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ABSTRACT

Seismology from the past few decades has utilized the most ad-
vanced technologies and equipment to monitor seismic events
globally. However, forecasting disasters like earthquakes is
still an underdeveloped topic from the history. Recent re-
searches in spatiotemporal forecasting have revealed some
possibilities of successful predictions, which becomes an im-
portant topic in many scientific research fields. Most studies of
them have many successful applications of using deep neural
networks. In the geoscience study, earthquake prediction is one
of the world’s most challenging problems, about which cutting
edge deep learning technologies may help to discover some
useful patterns. In this project, we propose a joint deep learn-
ing modeling method for earthquake forecasting, namely TSE-
QPREDICTOR. In TSEQPREDICTOR, we use comprehensive
deep learning technologies with domain knowledge in seismol-
ogy and exploit the prediction problem using encoder-decoder
and temporal convolutional neural networks. Comparing to
some state-of-art recurrent neural networks, our experiments
show our method is promising in terms of predicting major
shocks for earthquakes in Southern California.

Index Terms— Earthquake prediction; Spatiotemporal
dynamics; Convolution

1. INTRODUCTION

Over the past few decades, large volumes of data have been
collected by the seismological community. This drives high de-
mand for seismology data processing and analysis, which also
provides opportunities to predict future dynamics from history.
Spatiotemporal forecasting is an important topic in many scien-
tific research fields, in which there are a plethora of successful
applications. Recent studies using deep neural networks have
shown various successful applications, including car traffic
forecasting [1], ride-hailing forecasting [2], rain/weather fore-
casting [3], etc.

Earthquake forecasting is a worldwide challenging prob-
lem. Scientists around the world have built an enormous num-
ber of detectors for picking up earthquake signals. It is a
general belief that earthquakes are predictable under some
assumption that quakes are formed underneath the Earth are

(a) (b)

Fig. 1. Dataset overview of earthquakes in Southern California.
(a) Earthquake events mapped on Maps. (b) Earthquake events
mapped on satellite images.

accumulated stresses in a gradual process over a long time. In
this case, it would be possible to predict earthquake shocks for
future activities of quakes by learning patterns from historical
seismic events.

Conventionally, earthquakes are located through a process
of detecting signals, picking up arrival time, and estimating
epicenters of events using a velocity model. Efforts have
been made to filter P-waves and S-waves from the original
waveform signals of earthquakes and seismic noise [4]. In
this project, our goal is to utilize the preprocessed seismic
signals forming epicenters (location labels) to forecast the
probabilities of the next earthquakes in an area.

Earthquake forecasting consist of three major tasks in ma-
chine learning. The first task is to predict when the next seismic
event will happen in a specific region. The second task is to
predict whether or not the next seismic event will come. The
third task is to predict the level of magnitude of the upcoming
seismic events so that a major shock can be predicted.

Deep learning neural networks have presented a widely
successful approach to capture spatial-temporal dependencies
of problems to achieve accurate forecasting results. Convo-
lutional neural networks have achieved convinced success in
computer vision, image object recognition, etc [5]. Here we
test the hypothesis that earthquake patterns can be perceived
by learning historical seismic events. However, epicenters’
prediction is learned from annotated seismograms. Due to the
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uncertainties of earthquakes, even the ground truth labels that
are annotated by domain experts may be biased. Locations and
magnitude of epicenters are maybe adjusted after the seismic
event happened a long while.

In this project, we propose joint modeling of using self-
supervised autoencoder and temporal convolutional (TCN)
neural networks for earthquake prediction by modeling spa-
tiotemporal dependencies in Southern California. Addition-
ally TSEQPREDICTOR comprehensively improves the autoen-
coder and TCN by incorporating skip connections and local
temporal attention mechanisms. Compared to conventional re-
current neural networks or a single model, our joint modeling
presents some advantages in predicting major shocks in the
area of study. In summary:
• We study the earthquake dataset for Southern California

and reconstruct the time series events into a sequence of 2D
images.

