (such as geospatial features) are not a good match. As perhaps an 
intermediate step from the Spatial CI point of view, many commercial clouds are 
beginning to offer relational databases as services.  Microsoft Azure's SQL Service 
(based on SQL Server) and Amazon RDS (based on MySQL) are two examples.   

Research into extremely scalable relational database systems and intermediate 
systems between the relational and NoSQL extremes are very active areas, although to 
our knowledge no work specifically on the requirements of Spatial CI has taken place. 
HadoopDB (48), for example, is a hybrid between relational databases and MapReduce.  
Naturally supporting R-tree data models in MapReduce-style programming and more 
generally supporting relational databases in Cloud infrastructure are open academic 
problems (55). Google has recently published a description of its new, real-time indexing 
system, Percolator (49), which has replaced MapReduce as its internal mechanism for 
calculating search rankings.  Unlike MapReduce, Percolator maintains state, avoiding 
the need to completely recalculate ranking indices.  Related systems from Yahoo and 
Microsoft are described in (50) and (51), respectively.  These systems are potentially 
interesting models for real-time geospatial processing. 

Software as a Service Case Study: SAR Image Pipelines  
In this case study, we examine the cloud computing requirements of a common 

Spatial CI problem: image processing. The sub-glacial terrain images acquired from 
Synthetic Aperture Radar (SAR) reveal ice sheet thickness and the details of internal ice 
layers over vast areas beneath the 3 KM-thick Greenland ice sheet (34, 35). 
Approximately 25 TB of raw SAR data are available for processing Polar Grid resources 
from the 2008-2009 campaigns (45).  Batch processing on clusters is typically used to 
produce initial data products from raw data. These may require additional re-processing 
as the image processing algorithms are improved.  Furthermore, it is desirable to create 
more specialized, higher-level data products, such as improving the SAR image qualities 
in post-processing and flight line calculations.  We will examine both filtering and flight 
line calculations as MapReduce problems, although we note there is a larger problem to 
be addressed by Spatial CI pipelines. 

For this test, we developed a sample Matlab application that implements the 
specially tailored Douglas-Peucker algorithm (47) to simplify flight line data and generate 
SAR images.  We compiled it as a standalone executable. Again, the MCR allows us to 
port our compiled program to a cluster running our Hadoop installation. Flight line 
simplification is a data-parallel problem and well suited for MapReduce. Hadoop 
streaming is used to run MapReduce tasks. We had to develop a Python script to 
overcome the mismatch between Matlab's standard input/output mechanisms and the 
Hadoop Distributed File System. This script also acts as a Hadoop reader to read the 
flight line’s native binary format; this eliminates the needs to convert the data into text 
format in advance.  

Greenland flight path data, https://www.cresis.ku.edu/data/greenland, serve as our 
input.  Figure 3 shows the overview of the 2007 flight lines. Flight lines are organized by 
the flight date; each flight line is broken into smaller sections, each section is distributed 
as a Matlab mat file, the file size is around 10M to 50M, and the total size of one day’s 
flight line ranges from 500M to 1G. Flight path data are stored as (Latitude, Longitude) 



pairs; the radar data that measured the underground ice structures are stored in the 
variable “Data” as a 2D array. 

Data Processing: The main application is developed in Matlab, and the data is 
processed in the following procedure.  Steps 1-4 are in the map stage; step 5 is the 
reduce step.  1) Simplify the flight lines using Douglas-Peucker algorithm; 2) export the 
simplified flight lines as Google KML; 3) generate radar images; 4) combine KML and 
radar images to the self-contained Google KMZ file; and 5) generate the overall 
simplified flight lines and radar images for the on-going visualization project (reduce 
stage). The sample output is shown in Figure 3. The left image shows the overall 
simplified flight line; the broken part in the middle is due to a missing data set. One 
sample radar image is shown in the right; it clearly indicates the underground ice bed 
exists around 2000m deep.  

Testing Environment and Procedure: Software used includes Hadoop 0.20.2, Maltab 
2009a, and Python 2.6.  All computations were performed on IU’s Quarry cluster using 
himem (high memory) nodes obtained through the PBS scheduler. The testing is carried 
out by the combination of the number of the flight lines (1, 2, 3), and the number of 
computing nodes (3, 6, 9, 12, 15). We obtain one computing core for each node, since 
there is very limited multi-core support in Matlab Compiler Runtime.  A Java program is 
used to generate the Hadoop configuration files on the fly. We then reformat the Hadoop 
namenode, copy data files from local files system to Hadoop HDFS. The compiled 
Matlab application is managed by Hadoop streaming. The processing time measured 
here is only the running time of Hadoop streaming jobs, rather than the whole testing 
process. It usually takes 2-3 minutes to start up Hadoop system on himem queue.  The 
running time for individual tasks ranges from 60 to 90 seconds. Results are given in 
Table 2. 

Three computing-node Hadoop runs are the smallest feasible size, so we calculate 
speedup and efficiency against these.  We plot Table 2’s values in Figures 4 and 5.  
Figure 4 shows the overall processing time, which decreases for all flight lines with 
increasing nodes as expected.  The efficiency and speedup measurements provide 
better measurements of relative performance. Figure 5 plots the speedups for increasing 
node sizes.  All three flight line calculations collapse to the same line, indicating 
independence of problem size, as expected for a data parallel problem.  Efficiency 
values from Table 2 also collapse to the same line.  

