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Abstract

Big data is one of the cornerstones to enabling and train-
ing deep neural networks (DNNs). Because of the lack of ex-
pertise, to gain benefits from their data, average users have
to rely on and upload their private data to big data compa-
nies they may not trust. Due to the compliance, legal, or pri-
vacy constraints, most users are willing to contribute only
their encrypted data, and lack interests or resources to join
the training of DNNs in cloud. To train a DNN on encrypted
data in a completely non-interactive way, a recent work pro-
poses a fully homomorphic encryption (FHE)-based tech-
nique implementing all activations in the neural network by
Brakerski-Gentry-Vaikuntanathan (BGV)-based lookup ta-
bles. However, such inefficient lookup-table-based activa-
tions significantly prolong the training latency of privacy-
preserving DNNs.

In this paper, we propose, Glyph, a FHE-based scheme
to fast and accurately train DNNs on encrypted data by
switching between TFHE (Fast Fully Homomorphic En-
cryption over the Torus) and BGV cryptosystems. Glyph
uses logic-operation-friendly TFHE to implement nonlin-
ear activations, while adopts vectorial-arithmetic-friendly
BGV to perform multiply-accumulation (MAC) operations.
Glyph further applies transfer learning on the training of
DNNs to improve the test accuracy and reduce the num-
ber of MAC operations between ciphertext and ciphertext in
convolutional layers. Our experimental results show Glyph
obtains the state-of-the-art test accuracy, but reduces the
training latency by 99% over the prior FHE-based tech-
nique on various encrypted datasets.

1. Introduction
Deep learning is one of the most dominant approaches

to solving a wide variety of problems such as recommender
systems, computer vision and natural language process-
ing [12], because it has demonstrated state-of-the-art ac-
curacy. Through only sufficient labeled data, the weights
of a deep learning model can be trained to achieve high
enough accuracy. Average users typically lack knowledge
and expertise to build their own deep learning models to

harvest benefits from their own data, so they have to de-
pend on big data companies such as Google, Amazon and
Microsoft. However, due to compliance, legal, and pri-
vacy constraints, there are many scenarios where the data
required by the training of DNNs is extremely sensitive.
It is risky to provide personal information, e.g., financial
or healthcare records, to untrusted companies to train deep
learning models. Federal privacy regulations such as the EU
general data protection regulation also restrict the availabil-
ity and sharing of these sensitive data.

Recent works [22, 1, 15] propose several cryptographic
techniques to enable the privacy-preserving training of deep
learning models. Private federated learning [15] is cre-
ated to decentralize the training of deep learning mod-
els and enable users to train with their own data locally.
QUOTIENT [1] takes advantage of multi-party computa-
tion (MPC) to interactively train deep learning models on
both the server and the user. Both federated learning and
MPC require users to stay online and heavily participate in
the DNN training. However, in some cases, average users
may not have strong interest, powerful hardware, or fast net-
work connections for interactive DNN trainings [17]. To
enable the private training of DNNs on encrypted data in a
completely non-interactive way, a recent study presents the
first fully homomorphic encryption (FHE)-based stochas-
tic gradient descent technique [22], FHESGD. During FH-
ESGD, a user first encrypts the private data and uploads
the encrypted data to an untrusted server that performs both
forward and backward propagations on the encrypted data
without decryption. After uploading encrypted data, the
users can simply go offline. The user privacy is preserved
in the training procedure, since the input and output data,
activations, losses and gradients are all encrypted.

However, FHESGD [22] is seriously limited by its long
training latency, because of its BGV-lookup-table-based
sigmoid activations. Specifically, FHESGD builds a Multi-
Layer Perceptron (MLP) with 3 layers to achieve < 98%
test accuracy on the encrypted MNIST dataset after 50 train-
ing epochs. A mini-batch including 60 samples takes ∼ 2
hours on a 16-core CPU. FHESGD uses the BGV cryp-
tosystem [14] to implement the stochastic gradient descent
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algorithm, because BGV is good at performing large vecto-
rial arithmetic operations frequently used in the MLP. How-
ever, FHESGD replaces all activations of the MLP by sig-
moid functions, and uses BGV homomorphic table lookup
operations [2] to implement the sigmoid function. A BGV
homomorphic table lookup operation in the FHESGD set-
ting is so slow that the BGV-lookup-table-based sigmoid ac-
tivations consume ∼ 98% of the training time.

In this paper, we propose a FHE-based DNN called
Glyph to enable fast and accurate training over encrypted
data. Our contributions can be summarized as:
• We propose a FHE-based DNN training scheme, Glyph,

to adopt the logic-operation-friendly TFHE cryptosys-
tem [8] to implement activations such as ReLU and soft-
max in DNN trainings. The TFHE-based activations sig-
nificantly reduce the activation latency.

• We propose a cryptosystem switching technique to en-
able Glyph to perform activations by TFHE and switch
to the vectorial-arithmetic-friendly BGV cryptosystem
when processing fully-connected and convolutional lay-
ers. By switching between TFHE and BGV, Glyph can
substantially improve the privacy-preserving DNN train-
ing speed on encrypted data.

• At last, we apply the method of transfer learning on
Glyph to not only reduce the computing overhead of
DNN trainings, but also improve its test accuracy. Com-
pared to FHESGD, Glyph reduces the training latency by
99% and improves the test accuracy by 1 ∼ 2% on vari-
ous encrypted datasets.

2. Background
2.1. Threat Model

Although an encryption scheme protects the data sent to
external servers, untrusted servers [12] can make data leak-
age happen. Homomorphic Encryption is one of the most
promising techniques to enable a server to perform private
DNN training [22] on encrypted data. A user sends en-
crypted data to a server performing private DNN trainings
on encrypted data. More importantly, after uploading en-
crypted data to the server, the user can go offline without
participating time-consuming DNN trainings.

