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Abstract

Generative Topographic Mapping (GTM) is an important technique for dimension reduction
which has been successfully applied to many fields. However the usual Expectation-Maximization
(EM) approach to GTM can easily get stuck in local minima and so we introduce a Deterministic
Annealing (DA) approach to GTM which is more robust and less sensitive to initial conditions
so we do not need to use many initial values to find good solutions. DA has been very successful
in clustering, hidden Markov Models and Multidimensional Scaling but typically uses a fixed
cooling schemes to control the temperature of the system. We propose a new cooling scheme
which can adaptively adjust the choice of temperature in the middle of process to find better solu-
tions. Our experimental measurements suggest that deterministic annealing improves the quality
of GTM solutions.

Keywords: deterministic annealing, optimization, dimension reduction

1. Introduction

Visualization of high-dimensional data in a low-dimension space is the core of exploratory
data analysis in which users seek the most meaningful information hidden under the intrinsic
complexity of data mostly due to high dimensionality. Among many tools available thanks to the
recent advances in machine learning techniques and statistical analysis, Generative Topographic
Mapping (GTM) has been extensively studied and successfully used in many application areas:
biology [1, 2], medicine [3, 4], feature selection [5], to name a few.

Generative Topographic Mapping (GTM) [6, 7] is an unsupervised learning method devel-
oped for modeling the probability density of data and finding a non-linear mapping of high-
dimensional data onto a low-dimensional space. Similar algorithms known for dimension re-
duction are Principle Component Analysis (PCA), Multidimensional Scaling (MDS) [8], and
Self-Organizing Map (SOM) [9]. In contrast to the Self-Organizing Map (SOM) which does
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not have any density model [7], GTM defines an explicit probability density model based on
Gaussian distribution. For this reason, GTM is also known as a principled alternative to SOM.

The problem challenged by the GTM is to find the best set of parameters associated with
Gaussian mixtures by using an optimization method, notably the Expectation-Maximization
(EM) algorithm [6, 7]. Although the EM algorithm [10] has been widely used in many opti-
mization problems, it has been shown a severe limitation, known as a local optima problem [11],
in which the EM method can be easily trapped in local optima failing to return global optimum
and so the outputs are very sensitive to initial conditions. To overcome such problem occurred in
the original GTM [6, 7], we have applied a robust optimization method known as Deterministic
Annealing (DA) [12] to seek global solutions, not local optima. Up to our best knowledge, this
is the first work to use DA algorithm to solve the GTM problem in the literature.

The DA algorithm [12] has been successfully applied to solve many optimization problems
in various machine learning algorithms and applied in many problems, such as clustering [13, 12,
14], visualization [15], protein alignment [16], and so on. The core of the DA algorithm is to seek
an global optimal solution in a deterministic way [12], which contrasts to stochastic methods used
in the simulated annealing [17], by controlling the level of randomness. This process, adapted
from a physical process, is known as annealing in that an optimal solution is gradually revealing
as lowering temperature which controls randomness. At each level of temperature , the DA
algorithm chooses an optimal solution by using the principle of maximum entropy [18, 19, 20], a
rational approach to choose the most unbiased and non-committal answers for given conditions.

Regarding the cooling process, which affects the speed of convergency, in general it should
be slow enough to get the optimal solutions. Two types of fixed cooling schemes, exponential
cooling schemes in which temperature T is reduced exponentially such that T = αT with a co-
efficient α < 1 and linear scheme like T = T − δ for δ > 0, are commonly used. Choosing
the best cooling coefficient α or δ is very problem dependent and no common rule has not yet
been reported. Beside of those conventional schemes, in this paper we also present a new cool-
ing scheme, named adaptive cooling schedule, which can improve the performance of DA by
dynamically computing the next temperatures during the annealing process with no use of fixed
and predefined ones.

