
Internet Calendaring and Scheduling Core Object

Specification (iCalendar) Compatible

Collaborative Calendar-Server (CCS) Web

Services

Indiana University Computer Science Department,

Bloomington, IN, 47405

Ahmet Fatih Mustacoglu and Geoffrey Fox

{amustaco, gfc}@cs.indiana.edu

Abstract

It is very obvious that Internet needs to have interoperable calendaring and scheduling services to

provide interoperability between different types of calendaring and scheduling applications.

Internet Calendaring and Scheduling Core Object Specification (iCalendar) has been defined to

provide the definition of a common format for openly exchanging calendaring and scheduling

information across the Internet. In the first part of this report, we overview the internet calendaring

and survey the software development efforts and applications that are using iCalendar

specifications. We therefore, in the second part of this report, describe our efforts to implement

Collaborative Calendar-Server Service (CCS) as web services, and find the applicability of Web

Service Architecture on to Collaborative Calendaring using iCalendar standards.

We have also built a bridge module that allows our Collaborative Calendar-Server (CCS) to

communicate with different calendar and scheduling applications that supports iCalendar

standards. This module receives the requests from clients, and executes the associated services of

Collaborative Calendar-Server (CCS) based on the coming requests.

 2

1 Introduction

Internet Calendaring and Scheduling Core Object Specification (iCalendar)

introduces a new format for calendaring and scheduling applications. Without a

common format, there will be interoperability problems between dissimilar

applications that are not supporting the same format for defining the calendar

information. Different organizations and commercial vendors develop their own

calendaring and scheduling model and structures. If the calendar representation

format is not interoperable, calendar applications can not communicate with each

other even if though they are in the same organization or they are coming from

the same commercial vendor.

To solve interoperability problems, The Internet Engineering Task Force (IETF)

[17] introduced some standards by publishing specifications for the calendar data

exchange. IETF is an open community of network designers, operators, vendors,

and researchers for every interested individual [17].

This document gives the details about the design, the architecture, and the

implementation details of our Web Service oriented Collaborative Calendar-

Server that supports iCalendar standards. Our calendar server has also a bridge

module that enables other calendaring and scheduling clients, which use http

methods to call our services, to communicate with our calendar server such as

Mozilla Calendar Client. In this document, we will first mention about the some

calendaring technology terms, definitions and related works for implementing

calendaring and scheduling applications that supports iCalendar standards. Next,

we are going to mention about Internet Calendaring and Scheduling Core Object

Specification (iCalendar). And then, we discuss our Collaborative Calendar-

Server implementations details, which include the detailed explanation of the

architecture, the design, GlobalMMCS Client Module for CCS, implementation of

web services of Collaborative Calendar-Server, and the bridge module for CCS,

and we will talk about the applicability of web service architecture on to CCS

using iCalendar standards. Finally, we will provide the conclusion part as a last

chapter.

 3

2 Guide to Internet Calendaring and Related Work

2.1 Calendaring Technology and Terms and Definitions

Calendaring and scheduling protocols provide organizations or individuals with a

way to obtain calendaring information and to schedule meetings across the

Internet to progress the level of interoperability possible between dissimilar

calendaring and scheduling applications. RFC 2445 (iCalendar Specification

Protocol) for instance provides the definition of a common format for openly

exchanging calendaring and scheduling information across the Internet. iCalendar

is the language to describe the calendar objects.

iCalendar (RFC-2445) defines a data format for representing calendar

information, in order to be used and exchanged by other protocols. iCalendar

(RFC-2445) can also be used in other contexts, such as an export/import feature

or a drag-and-drop interface. All the other calendaring protocols depend on

iCalendar (RFC-2445), so all elements of a standards-based calendaring and

scheduling systems will have to be able to translate iCalendar (RFC-2445) [3].

The following definitions are the common terms for the Internet Calendaring.

Calendar: Calendars maintains the calendaring information as a storage container.

A calendar consists of events, to-dos, tasks, journal entries, etc. A calendar

basically represents a person’s specialized need, or his/her agenda.

Calendar Access Rights: It is a set of rules that specifies the user’s permissions on

what kind of operations a user can execute on the calendar. Such as read or write

rights on a given calendar.

Calendar Service: It is a server application and it provides access to a number of

calendar stores.

Calendar Store (CS): A calendar service’s date is stored in a storage called

Calendar Store. A calendar store may store one or more calendars, properties and

components other than the calendars.

Calendar User (CU): It is an entity that access and use the calendar data. It is

usually a human.

Calendar User Agent (CUA): A calendar user communicates with the calendar

service or calendar storage through software and this software is called as

Calendar User Agent.

 4

Component: Component is a part of calendar data such as a to-do, an event, or a

task, etc. Properties are used to keep the information about components.

