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Classical molecular dynamics simulations are based on Newton’s equations of motion and rely on numerical
integrators to solve them. Using a small timestep to avoid discretization errors, Verlet integrators generate a
trajectory of particle positions as solutions to Newton’s equations. We introduce an integrator based on deep
neural networks that is trained on trajectories generated using the Verlet integrator and learns to propagate
the dynamics of particles with timestep up to 4000× larger compared to the Verlet timestep. We demonstrate
significant net speedup of up to 32000 for 1 - 16 particle 3D systems and over a variety of force fields.

The time evolution of a diverse array of systems is
governed by Newton’s equations of motion [1]. These
equations are the basis of powerful computational meth-
ods such as classical molecular dynamics (MD) that are
used to understand the microscopic origins of a wide
range of material and biological phenomena [2–5]. In
the MD method, Newton’s equations are integrated for
a system of many particles using numerical integrators
such as Verlet to produce trajectories of particles. The
time evolution is generally performed one small timestep
at a time for sufficiently long times in order to accurately
sample enough representative configurations and extract
useful structural and dynamical information. Consider
the ordinary Verlet integrator

~x(t+ ∆) = 2~x(t)− ~x(t−∆) + ∆2
~f

m
+O(∆4) (1)

that updates the current position ~x(t) of a particle of mass
m at time t to position ~x(t + ∆) after timestep ∆ using
the previous position ~x(t − ∆) and the force ~f at time
t. With ~x(t+ ∆) as the current position, and x(t) as the
previous, the propagation is continued further. While the
term O(∆4) denotes the incurred local error, the global
(accumulated) error is O(∆2) and Equation 1 expresses
a 2nd order integrator [2, 6]. The discretization errors
are minimized by choosing a sufficiently small ∆ which
often makes the simulations computationally expensive.

The ordinary Verlet integrator requires a sequence of
2 position coordinates (~xt, ~xt−∆) in order to update the
position using other quantities such as ~f and m. How-
ever, it is possible to infer these other quantities us-
ing the information encoded in a longer stream of po-
sition data such that the time evolution can be done with
only the history of positions as input. We illustrate this
with a 1D example of a particle experiencing simple har-
monic motion governed by the force f = −kx. It can
be shown that the particle position can be accurately
evolved to t+∆ via the function V (xt, xt−∆, xt−2∆) =
x−1
t−∆

(
x2
t − x2

t−∆ + xtxt−2∆

)
that uses a sequence of 3

positions. V also incurs a global error of O(∆2).
This idea generalizes for more accurate integrators

and systems of many particles such that the time evo-

lution can be performed via the operator V: ~x(t+ ∆) =
V (~xt, ~xt−∆, . . . ~xt−nV ∆) that takes a sequence of nV
positions and evolves the system forward by ∆. For
example, one can derive a 4th order Adams-Bashforth-
Moulton operator that uses a sequence of 4 positions to
evolve the dynamics with a global error of O(∆4). The
longer history of input positions enables such higher-
order integrators to accurately perform time evolution
with larger ∆. However, this advantage generally comes
at the expense of higher computing costs per timestep
that offset the speedup gained via the use of a larger ∆.

Here, we adopt a data-driven approach and show that
accurate integrators based on a sequence of past config-
urations can be derived using deep learning. The deep
neural network based operators are trained using the
ground truth results obtained with the 2nd order Verlet
integrator. They possess a complex mathematical struc-
ture described with ∼ 100, 000 parameters compared to
the relatively simple functional forms of the traditional
higher-order integrators. We demonstrate that the net-
work complexity enables the integrators to perform the
time evolution of systems of many particles for a wide
range of force fields using a timestep up to 4000× the
baseline ∆ associated with the 2nd order Verlet integra-
tor. The relatively low time for inferring the positions as
predictions of the deep learning model ensures that the
overhead costs are low and we demonstrate that speedups
up to 32000 can be obtained using larger timesteps.

RELATED WORK

Recent years have seen a dramatic rise in the use of
machine learning (ML) including deep learning (DL)
to enhance the performance of simulations of materi-
als [7–22]. In MD simulations, ML has been used to
accelerate the sampling of systems with rugged free-
energy landscapes [14], generate new configuration up-
dates in reduced-dimensional space [15], auto-tune sim-
ulation timestep [16], classify particle assembly land-
scapes [17], and derive “surrogates” of MD simulations
[18–22]. However, the use of DL for advancements in the
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FIG. 1. RNN-based R integrator propagates the single timestep
(∆R) evolution of the N particle system characterized by in-
put features of size d. Input system and LSTM parameters are
shown forN = 16 in 3D. Symbols are defined in the main text.

design of integrators driving the MD simulation has been
largely unexplored. Related efforts have focused on us-
ing DL to replicate the outputs of numerical integrators
using baseline timestep values [23–29]. These integra-
tors have been evaluated on relatively simple 1D systems
governed by ordinary differential equations, with some
studies probing the extension to learn partial differential
equations [23, 25, 30, 31]. More recently, data-driven ap-
proaches aimed at time evolution with higher than base-
line timesteps have been pursued [24, 32]. For exam-
ple, Shen et. al [32] used an artificial neural network
as a corrector to reduce the local truncation error in the
Euler integrator, and demonstrated the success on sim-
ple 1D / 2-body problems by performing dynamics with
timestep up to 200× the baseline Euler approach. For the
1D problems, a 100× increase in the timestep led to over
3 orders of magnitude increase in the error. Other related
work focuses on using DL to learn the physics of simple
systems such as 1D spring-mass problems and respect
conservation laws in an unsupervised manner [29, 33–
37]. Here, instead of performing explicit time evolution,
neural networks observe the positions and momenta and
produce the Hamiltonian as output [33].

