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Abstract—Data analytics is undergoing a revolution in many
scientific domains, demanding cost-effective parallel data anal-
ysis techniques. Traditional Java-based Big Data processing
tools like Hadoop MapReduce are designed for commodity
CPUs. In contrast, emerging manycore processors like Xeon
Phi has an order of magnitude of computation power and
memory bandwidth. To harness the computing capabilities, we
propose a Harp-DAAL framework. We show that enhanced
versions of MapReduce can be replaced by Harp, a Hadoop
plug-in, that offers useful data abstractions for both of high-
performance iterative computation and MPI-quality communi-
cation, and it can drive Intel’s native library DAAL. We select
a subset of three machine learning algorithms and implement
them within Harp-DAAL. Our scalability benchmarks run on
Knights Landing (KNL) clusters and achieve up to 2.5 times
speedup of performance to the HPC solution in NOMAD and
15 to 40 times faster than Java-based solutions in Spark. We
further quantify the workloads on single node KNL with a
performance breakdown at micro-architecture level.
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I. INTRODUCTION

In recent years, the volume and variety of data have been
collected at enormous rates. The data comes from sources
ranging from massive physics experiments and instruments
that read our DNA to a multitude of sensors that monitor
our environment. It also comes from our digitized libraries,
our media streams, and our personal health monitors. Many
of the primary software tools used to do the large-scale
data analysis were born in the Cloud. Big data processing
frameworks like Apache Hadoop are designed to run on
large-scale commodity CPU clusters connected by Ether-
net. While using large clusters of commodity servers is
still the most cost-effective way to process petabytes or
exabytes of data, the majority of data analytics jobs do not
have tremendous workloads. Furthermore, machine learning
algorithms become increasingly common and can easily
fit into memory but require fine-grained parallelism for
high performance. Modern scale-up servers like GPU and
Xeon Phi provide substantial processing, memory, and I/O
capabilities. Therefore small or middle-sized clusters for Big
Data analytics become an attractive approach.

In this paper, we investigate and re-design optimized
software stacks to effectively utilize scale-up servers in the
Cloud for machine learning and data analytics applications.
We conduct extensive benchmark on emerging Intel’s Many
Integrated Core Architecture (MIC) based Xeon Phi Knights
Landing (KNL). Our goal is to bridge the performance
gap of Big Data tools and HPC systems. To the best of
our knowledge, we are the first to run high-performance
Hadoop for machine learning applications on KNL many-
core clusters.

Here, we propose a hybrid machine learning framework
named Harp-DAAL, which interfaces Harp 1, a highly effi-
cient Hadoop based communication library, and DAAL 2, a
native Data Analytics Acceleration Library from Intel. Harp
is an open source project developed by Indiana University,
which is a plug-in to the Apache Hadoop framework.

Harp has two distinctive functions: 1) Collective com-
munication operations that are highly optimized for big
data problems. 2) Efficient and innovative computation
models for different machine learning problems. Original
Harp project has its codebase written in Java, which is
unable to leverage the capabilities of shared-memory HPC
hardware. The central idea is to replace Java kernels by
highly optimized native kernels or math libraries at the node
level. We use Intel’s DAAL as the low-level kernels for
Harp on HPC platforms. DAAL is a library that aims to
provide the users with highly optimized building blocks for
data analytics and machine learning applications. For each
of its kernel, DAAL has three modes: 1) Batch Process-
ing, 2) Online Processing, 3) Distributed Processing. The
open source code of DAAL only provides MKL/TBB based
kernels for intra-node computation while leaving the inter-
node communication of the distributed processing mode to
users. This motivates us to design and build the Harp-DAAL
framework and perform further optimization as follows:
1) Intra-node, co-design and implement kernels to fully
exploit the advantages of hardware architectures. 2) Inter-

1https://dsc-spidal.github.io/harp/
2https://github.com/01org/daal



node, minimize the overhead of data conversion and data
transfer to improve the scalability of codes. The rest of
the paper is organized as below: In Section II, we give an
overview of existing hybrid frameworks in the domain of
data analytics and machine learning. Section III describes
our Harp-DAAL interface, the techniques to reduce data
conversion overhead; as well as three benchmark algorithms.
In Section IV and Section V, we discuss the configuration
of the experimentation and analyze the experimental results.
Conclusion is included in Section VI.