Delegator: A calendar user who has assigned his or her participation in a

scheduled calendar component (e.g. a VEVENT) to another calendar user

(sometimes called the delegate or delegatee). An example of a delegator is a busy

executive sending an employee to a meeting in his or her place [3].

Delegate: A calendar user (sometimes called the delegatee) who has been

assigned to participate in a scheduled calendar component (e.g. a VEVENT) in

place of one of the attendees in that component (sometimes called the delegator).

An example of a delegate is a team member sent to a particular meeting [3].

Designate: Designate is a calendar user, and he or she has been authorized to act

on behalf of another calendar user.

Local Store: It is a calendar store that is on the same device with a calendar user

agent.

Property: Property describes some elements of a component such as start time,

end time, summary, time zone etc.

Remote Store: It is a calendar store that is not on the same device with a calendar

user agent.

2.2 Related Works

2.2.1 Collaborative/Non-Collaborative Calendaring and
Scheduling Implementation Efforts

This chapter lists some collaborative or non-collaborative calendaring and

scheduling applications and servers that are compatible with Internet Calendaring

and Scheduling Core Object Specification (iCalendar) [1]. Some of the

specifications are abstract some of them are just discussion papers. We have not

mentioned from them in this chapter.

Here you will see some application efforts that can support Internet Calendaring

and Scheduling Core Object Specification (iCalendar) standards.

Hula Project: Hula is an open source project and it has been led by Novel. It is a

calendar and mail server, and available at: http://hula-project.org/Hula_Project.

 5

PHP iCalendar: PHP iCalendar can display the iCal files in a web browser. It is a

PHP based iCal file viewer and parser. It is based on IETF Specification

(iCalendar). Available at:

http://phpicalendar.net/documentation/index.php?title=Main_Page.

phpGroupWare: It is written in PHP, and it is a multi user groupware suite. It

provides many web-based applications such as Calendar, To-do List, Notes,

Addressbook, and Newsgroup etc.

Available at: http://www.phpgroupware.org/ .

Sun Java System Calendar Server: The Sun Java System Calendar Server makes

the team collaboration easier by enabling users to manage and coordinate their

appointments, tasks, and resources. Available at:

http://www.sun.com/software/products/calendar_srvr/index.xml .

Cyber Scheduler: Cyber Scheduler is a web-based calendaring and scheduling

solution. Available at: http://www.crosswind.com/cybdata.htm .

Java iCal Group Scheduler: It is an open source project developed by

SourceForge.net in Java language. Java iCal Group Scheduler let users schedule

meeting automatically. Available at: http://sourceforge.net/projects/jical/ .

ScheduleWorld: ScheduleWorld is both a secure Internet calendaring and

scheduling client application and a server service that enables users to schedule

events or appointments with other ScheduleWorld users and/or users of other

calendaring and scheduling products [2].

Available at: http://www.scheduleworld.com/ .

Kronolith Calendar Application: Kronolith is the Horde calendar application. It

provides a stable and featureful individual calendar system for every Horde user,

with integrated collaboration/scheduling features. It makes extensive use of the

Horde Framework to provide integration with other applications [4]. The Horde

Application Framework is a general-purpose web application framework in PHP,

providing classes for dealing with preferences, compression, browser detection,

connection tracking, MIME handling, and more [5].

Available at: http://www.horde.org/kronolith/.

phpMyCal: It is a shared calendar that iCal can subscribe to and all users can add

items to from a Web interface. This is not a full calendaring solution yet, since

users won't be able to make changes from iCal itself, they can just view the

calendar. The actual calendar is kept in a MySQL database that dynamically

creates the iCal data files when queried by clients [6].

Available at: http://dev.neb.net/phpMyCal/ .

 6

Favorin Time: Favorin Time is a client and a server group calendar for Linux and

other UNIX environments with KDE desktop. They have a free open source client

available for download.

Favorin Time Server is a commercial product that is sold separately, and it

provides groupware functionality for Favorin Time client [8].

Basically, it provides calendar management and scheduling for organizations.

Available at: http://www.favorin.com/.

Web Organizer: Web Organizer (WEBO) is a groupware solution with a

calendaring module. Available at: http://weborganizer.sourceforge.net/ .

Web Calendar: Web Calendar is a PHP-based calendar application, and it is used

for maintaining calendars for single or multiple users. It supports iCalendar and

can communicate the iCal-compliant calendar program such as Apple’s iCal,

Mozilla Calendar or Sunbird. Available at: http://www.k5n.us/webcalendar.php .

Chronos: Chronos is a Web agenda/calendar for Intranets (even if it can be used

from anywhere). It can send reminders by email. You can schedule multi-user

events. It is fast and light on resources (the balance size/speed can be tweaked by

tweaking mod_perl and Apache) [9].

Available at: http://chronoss.sourceforge.net/ .