2.2. Fully Homomorphic Encryption

A cryptosystem that supports computation on cipher-
texts without decryption is known as homomorphic encryp-
tion(HE) [9]. HE cryptosystem encrypts the plaintext p to
the ciphertext c by a function ε. We have c = ε(p, kpub),
where kpub is the public key. Another function σ de-
crypts the ciphertext c back to the plaintext p. We have
p = σ(c, kpri), where kpri is the private key. The cryptosys-
tem is homomorphic in an operation ?, if there is another op-
eration ◦ such that ε(x, kpub) ◦ ε(y, kpub) = ε(x ? y, kpub),

where x and y are two plaintext operands. Modern HE
cryptosystems have two modes: leveled HE and fully HE
(FHE). Each HE operation introduces noise into the cipher-
text. Leveled HE allows to compute HE functions of only
a maximal degree by designing a set of parameters. Be-
yond its maximal degree, leveled HE cannot correctly de-
crypt the ciphertext, because the accumulated noise is too
large. On the contrary, FHE can enable an unlimited num-
ber of HE operations on the ciphertext, since it uses boot-
strapping [14, 8] to “refresh” the ciphertext and reduce
its noise. However, a bootstrapping operation is compu-
tationally expensive and hence time-consuming. Because
the privacy-preserving DNN training requires an impracti-
cally large maximal degree, it is impossible to train a DNN
by leveled HE cryptosystems. A recent work [22] demon-
strates the feasibility of using the FHE BGV cryptosystem
to implement DNN training on encrypted data.

2.3. BGV and TFHE

Based on the Ring-LWE (Learning With Errors) prob-
lem, several FHE cryptosystems [8, 14], e.g., TFHE [8],
BFV [6], BGV [14], HEAAN [7], have been developed.
Each FHE cryptosystem can more efficiently process a
specific type of homomorphic operations. For instance,
TFHE [8] runs combinatorial operations on individual slots
faster. BFV [6] is good at performing large vectorial arith-
metic operations. Similar to BFV, BGV [8] manipulates
elements in large cyclotomic rings, modulo integers with
many hundreds of bits. However, BGV has less scaling op-
erations, and thus processes vectorial multiplications of ci-
phertexts faster [18, 10]. At last, HEAAN [7] supports float-
ing point computations more efficiently. A recent work [3]
demonstrates the feasibility of combining and switching be-
tween three Ring-LWE-based FHE cryptosystems including
TFHE, BFV and HEAAN via homomorphic operations.

2.4. Forward and Backward Propagation

The training of a DNN includes forward propagation and
backward propagation. During forward propagation, as Fig-
ure 1 shows, the input data go through the layers consecu-
tively in the forward direction. The forward propagation
can be described as{

ul = Wldl−1 + bl−1
dl = f(ul)

(1)

, where ul is the neuron tensor of layer l; dl−1 is the out-
put of layer l − 1 and the input of layer l; Wl is the weight
tensor of layer l; bl−1 is the bias tensor of layer l − 1; and
f() is the forward activation function. We use y and t to
indicate the output of a neural network and the standard la-
bel, respectively. An L2 norm loss function is defined as
E(W, b) = 1

2 ||y − t||
2
2. The backward propagation can be
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Figure 1: The for-
ward and backward
propagation.
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Figure 2: The mini-batch training la-
tency and test accuracy of a 3-layer
FHESGD-based MLP on MNIST.
FC is fully-connected layers. Act is
activation layers.
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Figure 3: The mini-
batch training la-
tency of the 3-layer
TFHE-based MLP
on MNIST.

Operation BFV(s) BGV(s) TFHE(s)
MultCC 0.043 0.012 2.121
MultCP 0.006 0.001 0.092
AddCC 0.0001 0.002 0.312
TLU / 307.9 3.328

Table 1: The latency com-
parison of FHE operations.
MultCC: ciphertext × cipher-
text. MultCP: ciphertext ×
plaintext. AddCC: ciphertext
+ ciphertext. TLU: the table
lookup.

described by  δl−1 = (Wl)
T δl ◦ f ′(ul)

∇Wl = dl−1(δl)
T

∇bl = δl

(2)

, where δl is the error of layer l and defined as ∂E
∂bl

; f’() is
the backward activation function; ∇Wl and ∇bl are weight
and bias gradients, respectively.

2.5. Motivation

The BGV-based FHESGD [22] trains a 3-layer MLP by
substituting all activations with sigmoid, and implements
sigmoid by a lookup table. However, the lookup-table-
based sigmoid significantly increases the mini-batch train-
ing latency of FHESGD. As Figure 2 shows, with an in-
creasing bitwidth of each entry of the BGV-based sigmoid
lookup table, the test accuracy of FHESGD greatly im-
proves and is approaching 98%, but its activation process-
ing time, i.e., the sigmoid table lookup latency, also sig-
nificantly increases and eventually occupies > 98% of the
mini-batch training latency.

It is possible to fast and accurately implement the ho-
momorphic activations including ReLU and softmax of pri-
vate training by TFHE, since the TFHE cryptosystem pro-
cesses combinatorial operations on individual slots more ef-
ficiently. Table 1 compares the latencies of various homo-
morphic operations implemented by BGV, BFV and TFHE.
Compared to BGV, TFHE shortens the table lookup la-
tency by ∼ 100×, and thus can implement fast activation
functions. However, after we implemented the privacy-
preserving DNN training by TFHE, as Figure 3 exhibits,
we found although the homomorphic activations take much
less time, the mini-batch training latency substantially in-
creases, because of the slow homomorphic MAC opera-
tions implemented by TFHE. Compared to TFHE, BGV [8]
demonstrates 17× ∼ 30× shorter latencies for a variety
of vectorial arithmetic operations such as the multiplication
between a ciphertext and a ciphertext (MultCC), the mul-
tiplication between a ciphertext and a plaintext (MultCP),
and the addition between a ciphertext and a ciphertext (Ad-
dCC). If we implement activation operations by TFHE, and

compute vectorial MAC operations by BGV, the privacy-
preserving DNN training can obtain both high test accuracy
and short training latency simultaneously.