We build on this research with the goal to produce in-
tegrators based on DL that enable simulations of 3D sys-
tems of particles interacting with commonly employed
potentials describing soft-matter systems (e.g., Lennard-
Jones potential). We show that recurrent neural networks
(RNNs), using the high-dimensional particle trajectory
data, can learn the interaction potentials and the New-

ton’s equations of motion driving the particle dynamics.
We demonstrate that the RNN-based integrator performs
accurate time evolution of 1D and 3D systems over a va-
riety of force fields using large timesteps, up to 4000×
the baseline, limiting the rise in error with increasing
timestep to within an order of magnitude.

DATA-DRIVEN DESIGN OF INTEGRATORS FOR
SOLVING NEWTON’S EQUATIONS OF MOTION

The use of deep learning (DL) in sequence processing
and time series prediction problems has been well stud-
ied by the industry for different applications including
voice recognition and translation [38], pattern recogni-
tion in stock market data [39], and ride-hailing [40]. Re-
current neural networks (RNN) are established DL tools
in these applications. RNNs process input sequence data
and maintain a vector ~ht known as the “hidden state” for
each recurrent cell to model the temporal behavior of se-
quences through directed cyclic connections between its
cells. ~ht is updated by applying a function f to the pre-
vious hidden state (~ht−1) and the current input (~xt). The
cells are arranged in a fashion where they fire when the
right sequence is fed. A common choice for f is the Long
Short Term Memory networks (LSTM). An LSTM unit
contains a cell which is the memory of the unit, and three
gates (input gate, output gate, and forget gate) which reg-
ulate the flow of information into and out of the cells.
This gated architecture allows the LSTM to remember
longer dependencies of the sequences fed into the net-
work and deal with the exploding and vanishing gradient
problems encountered while training RNNs (SI).

Here, we show that RNNs can be used to design inte-
grators to solve Newton’s equations of motion and drive
MD simulations. For the ease of exposition, we describe
the DL-based integrator evolving positions of particles
(akin to the ordinary Verlet integrator). The process can
be adapted to describe an integrator that evolves both po-
sitions and velocities (SI). Each component of the posi-
tion vector of a particle is identified as a feature, with the
size of the input and output features being the same. The
total feature size for N particles in D physical dimen-
sions is d = N × D. We introduce an operator R based
on RNN derived using LSTMs (Figure 1) that employs a
sequence {x} = ~xt, ~xt−∆R , . . . , ~xt−SR∆R of length SR

of current and past positions up to time t to predict the
future position at time t+∆R: ~x(t + ∆R) = R [{x}].
R can be written as R[{x}] = D [L2[L1[{x}]]], where
D , L1 , L2 are operators associated with the dense layer,
first LSTM layer, and second LSTM layer of the RNN re-
spectively. The layers are stacked up on each other such
that the output of one (e.g., L1) becomes the input for
another (L2) as shown in Figure 1. Each LSTM layer
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FIG. 2. Overview of the DL approach based on recurrent neural networks (RNN) for integrating Newton’s equations of motion in
order to drive molecular dynamics (MD) simulations. The LSTM model in the RNN integrator block is described in Figure 1.

consists of n number of LSTM units and contains a set
of parameters in the form of weights, biases, and acti-
vation functions. For example, L1 has n1 LSTM units
and is characterized with weights W,U , and bias b. It
takes input feature vector {x} and outputs hidden state
vectors {h}. These hidden states are fed as input to the
L2 layer characterized with its own set of weights and
biases. A similar connection is made between L2 and
the dense layer D which consists of nD units in the form
of weights and biases. Post training, these layers acquire
well-determined values for all the parameters and the in-
tegrator R emerges as:

R[{x}] = D [L2[L1[{x}, {P1}], {P2}], {PD}], (2)

where {P1}, {P2}, {PD} are trained parameters associ-
ated with LSTM layer 1, LSTM layer 2, and the dense
layer respectively. While training, {x} is fed as a vector
of size B × SR × d, where B is a training parameter de-
noting the batch size. When used as an integrator (test-
ing phase), B = 1. Characterized with up to 100, 000
parameters, R can be considered as a reformulation of
the ordinary Verlet integrator V (Equation 1). This com-
putational complexity accounts for its ability to handle
larger timesteps in performing MD simulations.

Figure 2 describes the DL approach using R to evolve
the dynamics of an N particle system with timestep
∆R. R is trained using particle trajectories generated
via V with small ∆ = 0.001; these Verlet results pro-
vide the ground truth. Input system attributes and ∆
are fed to V to simulate the dynamics and obtain SV =
∆R(SR − 1)/∆ number of configurations. Out of SV,
SR number of configurations (frames) separated by ∆R
are distilled to feed the R operator (SR is the sequence
length). R predicts the time evolution of the system after
∆R. Until the end of the simulation, the input sequence
to R is left shifted to discard the oldest time frame, and
the latest frame predicted by R is appended to the right
of the sequence. The adjusted input sequence is fed to
R to evolve the system ∆R further in time. The types
of training and testing datasets generated and the LSTM
architecture details are provided in the next section.

METHODS

The training and testing datasets are generated and
processed for N ∈ (1, 16) by changing the parameters
characterizing the potential energies and the physical at-
tributes describing the particles. Four different potentials
are considered: 1) simple harmonic oscillator (SHO), 2)
double well (DW), 3) Lennard-Jones (LJ), and 4) rugged
(SI). In these initial studies, we select datasets generated
by sweeping parameters that mainly shift the initial con-
figuration (e.g., x0 in LJ) or scale the particle attributes
(e.g., mass m in LJ), and in some cases change the shape
of the potential energy (e.g., k in SHO). Details on the
data preparation and preprocessing are in the SI.