Figure 1. Harp-DAAL within HPC-BigData Stack

II. RELATED WORK

For years, scientific projects have tried to accelerate
big data processing. Mars [1] combined the MapReduce
framework with graphics processors and achieved 1.5 to
16 times performance improvements on a PC with G80
GPU compared to a CPU-based counterpart on web data.
MLlib [2] is a machine learning library built upon Apache
Spark, which includes a variety of machine learning applica-
tions implemented using the Scala programming language.
Although it is easy to use, the performance is not satis-
fying, especially on HPC clusters. Awan et al. [3] have
characterized the performance of Spark MLlib on a 24-
core processor, and they conclude that Spark MLlib suffers
from imbalanced workload on threads and poor usage of
the memory system. Therefore, another approach is to build
machine learning libraries in C/C++, which well suit the
HPC clusters. Such efforts include Petuum, developed to run
machine learning algorithms efficiently on any hardware [4].
However, the C/C++ based solution demands relatively
high programming skills, in particular, the knowledge of
multi-thread programming and architecture characteristics
of multi-core/many-core processors. Other machine learning
libraries build frameworks in a hybrid mode. Users only

need to know about high-level programming interfaces while
letting the framework to invoke proper HPC kernels written
in C/C++ or FORTRAN. Currently Spark MLlib can utilize
the highly optimized HPC library like BLAS and LAPACK
interfaced by Breeze and netlib-java. Torch 3 is a scien-
tific computing framework with broad support for machine
learning algorithms from Facebook, which uses a script
language called LuaJIT at the high level and the C/CUDA
implementations on GPUs at the low level. Tensorflow 4 is
a deep learning framework developed by Google, which has
a Python interface to write dataflow graphs, and low-level
implementations on different hardware devices like CPU and
GPU.

III. DESIGN AND IMPLEMENTATION

A. Data Conversion within Harp-DAAL

Harp-DAAL has a two-level structure. At the top level,
it runs a group of Harp mappers, which extend Hadoop’s
Java mapper. Unlike traditional MapReduce mapper, a Harp
mapper holds data in main memory and invokes collective
communication operations among different mappers.

At the bottom level, Harp-DAAL invokes native kernels
written in C/C++, which uses multi-threading programming
paradigms such as OpenMP, TBB, and so forth. Since there
are many highly optimized native kernels developed by the
HPC community over years, the invocation of HPC kernels
can better leverage the hardware resource than the bot-
tom level implementation of the original Harp applications,
which uses Java threads to execute jobs in parallel. However,
the invocation of DAAL kernels from Harp is a non-trivial
work, and we must address two major problems: 1) Data
conversion between Harp and DAAL, 2) Computation model
of each application at both of inter-node and intra-node
levels. Data conversion between Harp and DAAL is critical
to applications like MF-SGD, where a massive model needs
to be synchronized in each iteration. An inappropriate data
conversion will significantly slow down the performance.
Before discussing the data conversion, we first introduce the
data structure of Harp library and Intel’s DAAL framework.

1) Data Structures of Harp and Intel’s DAAL: Harp has
a three-level hierarchy of data structures. At the top level
is the Table class, and a Table contains a certain number
of Partitions. Each Partition consists of a partition id and a
data container. Data containers could wrap up Java objects
or primitive arrays, where the data is stored on heap memory
managed by JVM. This design has two consequences: 1) The
data stored within a Table is scattered into different parti-
tions, whose memory addresses are not contiguous, while
many native kernels with optimized memory access require
contiguous memory allocation. 2) The memory addresses
on Java heap can not be directly passed to native kernels

3http://torch.ch
4https://www.tensorflow.org



because JVM may change the objects’ physical addresses
during Garbage Collection. DAAL library consists of two
modules.

• Native Kernels, the implementation of algorithms and
data structures in C/C++

• Interface, the API written in Java and Python to access
Native Kernels

The native kernels are in charge of the computational work
while the Java/Python APIs allow users to construct their
applications without knowing the low-level implementations.
In Harp-DAAL, data conversion happens between the Harp
Java codes and the DAAL Java/Python APIs. Thus, the
dataflow of the Harp-DAAL framework is from Harp Java
codes to DAAL Java APIs and finally accessed by DAAL
native kernels. For instance, the HomogenNumericTable pro-
vides users of two ways to store data.

• ArrayImplm, store the data at Java heap side
• ByteBufferImplm, store the data on the native side, use

DirectByteBuffer to read and write data between Java
and native side.