The main contributions of our paper are as follow:

i. Developing the DA-GTM algorithm which uses the DA algorithm to solve GTM problem.
Our DA-GTM algorithm can give more robust answers than the original EM-based GTM
algorithm, not suffering from the local optima problem (Section 3).

ii. Deriving closed-form equations to predict phase transitions which is a characteristic behav-
ior of DA [21]. Our phase transition formula can give a guide to set the initial temperature
of the DA-GTM algorithm. (Section 4)

iii. Developing an adaptive cooling schedule scheme, in which the DA-GTM algorithm can
automatically adjust the cooling schedule of DA in an on-line manner. With this scheme,
users are not required to set parameters related with cooling schedule in DA. (Section 5)

Our experiment results showing the performance of DA-GTM algorithm in real-life applica-
tion will be shown in Section 6 followed by our conclusion (Section 7)

2. GTM Reviews

We start by briefly reviewing the original GTM algorithm [6, 7]. The GTM algorithm is to
find a non-linear manifold embedding of K latent variables zk in low L-dimension space or latent
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Figure 1: Non-linear embedding by GTM

space, such that zk ∈ RL(k = 1, ...,K), which can optimally represent the given N data points
xn ∈ RD(n = 1, ...,N) in the higher D-dimension space or data space (usually L � D) (Figure 1).
This is achieved by two steps: First, mapping the latent variables in the latent space to the data
space with respect to a non-linear mapping f : RL 7→ RD. Let us denote the mapped points
in the data space as yk. Secondly, estimating probability density between the mapped points yk
and the data points xn by using the Gaussian noise model in which the distribution is defined
as an isotropic Gaussian centered on yk having variance β−1 (β is known as precision). More
specifically, the probability density p(xn|yk) is defined by the following Gaussian distribution:

N(xn|yk, β) =

(
β

2π

)D/2

exp
{
−
β

2
‖xn − yk‖

2
}
. (1)

The choice of the non-linear mapping f : RL 7→ RD can be made from any parametric, non-
linear model. In the original GTM algorithm [6, 7], a generalized linear regression model has
been used, in which the map is a linear combination of a set of fixed M basis functions, such that,

yk = φTr
k W, (2)

where a column vector φk = (φk1, ..., φkM) is a mapping of zk by the M basis function φm :
RL 7→ R for m = 1, ...,M, such that φkm = φm(zk) and W is a M × D matrix containing weight
parameters. ATr represents a transpose of A.

With this model setting, the objective of GTM algorithm corresponds to a Gaussian mixture
problem to find an optimal set of yk’s which maximizes the following log-likelihood:

L(W, β) = argmax
W,β

N∑
n=1

ln

 1
K

K∑
k=1

p(xn|yk)

 (3)

It is the problem that finding K centers for N data points, known as K-clustering problem.
Since K-clustering problem is NP-hard [22], the GTM algorithm uses the EM method which
starts with initial random weight matrix W and iteratively refines it to maximize Eq. (3), which
can be easily trapped in local optima. More details can be found in the original GTM paper [6, 7].

3. GTM with Deterministic Annealing (DA-GTM)

Since the use of EM, the original GTM algorithm suffers from the local optima problem in
which the GTM map can vary depending on the initial parameters. Instead of using the EM, we
have applied the DA approach to find a global optimum solution. With the help of DA algorithm,
we can have more robust GTM maps against the random initial value problem.

In fact, the GTM algorithm’s objective function (3) is exactly the same problem, so called
K-clustering, discussed by K. Rose and G. Fox in [12, 23, 21, 24]. The problem is to seek
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optimal clusters for a given distance or distortion measure by using the deterministic annealing
approach . In Rose’s paper, squared Euclidean distance has been used as distortion measurement.
However, in the GTM algorithm, distances are measured by the Gaussian probability as defined
in (1). Thus, by plugging the Gaussian probability into Rose’s DA method, we can solve the
GTM problem with DA algorithm. By using Rose’s equations, we can drive a new objective
function, known as free energy, for the DA-GTM algorithm as follows:

F(W, β,T ) = argmin
W,β,T

−T
N∑

n=1

ln


(

1
K

) 1
T K∑

k=1

p(xn|yk)
1
T

 (4)

which we want to minimize as lowering temperature such that T → 1.
Notice that the GTM algorithm’s objective function (3) differs only the use of temperature T

with our function F(W, σ,T ). Especially, at T = 1, L(W, β) = −F(W, β,T ) and so the original
GTM algorithm’s target function can be considered as a special case of the DA-GTM algorithm’s.