R integrator with LSTM layer 1, LSTM layer 2, and
final dense layer (Figure 1) is implemented in Tensor-
Flow for regression of the particle trajectories using n1,
n2, and nD number of hidden units respectively. R takes
a B× SR×d dimensional vector as input where B and
d refer to batch and feature size respectively. All the
parameters (weights, biases) describing the layers are
trained with an error backpropagation algorithm, imple-
mented via a stochastic gradient descent. Adam opti-
mizer is used to optimize the error backpropagation. Out-
puts of the LSTM layers are wrapped with the tanh ac-
tivation function and no activation functions are used in
the dense layer. The L2 error (mean square loss) between
target and predicted trajectories is used for error calcu-
lation. LSTM implementation, training, and testing are
programmed using scikit-learn, Keras, and TensorFlow
[41–43]. Scikit-learn is used for grid search and scaling,
Keras is used to save and load models, and TensorFlow
is used to create and train R. Prototype implementation
written in Python/C++ is available on GitHub [44].

n1, n2, and nD are chosen depending on the prob-
lem complexity and data dimensions. We discuss these
choices and other details of the feature extraction and re-
gression process for the most complex case of 16 parti-
cles interacting with LJ potential in 3D with PBC. For
this system the feature size d = 96. By performing
a grid search, hyper-parameters such as the number of
units for each of the two LSTM layers (n1, n2), number
of units in the final dense layer (nD), batch size (B), and
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FIG. 3. Errors (log scale) in position updates for 1D simulations. Results are shown for 4 potentials: SHO with m = 10, k = 1,
DW with m = 1, x0 = −2, LJ with m = 1, x0 = 2, and rugged with m = 1, x0 = −6. Trajectories obtained using V
with ∆ = 0.001 are taken as the ground truth. (A) Errors using V with timestep dt = 10∆. (B), (C), (D), and (E) show errors
using R for SHO, DW, LJ, and rugged potentials respectively for ∆R = 100∆ (circles), 400∆ (squares), 1000∆ (triangles), and
4000∆ (pentagons). (F) Error incurred in position updates using R at t = 1000 vs. timestep ∆R for the 4 potentials; inset shows
corresponding error using V vs. Verlet timestep dt.

the number of epochs are optimized to 32, 32, 96, 256,
and 2500 respectively. Here we have not done a thorough
hyper-parameter optimization but have identified reason-
able values for key choices – the architecture and the
size of the network, and the length of time series. The
learning rate of Adam optimizer is set to 0.0005 and the
dropout layer is set to 0.15 to prevent overfitting. Both
learning and dropout rates were selected using a trial-
and-error process. The weights in the hidden layers and
in the output layer are initialized for better convergence
using a Xavier normal distribution at the beginning [45].

EXPERIMENTS AND RESULTS

We now compare the results obtained from simula-
tions using R against the baseline velocity Verlet integra-
tor V (unless otherwise noted, V will denote the velocity
Verlet integrator). For 1D systems, results are shown for
four different potentials: 1) simple harmonic oscillator
(SHO), 2) Lennard-Jones (LJ), 3) double well (DW), and
4) rugged (see SI Text for details). For the 3D many par-
ticle system, experiments are performed on systems of
particles interacting with LJ potential. In each case we
adopt units such that the values of the system parameters
and predicted quantities are around 1. For example, in
the case of 3D many particle system, we use reduced LJ
units common in MD simulations.

1D Simulations Our first experiments are on testing
R to predict the time evolution of single particle sys-
tems in 1D. Training datasets of trajectories simulated
using V with ∆= 0.001 up to t = 200 are used. We

find that unlike the traditional Verlet integrator with large
timesteps, the errors in positions (trajectory errors) pre-
dicted by R do not increase over time for t up to 10000,
and are O(10−3) for all ∆R ∈ (100∆, 4000∆) (Figure 3
B, C, D, E). These bounded errors can be attributed to the
unique functional form of the R integrator produced via
the connected LSTM layers, L1 and L2, and the dense
layer D with each layer parameterized using fixed (time-
independent) weights. The outputs of L1 and L2 are
wrapped with a tanh function and are bounded regard-
less of the range of values associated with the input posi-
tions. The matrix multiplication of the bounded outputs
of L2 and the fixed weights of the linear layer D with no
wrapping function produces the updated positions.

The errors rise with increase in ∆R and the com-
plexity of the potential (e.g., higher for rugged than
LJ) but remain within an order of magnitude (Fig-
ure 3F). The average error across different poten-
tials for ∆R = [100∆, 400∆, 1000∆, 4000∆] are ≈
0.001, 0.002, 0.003, 0.004 respectively. On the other
hand, the trajectory errors incurred using V with
timestep 10∆ show exponential increase with t and with
rising timestep for all potentials considered (Figure 3A
and Figure 3F). Similarly, velocity v and position x pre-
dictions produced by R exhibit small trajectory errors,
and the phase diagram (v vs. x) and the total energy
track the ground truth results for t up to 10000 and ∆R
up to 4000∆ (SI Figure 8). R learns the energy conser-
vation feature associated with the dynamics governed by
Newton’s equations of motion.