MRBS (Meeting Room Booking System): MRBS is a free, GPL, web application

using PHP and MySQL/pgsql for booking meeting rooms. It's similar in concept

to Netscape Calendar [10]. Available at: http://mrbs.sourceforge.net/ .

Meeting Maker: It is a collaborative calendaring and scheduling application for

organizations. It provide users with seeing other users’ availability, sending

invitations to others, accepting or declining meetings etc.

Available at: http://www.meetingmaker.com/products/meetingmaker/default.cfm .

OpenCAP: It is an open source calendar server based on iCalendar specifications.

Its development is still in progress.

And available at: http://www.kiv.zcu.cz/~simekm/calendar/OpenCAP/doc/ .

UW Calendar: The UW Calendar project is building an open-source calendaring

system for higher education. UW Calendar will support personal, public and

group events, use existing open standards, and support web-based and other forms

of access, including uPortal integration [11].

Available at: http://www.washington.edu/ucal/ .

 7

3 Internet Calendaring and Scheduling Core Object
Specification (iCalendar)

Internet Calendaring and Scheduling Core Object Specification (iCalendar)

enables developers to create interoperable components. iCalendar specifications

defined in the RFC2445 are available at: http://www.ietf.org/rfc/rfc2445.txt .

3.1 iCalendar Specification Basics (RFC 2445)

The calendaring and scheduling need has been increasing rapidly for last decade.

Companies have been trying to implement this technology into their businesses.

Unfortunately, there is a lack of Internet standards for the message content types

that are crucial to calendaring and scheduling applications. iCalendar standards

defined in RFC2445 has intended to advance the interoperability among the

calendars and scheduling applications that are not similar.

The iCalendar specification is a result of the work of the Internet Engineering

Task Force Calendaring and Scheduling Working Group (chaired by Anik

Ganguly of Open Text Inc.), and was authored by Frank Dawson of Lotus

Development Corporation and Derik Stenerson of Microsoft Corporation.

iCalendar is heavily based on the earlier vCalendar industry specification by the

Internet Mail Consortium (IMC) [15].

iCalendar specifications define the format for specifying iCalendar object

methods. An iCalendar object method is a set of usage constraints for the

icalendar object [1].

The iCalendar format is suitable as an exchange format between applications or

systems. The format is defined in terms of a MIME content type text/calendar.

The “ics” file extension is used to indicate a file containing (an arbitrary set of)

calendaring and scheduling information consistent with this MIME content type

[15]. This will enable the object to be exchanged using several transports,

including but not limited to SMTP, HTTP, a file system, desktop interactive

protocols such as the use of a memory-based clipboard or drag/drop interactions,

point-to-point asynchronous communications, wired-network transport, or some

form of unwired transport such as infrared might also be used [1].

 8

3.2 iCalendar Core Object

Calendaring and Scheduling Core Object is the top-level object in iCalendar, and

it is a collection of calendaring and scheduling information. Usually, this

information consists of a single iCalendar object, but two or more iCalendar

objects can be grouped together consecutively. The first line must be "BEGIN:

VCALENDAR", and the last line must be "END: VCALENDAR"; the contents

between these lines is the body of the iCalendar object and called the "icalbody".

The icalbody consists of a sequence of calendar properties and one or more

calendar components. The calendar properties are attributes that apply to the

calendar as a whole. The calendar components are collections of properties that

express a particular calendar semantic. For example, the calendar component can

specify an event, a to-do, a journal entry, time zone information, or free/busy time

information, or an alarm [15].

Here is a simple example (from RFC 2445) of an iCalendar object that defines a

"Bastille Day Party" event occurring from July 14, 1997 17:00 (UTC) through

July 15, 1997 03:59:59 (UTC):

 BEGIN:VCALENDAR

 VERSION:2.0

 PRODID:-//hacksw/handcal//NONSGML v1.0//EN

 BEGIN:VEVENT

 DTSTART:19970714T170000Z

 DTEND:19970715T035959Z

 SUMMARY:Bastille Day Party

 END:VEVENT

 END:VCALENDAR [15].

The iCalendar components defined in RFC 2445 can be listed as below:

• Events (VEVENT): This component provides a grouping of component

properties that describe an event that represents a scheduled amount of

time on a calendar [15].

• To-do (VTODO): This event represents a to-do item on a calendar, i.e., an

action-item or assignment [15].

• Journal Entry (VJOURNAL): This component describes a journal entry on

a calendar.

• Free/Busy Time (VFREEBUSY): A VFREEBUSY component is used for

describing either a request for free/busy time, which describes a response

to a request, or describing a published set of busy time [15].

• VTIMEZONE: This component is used for defining Time Zone

information. And, it is usually used for supporting other components [15].

• VALARM: This component is used for defining alarms, and it is included

in other components most of the time [15].