Although a recent work [3] proposes a cryptosys-
tem switching technique to homomorphically switch be-
tween TFHE and BFV, we argue that compared to BFV,
the BGV cryptosystem can implement faster privacy-
preserving DNN training. First, as Table 1 shows, BGV
computes multiplications between ciphertexts and plain-
texts faster than BFV, because it has less scaling opera-
tions [18, 10]. Second, the state-of-the-art implementa-
tion of BFV, Microsoft SEAL [24], does not support boot-
strapping. Therefore, we cannot adopt BFV for FHE-based
privacy-preserving DNN training. In this paper, we propose
a new cryptosystem technique to enable the homomorphic
switching between BGV and TFHE.

3. Related Work

A flurry of prior works use various FHE cryptosystems
including TFHE [4] and BGV [16] to implement leveled-
HE-enabled privacy-preserving DNN inferences, where
only the input, output data and activations are encrypted
but the pre-trained weights are unencrypted. Compared to
inferences, the fully-HE-enabled privacy-preserving DNN
training is more computationally expensive, since it needs
to compute the errors and gradients. Moreover, the inputs,
activations and weights are all encrypted during the privacy-
preserving DNN training. The first fully-HE-enabled DNN
training technique [22] relies on the vectorial-arithmetic-
friendly BGV cryptosystem.

Besides fully HE, recent works adopt multi-party com-
putation [1] and private federated learning [15] to enable
the privacy-preserving training of DNNs. Both schemes
heavily involve users in the hardware-resource-demanding
privacy-preserving DNN training. However, average users
may not have strong motivation or powerful computing
hardware to join the privacy-preserving DNN training. In
this paper, we propose a fully-HE-based privacy-preserving
DNN training technique that requires users to only upload
their encrypted data.



Algorithm 1 The TFHE-based forward ReLU
Input: ul[i][0 : n− 1] (ul[i][z] is the zth bit of ul[i])
Output: dl[i][0 : n− 1]

1: dl[i][n− 1]=0
2: ul[i][n− 1] = HomoNot(ul[i][n− 1])
3: for index = 1; index < n− 1; index+ + do
4: dl[i][index]=HomoAND(ul[i][index],ul[i][n− 1])

return dl[i][0 : n− 1]

4. Glyph
4.1. TFHE-based Activations

To accurately train a FHE-based DNN, we propose
TFHE-based homomorphic ReLU and softmax activation
units. We construct a ReLU unit by TFHE homomorphic
gates with bootstrapping, and build a softmax unit by TFHE
homomorphic multiplexers.

ReLU: The forward ReLU of the ith neuron in the layer
l can be summarized as

ReLU(µl[i]) = dl[i] =

{
µl[i] if µl[i] ≥ 0,
0 otherwise.

(3)

, where µl[i] is the ith neuron in the layer l. The backward
iReLU for the ith neuron in the layer l can be described as

iReLU(µl[i], δl[i]) = δl−1[i] =

{
δl[i] if µl[i] ≥ 0.
0 otherwise.

(4)

, where δl[i] is the ith error of layer l. Our TFHE-based for-
ward ReLU unit can be implemented as Algorithm 1, where
we first set the most significant bit of dl[i], dl[i][n − 1], to
0, so that dl[i] can be always non-negative. We then get
the negation of the most significant bit of ul[i], ul[i][n− 1],
by a TFHE homomorphic NOT gate that even does not re-
quire bootstrapping [9]. If ul[i] is positive, ul[i][n− 1] = 1;
otherwise ul[i][n− 1] = 0. At last, we compute dl[i][0 :
n − 2] by homomorphically ANDing each bit of ul[i] with
ul[i][n− 1]. So if ul[i] is positive, dl[i] = µl[i]; otherwise
dl[i] = 0. An n-bit forward ReLU unit requires 1 TFHE
NOT gate without bootstrapping and n − 2 TFHE AND
gates with bootstrapping.

Algorithm 2 The TFHE-based backward ReLU
Input: δl[i][0 : n− 1] and ul[i][n− 1].
Output: δl−1[i][0 : n− 1].

1: ul[i][n− 1] = HomoNot(ul[i][n− 1])
2: for index = 0; index < n; index+ + do
3: δl−1[i][index]=HomoAND(δl[i][index],ul[i][n− 1])

return δl−1[i][0 : n− 1]

In contrast, the backward iReLU takes the ith error of layer
l, δl[i], and the most significant bit of ul[i], ul[i][n − 1] as
inputs. It generates the ith error of layer l − 1, δl−1[i]. Our

TFHE-based backward iReLU unit can be built by Algo-
rithm 2, where we first compute the negation of the most
significant bit of ul[i], ul[i][n− 1]. We then compute each
bit of δl−1[i] by ANDing each bit of δl[i] with ul[i][n− 1].
If ul[i][n − 1] = 0, δl−1[i] = δl[i]; otherwise δl−1[i] =
0. An n-bit backward iReLU unit requires 1 TFHE NOT
gate without bootstrapping and n − 1 TFHE AND gates
with bootstrapping. Our TFHE-based forward or back-
ward ReLU function takes only 0.1 second, while the BGV-
lookup-table-based activation consumes 307.9 seconds on
our CPU baseline.

TFHE MUX
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Figure 4: A 3-bit softmax unit.

Softmax: softmax takes n ul[i] as its input and nor-
malizes them into a probability distribution consisting of n
probabilities proportional to the exponentials of the inputs.
The softmax activation can be described as

softmax(µl[i]) = dl[i] =
eµl[i]

Σieµl[i]
(5)

We use TFHE homomorphic multiplexers to implement a
softmax unit shown in Figure 4, where we have 8 entries
denoted as S0 ∼ S7 for a 3-bit TFHE-lookup-table-based
softmax unit and each entry has 3-bit. The ith neuron ul[i]
is used to look up one of the eight entries, and the output
is dl[i]. There are two TFHE gates with bootstrapping on
the critical path of each TFHE homomorphic multiplexer.
An n-bit softmax unit requires 2n TFHE gates with boot-
strapping. Compared to BGV-lookup-table-based softmax,
our TFHE-based softmax unit reduces the activation latency
from 307.9 seconds to only 3.3 seconds. To efficiently
back-propagate the loss of softmax, FHESGD [22] uses a
quadratic loss function to reduce the computing overhead
of logarithmic operations in a cross-entropy loss function.
Our experimental results show the quadratic loss function
achieves the same test accuracy but costs much less comput-
ing overhead. So in this paper we also adopt the derivative
of quadratic loss function described as

isoftmax(dl[i], t[i]) = δl[i] = dl[i]− t[i] (6)

, where t[i] is the ith ground truth. The quadratic loss func-
tion requires only homomorphic multiplications and addi-
tions. Although it is feasible to implement the quadratic loss
function by TFHE, when considering the switching over-
head from BGV to TFHE, we use BGV to implement the
quadratic loss function.

