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Abstract

Grid users always expect to meet some challenges to employ Grid resources, such
as customized computing environment and QoS support. In this paper, we propose
a new methodology for Grid computing – to use virtual machines as computing
resources and provide Virtual Distributed Environments (VDE) for Grid users. It is
declared that employing virtual environment for Grid computing can bring various
advantages, for instance, computing environment customization, QoS guarantee and
easy management. A light weight Grid middleware, Grid Virtualization Engine,
is developed accordingly to provide functions of building virtual environment for
Grids. We also present a typical use case, on-demand build a virtual e-Science
infrastructure to justify the methodology.
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1 Introduction

1.1 Identify current issues of Grid computing

Current Grid users employ Grid resources by submitting jobs to remote com-
puters. Grid middleware, operating systems, and software packages & libraries
compose together the computing environments for Grid users. It is can be con-
cluded that user computing environments are directly plugged into the Grid
resources. Great burdens are afforded to Grid resource providers and Grid
middleware:
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• Every time a job is submitted, user authentication and authorization has
to be carried out. To reach single sign-on, Grid middleware has to provide
complex policies and schemes for security control and user delegation.
• Resource management becomes a bottleneck for the Grid middleware. Huge

efforts have been to put into manage various types of resources to fulfill
different kinds of application domains.

A lot of work on security control and resource management, which is ap-
plication specific, has to be mapped to heterogeneous Grid resources. For
example, a workflow application [3] for sure requires different resource man-
agement functions from a parameter sweep application [14]. An community-
centric Grid application [9] certainly has a security control scheme distinct
with a data-centric application [10]. These functions, although should be de-
cided and deployed in the user level, are implemented however inside Grid
middleware.

Grid users can expect various disadvantages with the above methodology:

• Users expect customized computing environments with special software and
hardware configuration or the abilities to configure such environments. How-
ever multiple Grid users share the same resources, it is therefore hard to
balance different users’ requirements. Even a Grid user monopolize the re-
source, it is generally impossible to offer the user with administrative priv-
ileges to configure the resource.
• Grid users normally require performance guarantees for executing their

applications, e.g., CPU bandwidth, memory allocation. In the traditional
multi-programmed computing model, multiple users share the same resource
with local users of Grid site. Grid users have to suffer from the performance
fluctuation when executing jobs on Grid resources.

We therefore identify the reasons that bring above embarrassments:

• Grid middleware provides too many functionalities, most of which should be
moved to and implemented in the Grid user level. We recognize that Grid
middleware is only responsible of providing basic functionalities of resource
provision, information provision and security control.
• The user computing environments are directly interposed into the oper-

ating system of Grid resources. Therefore a number of interfaces between
Grid resources and users’ environments give into birth. As the user com-
puting environment is attached to the operating system of Grid resource,
customization and performance isolation demand more work.
• Users harness Grid resources with a fine granularity: “job” or “process”.

Therefore, every operation on this fine granularity would invoke a set of
functions of Grid middleware. Furthermore, it is hard to provide customized
environment and guarantee performance with fine granularity.
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1.2 Virtual machine as computing resource for Grids

In general, Grid users can benefit from the virtual machines in the following
aspects [7]:

• Performance isolation
Virtual machines can guarantee the performance for users and applications.
Applications executed in virtual machines will not find the performance
perturbation, which is invoked by competition of concurrent processes on
traditional multi-programmed machines.
• On-demand creation and customization

Users can create and customize a virtual machine, which can provide desired
resource allocation for users, e.g., operating system, memory, storage, etc.
• Legacy system support

As virtual machine can be on-demand created, virtual machine thus can
support entire legacy environments, such as hardware, operating system,
and software libraries.
• Administration privileges

Users of virtual machines can gain the “root” privilege because each user of
the hosting resources are allocated with a virtual machine. This alleviates
the task of system administrator and gives the flexibility of application
users.
• Resource control

One virtual machine can be allocated to one user or one application, it is
thus easy to account and control the resource usage.