 9

4 Collaborative Calendar-Server (CCS)
Implementation and Applicability of Web Services

In Chapter 3 we give general information about the Internet Calendaring and

Scheduling Core Object Specification (iCalendar) specifications. Here in this

chapter there will be more detailed information about the implementation of our

Collaborative Calendar-Server project.

4.1 Collaborative Calendar-Server (CCS) Design and
Architecture

Collaborative Calendar-Server (CCS) enables users to manage and coordinate

their appointments, events, and tasks. With its user friendly web-interface

integrated into GlobalMMCS portal, end users can access their personal calendar

(private calendar) or group calendar (collaborative calendar) from anywhere,

anytime by using web browser. Users can also update, or schedule a new event

into their private calendar or into the group calendar. Furthermore, there is a

bridge module that enables user to publish or to subscribe to their calendar or to

collaborative calendar using Mozilla Calendar client application. For Architecture

of Collaborative Calendar-Server, please see Figure 1.

Collaborative Calendar-Server implemented as a web service in Java

programming language, and it uses iCal4j Java library [16] for reading and

writing iCalendar data streams as defined in RFC2445. It stores the users’

calendar and collaborative calendar in iCalendar format (with “ics” extension) as

specified in RFC 2445 on the machine where the Collaborative Calendar-Server is

running. Each user has their own iCalendar file for their private calendar. And,

there is only one iCalendar file for collaborative calendar shared by all users.

Users’ access to collaborative calendar has been synchronized.

The bridge module has been implemented as a java servlet, and it enables various

calendar and scheduling clients, which support iCalendar specifications, to

communicate with our Collaborative Calendar-Server. Based on the request

coming from the request objects, this servlet calls and executes the associated web

services to provide the required service.

Client part for the Collaborative Calendar-Server has been integrated into

GlobalMMCS Portal. We have the user interfaces implemented as jsp, and

JavaScript; users can select their options from the navigation menu, and fill out

the necessary fields for posting or retrieving the private or collaborative calendar

schedule from the Collaborative Calendar-Server by calling associated services.

 10

Calls Import or

export

service

 PUT or GET Request

Figure – 1: Collaborative Calendar-Server Architecture

COLLABORATIVE CALENDAR-SERVER

(CCS)

WEB SERVICES

INTERNET

CLIENTS

Bridge Module

(Java Servlet)

Mozilla Calendar

Client

GlobalMMCS

Portal

 11

4.1.1 GlobalMMCS Client Module for Collaborative Calendar-Server (CCS)

Clients can invoke Collaborative Calendar-Server’s Services in two ways either

from a user interface such as a collaborative calendar module of GlobalMMCS

Portal implemented in by using jsp and JavaScript or from an application by just

calling the associated web service with the required parameters.

After users signed-in to the GlobalMMCS Portal, there are four operations

currently supported from the GlobalMMCS Portal’s user interface:

• Private Calendar: It basically calls the associated services of

Collaborative Calendar-Server to retrieve the user’s own/private calendar

file from the server. When the web service is called, it first checks to see

whether this user has an iCalendar file or not on the calendar server. If not,

then one empty calendar file is created by using “makeEmtyCalendar”

service and returned to the user in the html table form. If the user has an

iCalendar file, then the required information is read from the calendar file,

then html table is constructed, and then it is transferred over http as a text

file, and finally showed to the user in the html table form.

• Collaborative Calendar (Group Calendar): This menu option calls the

associated CCS’s Service to bring up the group/collaborative calendar

from the calendar server. Once this service is called, if there is no

collaborative calendar file, first it creates an empty calendar file by calling

“makeEmtyCalendar” service. Then, return an empty html table to the user

to show in the client portal. If the collaborative calendar file exists on the

server, then the service reads the collaborative calendar file into java

object, then setup the html table to be returned to the client.

• Schedule A Meeting: This menu item enables users to schedule a meeting

into the collaborative calendar. It requires users to fill out the necessary

information through the jsp page implemented in the GlobalMMCS portal,

and then the associated CCS Service is called to process this request and

data. Once the service received this data, it first gets all the GlobalMMCS

Portal’s registered users. Then, the service checks each the user’s calendar

file to see whether there is a conflict or not with the new meeting time. If

there is no conflict, then the service inserts the new schedule into the

collaborative calendar, updates the collaborative calendar file with the

latest one, and finally returns a confirmation to the client. If there is any

conflict, then it returns a warning to the client so that the client can change

the time for this meeting. Time Zone information is calculated based on

the client’s running location.

• New Event: By this option, users can specify new events into their

own/private calendar. Users need to fill out the required fields through the

 12

jsp page implemented in the GlobalMMCS portal such as Event Start

Time, Event End Time, Public Event or Private Event, Event Name, Event

Location, Event Description, and then the CCS Service is called to process

this request and data. Users can specify whether this event is a public or a

private event when they are posting it into their private calendar. Once the

service receives the data, it first checks to see whether this user has a

private calendar or not. If there is not, then it calls the

“makeEmtyCalendar” service to create one for the client. If there is, then

the service reads the user’s calendar into the java object, and then adds this

new event into his/her private calendar. Finally, the service updates the

user calendar file with the latest one. Time Zone information is calculated

based on the client’s running location.