To minimize (4), we need to find parameters which make the following derivatives be zeo.

∂F
∂yk

= β

N∑
n=1

ρkn(xn − yk) (5)

∂F
∂β

=

N∑
n=1

K∑
k=1

ρkn

(
D
2β
−

1
2
‖xn − yk‖

2
)

(6)

where ρkn is a property, known as responsibility, such that, ρkn = p(xn|yk)
1
T /

∑K
k′=1 p(xn|yk′ )

1
T .

By using the same matrix notations used in the GTM paper [6, 7], the DA-GTM algorithm
can be written as a process to seek an optimal weights W and precision β at each temperature T .

W = (ΦTrG′Φ)−1ΦTrR′X (7)

β =
1

ND

N∑
n

K∑
k

ρkn‖xn − yk‖
2 (8)

where X is a N × D data matrix, Φ is a K × M basis matrix, G′ is a K × K diagonal matrix with
elements g′kk =

∑N
n (ρkn)

1
T .

4. Phase Transitions of DA-GTM

As a characteristic behavior of the DA algorithm explained by Rose in [12], it undergoes
phase transitions as lowering the temperatures. At some temperature, we can not obtain all solu-
tions but, instead, we can only obtain effective number of solutions. All solutions will gradually
pop out while the annealing process proceeds as with lowering the temperature.

In the DA-GTM algorithm, we can observe the same behavior. As an extreme example, at
very high temperature, the DA-GTM algorithm gives only one effective latent point in which
all yk’s are converged into the same point x̄ which is the center of data points, such that x̄ =∑N

n=1 xn/N. As lowering the temperature under a certain point, yk’s settled in the same position
start to “explode”. We call this temperature as the first critical temperature, denoted by Tc. As
we further lowering temperature, we can observe subsequent phase transitions and so existence
of multiple critical temperatures. Computing the first phase transition is an important task since
we should start our annealing process with the initial temperature bigger than Tc.
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In DA, we can define such phase transitions as a moment of loosing stability of the objective
function, the free energy F, and turning to be unstable. Mathematically, that moment corresponds
to the point in which the Hessian of the object function looses its positive definiteness.

For our DA-GTM algorithm, we can write the following Hessian matrix as a block matrix:

H =


H11 · · · H1K
...

...
HK1 · · · HKK

 , (9)

where a sub matrix Hi j is a second derivative of the free energy F Eq. (4). More specifically, Hi j

can be written as follows:

Hkk =
∂2F

∂yk∂yTr
k

= −

N∑
n

{
β2

T
ρkn(1 − ρkn)(xn − yk)Tr(xn − yk) − βρknID

}
, or (10)

Hkk′ =
∂2F

∂yk∂yTr
k′

=

N∑
n

{
β2

T
ρknρk′n(xn − yk)Tr(xn − yk′ )

}
(k , k′), (11)

where k, k′ = 1, . . . ,K, and ID is an identity matrix of size D. Note that Hkk and Hkk′ are D × D
matrices and thus, H ∈ RKD×KD.

With the Hessian matrix above, we can compute the first phase transition point occurred at Tc.
Assuming that the system hasn’t undergone the first phase transition and the current temperature
is high enough, then we will have all yk’s settled in the center of the data point, denoted by
y0 = x̄ =

∑N
n=1 xn/N, and equal responsibilities as follows:

yk = y0 and ρkn = 1/K (12)

for all k = 1, ...,K. Then, the second derivatives can be rewritten by

Hkk = −
β2N
T K2

{
(K − 1)Sx|y0

−
T K
β

ID

}
and Hkk′ =

β2N
T K2 Sx|y0

(13)

where Sx|y0
represents a covariance matrix of centered data set such that,

Sx|y0
=

1
N

N∑
n=1

(xn − y0)Tr(xn − y0) (14)

and the Hessian matrix also can be rewritten by

H =
−β2N
T K2




(K − 1)Sx|y0
· · · −Sx|y0

...
. . .