In the way of ArrayImplm, DAAL Java APIs hold data
at Java heap space, and it creates a data structure called
JavaNumericTable for the native kernels to access these
data. Whenever a native kernel requests the data in Ja-
vaNumericTable, it will callback to a member function
of HomogenNumericTable at Java side to trigger the data
transfer via JNI functions and DirectByteBuffer class. Most
of the DAAL’s data structures support this way of storing
data. In the way of ByteBufferImplm, the Java APIs allocates
an empty array in the native memory space, and it is
the user’s responsibility to read and write data between
Java heap memory and allocated native memory. In current
DAAL release version 2017, only HomogenNumericTable
supports this way of data storage. For native kernels, they
can only manipulate data stored in the native memory space,
and they use an auxiliary data structure named MicroTable
to retrieve specified rows or columns from a NumericTable.
We design two data conversion operations in Harp-DAAL.
The first operation named JavaBulkCopy starts from Harp
side and copies data from a Harp Table to a HomogenNu-
mericTable via the ByteBufferImplm. The second operation
named NativeDiscreteCopy starts from a native kernel and
transfers data from DAAL Java APIs to native kernels via
the ArrayImplm. Figure 2 (a) and (b) explain the workflow
of the two data conversion operations.

2) JavaBulkCopy: There are two steps in JavaBulkCopy
• Create a large DirectByteBuffer, and copy data from a

Harp Table into the DirectByteBuffer
• Write the content of DirectByteBuffer into a Homogen-

NumericTable.
For step one, we use java.lang.Thread class to do a parallel
data copy from the non-contiguous JVM heap memory
of a Harp Table to a contiguous memory block within

DirectByteBuffer. In step two, a member function named
releaseBlockOfRows from HomogenNumericTable does a
bulk data copy from DirectByteBuffer to the native memory
allocated in a HomogenNumericTable. The advantage of
JavaBulkCopy is that the data within HomogenNumericTable
is contiguous, which favors many of DAAL’s algorithms
such as K-means, and it usually results in an efficient cache
usage on multi-core and many-core processors. However,
it has a two-fold downside. Firstly, the maximal size of a
single DirectByteBuffer is limited by 2GB. Secondly, the
scheduling of Java threads is not as efficient as that of
OpenMP and TBB, which increases the overhead of parallel
data copy.

3) NativeDiscreteCopy: NativeDiscreteCopy could be ap-
plied to all sorts of NumericTable within DAAL, where
the data is stored in Java heap memory and DAAL uses
a C++ class named JavaNumericTable to expose the data to
native kernels. In a NativeDiscreteCopy process, a thread
from a native kernel will be attached to a C++ pointer,
which is a member of JavaNumericTable and points to a
JVM object via JNI. The thread can then call Java functions
of NumericTable to copy data from Java heap memory
back to native memory by using DirectByteBuffer. Since
the JVM pointer allows concurrent accesses from different
threads, we can use OpenMP or TBB threads to copy data
from Java heap memory to native memory in parallel (See
Figure 2 (b)). The advantage of using NativeDiscreteCopy is
to reduce the size of DirectByteBuffer, because each thread
can reuse the assigned buffer to copy different data. The
downside of NativeDiscreteCopy is exposure of the JNI
interface and low-level implementations to users. An ill-
implemented NativeDiscreteCopy will cause issues such as
memory leak. Deciding which memory copy operation to use
depends on the data structures and model synchronization
operations. We will discuss the details in Section III-B for
each application.

B. Benchmark Algorithms

We select three typical learning algorithms to evalu-
ate our framework: 1) K-means Clustering (K-means), a
computation-bounded algorithm; 2) Matrix Factorization by
Stochastic Gradient Descent (MF-SGD), a computation-
bounded and communication-bounded algorithm; 3) Al-
ternating least squares (ALS), a communication-bounded
algorithm.

1) K-means Clustering: K-means is a widely used clus-
tering algorithm in machine learning community. It com-
putes the distance between each training point to every cen-
troid, re-assigns the training point to the new cluster and re-
computes the new centroid of each cluster at each iteration.
Harp-DAAL-Kmeans is built upon Harp’s original K-means
parallel implementation, with a computation complexity for
each iteration as O(|Ω|KM), where Ω is the set of training
samples, K is the feature dimension of a training point, and
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M is the number of centroids. Harp-DAAL-Kmeans uses the
regroup-allgather operation [5] to synchronize model, i.e.
centroids, among each mapper. Harp-DAAL-Kmeans uses
DAALs K-means kernel, where the computation of point-
centroid distance is implemented by BLAS-level 3 matrix-
matrix operations. This optimization significantly increases
the computation intensity, resulting in highly vectorized
codes against the original Harp-Kmeans.