4.1.2 Collaborative Calendar-Server (CCS)

Collaborative Calendar-Server (CCS) is implemented using java language as

collection of Web Services. The CCS’s currently implemented services can be

reached at: http://gf8.ucs.indiana.edu:18086/CalendarService/servlet/AxisServlet,

and can be listed as follow:

• importCalendar: This service receives three parameters; icalendar file as a

byte array, username as a String, and calendar name as a String. And, it

returns a confirmation to the user, if there is any exception, and then the

warning is returned to the user as String as well. The service writes the

user’s calendar file as an iCalendar (calendarname.ics) file under this

user’s calendar path.

CCS Required

Parameters

Description Example Value

iCalendar File as a

byte[]

It is the iCalendar

source file

myIcal[]

Username Client’s username guest

Calendarname A name for this

calendar

guest

 Table-1: The parameters of the importCalendar Service

• exportCalendar: The service requires two parameters; username and a

calendar name to be exported. It reads the user’s calendar file into the byte

array, and then returns the iCalendar file as a byte array to the user. If

there is any exceptions occur, then it writes those exceptions into a file,

and returns it to the user as a byte array as well.

 13

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this calendar guest

 Table-2: The parameters of the exportCalendar Service

• makeEmptyCalendar: It makes an empty calendar for the specified user

and for the specified calendar name. It returns a confirmation to the user as

a String. If any exceptions occur, then it returns a warning to the client

about it.

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this calendar guest

 Table-3: The parameters of the makeEmptyCalendar Service

• newEvent: This CCS service is used for setting up a new event for the

user. It basically makes an event for this user, and adds this event into the

user’s icalendar file as an icalendar VEVENT Component. Finally,

updates the user’s calendar file with the latest version of it. This service

receives the following parameters; username as a String, calendar name as

a String, event type (outdoor, private, meeting, holiday etc.) as a String,

public or private event as a String, event start time as a long value, time

zone id for the start time as a String, event end time as a long value, time

zone id for the end time as a String, location of the event as a String, and

notes/summary about this event as a String.

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this

calendar file

guest

Event type Type of the event Outdoor, meeting, camping

etc.

Public/Private

Event

Is it a public or a

private event

Public (everyone can see)

Start Time Starting time (long

value,milliseconds)

for this event.

20051119T135500

Start Time Zone

ID

TimeZone ID for start

time

America/Indiana/Indianapolis

 14

End Time Ending time (long

value,milliseconds)

for this event.

20051119T145500

End Time Zone

ID

TimeZone ID for end

time

America/Indiana/Indianapolis

Location Location of this event Public Library

Notes/Summary Notes about this

event.

Informal discussion meeting.

 Table-4: The parameters of the newEvent Service

• getUserCalendar: CCS’s “getUserCalendar” service requires two

parameters; username as a String and a calendar name as a String. When it

receives the request from the client, it first locates the user’s calendar file

on the server, and reads the calendar into java object. Next, it constructs

the html table by using the user’s calendar data. Finally, it returns the

result to the user as a String in html table form. If any exceptions occur,

then it returns the exception as a String to the client in html table form.

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this calendar guest

 Table-5: The parameters of the getUserCalendar Service

• scheduleMeeting: This CCS’s service is used for scheduling a meeting into

the collaborative/group calendar. Once the request made, the service

checks each user’s calendar file to retrieve their schedule information, and

compare them with the new event time to see if there is any conflict. If

there is any conflict with any of the event, then it returns a warning as a

String in html table form to the client so that he/she can select another

time period for this event. If not, then it sets up a VEVENT, locks the

calendar file so that nobody make changes on it concurrently, and adds

this event into the collaborative calendar file. Finally, updates the

collaborative calendar file on the server with the latest version of it. This

service receives the following parameters; username as a String, calendar

name as a String, event type (outdoor, private, meeting, holiday etc.) as a

String, user names as an String array, event start time as a long value, time

zone id for the start time as a String, event end time as a long value, time

zone id for the end time as a String, location of the event as a String, and

summary about this event as a String.

 15

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this

calendar file

guest

Event type Type of the event Outdoor, meeting, camping

etc.

User names in

String[]

It has the user

names to whom

schedules be

checked with new

event schedule

guest, amustaco etc.

Start Time Starting time (long

value,milliseconds)

for this event.

20051119T135500

Start Time Zone

ID

TimeZone ID for

start time

America/Indiana/Indianapolis

End Time Ending time (long

value,milliseconds)

for this event.

20051119T145500

End Time Zone

ID

TimeZone ID for

end time

America/Indiana/Indianapolis

Location Location of this

event

Public Library

Notes/Summary Notes about this

event.