MapReduce implementations such as Hadoop are subject to overheads, test-bed 
specific effects, and related implementation inefficiencies and artifacts that do not 
concern us here. We note that 60 seconds is, as a rule of thumb, a lower bound for 
efficient (or scalable) individual tasks run with Apache Hadoop.  We observed great 
variability in Hadoop’s overheads (such as task scheduling), on the order of seconds. 
These results depend greatly on the testing environment and become negligible for 
longer running tasks.  Other tests show parallel efficiencies over 95% are possible for 
larger data-parallel problems (54). 

   
Conclusions  
In this paper, we surveyed requirements that Spatial Cyberinfrastructure places on 

Cloud Computing.  We focused on Cloud Computing's "Infrastructure as a Service" and 
"Software as a Service" models.  We illustrated these requirements using two small 
projects initially developed in a pre-Cloud fashion: the Flood Grid and Polar Grid 
projects. Our key observation is that Clouds grant more control over the environment to 
developers through virtualization. This allows, for example, developers to install and 
control their own software without worrying about version conflicts with developers on 
unrelated projects. MapReduce, a common programming model for clouds, does provide 



a powerful way to do some Spatial CI tasks (particularly image processing), but current 
implementations are a poor fit for geospatial problems that are not file-based, particularly 
those closely tied to geospatial database applications.  

Spatial CI is an important subset of a more general CI, spanning the both "deep" 
(traditional, tightly coupled high performance computing) and "wide" (non-traditional or 
even disruptive) usage requirements.  We have shown that a number of Spatial CI 
requirements, such as service hosting, elastic virtual clusters, and virtual data sets, map 
well to Cloud Computing's "Infrastructure as a Service" model. This important 
requirement (see for examples the service-oriented Spatial CI (Yang et al), human-
centered CI (Siebar et al and Poore), and data management CI described by companion 
articles) is unmet by current CI deployments such as the TeraGrid. We also examined 
modeling and processing services with data-file parallelism (such as image processing 
pipelines), which are examples of common Cloud Computing "Software as a Service" 
models such as MapReduce. Cloud computing models still need to be applied to a 
broader class of Spatial CI problems, such as those discussed by Wang and by Helly et 
al in this special issue. 

Large commercial vendors dominate Clouds, but there is a growing collection of 
open source software that can be used to build research clouds.  A challenge for core 
Cyberinfrastructure research will be to investigate and document open architecture 
Cloud systems. Spatial CI can and should provide a wide range of important test cases.   
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Figure Legends 
 

Figure 1 Flood Grid Service Stack and Workflow.  Each component (gray box) is a 
network accessible service with well-defined inputs and outputs expressed using the Web 

Service Description Language. 

Figure 2 Virtualization is used to elastically increase the Flood Grid simulation service 
to handle greater demand during flood events.  

Figure 3 Sample Output of 2009-9-17 Flight Line 

Figure 4 Processing time versus number of computing nodes for different flight lines. 

Figure 5 Speedup versus number of nodes for different flight lines 

 
Table Legends 

Table 1 Mapping Flood Grid infrastructure requirements to Cloud Computing. 

Table 2 Haoop Test Results. P=Processing time (s). Relative Speedup S=T(3 nodes)/T 
(x nodes).  E=Efficiency per node, S(nodes)*3/nodes 

 
 



 

Figure 1 Flood Grid Service Stack and Workflow.  Each component (gray box) is a network 
accessible service with well-defined inputs and outputs expressed using the Web Service 
Description Language. 

 



 
Figure 2 Virtualization is used to elastically increase the Flood Grid simulation service to handle 
greater demand during flood events.  

 



  
Figure 3 Sample Output of 2009-9-17 Flight Line 

 

 



Table 1 Mapping Flood Grid infrastructure requirements to Cloud Computing. 

Flood Grid Requirement Cloud Computing Capability 

Web Service hosting Virtual machine infrastructure 
CGNS mesh model data Virtual block storage 
GIS data (WFS parcel 
information, HAZUS-MH) 

Virtual block storage 

FaSTMECH Hosting 
Virtual machine infrastructure; Map-Reduce style 
computation management (optional) 

 



Table 2 Haoop Test Results. P=Processing time (s). Relative Speedup S=T(3 nodes)/T (x nodes).  
E=Efficiency per node, S(nodes)*3/nodes 

 
1 Flight Line 2 Flight Lines 3 Flight Lines 

P S E P S E P S E 

C
om

puting nodes 

3 1221 100.0% 1.00 2357 100.0% 1.00 3431 100.0% 1.00 

6 644 189.6% 0.95 1233 191.2% 0.96 1837 186.8% 0.93 

9 469 260.3% 0.87 874 269.7% 0.90 1260 272.3% 0.91 

12 364 335.4% 0.84 702 335.8% 0.84 1041 329.6% 0.82 

15 303 403.0% 0.81 590 399.5% 0.80 847 405.1% 0.81 

 
 



 
Figure 4 Processing time versus number of computing nodes for different flight lines. 

 



 
Figure 5 Speedup versus number of nodes for different flight lines. 
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