• We model the spatiotemporal dependencies of earthquakes in
Southern California with an improved autoencoder and TCN
neural networks and show some preliminary but promising
results for forecasting events.

2. RELATED WORK

Convolutional Methods in Predicting Epicenters. Estimat-
ing and predicting the epicenters of earthquakes has a long
history. Scientists from Geophysics, Geology and Seismology
have developed a variety of tools and analytical functions to
predict epicenters from datasets. In 1997, Bakun and Went-
worth suggested using Modified Mercalli intensity datasets for
southern California earthquakes to bound the epicenter regions
and magnitudes [6]. In 1998, Pulinets proposed predicting epi-
centers of strong earthquakes with the help of satellite sound-
ing systems. Scientists from Greece had illustrated a successful
project which predicted the large aspects of earthquakes using
seismic electric signals [7]. Recently, Guangmeng et al. at-
tempted to predict earthquakes with satellite cloud images and
revealed some possibilities of predicting earthquakes using
geophysics data [8]. Zakaria et al. presented their work of
predicting epicenters by monitoring precursors, such as crustal
deformation anomalies and thermal anomalies, with remote
sensing techniques [9]. These studies either used only too little
data or too simple analytical models.
Spatiotemporal Dynamic Capture and Generative Models.
Most recently, it is a prevailing method to do predictions by
modeling the spatiotemporal dynamics for domain science
problems. This is because large volumes of data are increas-
ingly collected in the vast majority of domains including, so-
cial science, epidemiology, transportation, and geosciences.
Cui et al. proposed to use graph convolutional long short-term
memory neural networks to predict traffic via capturing spatial
dynamics from the car traffic patterns [10]. Li et al. utilized
a seq2seq neural network architecture to capture spatial and
temporal dependencies for traffic forecasting by incorporat-

ing a diffusion filter in convolutional recurrent layers [11].
FUNNEL was a project proposed by Matsubara [12]. It was
designed to use an analytical model and a fitting algorithm for
discovering spatial-temporal patterns of epidemiological data.

3. TSEQPREDICTOR

The proposed prediction model consists of two major compo-
nents, an autoencoder which learns the latent space distribution
from the image like view of the earthquakes and a prediction
network which learns to predict the likelihood of the next main
shock happening within the same area.

3.1. Data Considerations

The earthquake catalog is a tablet formatted dataset. In this
project, we focus on time and geo location shocks. The dataset
contains all earthquake events in Southern California ranging
from the year 1990 to 2019. Figure 1 shows all events plotted
in 2D maps, in which hot spots are areas where earthquakes
frequently happened or big earthquakes happened in history.
Energy-based data models. Seismometers record seismic
events from calibrating vibrations of waves. Magnitude in the
dataset represents measured amplitude as measured seismo-
gram. While they are discrete data points, accumulating all
magnitudes by summing them up by averaging makes the tem-
poral information loss, and deemphasizes large earthquakes.
In contrast to magnitude, earthquakes release energy can help
mitigate this issue by two folds: 1) accumulated energy value
in a region can represent the energy released by the stress of
Earth over time; 2) energy data model naturally highlights
large events since the energy of large events can be an order
of magnitude higher than that of small events. The formula of
converting earthquake magnitude to energy is defined as

E = (10M)3/2 (1)

in which the magnitude 0 ≤M ∈ R ≤ 10. 1

Location-aware data weaving. As a time-series prediction
task, the earthquake catalog contains locations and magni-
tudes, which could be used as target properties. However, it
could be more nature to reorganize the 1D time-series dataset
into a 2D sequence dataset by dividing a map region into
small boxes according to longitudes and latitudes and ag-
gregating the released energy within a small box per spe-
cific time frequency. So each element of the sequence be-
comes a summation of all energy released at the location (i, j):
Xt

i,j =
∑

((10M)3/2), i ∈ [0,M) and j ∈ [0, N) , which
means Xt has a shape M ×N for M boxes along the latitude
and N boxes along the longitude.