Informal discussion meeting.

 Table-6: The parameters of the scheduleMeeting Service

• getPublicCalendar: This service requires two parameters in order to return

the collaborative/group calendar schedule to the client; username as a

String, and a calendar name as a String. When the service receives the

request, it first reads the user’s calendar file into java object, and then goes

through the each component of the calendar (VEVENT, VTODO, VTASK

etc) and its properties to construct the schedule to return to the client as a

String in html table form. If there is no collaborative calendar defined on

the server, then the service creates one by calling “makeEmptyCalendar”

web service, and returns the calendar schedule (empty schedule) to the

client as a String in html table form as well. If any exceptions occur, then

the service returns a warning to the client as a String in html table form.

 16

CCS Required

Parameters

Description Example Value

Username Client’s username guest

Calendarname A name for this calendar guest

 Table-7: The parameters of the getPublicCalendar Service

4.1.3 Bridge Module for Collaborative Calendar-Server (CCS)

Our collaborative Calendar-Server can communicate with different calendar

clients, which use http methods for communication, through the bridge module

such as Mozilla Calendar. A Mozilla Calendar can publish an event(s) to our

Collaborative Calendar-Server (CCS), or it can subscribe any of the calendars that

exist on the calendar server. This functionality is implemented as a Java Servlet

Technology, and the servlet plays a middle layer between the clients and the

Collaborative Calendar-Server (CCS) Services. Since, the servlet basically

invokes the services of our calendar server based on the coming requests from the

clients. For example, if it receives a http “PUT” request, then it calls the

importCalendar service of Collaborative Calendar-Server (CCS) to import the

events from the client into our calendar server. In this case, client need to specify

the required parameters, a username and a calendar name as a String, for the

importCalendar service in order to execute the service.

Sample request from Mozilla client to subscribe a calendar on our Collaborative

Calendar-Server:

http://gf8.ucs.indiana.edu:28088/CalendarServer/calendar?username=guest&calen

darname=guest

4.2 Applicability of Web Service Architecture on to
Collaborative Calendaring using iCalendar standards

We have implemented seven operations for Collaborative Calendar-Server as

Web Services. These services are importCalendar service, exportCalendar service,

getUserCalendar service, makeEmptyCalendar service, newEvent service,

scheduleMeeting service, and getPublicCalendar service.

Web Services enables the interoperability between different software applications

running on different platforms. Web Services have an interface which is described

in a machine-processable format, and web services support interoperable machine

to machine interaction over a network. Web Services are defined in a language

called Web Services Description Language (WSDL) [13]. The clients can

 17

communicate with a web service by exchanging messages in SOAP (Simple

Object Access Protocol) format.

SOAP [14] is a platform and language independent communication protocol for

exchanging information in distributed environment. SOAP is an XML based

protocol, and consists of three parts the envelope, the encoding rules, and the

Remote Procedure Call (RPC) convention. SOAP can be used in any

combination of with some other protocols such as HTTP, FTP etc. In our

implementation, Collaborative Calendar-Server’ Web Services use SOAP over

HTTP.

WSDL is specified in XML, and it is used for describing and locating Web

Services. WSDL uses four major elements to define Web Services:

• portType: The operations performed by the web service.

• message: Defines the data elements of an operation.

• types: The data types used by the web service.

• binding: Specifies concrete protocol and data format specifications for the

operations and messages defined by a particular portType.

We have used Apache Axis version 1.2 to create and publish our Web Services in

Collaborative Calendar-Server, and Apache Axis is a reliable and a stable base on

which to implement Java Web Services. Furthermore, SOAP communication

between client and server is taken care of by Apache Axis.

Using Web Services for implementing Collaborative Calendar-Server Services

will offer several key benefits, including:

Integration: It will be easier to integrate Collaborative Calendar-Server

functionalities and data into custom applications for developers.

Easy to Extend: Web Service technology is XML based, and Collaborative

Calendar-Server is implemented by using Web Services, then it will be

easy to extend and configure of the settings to make our implementation

more robust and fault tolerant.

Distribution: By using Web Services, it will be easier to spread the

calendar data and functionality of services across platforms, operating

systems, etc.

 18

5 Conclusion

With the development of Internet Calendaring and Scheduling application and

network technique, the calendar data between different applications need to be

shared and to be interoperated. iCalendar standard defined in RFC2445 provides

the definition of a common format for openly exchanging calendaring and

scheduling information across the Internet, and provides the interoperability

between the different calendaring and scheduling applications.

Web Service technology provides the interoperable capability of cross-platforms

and cross-language in distributed computing environment. Moreover, web service

technology is not object oriented and, it overcomes the shortcoming of traditional

Distributed Object technique.

In this document, we basically have been trying to explain the efforts spent on

building Collaborative Calendar-Server services that supports iCalendar standard.