2) MF-SGD: Matrix Factorization based on Stochastic
Gradient Descent (MF-SGD) is commonly used in recom-
mender systems [6], where it aims to factorize a sparse
matrix into two dense model matrices W and H . The com-
putation complexity for each iteration is O(|Ω|K), where Ω
is the set of training samples, and K is the feature dimension
of a training point. Previous work such as [7] concentrates on
the single-node shared memory optimization for MF-SGD.
For distributed memory system, we already implemented a
pure Java version within the Harp framework [5], and we re-
implement it by invoking native kernels in our hybrid Harp-
DAAL framework. The implementation of MF-SGD consists
of two levels. At the inter-node level, we use a rotation
operation to synchronize model distributed among nodes [8].
At the intra-node level, we choose an asynchronous opera-
tion to update model manipulated by different threads. By
eliminating the lock and waits at thread level, we relieve the
load balancing problems caused by uneven distribution of
training points in each row and column.

3) ALS: Alternating least squares (ALS) is another fre-
quently used algorithm to decompose rating matrices in
recommender systems. The algorithm has a computation

complexity for each iteration as O(|Ω|K2 +(m+n)K3). Ω
is the set of training samples, K is the feature dimension,
m is the row number of the rating matrix, and n is the
column number of the rating matrix. Unlike MF-SGD,
ALS alternatively computes model W and H independently
of each other. The implementation of ALS in our Harp-
DAAL framework chooses the regroup-allgather operation
to interface the DAAL-ALS kernels based on the work of
Zou et al. [9]

IV. EXPERIMENTATION

In the experiments, we compare the performance of the
following six implementations:

• Harp-DAAL-Kmeans
• Spark-Kmeans
• Harp-DAAL-SGD
• NOMAD-SGD
• Harp-DAAL-ALS
• Spark-ALS
Apart from the three applications from Harp-DAAL, we

use Spark-Kmeans and Spark-ALS from Apache Spark in
Section II, both are written in Java. NOMAD-SGD is a
distributed MF-SGD developed by Yun et al. [10], which
is written in C/C++ and uses MPI in inter-node communi-
cation.

A. Hardware Platform

We conduct experiments on a cluster of Intel’s Xeon Phi
processor 7250 codenamed Knights Landing (KNL). Table I
gives the specification of one KNL node. Compared to Intel’s



Table I
SPECIFICATION OF XEON PHI 7250 KNL

Cores Memory Node Spec Misc Spec

Cores 68 DDR4 190 GB Network Omni-path Instruction Set 64 bit
Base Freq 1.4GHz MCDRAM 16 GB Peak Port Band 100 Gbps IS Extension AVX512
L1 Cache 2 MB DDR4-Band 90 Gbps Socket 1 Max Threads 271
L2 Cache 34 MB MCDRAM-Band 400 Gbps Disk 1 TB VPUs 136

Table II
DATASETS USE IN K-MEANS, MF-SGD, AND ALS

Dataset Kmeans-Single Kmeans-Multi Movielens Netflix Yahoomusic Enwiki Hugewiki

#Training 5000000 20000000 9301274 99072112 252800275 609700674 3074875354
#Test none none 698780 1408395 4003960 12437156 365998592

#centroid 10000 100000 none none none none none
Dim 100 100 40 40 100 100 1000
λ none none 0.05 0.05 1 0.01 0.01
γ none none 0.003 0.002 0.0001 0.001 0.004

Xeon processor family, KNL has three advantages: 1) A high
number of physical cores, 2) Up to 136 AVX-512 Vector
Processing Units (VPU). Each VPU could simultaneously
compute 8 double or 16 float operations in parallel by
enabling Intel’s AVX-512 instruction set extension. 3) On-
chip high bandwidth memory named MCDRAM, whose
bandwidth reaches 400Gbps. Therefore, KNL favors ap-
plications that maximally leverage the intra-node threads
parallelism, codes vectorization, and memory bandwidth
usage. To compare the utilization of KNL’s features, we
employee Intel VTune Amplifier to do the micro-benchmark
profiling.

B. Dataset

A variety of datasets are used to examine the performance
of implementations. Table II describes the details includ-
ing sizes and parameters. For K-means, we use synthetic
datasets, a small one for single node test and a large one
for multi-node scaling test. For MF-SGD and ALS, we use
same datasets as in related work.