Pooling. It is faster to adopt TFHE to implement max
pooling operations. But considering the switching overhead
from BGV to TFHE, we adopt BGV to implement average



pooling operations requiring only homomorphic additions
and multiplications.

4.2. The Switching between BGV and TFHE

BGV can efficiently process vectorized arithmetic oper-
ations, while TFHE runs logic operations faster. During the
training of Glyph, we plan to use BGV for convolutional,
fully-connected, average pooling, and batch normalization
layers, and adopt TFHE for activation operations. To use
both BGV and TFHE, we propose a cryptosystem switch-
ing technique switching Glyph between BGV and TFHE
cryptosystems.

Both BGV and TFHE are built upon the the Ring-LWE
problem [8, 14], but they cannot naı̈vely switch between
each other. Because BGV and TFHE work on different
plaintext spaces. The plaintext space of BGV is the ring
Rp = Z[X]/(XN + 1) mod pr, where p is a prime and
r is an integer. We denote the BGV plaintext space as
ZN [X] mod pr. TFHE has three plaintext spaces [9] in-
cluding TLWE, TRLWE and TRGSW. TLWE encodes in-
dividual continuous plaintexts over the torus T = R/Z
mod 1. TRLWE encodes continuous plaintexts over R[X]
mod (XN + 1) mod 1. We denote the TRLWE plaintext
space as TN [X] mod 1, which can be viewed as the pack-
ing of N individual coefficients. TRGSW encodes inte-
ger polynomials in ZN [X] with bounded norm. Through
key-switching, TFHE can switch between these three plain-
text spaces. Our cryptosystem switching scheme maps
the plaintext spaces of BGV and TFHE to a common al-
gebraic structure using natural algebraic homomorphisms.
The cryptosystem switching can then happen in the com-
mon algebraic structure.

BGV

TRLWE slots TFHE

1

2 Key-Switch

Extract sample3

4

Key-Switch5

Extract sample6

Figure 5: The switching between TFHE and BGV. Steps
from ¶ to ¸ are switching from BGV to TFHE; Steps from
¹ to » are switching from TFHE to BGV.

Our cryptosystem can enable Glyph to use both TFHE
and BGV cryptosystems by homomorphically switching be-
tween different plaintext spaces, as shown in Figure 5.
• From BGV to TFHE. The switch from BGV to TFHE

homomorphically transforms the ciphertext of N BGV
slots encrypting N plaintexts over ZN [X] mod pr to
K TLWE-mode TFHE ciphertexts, each of which en-
crypts plaintexts over T = R/Z mod 1. The switch
from BGV to TFHE includes three steps. ¶ Based
on Lemma 1 in [3], ZN [X] mod pr homomorphically

multiplying p−r is a ZN [X]-module isomorphism from
Rp = ZN [X] mod pr to the submodule of TN [X] gen-
erated by p−r. Via multiplying p−r, we can convert in-
teger coefficients in the plaintext space of BGV into a
subset of torus T consisting of multiples of p−r. In this
way, we extract N coefficients from the BGV plaintexts
over ZN [X] mod pr to form TN . · Based on The-
orem 2 in [3], we use the functional key-switching to
homomorphically convert TN into TN [X], which is the
plaintext space of the TRLWE-mode of TFHE. ¸ We
adopt the SampleExtract function [3] of TFHE to ho-
momorphically achieve K individual TLWE ciphertexts
from TN [X]. Given a TRLWE ciphertext c of a plaintext
µ, SampleExtract(c) extracts from c the TLWE sample
that encrypts the ith coefficient µi with at most the same
noise variance or amplitude as c.

• From TFHE to BGV. The switch from TFHE to BGV
is to homomorphically transform K TFHE ciphertexts
in the TLWE-mode (m0,m1, . . . ,mK−1) in TK to a
BGV N -slot ciphertext whose plaintexts are over ZN [X]
mod pr. ¹ Based on Theorem 3 in [3], we can use
the functional gate bootstrapping of TFHE to restrict the
plaintext space of TFHE in the TLWE-mode to an in-
teger domain ZKpr consisting of multiples of p−r. º

The plaintext space transformation from ZKpr to ZNpr is
a ZN [X]-module isomorphism, so we also can use the
key-switching to implement it. » At last, we can use
the SampleExtract function of TFHE to homomorphi-
cally obtain the BGV N -slot ciphertext whose plaintexts
are over ZN [X] mod pr.

4.3. Transfer Learning for Private DNN Training

Although FHESGD [22] shows that it is feasible to ho-
momorphically train a 3-layer MLP, it is still very challeng-
ing to homomorphically train a deep convolutional neural
network (CNN), because of the huge computing overhead
of homomorphic convolutions. We propose to use trans-
fer learning to reduce the computing overhead of homomor-
phic convolutions in privacy-preserving CNN trainings. Al-
though several prior works [5, 21] adopt transfer learning in
privacy-preserving inferences, to our best knowledge, this is
the first work to use transfer learning in privacy-preserving
CNN trainings.