By using web service technology in our implementation, we will take advantage

of the Web Services. As Web Services technologies evolve our proposed

Collaborative Calendar-Server (CCS) system evolve. WSDL for Collaborative

Calendar-Server’s services, snapshots of our Collaborative Calendar-Server

(CCS) communication with Mozilla Calendar Client and GlobalMMCS client can

be found in the appendix part of this document.

 19

APPENDIXES

APPENDIX - 1

Web Service Description File (CalendarServer.wsdl)
<?xml version="1.0" encoding="UTF-8" ?>

- <wsdl:definitions targetNamespace="http://webcalendar.webdav.cgl"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://webcalendar.webdav.cgl" xmlns:intf="http://webcalendar.webdav.cgl"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- <!--

WSDL created by Apache Axis version: 1.2beta3

Built on Aug 01, 2004 (05:59:22 PDT)

 -->

- <wsdl:types>

- <schema targetNamespace="http://webcalendar.webdav.cgl"

xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

- <complexType name="ArrayOfbyte">

- <complexContent>

- <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:byte[]" />

 </restriction>

 </complexContent>

 </complexType>

- <complexType name="ArrayOfString">

- <complexContent>

- <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType" wsdl:arrayType="soapenc:string[]" />

 </restriction>

 </complexContent>

 </complexType>

 </schema>

 </wsdl:types>

- <wsdl:message name="getUserCalendarResponse">

 <wsdl:part name="getUserCalendarReturn" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="importCalendarRequest">

 <wsdl:part name="fileSource" type="impl:ArrayOfbyte" />

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarName" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="getUserCalendarRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarname" type="soapenc:string" />

 </wsdl:message>

 20

- <wsdl:message name="newEventRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarName" type="soapenc:string" />

 <wsdl:part name="eventType" type="soapenc:string" />

 <wsdl:part name="public_private" type="soapenc:string" />

 <wsdl:part name="startDate" type="xsd:long" />

 <wsdl:part name="sTimeZoneSt" type="soapenc:string" />

 <wsdl:part name="endDate" type="xsd:long" />

 <wsdl:part name="sTimeZoneEnd" type="soapenc:string" />

 <wsdl:part name="sLocation" type="soapenc:string" />

 <wsdl:part name="notes" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="scheduleMeetingResponse">

 <wsdl:part name="scheduleMeetingReturn" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="getPublicCalendarRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarname" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="exportCalendarRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarName" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="scheduleMeetingRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarname" type="soapenc:string" />

 <wsdl:part name="eventType" type="soapenc:string" />

 <wsdl:part name="users" type="impl:ArrayOfString" />

 <wsdl:part name="starttime" type="xsd:long" />

 <wsdl:part name="startTimezone" type="soapenc:string" />

 <wsdl:part name="endtime" type="xsd:long" />

 <wsdl:part name="endTimezone" type="soapenc:string" />

 <wsdl:part name="location" type="soapenc:string" />

 <wsdl:part name="summary" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="makeEmptyCalendarResponse">

 <wsdl:part name="makeEmptyCalendarReturn" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="importCalendarResponse">

 <wsdl:part name="importCalendarReturn" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="makeEmptyCalendarRequest">

 <wsdl:part name="username" type="soapenc:string" />

 <wsdl:part name="calendarName" type="soapenc:string" />

 </wsdl:message>

- <wsdl:message name="exportCalendarResponse">

 <wsdl:part name="exportCalendarReturn" type="impl:ArrayOfbyte" />

 </wsdl:message>

- <wsdl:message name="newEventResponse">

 <wsdl:part name="newEventReturn" type="soapenc:string" />

 </wsdl:message>

 21

- <wsdl:message name="getPublicCalendarResponse">

 <wsdl:part name="getPublicCalendarReturn" type="soapenc:string" />

 </wsdl:message>

- <wsdl:portType name="CalendarServer">

- <wsdl:operation name="importCalendar" parameterOrder="fileSource username calendarName">

 <wsdl:input message="impl:importCalendarRequest" name="importCalendarRequest" />

 <wsdl:output message="impl:importCalendarResponse" name="importCalendarResponse" />

 </wsdl:operation>

- <wsdl:operation name="exportCalendar" parameterOrder="username calendarName">

 <wsdl:input message="impl:exportCalendarRequest" name="exportCalendarRequest" />

 <wsdl:output message="impl:exportCalendarResponse" name="exportCalendarResponse" />

 </wsdl:operation>

- <wsdl:operation name="getUserCalendar" parameterOrder="username calendarname">

 <wsdl:input message="impl:getUserCalendarRequest" name="getUserCalendarRequest" />

 <wsdl:output message="impl:getUserCalendarResponse" name="getUserCalendarResponse" />

 </wsdl:operation>

- <wsdl:operation name="makeEmptyCalendar" parameterOrder="username calendarName">