Lyapunov Instability Next set of experiments involve
assessing the stability of the solutions (trajectories) pre-
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FIG. 4. Lyapunov instability tests in 1D simulations of a particle in an LJ potential with m = 1, x0 = 5.1 using V with timestep
∆= 0.001 and R with timestep ∆R = 0.1 = 100∆. Legend indicates (integrator, δp) where δp represents the small momentum
shift introduced at the start of trajectory. Lines and markers are the results of simulations driven by V and R integrators respectively.
Outset shows the trajectory for δp = 0, 10−4, 10−3. Insets show the absolute difference between positions generated with δp 6= 0
and δp = 0 (∆x(t)=|x(t, 0)− x(t, δp)|) as produced by V (left inset) and R (right inset).

dicted by the integrator R. This is typically discussed in
terms of Lyapunov instability which states that close-by
trajectories diverge exponentially [46, 47]. Lyapunov in-
stability is present in standard Verlet integrators for many
potentials. Trajectories of a particle of m = 1 in 1D
LJ potential generated using V are used for these ex-
periments. A small perturbation in the momentum δp is
introduced at the start to investigate its effects on long-
time evolution of the trajectory. We find that the RNN
surrogate inherits the characteristic Lyapunov instability
of V (Figure 4). As δp increased from 10−4 to 10−3, the
trajectories predicted by R (V ) exhibit similar average
divergences from 0.0153 (0.0152) to 0.149 (0.148).

FIG. 5. Energy conservation using R in a N = 16 particle
3D simulation with LJ interactions (ε = 2 and m = 1) in
PBC with initial positions randomly selected and initial veloc-
ities set to 0. Black lines are the ground truth results obtained
using V with ∆ = 0.001. Outset shows the energy deviation
δE (log scale) vs. time t (log scale) predicted by R for ∆R=
100∆, 400∆, 1000∆, 4000∆. Inset shows the same for time
evolution using V with timestep 10∆, 40∆, and 100∆. Note
the order of magnitude difference between the outset and inset
y-axis values.

Many Particle Simulations in 3D Our final set of ex-
periments probe the extension of the proposed DL ap-
proach to systems of N = 3, 8, 16 particles interacting
with LJ potential. R is trained using trajectories gen-
erated by V (∆ = 0.001) in a cubic box with periodic
boundary conditions (PBC) or in a spherical hard-wall
confinement with reflective boundaries. In the former
case, R observed the positions of the particles governed
by Newton’s equations of motion and the re-mapping
dictated by the use of PBC. We find that R success-
fully evolved the positions and velocities of particles up
to time t = 106 for all the N -particle systems studied
with ∆R up to 4000∆. In the interest of brevity, we dis-
cuss the results of experiments on the N = 16 system
in PBC. Results with the spherical hard-wall confine-
ment exhibited similar position errors (δr ∼ O(10−3))
(SI Figure 10). The training dataset for this study in-
volved time evolution up to t = 2000 and the charac-
teristic LJ potential energy ε = 1. Results are shown
for time evolution using R for ε = 2 (not present in the
entire dataset); slightly better results were obtained for
ε = 1. The random initial configuration for testing R
was selected outside the training dataset. We find that
the trajectory error (computed as an average over 16 par-
ticles) associated with the positions predicted by R for
∆R= 100∆ to 4000∆ isO(10−3) for all times (SI Figure
9), exhibiting a behavior similar to the 1D results (Figure
3). The total energy Et ≡ E(t) and the energy devia-
tion δE(t) = (Et − E0)/E0 of the system show that R
conserves the total energy of the system (δE(t) . 10−3)
for up to t = 106 for all ∆R (from 100∆ to 4000∆).
In strike contrast, the baseline V integrator suffers from
growing accumulated error of > 10−1 when simulated
with timestep of 40∆ and exhibits a rapid divergence in
the energy for t > 105 (with associated average trajec-
tory error of 109 at t ≈ 105; SI Figure 9).

Speedup The DL approach uses Verlet integrator to
kickstart the MD simulation and R to evolve the dynam-
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ics forward in time. This detail should be incorporated in
calculating the net speedup Sp:

Sp = tVST/ [SVtV + (ST − SV) tR∆/∆R] (3)

where ST is the total number of steps needed if the time
evolution is performed only using V , tV is the time for
one forward step propagation using V , and tR is the time
for one forward step propagation using R. We have not
accounted for the time spent on creating training datasets
(< 24 hours for the experiments shown). Sp is 1 if
SR= 0 (no time evolution using R). As most MD sim-
ulations are expected to run for long times, in the limit
ST � SV, we obtain Sp ≈ tV∆R/(tR∆). For example,
for the system of 16 LJ particles with tV ≈ 0.04392 sec-
onds, ∆ = 0.001, tR ≈ 0.0026 seconds, and ∆R = 4.0,
we find Sp > 104. Table I shows Sp for different experi-
ments at different ∆R. For time evolution up to t = 106

TABLE I. Net speedup Sp using the R integrator

Expt. / ∆R 100 200 400 1000 2000 4000
SHO 0.5 1.3 3.2 8.6 20.0 45.0

Double-well 0.6 1.2 2.8 8.7 17.3 38.0
LJ 0.9 1.5 3.9 12.8 22.5 42.3

Rugged 0.4 0.8 2.1 4.7 9.7 20.6
LJ, 8 600 1000 1500 5500 8300 12000

LJ, 16 3000 4900 7100 20000 28000 32000

requiring ST = 109 steps, we find Sp up to 45× for 1D
systems, and from 230× to 32000× for the many particle
simulations with LJ forces. Sp < 1 data is generally for
1D systems with ∆R = 100∆, 200∆ and when tV < tR
(e.g., for the 1D cases where the computational cost for
time evolution using V is smaller than that for R).

DISCUSSION

Role of Sequence Length The DL-based integrator
R developed here learns both the interaction potentials
and the dynamics of the particles based on its experience
with the solutions (trajectories) of Newton’s equations
of motion via the training data generated using the 2nd
order Verlet integrator. The R integrator employs a se-
quence of 5 past configurations (e.g., positions of parti-
cles) to predict the future configuration using a timestep
up to 4000∆ with high accuracy (where ∆ is the baseline
timestep associated with the 2nd order Verlet integrator).
We hypothesize that the long input sequence length en-
dows R with properties that enable it to perform the time
evolution with large timesteps. To test this hypothesis,
we trained R with an input sequence length of 3 and 4

positions, and used the resulting integrator to evolve the
dynamics of the 1D system of a particle in an LJ poten-
tial. We extracted the position error δr incurred in the
time evolution up to t = 1000 using the ground truth re-
sults obtained with the 2nd order baseline ordinary Verlet
integrator V with ∆= 0.001.