Transfer learning [28, 23, 13] can be used to reuse
knowledge among different datasets in the same CNN ar-
chitecture, since the first several convolutional layers of the
CNN extracts general features independent of datasets. Ap-
plying transfer learning in privacy-preserving CNN train-
ings brings two benefits. First, transfer learning reduces the
number of trainable layers, i.e., the weights in the convo-
lutional layers are fixed, so that the training latency can be
greatly reduced. Second, we can convert computationally
expensive convolutions between ciphertext and ciphertext



to cheaper convolutions between ciphertext and plaintext,
because the fixed weights in the convolutional layers are not
updated by encrypted weight gradients. Moreover, transfer
learning does not hurt the security of the FHE-based DNN
training, since the input, activations, losses and gradients
are still encrypted.
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Figure 6: An example of transfer learning in the privacy-
preserving CNN training.

We show an example of applying transfer learning in the
privacy-preserving CNN training in Figure 6. We reuse
the first two convolutional layers trained by unencrypted
CIFAR-10, discard the last two fully-connected layers, and
add two randomly initialized fully-connected layers, when
homomorphically training of the same CNN architecture on
an encrypted skin cancer dataset [26]. During the privacy-
preserving training on the skin cancer dataset, we update
the weights only in the last two fully-connected layers. In
this way, the privacy-preserving model can reuse the general
features learned from public unencrypted datasets. Mean-
while, in the privacy-preserving training, the computations
on the first several convolutional and batch normalization
layers are computationally cheap, since their weights are
fixed and unencrypted.

5. Experimental Methodology
5.1. The Setting of Cryptosystems

For BGV, we used the same parameter setting rule
as [11], and the HElib [2] library to implement all re-
lated algorithms. We adopted the mth cyclotomic ring
with m = 210 − 1, corresponding to lattices of dimension
ψ(m) = 600. This native plaintext space has 60 plaintext
slots which can pack 60 input ciphertexts. The BGV set-
ting parameters yield a security level of > 80 bits. Both
BGV and TFHE implement bootstrapping operations and
support fully homomorphic encryption. We set the param-
eters of TFHE to the same security level as BGV, and used
the TFHE [9] library to implement all related algorithms.
TFHE is a three-level scheme. For first-level TLWE, we set
the minimal noise standard variation to α = 6.10 ·10−5 and
the count of coefficients to n = 280 to achieve the security
level of λ = 80. The second level TRLWE configures the
minimal noise standard variation to α = 3.29 · 10−10, the

count of coefficients to n = 800, and the security degree to
λ = 128. The third-level TRGSW sets the minimal noise
standard variation to α = 1.42 · 10−10, the count of coef-
ficients to n = 1024, the security degree to λ = 156. We
adopted the same key-switching and extract-sample param-
eters of TFHE as [3].

5.2. Simulation, Dataset and Network Architecture

We evaluated all schemes on an Intel Xeon E7-8890
v4 2.2GHz CPU with 256GB DRAM. It has two sockets,
each of which owns 12 cores and supports 24 threads. Our
encrypted datasets include MNIST [20] and Skin-Cancer-
MNIST [26]. Skin-Cancer-MNIST consists of 10015 der-
matoscopic images and includes a representative collection
of 7 important diagnostic categories in the realm of pig-
mented lesions. We grouped it into a 8K training dataset
and a 2K test dataset. We also used SVHN [25] and CIFAR-
10 [19] to pre-train our models which are for transfer learn-
ing on encrypted datasets. We adopted two network archi-
tectures, a 3-layer MLP [22] and a 4-layer CNN shown in
Figure 6. The 3-layer MLP has a 28 × 28 input layer, a
128-neuron hidden layer and a 32-neuron hidden layer. The
CNN includes two convolutional layers, two batch normal-
ization layers, two pooling layers, three ReLU layers and
two fully-connected layers. The CNN architectures are dif-
ferent for MNIST and Skin-Cancer-MNIST. For MNIST,
the input size is 28×28. There are 6×3×3 and 16×3×3
weight kernels, respectively, in two convolutional layers.
Two fully connected layers have 84 neurons and 10 neu-
rons respectively. For Skin-Cancer-MNIST, the input size is
28×28×3. There are 64×3×3×3 and 96×64×3×3 weight
kernels in two convolutional layers, respectively. Two fully-
connected layers are 128 neurons and 7 neurons, respec-
tively. We quantized the inputs, weights and activations of
two network architectures with 8-bit by the training quanti-
zation technique in SWALP [27].

6. Results and Analysis
6.1. MNIST

FHESGD. The mini-batch training latency breakdown
of a 3-layer FHESGD-based MLP [22] on a single CPU
core is shown in Table 2. During a mini-batch, the MLP
is trained with 60 MNIST images. Each BGV lookup-table
operation consumes 307.9 seconds, while a single BGV
MAC operation costs only 0.012 seconds. Although the ac-
tivation layers of FHESGD require only a small number of
BGV lookup-table operations, they consumes 98% of the
total training latency. The FHESGD-based MLP makes
all homomorphic multiplications happen between cipher-
text and ciphertext, though the homomorphic multiplica-
tions between ciphertext and plaintext is computationally
cheaper. The total training latency of the 3-layer FHESGD-
based MLP for a mini-batch is 118K seconds, which is



about 1.35 days [22].

Table 2: The mini-batch training latency of the FH-
ESGD [22]-based MLP. HOP includes the number of ho-
momorphic operations. MultCC indicates the number of
multiplications between ciphertext and ciphertext. AddCC
is the number of additions between ciphertext and cipher-
text. TLU means the number of table-lookup operations.
FC is a fully-connected layer. Act is an activation layer.