V. RESULTS AND ANALYSIS

A. Single Node Performance

We first evaluate the performance of Harp-DAAL frame-
work on a single KNL node. We use 64 cores out of the
total 68 cores because the self-booted KNL node requires
several cores to run the OS system. Each physical core
runs one thread, which implies a total of 64 threads for
the applications. The metric includes the execution time
per training iteration for K-means, MF-SGD and ALS,
respectively. The time is averaged over a certain number
of iterations to avoid potential cold start phenomenon.

In Figure 3, we find that Harp-DAAL achieves the best
performance among the three frameworks. For K-means and
ALS, it runs 20x to 50x faster than Spark, this result is

not surprising because both of K-means and ALS contains
matrix-matrix computations that benefit from the optimized
MKL native kernels invoked by Harp-DAAL. For MF-SGD,
we still achieve comparable performance to NOMAD on
datasets Movielens, Netflix, and Enwiki. On Yahoomusic,
we even have a 2x speedup, which proves that the intra-
node optimization brought by DAAL kernels achieves the
same performance level of the state-of-the-art work.

B. Multi-node Performance

To compare multi-node performance of the applications,
we use 60 out of 64 threads per node for K-means and ALS.
For MF-SGD, because extra threads may be used to do com-
munication and overlap with the computation in a pipeline.
The scalability for K-means and MF-SGD is not measured
against one node, due to the datasets are too large to fit
into the memory of single node. Instead, we assume that the
scalability from one node to 10 nodes are linear, and measure
the strong scalability over 10 nodes. Figure 6 decomposes
the execution time of Harp-DAAL applications on multiple
nodes into three components: 1) Computation time on local
nodes, 2) Data conversion time on local nodes, and 3) Data
communication time among remote nodes. For K-means, the
computation time is dominant, taking more than 80% of the
total execution time. When it scales from 10 nodes to 20
nodes, the communication ratio decreases because the model
volume on each node decreases ,and Harp regroup-allgather
operation favors small communication data. The communi-
cation ratio slightly increases from 20 nodes to 30 nodes,
which is due to the insufficient computation work on each
node that causes a reduced computation ratio. In Figure 6
(a), Harp-DAAL-Kmeans runs 15x to 40x faster than Spark
Kmeans, and shows better scalability from 10 nodes to 20.
Beyond 20 nodes, due to low computation workload on local
nodes, the scalability of Harp-DAAL-Kmeans drops while
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Figure 4. Strong Scaling on multiple KNL nodes (a) K-means dataset:20 million points, 100 thousand centroids, 100 feature dimension; (b) MF-SGD
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Figure 5. Strong Scaling on Threads of a single KNL (a) K-means dataset: 5 million points, 10 thousand centroids, 100 feature dimension; (b) MF-SGD
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Spark-Kmeans still has substantial computation workload. It
suggests that Spark-Kmeans is more computation-bounded
than Harp-DAAL-Kmeans because strong scalability reflects
how an implementation is bounded by local computations.
Since Harp-DAAL-Kmeans invokes fast MKL kernels at the

low level, it is much less bounded by computation time.

For MF-SGD, Figure 6 (b) shows that Harp-DAAL-SGD
runs 2.5x faster than NOMAD-SGD, and it even achieves
super-linear on 20 nodes and 30 nodes, which is also better
than the scalability of NOMAD-SGD. The reason why Harp-
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DAAL-SGD has a super-linear speedups has two-folds:
1) Harp-DAAL-SGD has its native kernels implemented
by OpenMP, and a small number of training data may
significantly reduce the scheduling overheads. 2) The native
kernel for intra-node computation uses asynchronous shared-
memory data access operations, which favors sparse training
points that has less conflicts in accessing the same data.

For ALS, Figure 6 shows that the communication time
already takes up more than 50% of the execution time on
four nodes. It means that ALS is not bounded by local
computation, and therefore both of Harp-DAAL-ALS and
Spark-ALS have bad strong scalabilities in Figure 6 (c).
However, Harp-DAAL-ALS still has 25x to 40x speedups to
Spark-ALS because it invokes highly efficient MKL kernels.