We find that for smaller sequence length SR = 3 or
4, R is only able to accurately propagate the dynam-
ics with δr ∼ O(∆−3) for ∆R . 10∆ (SI Figure 11).
For SR = 3, the error associated with R rises steeply
for ∆R > 10∆ and spans over 4 orders of magnitude,
similar to the results for the 2nd order Verlet integra-
tor. For SR = 4, the accuracy improves and error scal-
ing is similar to that produced by a traditional 4th or-
der integrator such as Runge-Kutta or Adams-Bashforth-
Moulton method (with global error ∼ O(∆4)). R in-
tegrator trained with sequence length SR = 5 shows a
much weaker rise in error limited to within an order of
magnitude as ∆R rises up to 4000∆. Thus, the R opera-
tor with increasing sequence length SR learns a progres-
sively more accurate integrator employing the trajectory
data generated by the 2nd order Verlet (V ) integrator.

Comparison with Traditional Large-Timestep Integra-
tors The main source of speedup shown in Table I is the
use of large timestep ∆R � ∆ in performing particle dy-
namics with R. Extending the approximate expression
for speedup to a general higher-order / multi-step tradi-
tional integrator I, we find SI

p ≈ (tI/tR)× (∆R/∆I) =
Sp × (tI/tV) × (∆/∆I), where tI and ∆I are the time
spent and timestep used in the single-step forward prop-
agation using I. The use of I as the baseline (reference)
integrator can reduce the reported net speedup numbers
tabulated above as ∆/∆I < 1. However, the increase of
timestep with the use of I generally accompanies a rise
in the computational overhead costs as the time for single
step propagation typically rises, i.e. tI > tV. For exam-
ple, in the case of a 3D system of 16 particles interact-
ing with LJ potential, a 4th order integrator (e.g., Runge-
Kutta, Adams-Bashforth-Moulton) is expected to yield
∆/∆I ≈ 0.1 but also take 2tV to 5tV longer along with a
much higher memory utilization (4× to 8×). Moreover,
tI/tV is expected to rise with the number of particles N
following the O(N2) scaling in several applications due
to the higher number of force computations and mem-
ory utilization. Thus, with increasingN , the reduction in
∆/∆I is expected to be offset by the increase in tI/tV to
yield SI

p values similar to Sp. The R integrator uniquely
bypasses many of these computational challenges at the
design stage and enjoys a relatively small forward step
propagation (inference) time tR that is largely indepen-
dent of the timestep ∆R and exhibits O(N) scaling. In
the case of the above example, tR = 1.48×10−5 seconds
(compared to tV ≈ 0.04 seconds) is roughly the same for
over 3 orders of magnitude change in ∆R and is expected
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to scale linearly with N .
Challenges and Future Work While the use of the

DL approach to design integrators has many unique ben-
efits as evidenced by the initial results, to make the ap-
proach more generalizable and suitable for practical ap-
plications, further research is needed. One key challenge
is predicting the dynamics of systems that exhibit rare-
event characteristics such that times to yield the low-
energy configurations are longer due to the kinetic bottle-
necks that can trap the particles in metastable pathways.
In these cases, training the RNN model to “see” a vari-
ety of distinct phase space explorations may prove too
time-consuming. Another challenge is the scaling of the
approach to a larger number of particles N . Future work
will seek to address these challenges. We will investigate
the design of DL-based models for predicting the trajec-
tories of particles in systems where self-organization into
aggregates occurs at longer times depending on the com-
bination of particle and potential attributes. We plan to
address the issue of scaling with N in part by the use of
hierarchical RNNs [48] and alternative DL approaches
[49] including transformers [50]. Also, we plan to ex-
plore the “recurrent” versions of physics-informed neu-
ral network architectures [33, 34] where in addition to
the use of sequence-to-sequence mapping, the infusion
of conservation laws in the design of loss functions of
the LSTM units can help scale the approach to larger N .
Future work will also explore the training of R using tra-
jectories produced via simulations in different ensembles
(e.g., NVT) in order to test its accuracy in predicting con-
figuration updates where thermal effects (often stochastic
in nature) are incorporated. The implications of the DL-
based integrators for other MD methods such as discon-
tinuous MD, which enable large gains in speedup with
small loss of accuracy, will also be explored [51].

CONCLUSION

We introduced an integrator based on recurrent neural
networks which can learn the dynamics of many particle
systems described by Newton’s equations of motion us-
ing trajectory data generated via the traditional Verlet in-
tegrators. The data-driven approach provides a new way
to design integrators that are accurate for large timesteps
by controlling only a few parameters (e.g., the sequence
length). The deep learning model enables an accurate
and rapid determination of the large set of 100,000 train-
able parameters characterizing the mathematically com-
plex functional form of the neural network based integra-
tor. This complexity makes the integrator robust enough
to be applicable over a wide range of potentials and gen-
eralizable to systems of many particles. To evaluate our
integrator, we showed that it exhibits excellent energy

conservation and produces accurate predictions of the
trajectories of systems with up to 16 particles using up
to 4000× larger timestep than the Verlet integrators. We
also showed that our integrator inherits the Lyapunov in-
stabilities of the Verlet integrator. Finally, we demon-
strated significant net speedup over a variety of interac-
tion potentials and total number of particles. The deep
learning based integrator introduced here and the associ-
ated results illustrate an important approach to learn the
time evolution operators which can be applied across a
variety of fields including fluid dynamics [31], robotics
[52], and fusion-energy science [53].
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SUPPORTING INFORMATION