Grid computing research community recently shows interests in virtual ma-
chines and virtual computing environments. Some research work focuses on
deploying computing systems or testbeds with virtual machines, for example,
virtualization in a batch system [2], GridBuilder [4], virtual machine based
Grid gateway [5], Xen Grid Engine [6], and OpenNebula [19]. Above systems
are implemented in a cluster scale or a LAN scale, while our work of Grid
Virtualization Engine is implemented in large scale distributed Grids.

Globus virtual workspace and Nimbus [20], [8] provide a set of Globus Toolkit
services for virtual machine provision and managemnet. The implementation
is based on Globus Toolkit version 4 and it only supports Xen VMM. We build
our virtual workflow system with standard Web service technologies, such as
XML, SOAP and HTTP, and it can support both Xen and VMware virtual
machine. Therefore the virtual workflow system can enjoy various advantages
of Web services framework, for example, scalability, interoperability, legacy
application support, and underlying platform independence.
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Amazon Elastic Compute Cloud (Amazon EC2) [15] is a Web service that pro-
vides resizable compute capacity with virtual machines. It is designed to make
web-scale computing easier for developers. Eucalyptus [16] from UCSB is an
open-source software infrastructure for implementing “cloud computing” on
clusters. Amazon EC2 and Eucalyptus employ Web service technologies and
provide virtual machine operations in a large scale distributed environments.
However, they do not aim to work on existing Grid infrastructures and appli-
cation level systems, such as Grid workflow. Furthermore, There are still no
report of successful large scale scientific applications, e.g. high energy physics,
deployed on these systems. Our implementation of Grid Virtualization works
on existing Grid infrastructures and adopts current Grid computing model.

In this paper, we present a paradigm which employs virtual machines as
computing resources for Grid workflow applications. Furthermore, we pro-
pose building Virtual Distributed Environments (VDE) with multiple virtual
machines, thus provide users a desired user computing environments. The rest
of this paper is organized as follows. Section 2 proposes the philosophy of vir-
tual environment for Grid computing. Section 3 presents a middleware which
enables virtual environments for Grid computing and Section 4 discusses our
experiments for testing the GVE performance. It follows Section 5, which
discusses a sample Virtual Distributed Environment – the virtual e-Science
infrastructure. Section 6 concludes the paper.

2 Philosophy of Virtual Environment for Grid Computing

2.1 Build multiple VDEs on shared Grid infrastructures

We firstly define the term Virtual Distributed Environment (VDE) (see also
Figure 1) as follows:

• a VDE contains multiple virtual machines, which can be linked by normal
networking or virtual networking;
• a VDE is installed with some network protocols or middleware for dis-

tributed system, which manage the distributed virtual machines in the user
level;
• the administrator, who creates the VDE, is responsible of managing the

VDE, such as job scheduling, user authentication, and data movement.

This section therefore proposes a new philosophy for Grid usage based on the
VDE concept:

• Virtual machines are used as computing resources for Grid applications.
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Users can on-demand build and operate virtual machines, then a Virtual
Distributed Environment (VDE), which contains multiple virtual machines.
• Users submit jobs to VMs or VDEs, which are provided by remote Grid

resources. Users can furthermore submit pre-configured VMs or VDEs to
remote Grid resources for execution.
• The VMs and VDEs on Grid infrastructures should be managed by a light

weight middleware, which only offers basic functionalities such as resource
supply, information provision and security control. We implement a proto-
type of the lightweight middleware: Grid Virtualization Engine (GVE).

!"#$ !"#$!"#$

%&'($')*&+,-&./-.&0$

Fig. 1. Provide multiple VDEs on a shared Grid infrastructure

The new methodology of Grid usage can help solve the issues faced by Grid
communities:

• Resource management now is in the coarse granularity: “virtual machine”
instead of the fine granularity: “Grid job”. Resource management becomes
easier with coarser granularity. Users develop application specific or user
community specific resource management system inside the VDE.
• Security control is based per VDE, or Virtual Organization (VO). The VO

administrator authenticates itself and builds its VDE. Users thus use the
VDE with the security policies defined by the VO, and they do not need to
contact with GVE and Grid resources.
• Virtual machines as computing resources can offer performance guarantee

and provide customized computing environments for users.