Layers Time(s) HOP MultCC AddCC TLU
FC1-forward 1357 201K 100K 100K 0
Act1-forward 44.8K 128 0 0 128
FC2-forward 54.4 8.2K 4196 4.2K 0
Act2-forward 11.7K 32 0 0 32
FC3-forward 4.32 640 320 320 0
Act3-forward 1.98K 10 0 0 10

Act3-error 0.1 10 0 10 0
FC3-error 4.32 640 320 320 0

FC3-gradient 4.32 640 320 320 0
Act2-error 11.7K 32 0 0 32
FC2-error 55.4 8.2K 4.2K 4.2K 0

FC2-gradient 55.4 8.2K 4.2K 4.2K 0
Act1-error 44.8K 128 0 0 128

FC1-gradient 1356 201K 100K 100K 0
Total 118K 429K 213K 213K 330

Table 3: The mini-batch training latency of the Glyph-based
MLP with TFHE activations and cryptosystem switching.
HOP includes the number of homomorphic operations.
MultCC indicates the number of multiplications between
ciphertext and ciphertext. AddCC is the number of addi-
tions between ciphertext and ciphertext. Switch means the
cryptosystem switching. FC is a fully-connected layer. Act
denotes an activation layer.

Layers Time(s) HOP MultCC AddCC Act Switch
FC1-forward 1370 201K 100K 100K 0 BGV-TFHE
Act1-forward 19.2 128 0 0 128 TFHE-BGV
FC2-forward 57.1 8.2K 4.1K 4.1K 0 BGV-TFHE
Act2-forward 4.82 32 0 0 32 TFHE-BGV
FC3-forward 6.02 640 320 320 0 BGV-TFHE
Act3-forward 34.76 10 0 0 10 TFHE-BGV

Act3-error 0.1 10 0 0 0 -
FC3-error 4.32 640 320 320 0 -

FC3-gradient 6.02 640 320 320 0 BGV-TFHE
Act2-error 4.82 32 0 0 32 TFHE-BGV
FC2-error 55.4 8.2K 4.1K 4.1K 0 -

FC2-gradient 62.1 8.2K 4.1K 4.1K 0 BGV-TFHE
Act1-error 19.2 128 0 0 128 TFHE-BGV

FC1-gradient 1356 201K 100K 100K 0 -
Total 2991 429K 213K 21K 330 -

TFHE Activation and Cryptosystem Switching. We
replace all activations of the 3-layer FHESGD-based MLP
by our TFHE-based ReLU and softmax activations, and
build it as the Glyph-based MLP. We also integrate the cryp-
tosystem switchings into the Glyph-based MLP to perform
homomorphic MAC operations by BGV, and conduct ac-
tivations by TFHE. The mini-batch training latency break-

down of the 3-layer Glyph-based MLP on a single CPU core
is shown in Table 3. Because of the logic-operation-friendly
TFHE, the processing latency of activation layers of Glyph
significantly decreases. The cryptosystem switchings intro-
duce only small computing overhead. For instance, com-
pared to the counterpart in the FHESGD-based MLP, FC1-
forward increases the processing latency by only 0.96%,
due to the cryptosystem switching overhead. Because of
fast activations, compared to the FHESGD-based MLP, our
Glyph-based MLP reduces the mini-batch training latency
by 97.4% but maintains the same test accuracy.

Transfer Learning on CNN. We use our TFHE-based
activations and cryptosystem switching technique to build
a Glyph-based CNN, whose detailed architecture is ex-
plained in Section 5.2. We implement transfer learning
in the Glyph-based CNN by fixing the convolutional lay-
ers trained by SVHN and training only two fully-connected
layers. The mini-batch training latency breakdown of the
Glyph-based CNN with transfer learning on a single CPU
core is shown in Table 4. Because the weights of the convo-
lutional layers are unencrypted and fixed, our Glyph-based
CNN significantly reduces the number of multiplications
between ciphertext and ciphertext (MultCC), and adds only
computationally cheap multiplications between ciphertext
and plaintext (MultCP). The Glyph-based CNN decreases
the training latency by 56.7%, but improves the test accu-
racy by ∼2% over the Glyph-based MLP.

Table 4: The mini-batch training latency of the Glyph-based
CNN with TFHE activations, cryptosystem switching, and
transfer learning. HOP includes the number of homomor-
phic operations. MultCC indicates the number of multipli-
cations between ciphertext and ciphertext. MultCP means
the number of multiplications between ciphertext and plain-
text. AddCC is the number of additions between ciphertext
and ciphertext. Switch means the cryptosystem switching.
Conv means a convolutional layer. FC is a fully-connected
layer, while Act denotes an activation layer. BN is a batch
normalization layer. Pool denotes an average pooling layer.

Layers Time(s) HOP MultCP MultCC AddCC Act Switch
Conv1-forward 69 73K 37K 0 37K 0 -
BN1-forward 61 15K 8K 0 8K 0 BGV-TFHE
Act1-forward 321 4.1K 0 0 0 4.1K TFHE-BGV
Pool1-forward 17 18K 9.1K 0 9.1K 0 -
Conv2-forward 33 35K 17K 0 17K 0 -
BN2-forward 27 7K 3K 0 3K 0 BGV-TFHE
Act2-forward 151 1.9K 0 0 0 1.9K TFHE-BGV
Pool2-forward 7 7.2K 3.6K 0 3.6K 84 -
FC1-forward 228 67K 0 34K 34K 0 BGV-TFHE
Act3-forward 8.2 84 0 0 0 84 TFHE-BGV
FC2-forward 6.1 1.68K 0 840 840 0 BGV-TFHE
Act4-forward 68 10 0 0 0 10 TFHE-BGV

Act4-error 0.1 10 0 0 10 0 -
FC2-error 6 1.68K 0 840 840 0 -

FC2-gradient 31 1.68K 0 840 840 0 BGV-TFHE
Act3-error 32 84 0 0 0 84 TFHE-BGV

FC1-gradient 227 67K 0 34K 34K 0 -
Total 3.5K 1716K 746K 106K 852K 14K -



0 2 4 6 8 10Epoch
92

94

96

98

100
Te

st
 A

cc
ur

ac
y 

(%
)

MLP
CNN without transfer learning
CNN with transfer learning

Figure 7: The accuracy comparison on MNIST.