Reformulation of Velocity Verlet Integrator using Deep
Learning

Many numerical integration methods can perform the
dynamics of particles determined by Newton’s equation
~F = m~a. Among these, the velocity Verlet integrator
V is a popular choice that is also used in our work to
generate the ground truth for many experiments. V is
expressed as:

~x(t+ ∆) = ~x(t) + ∆~v(t) +
∆2

2m
~f(t), (4)

~v(t+ ∆) = ~v(t) +
∆

2m

(
~f(t) + ~f(t+ ∆)

)
. (5)

Here we have adopted the notation for a single particle
of mass m; generalization to many particles is straight-
forward. V updates the current position ~x(t) at time t to
the future position ~x(t + ∆) after timestep ∆ using the
current velocity ~v and the force ~f at time t. The current
velocity ~v(t) at time t is updated to velocity ~v(t + ∆)

after timestep ∆ using the force ~f(t) at time t and the
force ~f(t+ ∆) at time t+ ∆. Note that after the position
update in Equation 4, the force needs to be re-evaluated
to update the velocity in Equation 5. With ~x(t + ∆) as
the current position and ~v(t+ ∆) as the current velocity,
the propagation is continued further.
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We describe a data-driven approach to design an
integrator that takes a sequence of past positions and
velocities as input and generates the future position
and velocity of the particle. Each component of
the position and the velocity vectors of a particle
is identified as a feature. Inputs and outputs have
the same feature size. The total feature size for N
particles in D dimensions is d = N × D × 2. For
example, for N = 16 particles interacting in 3D, the
size of both the input and output features is d = 96.
We introduce an operator R based on RNN derived
using LSTMs (Figure 1) that employs a sequence
of current and past positions and velocities (treated
as input features) up to time t to predict the future
position and velocity at time t+∆R: (~xt+∆R , ~vt+∆R) =
R [~xt, ~xt−∆R , . . . , ~xt−SR∆R , ~vt, ~vt−∆R , . . . , ~vt−SR∆R ]
where ∆R is the timestep associated with the operator
R and SR is the length of the sequence. R can be
written as R{x, v} = D [L2[L1[{x, v}]]], where D ,
L1 , L2 are operators associated with the dense layer,
first LSTM layer, and second LSTM layer of the RNN
respectively, and {x, v} is a shorthand for the sequence
~xt, ~xt−∆R , . . . , ~xt−SR∆R , ~vt, ~vt−∆R , . . . , ~vt−SR∆R . Sim-
ilar to the derivation shown in the main text, these layers
are stacked up on each other such that the output of one
(e.g., L1) becomes the input for another (L2). Post
training, these layers acquire well-determined values for
all the parameters and the integrator R emerges with the
more explicit expression:

R[{x, v}] = D [L2[L1[{x, v}, {P1}], {P2}], {PD}],
(6)

where {P1}, {P2}, {PD} are trained parameters associ-
ated with LSTM layer 1, LSTM layer 2, and the dense
layer respectively. While training, {x, v} is fed as a vec-
tor of size B × SR × d, where B is a training parameter
denoting the batch size. When used as an integrator (test-
ing phase), B = 1. R is trained on trajectories produced
by the using traditional velocity Verlet integrator V to
evolve the dynamics dictated by Newton’s equations of
motion. Characterized with up to 100, 000 parameters,
R can be considered as a reformulation of the velocity
Verlet integrator V (Equation 4 and 5).

LSTM Networks

There are several architectures of LSTM units. A com-
mon architecture is composed of a cell (the memory part
of the LSTM unit) and three “regulators”, usually called
gates, that regulate the flow of information inside the
LSTM unit. An input gate (it) controls how much new
information is added from the present input (xt) and past
hidden state (ht−1) to our present cell state (ct). A forget

gate (ft) decides what is removed or retained and carried
forward to the current cell state (ct) from the previous
cell state (ct−1). An output gate (ot) decides what to out-
put as the current hidden state (ht) from the current cell
state (ct). The LSTM formulation can be expressed as:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct). (7)

Here, xt ∈ Rd is the input vector to the LSTM unit,
ft ∈ Rh is the forget gate’s activation vector, it ∈ Rh

is the input gate’s activation vector, ot ∈ Rh is the out-
put gate’s activation vector, ht ∈ Rh is the hidden state
vector also known as the output vector of the LSTM unit,
ct ∈ Rh is the cell state vector, and ◦ is the Hadamard
product operator. W ∈ Rh×d and U ∈ Rh×h are the
weight matrices and b ∈ Rh are the bias vector parame-
ters which need to be learned during training. σg and σh
represent sigmoid function and hyperbolic tangent func-
tions respectively. The superscripts d and h refer to the
number of input features and the number of hidden units
respectively.

Data Generation, Preparation, and Preprocessing

In most cases, prior domain experience and backward
elimination using the adjusted R squared method is em-
ployed to determine the important input parameters that
significantly change the desired output. In some cases,
such as particles in Lennard-Jones (LJ) potential, only
a subset of the important input parameters are varied to
create the dataset to train the RNN-based R integrator.
Unlike traditional deep neural networks where the phys-
ical inputs are mapped to outputs generally distinct from
inputs, the inputs and outputs for the RNN approach are
both trajectory data as shown in Figure 6. MD simula-
tion driven using the velocity Verlet algorithm generally
produces time series data separated by ∆ = 0.001 in
time. The data is characterized by multiple features such
as position and velocity vectors. To train the integrator
R, we prepare the inputs and target data as explained in
Figure 6. Since integrator R will operate with different
timestep ∆R (e.g., 100∆, 1000∆), we filter the time se-
ries data with a filtering factor defined as ∆R/∆ to make
the data separated with ∆R. Next, we do windowing
through the time series data with the window length of
SR (the RNN model sequence length), and frame over-
lap length of SR− 1 to generate a sequence of length SR
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as input and the future configuration as the output (tar-
get). We do this repeatedly until the time series is ended
and then move to the next choice for ∆R and a new as-
sociated filtering factor. We do the same process for all
simulation data and append all the input sequences and
target vectors as shown in Figure 6.