2.2 How does the virtualization occur?

Common underlying ideas of resource virtualization fall into two categories:

• Resource multiplexing
A middleware is posed between resources and users, and it produces an il-
lusion for each user that he monopolizes the resource without awareness of
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the existence of other users. Normally a translator is needed to map user
level logics to resource level stuffs. Examples can be found in Virtual Private
Network (VPN), Virtual Machine (VM), and hierarchical memory manage-
ment in modern operating systems. It can be summarized as “mapping
multiple users to one resource: M users → 1 resource”.
• Resource consolidation

Resource consolidation is generally used for discrete resource management,
to hide low level technical details and provide an easy-used, uniformed in-
terface to users. Various instances can be enumerated in modern paral-
lel/distributed computing systems, e.g. a cluster operating system. It can
be summarized as “mapping one user to multiple resources: 1 user
→ M resources”.

The methodology of building multiple VDEs on a shared Grid infrastructure
paves a further step and combines the ideas of resource multiplexing and
resource consolidation together. Access distributed Grid resources via Grid
middleware can be deemed as resource consolidation. To build multiple
VDEs on shared Grid infrastructure via Grid Virtualization can be considered
as resource multiplexing. Therefore a novel usage methodology of Grid
computing is proposed: resource consolidation + resource multiplexing,
in short: “M users → M resources”.

3 Grid Virtualization Engine: a Light Weight Grid middleware

3.1 Overview

To build multiple VDEs on Grid infrastructures, a light weight middleware,
Grid Virtualization Engine (GVE) is designed and implemented in the is this
work. The GVE aims to provide users with following functions:

• users can remotely create, operate and configure virtual machines;
• users can create and customize a VDE with multiple virtual machines on

wide area networking

In detail, the GVE offers following functions:

• VM Requirement
· Create a new VM, and
· Require an existing VM;
• VM Operation
· Start/Shutdown/suspend a VM,
· Clone a VM,
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· Run a script in a VM,
· Copy files from/to a VM, and
· VM configuration by run scripts inside VMs.
• VDE construction by on-demand creation of multiple pre-configured VMs.

The GVE implements standard Web service interface that provides various
functionalities.

3.2 Target system model

This section defines the Grid system model, which contains distributed sites
interconnected by networking.

Each site consists following levels logically:

• The computer site provides an access service which allows remote users
to access resources of the computer center. The access service can be offered
by existing Grid middleware, a portal, Web services, or any functionalities
that support remote steering. Grid Virtualization Engine is developed and
integrated in this level.
• In the middle level exist virtual machines that are backed by host re-

sources. These virtual machines form VDEs. Grid Virtualization Engine
operates virtual machines in this level.
• The fabric level contains various host resources or servers, which are in-

stalled with virtual machine hypervisors. Host resources offer multiple vir-
tual machines. Operations of Grid Virtualization Engine is implemented in
this level with aids of VMM APIs and SDKs.

3.3 Implementation

The GVE is a software layer on distributed host resources and it offers on-
demand provision of virtual machines, virtual networks, and VDEs. Virtu-
alization Service is implemented in distributed and hierarchical favors with
standard Web service. Current implementation of the Virtualization Service
can work on popular VMMs, Xen center and VMware ESX server. The GVE
(see also Figure 2) contains following components: Site Service and the Virtu-
alization Agent (VA) .
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Fig. 2. Overview of Grid Virtualization Engine

3.3.1 Site Service

The Site Service resides on the access point of a computer center and supports
the functions of VM or VDE provision from the host resources inside the
computer center. A Site Service controls multiple underlying host resources
by communicating with the Virtualization Agents.
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Fig. 3. Site Service
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The Site Service consists two components:

• Front-end Site Service
The Front-end Site Service is responsible of the business logic of the Site
Service. It accepts requirements from users and contacts the underlying
Virtualization Agents for virtual machine operation.
• Back-end Site Service

The Back-end Site Service needs to access the Management Information
Database for virtual machines manipulation. The Back-end Service thus is
built to help the Front-end Site Service to access the Management Informa-
tion Database.

The Management Information (MI) Database stores the following information:

• management policies for users to access the virtual machines inside the
computer center.
• current virtual machine allocation for users, e.g., virtual machine ID and

duration,
• virtual machine information, such as virtual machine profiles and states,
• the underlying Virtualization Agents which have registered themselves on

the Front-end Service.