...
−Sx|y0

· · · (K − 1)Sx|y0

 − T K
β

IKD

 (15)

The first phase transition occurs when the system is getting unstable so that the above Hessian
matrix is loosing its positive definiteness. I.e., the first phase transition is the moment when the
Hessian matrix becomes singular and so its determinant equals 0(zero), such that det(H) = 0 at
T = Tc, which holds the following:

eig




(K − 1)Sx|y0
· · · −Sx|y0

...
. . .

...
−Sx|y0

· · · (K − 1)Sx|y0


 =

TcK
β

(16)
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Figure 2: Various cooling schedule schemes. While exponential (a) and linear (b) is fixed and predefined, our new
cooling scheme (c) is adaptive that the next temperature is determined in the on-line manner.

where eig(A) is an eigenvalue of A.
We can further simplify the above equation by using the Kronecker product:

eig




K − 1 · · · −1
...

. . .
...

−1 · · · K − 1

 ⊗ Sx|y0

 = eig




K − 1 · · · −1
...

. . .
...

−1 · · · K − 1


 ⊗ eig

(
Sx|y0

)
(17)

Since the first critical temperature is the most largest one, we can use only the maximum
eigenvalue among multiple of them. Thus, the first critical temperature can be obtained by the
following equation:

Tc = βλmax (18)

where λmax is the largest value of eig(Sx|y0
). Computing the subsequent critical temperature will

be discuss in the next.

5. Adaptive cooling schedule

The DA algorithm has been applied in many areas and proved its success to find a global
optimal solution avoiding local minima. However, up to our knowledge, no literature has been
found to research on the cooling schedule of DA. Commonly used cooling schedule is exponen-
tial, such as T = αT , or linear, such as T = T − δ for some fixed coefficient α and δ. Those
scheduling schemes are fixed in that cooling temperatures are pre-defined and the coefficient α
or δ will not be changed during the process, regardless of the complexity of a given problem.

However, as we discussed previously, the DA algorithm undergoes the phase transitions in
which the solution space can change dramatically. One may try to use very small δ near 0 or
alpha near 1 to make smooth transitions avoiding such drastic changes. However, the procedure
can go too long to be used in practice but still there is no guarantee to produce global optimal
solutions (You will see an example in our experiment result in the next).

To overcome such problem, we propose an adaptive cooling schedule in which next cooling
temperatures are determined dynamically during the annealing process. More specifically, at
every iteration of DA algorithm, we predict the next phase transition temperature and move to
the point as quickly as possible. Figure 2 shows an example, comparing fixed cooling schedules
((a) and (b)) versus an adaptive cooling schedule.

General approach to find next critical temperatures Tc at any given temperature T will be
same with the previous one in that we need to find Tc to make det(H) = 0. However, in contrast
to the method used in computing the first critical points, for this problem we can’t have any
simplified closed-form equations in general. Instead, we can try to divide the problem into pieces
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to derive closed-form equations and choose the best solution from multiple candidate answers.
This method could not provide an exact solution, compared to the method to solve the problem
in a whole set, but rather give us an approximation. However, our experiment has showed that
such approximation can be a good solution. Also, another advantage we can expect in using our
adaptive cooling schedule is that users has no need to set any coefficient for cooling schedule.
Cooling process is automatically adjust to the problem.

At a given state in GTM algorithm, we find K soft clusters in which each group is represented
by yk. Instead of finding a global critical temperature from K clusters at once, we can find each
critical temperature at each group and choose one among K candidates which is the most biggest
yet lower than current temperature so that it can be used as a next temperature.