C. Micro-Benchmark

1) Performance Breakdown on a KNL Single Node:
The execution time breakdown of all benchmarks in both
frameworks is shown in Figure 7. Compared to another C++-
based SGD implementation, Nomad-SGD, our SGD with
Harp-DAAL significantly reduces execution time. Because
Harp-DAAL-SGD is able to fully take advantage of AVX-
512 to reduce retiring instruction number by packaging
multiple floating point operations into one SIMD instruction.
One AVX-512 instruction may cause multiple simultaneous
L1 cache accesses, so that Harp-DAAL-SGD also improves
the L1 cache bandwidth utilization. Compared to our C++
and Java hybrid framework, Harp-DAAL, the pure Java
framework Spark inflates the executed instruction number
by at least 10 times on K-means and ALS. Therefore, the
retiring of benchmarks with Harp-DAAL only takes at most
10% of that with Spark. Spark is developed upon only Java
virtual machine which can barely benefit from AVX-512.
Therefore, its non-vectorized code only generates memory

requests with poor temporal locality hardly saturating the
large bandwidth supplied by the MCDRAM. The serialized
memory accesses of Spark framework substantially prolong
the time stall along the memory hierarchy.
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Figure 7. Breakdown of execution time on a single KNL node. X
Bound indicates the time stall caused by X-event. Retiring means the
execution time of instructions. Misc represents the time stall triggered by
instruction cache miss, branch prediction miss, TLB miss and all other
micro-architecture events.

Harp-DAAL-Kmeans Harp-DAAL-SGD Harp-DAAL-ALS
0

0.5

1

1.5

2

1 1 11.01

1.7

0.951.03 0.98 11.05

2.01

1.05

R
el

at
iv

e
P

er
fo

rm
an

ce

DRAM-NoAVX512

DRAM-AVX512

MCDRAM-NoAVX512

MCDRAM-AVX512

Figure 8. Relative Performance by enabling AVX-512 and MCDRAM.
The baseline performance is the configuration without AVX-512 and MC-
DRAM, which is set to 1. The relative performance of other configuration is
their acceleration of execution time compared with the baseline performance

2) Thread Scaling: Figure 5 shows the performance of
K-means, MF-SGD and ALS with varying numbers of
threads on one single node. With an increasing number of
threads, total computing power of KNL boosts. However,
communications between cores intensify and cache capacity
per thread also drops significantly. Therefore, more threads
do not necessarily indicate shorter execution time on a KNL
node. K-means, MF-SGD and ALS encapsulated by Harp-
DAAL achieve the best performance with 64, 128 and 64
threads, respectively. Since Spark cannot fully utilize AVX-
512, both K-means and ALS with Spark have to execute
more instructions to do the same job. Both prefer 256-
thread configuration to relieve their bottleneck on instruction
retiring.

3) AVX-512 and MCDRAM: Figure 8 exhibits the perfor-
mance improvement achieved by AVX-512 and MCDRAM



in our Harp-DAAL framework. Instead of configuring MC-
DRAM as a hardware managed cache, we deployed it as
a parallel component to DDR4 in main memory system.
Through numactl command, we can use either DDR4-based
main memory or MCDRAM-based main memory. All bars
are normalized to the scheme compiled with disabling vec-
torization and with DDR4-based main memory. By enabling
AVX-512, Kmeans and ALS do not reduce execution time
significantly. This is because, although we compiled them
without vectorization, kernels in Kmeans and ALS invoke
functions from Intel Math Kernel Library which are fully
optimized with AVX-512. AVX-512 improves the perfor-
mance of SGD by 70%, since VPUs on KNL compute matrix
multiplications with much higher throughput. Only enabling
MCDRAM does not obviously boost the performance of
all three benchmarks. K-means, non-vectorized SGD and
ALS have relatively high L2 cache hit rate, so that they
cannot benefit from large memory bandwidth provided by
MCDRAM. By enabling both AVX-512 and MCDRAM,
SGD improves the performance by 101%, since AVX-512
instructions may generate multiple memory accesses in one
cycle and the MCDRAM memory bandwidth can be fully
utilized.

VI. CONCLUSION

We design and implement Harp-DAAL that enables
Hadoop on cloud servers with manycore KNL proces-
sors. Many machine learning applications can be imple-
mented with MapReduce-like interfaces with significantly
boosted performance by scaling up. Through evaluating
computation and communication-bounded applications, we
show that Harp-DAAL combines advanced communication
operations from Harp and high performance computation
kernels from DAAL. Our framework achieves 15x to 40x
speedups over Spark-Kmeans and 25x to 40x speedups to
Spark-ALS. Compared to NOMAD-SGD, a state-of-the-art
C/C++ implementation of the MF-SGD application, we still
get higher performance by a factor of 2.5. An interesting
future direction will be to compare with other hardware
including Haswell and GPU, and develop high performance
machine learning libraries. The code and documentation
of Harp-DAAL framework can be found at https://dsc-
spidal.github.io/harp/.
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