FIG. 6. Data processing for training and testing of integrator R
with sequence length SR as a key input parameter.

In the end, all the input sequences are expected to form
a 3D matrix (number of samples × feature size (d) ×
SR) and the associated output vectors form a 2D matrix
(number of samples× d). The entire data set is randomly
shuffled (along the axis of the number of samples) and
separated into training and testing sets using a ratio of
0.8:0.2. We now describe the datasets associated with
systems characterized by different potential energies and
particle attributes used in the experiments for training
and testing R. The potential energy functions are shown
in Figure 7. For the 1D systems, the timestep and the to-
tal time associated with generating the ground truth us-
ing the velocity Verlet integrator were ∆ = 0.001 and
tf = 100. For the 3D many particle systems, ∆ = 0.001
and tf = 2000.

FIG. 7. Potential energies associated with the 1D experiments.
Dash-dotted, dotted, dashed, and solid lines represent SHO,
DW, LJ, and rugged potential respectively.

Simple harmonic oscillator (SHO) For this system,
the potential energy is given by

U =
1

2
kx2, (8)

and the associated force is

f = −kx. (9)

The dataset is generated by varying three input param-
eters: mass of the particle m ∈ [1, 10], spring con-
stant k ∈ [1, 10], and initial position of the particle
x0 ∈ [−10,−1]. The parameter sweep generated a
dataset of 500 simulations, each having 50,000 position
and velocity values.

Particle in a double well (DW) For this system, the
potential energy is given by

U =
1

4
x4 − 1

2
x2, (10)

and the associated force is

f = x− x3. (11)

The dataset is generated by varying two input parame-
ters: mass of the particle m ∈ [1, 10] and the initial po-
sition of the particle x0 ∈ [−3.1, 3.1]. The parameter
sweep generated a dataset of 500 simulations, each hav-
ing 50,000 position and velocity values.

1D Lennard-Jones (LJ) system For this system, the
potential energy is given by

U(x) = 4ε

((
1

x

)12

−
(

1

x

)6
)
, (12)

and the associated force is

f =
48ε

x

((
1

x

)12

− 0.5

(
1

x

)6
)
. (13)
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The dataset is generated by varying two input parame-
ters: mass of the particle m ∈ [1, 10] and the initial
position of the particle x0 ∈ [1.0, 3.0]. The parameter
sweep generated a dataset of 500 simulations, each hav-
ing 50,000 position and velocity values.

Particle in a rugged potential For this system, the
potential energy is given by

U(x) =
x4 − x3 − 16x2 + 4x+ 48

50
+

sin (30(x+ 5))

5
,

(14)
and the associated force is

f =
−4x3 + 3x2 + 32x− 4

50
−6 cos (30(x+ 5)). (15)

The dataset is generated by varying two input parame-
ters: mass of the particle m ∈ [1, 10] and the initial po-
sition of the particle x0 ∈ [−6.1, 6.1]. The parameter
sweep generated a dataset of 640 simulations, each hav-
ing 64,000 position and velocity values.

Many particles interacting with LJ potential For this
3D system, the interaction potential energy between any
two particles is given by the LJ potential:

U(r) = 4ε

((
1

r

)12

−
(

1

r

)6
)

+0.0163ε for r ≤ 2.5,

(16)
and the associated force is

~f =
48ε

r2

((
1

r

)12

− 0.5

(
1

r

)6
)
~r for r ≤ 2.5.

(17)
For r > 2.5, both U and ~F are 0. Note that the unit of
distance is chosen to be the particle diameter σ and the
unit of energy is chosen such that the LJ potential well
depth ε has values around 1. We prepared two different
types of simulation boxes to generate the datasets: cubic
box with periodic boundary conditions (PBC) and spher-
ical box with reflective boundary. In each box, we per-
formed simulations withN = 3, 8 and 16 particles. Each
of these simulations was created as a separate dataset
that yielded 6 different datasets to train and test R. The
dataset is generated by varying two input parameters:
mass of the particlem ∈ [1, 10] and the initial position of
the particles (x0, y0, z0) with each Cartesian coordinate
chosen between −3.0 and 3.0. The well depth was held
constant to ε = 1 in creating the training dataset. Initial
velocities were chosen to be zero. The parameter sweep
generated a dataset of 5000 simulations for each of the
aforementioned cases (or 30,000 simulations in total).

Additional Experiments and Empirical Results

Phase diagram for LJ This experiment focused on
testing R to predict the time evolution of the 1D LJ sys-

tem. Training dataset comprised of trajectories (positions
and velocities) generated using V with ∆ = 0.001 for up
to t = 200. Figure 8 shows the 1st period (top row) from
t = 1 to t = 13 and the 75th period (bottom row) from
t = 987 to t = 1000 of the simulation. The 75th period
is towards the end of the simulation. The result is shown
for a particle of mass m = 1, initial position x0 = 2.5,
and ε = 1. For either time periods characterizing the
oscillations, the positions predicted by R using a wide
range of timestep ∆R ∈ [100∆, 4000∆] remain close to
the numerically exact result. On the other hand, the tra-
jectory simulated using V shows errors rising with t for
timesteps & 10∆. Similarly, velocities v produced by R
exhibit very small deviations from the ground truth result
for all ∆Rinvestigated as evidenced by the phase space
plots (v vs. x) in Figure 8. On the other hand, the phase
space plot generated using trajectories evolved with V
deviated from the ground truth for timesteps & 10∆. Fi-
nally, the total energy produced by R tracks the ground
truth result for t up to 1000 and ∆R ∈ [100∆, 4000∆],
in stark contrast with results using V as the integrator.