3.3.2 Virtualization Agent

On each host resource exists a Virtualization Agent (VA), which gets com-
mands from the Site Service and operates on virtual machines.
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Fig. 4. Virtualization Agent
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The Virtualization Agent is a Web service which runs on host resources. It
receives operation commands from the Site Service and talks with the specific
VMM, e.g., VMware ESX server, and Xen server, which are installed on host
resources. The Virtualization Agent is VMM dependent. In other words, for
each type of VMM, a correspondent Virtualization Agent should be imple-
mented. In the thesis, two types of Virtualization Agents are implemented for
VMware ESX server and Xen server respectively. Software Stack (SS) database
is required when Virtualization Agent demands the VMM to create new virtual
machines. The database of Software Stack contains following information:

• virtual machine disk images used when virtual machine is created, and

• various of software packages to build a pre-configured virtual machines.

3.4 Discussion

The GVE distinguishes itself from related work [1,11,12] in that:

• The GVE is designed and implemented in modularity. System components
are wrapped with standard Web service interfaces. The modular design
philosophy brings advantages such as scalability, availability and interoper-
ability to the system.
• The GVE is designed and implemented in the hierarchical flavor. The higher

level service provides general interface, which is VM technology indepen-
dent; the low level service handles VM specific implementations. The hier-
archical design pattern makes the system more scalable to incorporate new
VM technologies.

4 Experiments and discussion

This section introduces our test experiment to test the Grid Virtualization
Engine. The first experiment is to test how much overhead that the GVE in-
troduces for a virtual machine operation, for example, start a virtual machine.
We measure the time form when a user issues a command to to start a virtual
machine to the time when the virtual machine instance is available for use.

We use the Condor virtual machine images from NSF funded Grid Appliance
(http://www.grid-appliance.org/). The experimented virtual machine image is
configured with 100 GB hard disk and 512 MB RAM. Figure 5 shows the time
for virtual machine instance startup at various scenarios: start one instance
of virtual machine both locally and with the GVE, simultaneously start 2, 4
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and 8 instances of virtual machine with GVE respectively.

We can see that the GVE does not introduce much overhead in term of virtual
machine startup. In Figure 5 when 8 tiny Linux virtual machine instances are
started simultaneously, the max overhead of starting time is around 17%.
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Fig. 5. GVE instance start overhead

Another experiment measures the communication overhead between virtual
machines. The GVE does not provide virtual network solutions. The virtual
machine that is managed by GVE uses native virtual network solutions pro-
vided by Xen server or VMware ESX server. Normally a virtual machine uses
a virtual network interface and is assigned with an IP address. We run a MPI
ping-pong program between virtual machines to test the network performance.
To make a comparison, MPI ping-pong program is executed on real machines.
The VMM used in this experiment is VMware ESX server 3.5. In Figure 6,
we can see that the throughputs between virtual machines can reach around
90% of those between real machines when message sizes are big enough.
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5 Build a Virtual e-Science Infrastructure at runtime: a Sample
Use Scenario

GridSAM [13] is a standard Job Submission and Monitoring Web Service that
provides a common interface to a variety of DRMs (Distributed Resource
Managements), which is developed with widely accepted and standardized
Web Service specifications and related technologies. ActiveBPEL engine [18]
is a modeling, monitoring and execution environment for scientific workflows
based on the Business Process Execution Language (BPEL) [17]. A typical
e-Science infrastructure [18] that involves BPEL (both the BPEL script and
BPEL runtime) and GridSAM [13] is as this:

• use BPEL Designer to design a BPEL process that interacts with GridSAM’s
job submission service port and job monitoring service port; produce the
deployment archive by BPEL Designer at the end of the modeling;
• deploy the process onto ActiveBPEL, which is hosted in OMII Server con-

tainer; from the BPEL Designer construct the request message that triggers
the BPEL process;
• once got started, ActiveBPEL submits a pre-defined job in JSDL to Grid-

SAM; GridSAM translates the JSDL script to whatever works for the under-
neath resource manager and sends the job to the underlying Grid computers;
• ActiveBPEL polls the job status through GridSAM’s monitoring interface

until the job is completed eventually.