1Earthquake magnitude can be even negative for very small events that
are negligible. This scale is also open-ended, but events larger than 10 are
extremely unlikely to happen. So these are out of the scope of this project.
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Fig. 2. TSEQPredictor: overview of earthquake prediction networks.

3.2. AutoEncoder for Effective Spatial Modeling

Main shocks with large magnitudes are rare in terms of statis-
tics and nature physics. In addition, earthquakes are full of
stochastic processing, resulting in seismic signals are very
noisy. To predict the future main shocks, we first model the
spatial patterns within the southern California area.

We use an autoencoder to recognize the spatial pattern
changes under normal circumstances and abnormal circum-
stances. Compared to variational autoencoders (VAE), we do
not assume Gaussian distribution or any other kinds of dis-
tributions for the latent space. In addition, the reconstructed
results from VAE are tended to be more noisy. We also make
some experiments for full comparison in Section 4. This is a
semi-supervised process of pretraining a model that learns the
representation of earthquake images. We train this model by
using the following equation.

L(Xnormal, g(f(Xnormal)) + Ω(h,Xnormal) (2)

, where Xnormal are images of earthquakes with magnitudes
less than a threshold, f is an encoder function, g is an decoder
function, and Ω is a function that regularizes or penalizes the
cost.
Spatial modeling. After the seismic events are parsed and
transformed to image-like sequences in Section 3.1, we can
utilize the spatial dependencies between pixels. Convolutional
operations are common image feature extraction means. Pixel
relationship can be easily mapped to geology locations of
events.
Skip connections. We incorporate skip connections in the
AutoEncoder architecture. Skip connections are forward short-
cuts in networks. They symmetrically connect layers from
the encoder and decoder as shown in Figure 2. This strategy
allows long skip connections to pass features from the encoder
path to the decoder path directly, which can recover spatial
information lost due to downsampling, according to [13].
Bottleneck layer. The bottleneck layer in the AutoEncoder is

deliberately set to a small vector of a size k feature map. This
design is effective for two reasons. Firstly, it regularize the
model from overfitting all samples. Secondly, a small feature
map can better differentiate the abnormal cases from normal
cases.

3.3. TCN Model for Effective Temporal Modeling

In this work, the goal of forecasting earthquakes is to predict
the future probability of a major shock happening in Southern
California. This can be done in a prediction network, which
is fed in the information gained from the AutoEncoder. A
long short-term memory (LSTM) model can predict well on
this task. However, in TSEQPREDICTOR we incorporate
an enhanced TCN (Figure 2), which can outperform LSTM.
This situation is similar in predicting other physics related
fields of study. For example, TCN is used to predict climate
changes [14]. This is further analyzed in the following sub
sections.

3.3.1. Conditional Temporal Convolution

Temporal convolution neural networks are used to improve the
temporal locality prediction over time. Temporal convolutional
layers are layers containing causal convolution with varied
dilation rate in 1D convolutional layers [15, 16]. A typical
configuration of temporal convolution layers is set the dilation
rate corresponding to the i-th of layers, for example 2i.

p(y|θ) =

T∏
t=1

p(yt+1|y1, . . . , yt, θ) (3)

3.3.2. Local Temporal Attention

A localized attention process to enhance temporal informa-
tion passing is inspired by self-attention structure from Trans-
former [17], and Hao et al. work for sequence modeling [18].



The process incorporates functions f , g, and h to calculate d
dimensional vector of keys K, queries Q, and values V respec-
tively. Then, we calculate the weight matrix by W = K·Q√

d
. Fi-

nally, we apply a softmax function to the lower triangle ofW to
get a normalized attention weightWattention = softmax(W )
and the final out of this layer can be calculated via this attention
weighted summary:

∑T
t=1Wattention · yt.

3.3.3. Smooth joint Nash–Sutcliffe efficiency: NSE

Nash–Sutcliffe model efficiency coefficient (NSE) is a com-
monly used metric to evaluate a predictive model. NSE is
widely used to evaluate predictive skills in scientific studies,
such as hydrology [19]. The value range of NSE is (−∞, 1).
NSE can become negative when the mean error in the pre-
dictive model is larger than one standard deviation of the
variability. Its equation is defined as follows.