Test Accuracy. The test accuracy comparison of the
FHESGD-based MLP and the Glyph-based CNN is shown
in Figure 7, where all networks are trained in the plaintext
domain. It takes 5 epochs for the FHESGD-based MLP to
reach 96.4% test accuracy on MNIST. After 5 epochs, the
Glyph-based CNN can achieve 97.1% test accuracy even
without transfer learning. By reusing low-level features of
the SVHN dataset, the Glyph-based CNN with transferring
learning obtains 98.6% test accuracy. The CNN architec-
ture and transferring learning particularly can help the FHE-
based privacy-preserving DNN training to achieve higher
test accuracy when we do not have long time for trainings.
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Figure 8: The accuracy comparison on Skin-Cancer.

6.2. Skin-Cancer-MNIST
We built the Glyph-based MLP and CNN architectures

for Skin-Cancer-MNIST by our TFHE-based activations,
cryptosystem switching and transfer learning. Since the
network on Skin-Cancer-MNIST (Cancer) is larger than
MNIST, the training latency is the larger as the Table 5
shows. The mini-batch training latency changes on Skin-
Cancer-MNIST are similar to those on MNIST. The test
accuracy comparison of the FHESGD-based MLP and the
Glyph-based CNN is shown in Figure 8. For transfer-
ring learning, we first train the Glyph-based CNN with
CIFAR-10, fix its convolutional layers, and then train its
fully-connected layers with Skin-Cancer-MNIST. On such
a more complex dataset, compared to the FHESGD-based
MLP, the Glyph-based CNN without transferring learning
increases the training accuracy by 2% at the 15th epoch.
The transferring learning further improves the test accuracy
of the Glyph-based CNN to 73.2%, i.e., a 4% test accuracy
boost. Our TFHE-based activations, cryptosystem switch-

ing and transfer learning makes Glyph efficiently support
deep CNN architecture.

Table 5: The comparison of overall training latency.
Dataset Network Thread # Mini-batch Epoch # Time Acc(%)

MNIST
MLP 1 33 hours 50 187 years 97.8

48 2.3 hours 50 13.4 years 97.8

CNN 1 0.44 hours 5 2.46 months 98.6
48 0.04 hours 5 8 days 98.6

Cancer
MLP 1 34.1 hours 30 15.6 years 70.2

48 2.4 hours 30 1.1 years 70.2

CNN 1 0.93 hours 15 0.21 years 73.2
48 0.08 hours 15 7 days 73.2

6.3. Overall Training Latency and Scalability
The overall training latency of multiple threads on our

CPU baseline is shown in Table 5. We measured the mini-
batch training latency by running various FHE-based train-
ing for a mini-batch. We estimated the total training latency
via the product of the mini-batch training latency and the
total mini-batch number for a training. For MNIST, the
FHESGD-based MLP requires 50 epochs, each of which
includes 1000 mini-batches (60 images), to obtain 97.8%
test accuracy. On a single CPU core, the training of the
FHESGD-based MLP needs 187-year, which is impracti-
cal. On the contrary, our Glyph-based CNN requires only
5 epochs to achieve 98.6% test accuracy. The training of
the Glyph-based CNN needs 2.46 months. If we use 48
threads to train the Glyph-based CNN, the overall training
latency can be reduced to 8 days. Multi-threading can effec-
tively increase the training parallelism, since the weight up-
dates in Stochastic Gradient Decent (SGD) are independent.
With 48 threads, we observed a 9.3× training speedup, be-
cause the memory bandwidth has become the performance
scaling bottleneck. For Skin-Cancer-MNIST, it takes 30
epochs, each of which includes 134 mini-batches, for the
FHESGD-based MLP to achieve 70.2% test accuracy. In
contrast, our Glyph-based CNN requires only 15 epochs to
obtain 73.2% test accuracy. By 48 threads, the training of
the Glyph-based CNN can be completed within 7 days.

7. Conclusion
In this paper, we propose, Glyph, a FHE-based privacy-

preserving technique to fast and accurately train DNNs on
encrypted data. Glyph performs ReLU and softmax by
logic-operation-friendly TFHE, while conducts MAC op-
erations by vectorial-arithmetic-friendly BGV. We create a
cryptosystem switching technique to switch Glyph between
TFHE and BGV. We further apply the method of transfer
learning on Glyph to support CNN architectures and re-
duce the number of homomorphic multiplications between
ciphertext and ciphertext. Our experimental results show
Glyph obtains the state-of-the-art test accuracy, but reduces
the training latency by 99% over the prior FHE-based tech-
nique on multiple encrypted datasets.
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8. Supplementary Results and Analysis
In this supplementary material, we further explain how

we achieve the overall training latency on Skin-Cancer-
MNIST (Cancer) in Table 5. In the Table 5, we listed
the comparison of FHESGD-based MLP and our Glyph-
based CNN. Here we explain more on how we built
the Glyph-based MLP and CNN architectures for Skin-
Cancer-MNIST by our TFHE-based activations, cryptosys-
tem switching and transfer learning.

8.1. Skin-Cancer-MNIST

FHESGD. The mini-batch training latency breakdown
of a 3-layer FHESGD-based MLP on a single CPU core is
shown in Table 6. During a mini-batch, the MLP is trained
with 60 Skin-Cancer-MNIST images. Each BGV lookup-
table operation consumes 307.9 seconds, while a single
BGV MAC operation costs only 0.012 seconds. Although
the activation layers of FHESGD require only a small num-
ber of BGV lookup-table operations, they consumes 98% of
the total training latency. The FHESGD-based MLP makes
all homomorphic multiplications happen between cipher-
text and ciphertext, though the homomorphic multiplica-
tions between ciphertext and plaintext is computationally
cheaper. The total training latency of the 3-layer FHESGD-
based MLP for a mini-batch is 123K seconds, which is
about 1.42 days.

Table 6: The mini-batch training latency of the FHESGD-
based MLP. HOP includes the number of homomorphic op-
erations. MultCC indicates the number of multiplications
between ciphertext and ciphertext. AddCC is the num-
ber of additions between ciphertext and ciphertext. TLU
means the number of table-lookup operations. FC is a fully-
connected layer. Act is an activation layer.