 <wsdl:input message="impl:makeEmptyCalendarRequest" name="makeEmptyCalendarRequest"

/>

 <wsdl:output message="impl:makeEmptyCalendarResponse"

name="makeEmptyCalendarResponse" />

 </wsdl:operation>

- <wsdl:operation name="newEvent" parameterOrder="username calendarName eventType

public_private startDate sTimeZoneSt endDate sTimeZoneEnd sLocation notes">

 <wsdl:input message="impl:newEventRequest" name="newEventRequest" />

 <wsdl:output message="impl:newEventResponse" name="newEventResponse" />

 </wsdl:operation>

- <wsdl:operation name="scheduleMeeting" parameterOrder="username calendarname eventType

users starttime startTimezone endtime endTimezone location summary">

 <wsdl:input message="impl:scheduleMeetingRequest" name="scheduleMeetingRequest" />

 <wsdl:output message="impl:scheduleMeetingResponse" name="scheduleMeetingResponse" />

 </wsdl:operation>

- <wsdl:operation name="getPublicCalendar" parameterOrder="username calendarname">

 <wsdl:input message="impl:getPublicCalendarRequest" name="getPublicCalendarRequest" />

 <wsdl:output message="impl:getPublicCalendarResponse" name="getPublicCalendarResponse" />

 </wsdl:operation>

 </wsdl:portType>

- <wsdl:binding name="CalendarServerSoapBinding" type="impl:CalendarServer">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

- <wsdl:operation name="importCalendar">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="importCalendarRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="importCalendarResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="exportCalendar">

 22

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="exportCalendarRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="exportCalendarResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="getUserCalendar">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="getUserCalendarRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="getUserCalendarResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="makeEmptyCalendar">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="makeEmptyCalendarRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="makeEmptyCalendarResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="newEvent">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="newEventRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="newEventResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="scheduleMeeting">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="scheduleMeetingRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="scheduleMeetingResponse">

 23

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

- <wsdl:operation name="getPublicCalendar">

 <wsdlsoap:operation soapAction="" />

- <wsdl:input name="getPublicCalendarRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:input>

- <wsdl:output name="getPublicCalendarResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://webcalendar.webdav.cgl" use="encoded" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

- <wsdl:service name="CalendarServerService">

- <wsdl:port binding="impl:CalendarServerSoapBinding" name="CalendarServer">

 <wsdlsoap:address

location="http://gf8.ucs.indiana.edu:18086/CalendarService/services/CalendarServer" />

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

 24

APPENDIX – 2

Client Module deployed on GlobalMMCS Portal for
Collaborative Calendar-Server

Collaborative Calendar Output:

 25

Private Calendar Output:

 26

Scheduling a Meeting in Collaborative/Group Calendar:

 27

Making a new event into private calendar:

 28

APPENDIX – 3

Collaborative Calendar-Server Communication with Mozilla
Calendar Client through the Bridge Module

Subscription request to a calendar through our Collaboration Calendar-Server:

 29

After subscription completed to our calendar server, the calendar can be reached

from Mozilla Calendar Client:

 30

REFERENCES

[1] iCalendar (Internet Calendaring and Scheduling Core Object Specification)

Standards, official web site http://www.ietf.org/rfc/rfc2445.txt

[2] Schedule World, official web site http://www.scheduleworld.com/

[3] Guide to Internet Calendaring (RFC 3283), official web site

http://www.ietf.org/rfc/rfc3283.txt

[4] Kronolith Calendar Application, official web site:

http://www.horde.org/kronolith/

[5] The Horde Application Framework, official web site:

http://www.horde.org/horde/

[6] Editable shared iCal server, official web site:

http://www.afp548.com/Articles/Jaguar/sharedical.html

[7] phpMyCal, official web site: http://dev.neb.net/phpMyCal/

[8] Favorin Time, official web site: http://www.favorin.com/

[9] Chronoss, official web site: http://chronoss.sourceforge.net/

[10] MRBS (Meeting Room Booking System), official web site:

http://mrbs.sourceforge.net/

[11] University of Washington Calendar Project, official web site:

http://www.washington.edu/ucal/

[12] Scheduling and Calendars, official web site:

http://linuxmafia.com/faq/Apps/scheduling.html

[13] Erik Christiensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana,

Web Service Description Language (WSDL) Version 1.1, March 2001. Available

at http://www.w3.org/TR/wsdl

[14] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Dave

Winer., Simple Object Access Protocol (SOAP) Version 1.1, May 2000.

Available at

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

 31

[15] iCalendar Wikipedia. Available at: http://en.wikipedia.org/wiki/ICalendar

[16] iCal4j by SourgeFource.net. Available at: http://ical4j.sourceforge.net/

[17] The Internet Engineering Task Force (IETF). Available at:

http://www.ietf.org/