NSE = 1−
∑T

t=0(ŷt − yt)∑T
t=0(yt − ȳ)

(4)

4. EXPERIMENTS AND EVALUATION

4.1. Earthquake Prediction: Dataset and Preprocessing

The earthquake dataset is a tablet formatted dataset in which
each record is an earthquake epicenter with a timestamp, a
GEO location, a magnitude, and depth. We preprocess the
catalog according to the analysis in Section 3.1.
Data augmentation. We divide the Southern California (Lon-
gitude: -120~-140, Latitude: 32~36) into a grid with 60× 40
cells, each of which has 0.1 degree of longitude and latitude
for about 11.1km (1 degree in kilometers is about 111km).
Firstly, it is easy to group events into daily intervals. Then, let
x, y denote the longitude and latitude location of an event. All
events are accumulated in corresponding cell where x, y fall
into. The value of each cell is the mean of magnitudes of all
events within the cell. As a result, each day is represented by
a 2D image-like 60× 40 matrix.

4.2. Experimental setup

Our TSEQPredictor model and other baseline models are im-
plemented with Tensorflow in Python. All experiments are
conducted on a machine with 8 NVidia K80 GPUs. All models,
include TSEQPREDICTOR and baseline models are trained
using Adam or SGD optimizers with a fine-tuned learning rate
and mean squared error as training loss. All model weights are
checkpointed and we select the best model weights for testing.
Events with magnitudes ≥ 4.5 are labeled as extreme major
shocks.

(a) Mag >= 0 (b) Mag >= 2.5

(c) Mag >= 3.5 (d) Mag >= 4.5

Fig. 3. Dataset overview: (a) 444, 589 events with magnitude
≥ 0.0, (b) 24, 822 events with magnitude ≥ 2.5, (c) 2, 489
events with magnitude ≥ 3.5, (d) 237 events with magnitude
≥ 4.5

Table 1. TSEQPREDICTOR AutoEncoder vs. VAE.

Model MSE Accuracy Variance
TSEQPREDICTOR 0.148 0.968 1.432
VAE [20] 0.157 0.971 1.986

4.3. Experimental Results

In these set of experiments, we aim to demonstrate the perfor-
mance of TSEQPREDICTOR compared to a series of baseline
models. Firstly, we show the performance differences between
autoencoder in TSEQPREDICTOR and a VAE. Then, we com-
pare the prediction network with a LSTM. Finally, we illustrate
the comprehensive results from using TSEQPREDICTOR com-
paring with a series of methods.

4.3.1. AutoEncoder

As we mention an antoencoder is used in TSEQPREDICTOR
in Section 3 as opposed to a variational autoencoder, we com-
pare the results of using TSEQPREDICTOR autoencoder with
a common VAE. The performance results are summarized in
Table 1. Even though VAE can achieve almost the same per-
formance in terms of accuracy, it has higher mean squared
loss and variance for the final output. Higher MAE loss and
variance affect the performance of the prediction network.

4.3.2. Prediction

We analyze the TCN in TSEQPREDICTOR in Section 3 com-
paring with a LSTM model. For this time series forecasting,
the prediction network in TSEQPREDICTOR can outperform
the LSTM network. Due to the stochastic nature of shocks, the
output series from the autoencoder is denoised by the LOESS



Table 2. Varying the latent space dimension.

Latent space dimension MSE Accuracy
16 0.148 0.968
64 0.140 0.968
128 0.138 0.972
1024 0.137 0.984

Table 3. Results comparison between TSEQPREDICTOR and
baseline models. Some models adopt the same architecture of
using an autoencoder and a prediction network. These models
are named with a ‘+’ sign.