Many particle experiments Figure 9 shows the total
error associated with the positions of many particles as a
function of time for dynamics driven by R and V . The
errors are computed using:

δr =
1

N

N∑
i=1

|~ri,GT − ~ri,R| (18)

where the formula is shown for R. Here N is the num-
ber of particles, ~ri,GT is the ground truth result for the
position of the ith particle at time t, ~ri,R is the position
of the ith particle predicted by R at the same time t. The
ground truth (GT) results for the trajectories are gener-
ated using V with ∆ = 0.001. Note that the training
set consisted of dynamics up to t = 2000 and we in-
tentionally kept the random initial configuration tested
here outside the training and testing datasets. The simu-
lated system is N = 16 particles interacting in 3D with
LJ potentials under PBC. We find that the trajectory er-
ror δr associated with the positions predicted by R for
∆R= 100∆ to 4000∆ is O(10−3) up to t = 106. On
the other hand, δr for the system evolved using V with
timestep 10∆ increases to O(10−1) at around t ≈ 1000.
For timestep values of 40∆, 100∆, V does worse as δr
rises to very large values > 109, rendering the time evo-
lution of the system meaningless.

Testing R with different sequence lengths In this ex-
periment, we tested the dependence of the accuracy of
time evolution performed by R integrator on the se-
quence length of input configurations used to train the
operator. We trained R with different input sequence
length SR experimenting with SR = 3, 4 and 5. The
training was performed using the same dataset employed
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FIG. 8. Dynamics of a particle in a 1D LJ potential (m = 1, x0 = 2.5) captured by tracking the position x vs. time t (left column),
phase space plot of velocity v vs. x (center column), and the deviation in the total energy (right column). Results are shown for the
dynamics produced by V and R. Top row is the dynamics from t = 0 to t = 13, and bottom row is the dynamics from t = 987
to t = 1000. Black lines are the ground truth results obtained using V with ∆ = 0.001. Black color circles, squares and triangles
represent the results obtained using V with timestep 10∆, 50∆, and 100∆. Blue circles, orange squares, green triangles and red
pentagons represent the results obtained using R with ∆R = 100∆, 400∆, 1000∆, and 4000∆ respectively.

FIG. 9. Average error δr (log scale) in evolved positions vs. time t incurred in a 3D simulation of N = 16 particles interacting
with LJ potentials (ε = 2 and m = 1) in periodic boundary conditions (PBC). Initial positions are randomly selected and velocities
are initialized to zero. All results are compared with the ground truth result obtained using V with ∆ = 0.001. Left plot shows δr
for the time evolution up to t = 1 million (log scale) for V using different dt = 10∆, 40∆, 100∆ values. Right plot shows δr for
the same time evolution using R with ∆R=100∆, 400∆, 1000∆, and 4000∆.

in the original 1D LJ system experiment. The resulting
integrator was used to evolve the dynamics of the 1D sys-
tem of a particle in an LJ potential. Figure 11 shows
the position error δr incurred in the time evolution up to
t = 1000 vs. ∆ using different integrators. δr is evalu-
ated using the ground truth results obtained with the 2nd
order baseline Verlet integrator V with ∆= 0.001.

We find that for smaller sequence length SR = 3 or
4, R fails to accurately perform the time evolution for
∆R & 10∆ incurring errors δr & O(∆−2) (SI Figure
11). For SR = 3, the error associated with R rises
steeply for ∆R > 10∆ and spans over 4 orders of mag-
nitude, similar to the results for the 2nd order Verlet inte-

grator (or its equivalent V operator that takes a sequence
of 3 positions as input). For SR = 4, the accuracy im-
proves and error scaling is similar to that produced by
a traditional 4th order integrator such as Runge-Kutta
or Adams-Bashforth-Moulton method (with global error
∼ O(∆4)). R integrator trained with sequence length
SR = 5 shows a much weaker rise in error limited to
within an order of magnitude as ∆R rises up to 4000∆.

∗ kadu@iu.edu
† gcf@iu.edu

mailto:kadu@iu.edu
mailto:gcf@iu.edu
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FIG. 10. Average error δr (log scale) in evolved positions vs. time t incurred in a 3D simulation of N = 16 particles interacting
with LJ potentials (ε = 2 and m = 1) in spherical hard-wall confinement. Initial positions are randomly selected and velocities are
initialized to zero. All results are compared with the ground truth result obtained using V with ∆ = 0.001. Left plot shows δr for
the time evolution up to t = 1 million (log scale) for V using different dt = 10∆, 40∆, 100∆ values. Right plot shows δr for the
same time evolution using R with ∆R=100∆, 400∆, 1000∆, and 4000∆.

FIG. 11. Error in position at time t = 1000 for different
timestep dt ≥ 10−2 in 1D simulations of a particle of mass
m = 1 in an LJ potential with initial position x0 = 2.0. The
2nd order baseline Verlet integrator V with dt = 10−3 is used
to generate the ground truth results. Open symbols correspond
to traditional numerical integrators and closed symbols are re-
sults from the R integrator. Open circles and squares repre-
sent the results of using the traditional Verlet integrator (V )
and its equivalent operator (Verlet-OP or V) with dt ≥ 10−2.
Open triangles and pentagons represent the errors obtained with
4th order Runge-Kutta (RK4) and 4th order Adams-Bashforth-
Moulton (ABM4) respectively. Closed squares, triangles, and
diamonds represent errors incurred using R with sequence
length SR = 3, 4 and 5 respectively.
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