The sketch of the algorithm is as follows: i) For each k cluster (k = 1, . . . ,K), find a candidate
of next critical temperature Tc,k which should satisfy det(Hkk) = 0 as defined in (10). ii) Choose
the most biggest yet lower than the current T among {Tc,k}.

To find det(Hkk) = 0, we need to rewrite Eq. (10) as follows:

Hkk =
−β2

T

(
Ux|yk

− Vx|yk
−

Tg′kk

β
ID

)
(19)

with the following definition:

Ux|yk
=

N∑
n=1

ρkn(xn − yk)Tr(xn − yk) (20)

Vx|yk
=

N∑
n=1

(ρkn)2(xn − yk)Tr(xn − yk) (21)

and g′kk =
∑N

n=1 ρkn. Then, the condition det(Hkk) = 0 at T = Tc,k will hold the following:

eig
(
Ux|yk

− Vx|yk

)
=

g′kk

β
Tc,k (22)

Then, the next critical temperature Tc,k for the cluster k can computed by

Tc,k =
β

g′kk
λmax,k (23)

where λmax,k is the largest but less than Tg′kk/β eigenvalue of the matrix
(
Ux|yk

− Vx|yk

)
. The

overall pseudo code is shown in Algorithm 1 and Algorithm 2.

6. Experiment Results

To compare the performances of our DA-GTM algorithm with the original EM-based GTM
(EM-GTM hereafter for short), we have performed a set of experiments by using two datasets:
i) the oil flow data used in the original GTM paper [6, 7] obtained from the GTM website1,
which has 1,000 points having 12 dimensions for 3-phase clusters and ii) chemical compound

1GTM homepage, http://www.ncrg.aston.ac.uk/GTM/
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Algorithm 1 GTM with Deterministic Annealing
DA-GTM

1: Set T > Tc by using Eq. (18)
2: Choose randomly M basis function φm(m = 1, ...,M)
3: Compute Φ whose element φkm = φm(zk)
4: Initialize randomly W
5: Compute β by Eq. (8)
6: while T ≥ 1 do
7: Update W by Eq. (7)
8: Update β by Eq. (8)
9: T ← NextCriticalTemp

10: end while
11: return Φ,W, β

Algorithm 2 Find the next critical temperature
NextCriticalTemp

1: for k = 1 to K do
2: Λk ← {∅}

3: for each λ ∈ eig
(
Ux|yk − Vx|yk

)
do

4: if λ < Tg′kk/β then
5: Λk ← Λk ∪ λ
6: end if
7: end for
8: λmax,k ← max(Λk)
9: Tc,k ← βλmax,k/g′kk

10: end for
11: return Tc ← max({Tc,k})

dataset obtained from PubChem database2, which is a NIH-funded repository for over 60 million
chemical molecules and provides their chemical structure fingerprints and biological activities,
for the purpose of chemical information mining and exploration. In this paper we have randomly
selected 1,000 subset having 166 dimensions.

Maximum Log−Likelihood = 1532.555
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(b) DA-GTM with exp. scheme

Maximum Log−Likelihood = 1721.554

Dim1

D
im

2

−1.0

−0.5

0.0

0.5

1.0

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

● ●●

●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●
●
●

●

● ●

●●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

● ●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(c) DA-GTM with adaptive scheme
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Figure 3: Comparison of (a) EM-GTM, (b) DA-GTM with exponential, and (c) DA-GTM with adaptive cooling scheme
for the oil-flow data having 3-phase clusters(A=Homogeneous, B=Annular, and C=Stratified configuration). Plots are
drawn by a median result among 10 random-initialized executions for each scheme. As a result, DA-GTM (c) with
adaptive cooling scheme has produced the largest maximum log-likelihood and the plot shows better separation of the
clusters, while EM-GTM (a) has output the smallest maximum log-likelihood and the plot shows many overlaps.