Models MAE Precision Recall F-1 F-0.2 NSE
MLP - 0.2631 0.2845 0.2096 0.2494 -1.4739
LSTM - 0.4596 0.5186 0.3801 0.4058 -0.2059
Conv2D-FC - 0.4589 0.3963 0.4340 0.4394 -0.1867
Conv2D-LSTM - 0.4299 0.4069 0.4217 0.4243 -0.4022
ConvLSTM2D-FC - 0.4633 0.3289 0.3763 0.3801 -0.1714
MLP+MLP 0.2570 0.7525 0.6338 0.6652 0.7113 0.6778
MLP+LSTM 0.1637 0.8420 0.7085 0.7599 0.8021 0.7890
MLP+Conv1D 0.1484 0.8571 0.9351 0.8029 0.8342 0.8133
Conv2d+MLP 0.1484 0.8577 0.7944 0.7887 0.8098 0.8108
Conv2D+LSTM 0.1410 0.8640 0.8776 0.8609 0.8683 0.8222
Conv2D+Conv1D 0.0588 0.9420 0.9115 0.8998 0.8688 0.9293
TSEQPREDICTOR 0.0483 0.9563 0.9016 0.9251 0.9341 0.9323

smoothing method [21]. We summarize the experimental re-
sults in Table 3.

4.3.3. Comprehensive Analysis

In this set of experiments, we list several commonly used mod-
els for predicting the future main shocks. The results are sum-
marized in Table 3. In this table, MLP represents a three-layer
of fully connected neural networks. LSTM represents a two-
layer of stateful LSTM neural networks. Conv2D, Conv1D
represent a neural network consisting of one 2D-convolutional
and 1D-convolutional layer, respectively. From this table, we
illustrate TSEQPREDICTOR can outperform a single model
significantly and other combination of models for this task.

4.4. TSEQPREDICTOR Ablation Study

In the following two sets of experiments, we demonstrate the
two major techniques that can improve the autoencoder and
the prediction network: skip connections and local temporal
attention. In the first set, we remove the skip connections
in the autoencoder and keep the remaining parts the same.
In the second set, we remove the local temporal attention in
the prediction network and use the same autoencoder as the
TSEQPREDICTOR. Table 4 shows the results of these two sets
of experiments.

Table 4. Ablation study by removing core components in
TSEQPREDICTOR.

Models F-1 NSE
W/O skip connections 0.9001 0.9233
W/O local temporal attention 0.9247 0.9289
TSEQPREDICTOR 0.9251 0.9323

Fig. 4. TSEQPREDICTOR prediction.

4.5. Discussion and Empirical Study

We build joint models as shown in Figure 2, in which the
autoencoder can learn the spatio pattern and the predictor can
forecast future event. Figure 4 shows a prediction example.
Given an input sequence window, the predictor can output a
future sequence window, from which a major shock can be
detected. There are two aspects in the consideration of this
model:
• During the training period, a sequence of T 2D matrices

are the input: Xt1 , Xt2 , . . . , XtT , and the output is another
sequence:yt2 , yt3 , . . . , ytT+1

. In this way, the ytT+1
is the

predicted result. This means that the model can be trained
on rolling basis as the data stream in.

• In Southern California, the model can be trained and predict
a novelty score which represents the probability of the next
major shock. For example, if the input is Xt at t time, the
output from the model is Xt+1 at t+ 1 time. The predicted
probability of this area can be told from yt+1.

5. CONCLUSIONS AND FUTURE WORK

In this project, we dissect the problem settings for forecasting
earthquakes, discuss how we model spatial temporal forecast-
ing problems using deep neural networks, and propose joint
modeling to address this problem. In experiments, we demon-
strate some preliminary results of using TSEQPREDICTOR
to predict earthquakes in Southern California. According our
experiments, we show some promising when proper thresholds
are chosen to filter out noisy. In future, we need to consider
other physics quantities like seismicity, electric field, mag-
netic field, deformation which are highly possible correlated
to earthquake events.



Code and data availability

The earthquake events dataset used in the paper is available to
download from the USGS website at https://www.usgs.
gov/. Model codes and preprocessed data used in the paper
will be published upon acceptance of this manuscript.
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