5.1 System integration with Grid Virtualization Service

Virtual machines are employed as computing resources for workflow execution.
The ActiveBPEL engine dynamically invokes the Grid Virtualization Service
to request virtual machines with GridSAM pre-installation, then organize the
application in workflow and submit the workflow to virtual machines via Grid-
SAM. The integrated workflow system includes following components:

• Workflow service
The workflow service contains a Web service as interface, which can be
invoked by workflow client. The ActiveBPEL acts as workflow engine. It in-
vokes Grid Virtualization Service to request virtual machines with GridSAM
installation, then executes workflow jobs on virtual machines via GridSAM
interface.
• Proxy service

A proxy service is implemented as an interface between ActiveBPEL engine
and GridSAM service.
• GridSAM service
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GridSAM job submission and monitoring services are installed in the virtual
machines, via which ActiveBPEL engine submits jobs to virtual machines.
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Fig. 7. Service composition of workflow system

5.2 How ActiveBPEL dynamically invokes GVE service

The ActiveBPEL engine invokes the GVE Service to get virtual machines. In
order to invoke a Web service (GVE Service), the ActiveBPEL engine proceeds
following steps:

• define partnerLinkType
The GVE service should firstly be declared in the BPEL workflow by defin-
ing a partnerLinkType in the workflow Web service description file. The
declaration of partnerLinkType describes the GVE Service to be invoked,
e.g., name, namespace, and portType.
• define PartnerLink

PartnerLinks describe the roles that a process or a Web service plays and
the data it manipulates.
• Invoke the GVE Service operations

The ActiveBPEL engine can therefore parse the document in other to dis-
cover all the operation provided by the GVE Service Web service with
partnerLinkType and PartnerLink declarations. The input and output vari-
ables called requestVirtualMachine and requestVirtualMachineResponse are
declared in the part < bpel : variable > of the BPEL document. The op-
eration of requestVirtualMachine is invoked by using a < bpel : invoke >
activity; the partnerLink attribute indicates which Web service is addressed.
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The portType attribute specifies the portType that contains the operation
invoked. The operation attribute contains de name of the invoked operation.

5.3 GridSAM proxy service: proxy for ActiveBPEL to call GridSAM service

The ActiveBPEL engine cannot dynamically invoke GridSAM Web service in
that:

• As virtual machines are requested dynamically, GridSAM Web services that
are installed on virtual machines only can be identified at runtime. When the
ActiveBPEL engine organizes a workflow, the endpoints of Web services are
not yet returned because GVE Service is not yet invoked by the ActiveBPEL
engine.
• The GridSAM Web service is secured using WS-Security, which is unfortu-

nately not supported by current release of the ActiveBPEL engine.

A proxy service is developed in the this work to overcome the above challenges
as follows:

• The access to GridSAM proxy Web service is not secured using WS-security,
therefore allowing non-security interaction with the ActiveBPEL engine.
• The ActiveBPEL engine does not directly invoke the GridSAM Web service.

The ActiveBPEL engine invokes Grid Virtualization service then gets a set
of endpoints of GridSAM Web services at runtime. It then invokes the proxy
service and passes the endpoint of GridSAM Web services to be invoked as
parameters. The proxy service thereafter invokes the GridSAM Web service.

6 Conclusion

Grid community currently faces some challenges like, customized and guar-
anteed computing environment provision, and burdensome tasks of resource
management. The reasons are identified, for example, overloaded functionali-
ties of Grid concepts and Grid middleware, and current Grid use methodology.

This paper presents the methodology of building virtual environments for Grid
computing. Instead of direct providing Grid resources for Grid jobs, compu-
tational Grids provide customized virtual computing environments for Grid
job execution. We reifier this methodology by developing a light weight Grid
middleware, Grid Virtualization Engine, which supports virtual environments
for Grid users. A typical use case: dynamically build a virtual e-Science in-
frastructure is discussed in the paper to justify the methodology.
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During the period of project development, the concept of ”Infrastructure as
a Service (IaaS)” for Cloud computing is proposed. The idea of IaaS can
implemented by providing virtual machines as computing resources, thereafter
building customized computing environments for Cloud computing. Our work
can be integrated into the Cloud computing context and on-demand provides
computing infrastructures for users.
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