First we have compared for the oil-flow data maximum log-likelihood produced by EM-
GTM, DA-GTM with exponential cooling scheme, and DA-GTM with adaptive cooling scheme
and their GTM plots, known as “posterior-mean projection” plot [6, 7], in the latent space. For
each algorithm, we have executed 10 runs with random setup, chosen a median result, and drawn
a GTM plot as shown in Figure 3. As a result, DA-GTM with adaptive cooling scheme (c) has
produced the largest maximum log-likelihood (best performance), while EM-GTM (a) produced
the smallest maximum log-likelihood (worst performance). Also, as seen in the figures, a plot
with larger maximum log-likelihood shows better separation of the clusters.

In the next, we have compared the performance of EM-GTM and DA-GTM with 3 cooling
schedule schemes: i) Adaptive, which we have prosed in this paper, ii) Exponential with cooling
coefficients α = 0.95 (denoted Exp-A hereafter), and iii) Exponential with cooling coefficients
α = 0.99 (denoted Exp-B hereafter). For each DA-GTM setting, we have also applied 3 different

2PubChem project, http://pubchem.ncbi.nlm.nih.gov/
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Figure 4: Comparison of EM-GTM with
DA-GTM in various settings. Average of
50 random initialized runs are measured
for EM-GTM, DA-GTM with 3 cooling
schemes (adaptive, exponential with α =

0.95 (Exp-A) and α = 0.99 (Exp-B).
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(b) Adaptive changes in cooling schedule

Figure 5: A progress of DA-GTM with adaptive cooling schedule. This
example show how DA-GTM with adaptive cooling schedule progresses
through iterations

starting temperature 5, 6, and 7, which are all bigger than the 1st critical temperature which is
about 4.64 computed by Eq. (18). Figure 4 shows the summary of our experiment results in
which numbers are estimated by the average of 50 executions with random initialization.

As a result shown in Figure 4, DA-GTM algorithm shows strong robustness against local
minima since the mean of log-likelihood from DA-GTM’s outperforms EM-GTM’s by about
11.15% even with smaller deviations. Interestingly, at the starting temperature 7 and 9, the
performance of Exp-B, which used more finer-grain cooling schedule (α = 0.99) than Exp-A
(α = 0.95), is lower than Exp-A and even under EM-GTM. This shows that fine-grained cooling
schedule can not guarantee the best solution than corse-grained one in using DA. However, our
adaptive cooling scheme mostly outperforms among other cooling schemes. Figure 5 shows an
example of execution of DA-GTM algorithm with adaptive cooling schedule.

Maximum Log−Likelihood = −36584.455
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(a) EM-GTM

Maximum Log−Likelihood = −36456.181
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(b) DA-GTM with exp. scheme

Figure 6: Comparison of (a) EM-GTM and (b) DA-GTM with exponential scheme for 1,000 PubChem dataset having
166 dimensions. Plots are drawn as a median result of 10 randomly initialized executions of EM-GTM and DA-GTM.
The average maximum log-likelihood from DA-GTM algorithm (-36,608) is larger than one from EM-GTM (-36,666).

We have also compared EM-GTM and DA-GTM with exponential cooling scheme for the
1,000 PubChem dataset which has 166 dimensions. As shown in Figure 6, DA-GTM’s output
is better than EM-GTM’s since DA-GTM’s average maximum log-likelihood (-36,608) is bigger
than EM-GTM’s (-36,666).
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7. Conclusion

We have solved the GTM problem, originally using the EM method, by using the determin-
istic annealing (DA) algorithm which is more resilient against the local optima problem and less
sensitive to initial conditions, from which the original EM method was suffered. We have also
developed a new cooling scheme, called adaptive cooling schedule. In contrast to the conven-
tional cooling schemes such as linear and exponential ones, all of them are pre-defined and fixed,
our adaptive cooling scheme can adjust granularity of cooling speed in an on-line manner. In our
experiment, our adaptive cooling scheme can outperform other conventional methods.
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