Layers Time(s) HOP MultCC AddCC TLU
FC1-forward 4068 603K 302K 302K 0
Act1-forward 44.8K 128 0 0 128
FC2-forward 55.4 8.2K 4096 4.1K 0
Act2-forward 11.7K 32 0 0 32
FC3-forward 4.32 640 320 320 0
Act3-forward 1.45K 7 0 0 7

Act3-error 0.1 7 0 7 0
FC3-error 4.32 640 320 320 0

FC3-gradient 4.32 640 320 320 0
Act2-error 11.7K 32 0 0 32
FC2-error 55.4 8.2K 4.2K 4.2K 0

FC2-gradient 55.4 8.2K 4.2K 4.2K 0
Act1-error 44.8K 128 0 0 128

FC1-gradient 4068 603K 302K 302K 0
Total 123K 1233K 613K 613K 327

TFHE Activation and Cryptosystem Switching. We
replace all activations of the 3-layer FHESGD-based MLP
by our TFHE-based ReLU and softmax activations, and

Table 7: The mini-batch training latency of the Glyph-based
MLP with TFHE activations and cryptosystem switching.
HOP includes the number of homomorphic operations.
MultCC indicates the number of multiplications between
ciphertext and ciphertext. AddCC is the number of addi-
tions between ciphertext and ciphertext. Switch means the
cryptosystem switching. FC is a fully-connected layer. Act
denotes an activation layer.

Layers Time(s) HOP MultCC AddCC Act Switch
FC1-forward 4075 603K 301K 301K 0 BGV-TFHE
Act1-forward 19.2 128 0 0 128 TFHE-BGV
FC2-forward 57.1 8.2K 4.1K 4.1K 0 BGV-TFHE
Act2-forward 4.82 32 0 0 32 TFHE-BGV
FC3-forward 6.02 640 320 320 0 BGV-TFHE
Act3-forward 34.76 7 0 0 7 TFHE-BGV

Act3-error 0.1 7 0 0 0 -
FC3-error 4.32 640 320 320 0 -

FC3-gradient 6.02 640 320 320 0 BGV-TFHE
Act2-error 4.82 32 0 0 32 TFHE-BGV
FC2-error 55.4 8.2K 4.1K 4.1K 0 -

FC2-gradient 62.1 8.2K 4.1K 4.1K 0 BGV-TFHE
Act1-error 19.2 128 0 0 128 TFHE-BGV

FC1-gradient 4068 201K 100K 100K 0 -
Total 10.6K 1233K 613K 613K 327 -

build it as the Glyph-based MLP. We also integrate the cryp-
tosystem switchings into the Glyph-based MLP to perform
homomorphic MAC operations by BGV, and conduct ac-
tivations by TFHE. The mini-batch training latency break-
down of the 3-layer Glyph-based MLP on a single CPU core
is shown in Table 7. Because of the logic-operation-friendly
TFHE, the processing latency of activation layers of Glyph
significantly decreases.

The cryptosystem switchings introduce only small com-
puting overhead. For instance, compared to the counter-
part in the FHESGD-based MLP, FC1-forward increases
the processing latency by only 0.17%, due to the cryptosys-
tem switching overhead. Because of fast activations, com-
pared to the FHESGD-based MLP, our Glyph-based MLP
reduces the mini-batch training latency by 91.4% but main-
tains the same test accuracy.

Transfer Learning on CNN. We use our TFHE-based
activations and cryptosystem switching technique to build
a Glyph-based CNN, whose detailed architecture is ex-
plained in Section 5.2. We implement transfer learning in
the Glyph-based CNN by fixing the convolutional layers
trained by CIFAR-10 and training only two fully-connected
layers. The mini-batch training latency breakdown of the
Glyph-based CNN with transfer learning on a single CPU
core is shown in Table 8. Because the weights of the convo-
lutional layers are unencrypted and fixed, our Glyph-based
CNN significantly reduces the number of multiplications
between ciphertext and ciphertext (MultCC), and adds only
computationally cheap multiplications between ciphertext
and plaintext (MultCP). The Glyph-based CNN decreases



the training latency by 67.2%, but improves the test accu-
racy by ∼4% over the Glyph-based MLP.

Table 8: The mini-batch training latency of the Glyph-based
CNN with TFHE activations, cryptosystem switching, and
transfer learning. HOP includes the number of homomor-
phic operations. MultCC indicates the number of multipli-
cations between ciphertext and ciphertext. MultCP means
the number of multiplications between ciphertext and plain-
text. AddCC is the number of additions between ciphertext
and ciphertext. Switch means the cryptosystem switching.
Conv means a convolutional layer. FC is a fully-connected
layer, while Act denotes an activation layer. BN is a batch
normalization layer. Pool denotes an average pooling layer.

Layers Time(s) HOP MultCP MultCC AddCC Act Switch
Conv1-forward 552 584K 296K 0 296K 0 -
BN1-forward 162 40K 21.3K 0 21.3K 0 BGV-TFHE
Act1-forward 856 10.8K 0 0 0 10.8K TFHE-BGV
Pool1-forward 272 288K 146K 0 146K 0 -
Conv2-forward 528 560K 272K 0 272K 0 -
BN2-forward 41 10.5K 5.3K 0 5.3K 0 BGV-TFHE
Act2-forward 227 29K 0 0 0 29K TFHE-BGV
Pool2-forward 10.5 11K 5.4K 0 5.4K 0 -
FC1-forward 342 101K 0 51K 51K 0 BGV-TFHE
Act3-forward 12.3 128 0 0 0 128 TFHE-BGV
FC2-forward 9.3 2560 0 1280 1280 0 BGV-TFHE
Act4-forward 50.1 7 0 0 0 7 TFHE-BGV

Act4-error 0.1 7 0 0 7 0 -
FC2-error 9.1 2560 0 1280 1280 0 -

FC2-gradient 34.1 2560 0 1280 1280 0 BGV-TFHE
Act3-error 36 128 0 0 0 128 TFHE-BGV

FC1-gradient 341 101K 0 51K 51K 0 -
Total 3481 1716K 746K 106K 852K 14K -


