
A Novel Digital Information Service for Federating Distributed 
Digital Entities   

AHMET FATIH MUSTACOGLU, TUBITAK- National Electronics and Cryptology 
Research Institute (UEKAE), TURKEY 
GEOFFREY C. FOX, Indiana University at Bloomington 
 

We investigate the performance and the scalability metrics of the Digital Information Service framework 
that is used for unifying and federating online digital entities by retrieving and managing information 
located on the web. The Digital Information Service consists of tools and services for supporting 
Cyberinfrastructure based scientific research. This system supports a number of existing online Web 2.0 
research tools (social bookmarking, academic search, scientific databases, journal and conference content 
management systems) and aims to develop added-value community building tools that leverage the 
management and federation of digital entities and their metadata obtained from multiple services. We 
introduce a prototype implementation and present its evaluation. As the results indicate, the proposed 
system achieves federation and unification of digital entities coming from different sources with negligible 
processing overheads.  

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols 

General Terms: Design, Algorithms, Performance  

Additional Key Words and Phrases: Web 2.0, Information Retrieval, Information Management, Federation 
and Unification, Consistency, Events 

ACM Reference Format: 

Ahmet Fatih Mustacoglu, and Geoffrey C. Fox, N/A. A Novel Digital Information Service for Federating 
Distributed Digital Entities. ACM Trans. on Information. Syst. N/A, N/A, Article N/A (N/A), xx pages.   
DOI:N/A  

   INTRODUCTION 
Information is spread all over the Web in various locations including centralized 
repositories, web servers and user desktops. Centralized repositories represent the 
old fashion techniques for resource sharing, whereas completely decentralized 
systems such as P2P systems allow users to share information without depending on 
a third party repository. The necessities to find and share information led to 
development of emergent Web 2.0 applications. These new Web 2.0 applications such 
as social bookmarking tools introduce a new way of sharing information with respect 
to the old fashion and P2P systems do. Social bookmarking tools address the 
challenging problems of finding and sharing information among small groups, teams 
and communities. Various types of social bookmarking tools developed their own 
systems to support different kinds of resources. Flickr [Flickr 2011], for example, 
allows the tagging and sharing of photos, del.icio.us [Delicious 2011] the tagging and 
sharing of bookmarks, BibSonomy [Bibsonomy 2011], CiteULike [Citeulike 2011] and 

Author’s addresses: Ahmet Fatih Mustacoglu, TUBITAK- National Electronics and Cryptology Research 
Institute (UEKAE), Kocaeli, Turkey, 41470; Geoffrey C. Fox, School of Informatics and Computing, 
Indiana University, Bloomington, Indiana, 47404.  
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profit or commercial advantage and that 
copies show this notice on the first page or initial screen of a display along with the full citation. 
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with 
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any 
component of this work in other works requires prior specific permission and/or a fee. Permissions may be 
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, 
fax +1 (212) 869-0481, or permissions@acm.org. 
© 2010 ACM N/A 
DOI:N/A 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY 

 



N/A:2                                                                                                                            A.F. Mustacoglu et al. 
 
Connotea [Connotea 2011] the tagging and sharing of scholarly publications, 
YouTube [Youtube 2011] the tagging and sharing of video, and 43Things [43Things 
2011] the tagging and sharing of goals in private life. 

There are several common features for social bookmarking systems. First of all, 
these tools provide their users with the ability to create their personal bookmarks 
and share them with other users instantly. Data is stored centrally in these social 
bookmarking tools and it is available from any computer that is connected to the 
internet. Second, these systems enable entering personal keywords called tags 
explicitly by the user for each bookmark. Using tags for the resources allows users to 
organize and display their collections in a meaningful way. Furthermore, assigning 
multiple keywords for a bookmark makes it belong to multiple categories. The final 
common feature of social bookmarking tools is the social way of their use. The 
collection of bookmarks created by users is also visible to other users. For instance, 
when a username is clicked on, then the collection of bookmarks for that user is 
viewable to other users. Similar transparency is also valid for tags. So, one can 
retrieve similar resources that fall into same interest of other users by clicking on an 
interested tag. 

 

 
 

Fig. 1. Research Tools with added capabilities for Sharing and Managing Scientific Documents 
 

As the web-based social bookmarking services have gained popularity, an 
emerging need has appeared for methodologies to retrieve, represent, share and 
manage information that are stored in these annotation tools for scholarly 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                N/A:3  
                                                                                                                                         
publications. As these services enable storing, tagging and sharing documents, 
another emerging need has also appeared for supporting these tools by using their 
existing services via Web Service wrappers with added capabilities. To address this 
challenges, an ideal architecture should meet the following requirements: a) 
uniformity: the architecture should support one-to-many services among information 
resources and their communication protocols; b) federation: the architecture should 
present a federation capability where different services belonging to different 
annotation resources on the web can interoperate with each other; c) interoperability: 
the architecture should be interoperable with different kinds of clients on the web; d) 
performance: the architecture should search/retrieve/store metadata for scholarly 
publications with negligible processing overheads; e) persistency: the architecture 
should be able to back-up metadata about digital records without affecting the 
system performance; and f) fault tolerance: the architecture should be distributing 
metadata describing a digital content and managing redundancy of metadata  about 
digital entities in acceptable rates. Fig. 1 illustrates a model of building a system 
hierarchy where search tools and existing services of social bookmarking tools can be 
used with added capabilities to collect and manage metadata and data for scientific 
content [Topcu et al. 2007], [Fox et al. 2007]. Our goal is to define the practical extent 
of existing annotation tools for scholarly publications based on information retrieval 
and management in a consistent way. 

We propose a Digital Information Service framework for reconciling distributed 
digital entities that addresses the challenges of discovering, retrieving, sharing and 
managing distributed data located on web-based systems in a Service Oriented 
Architecture where communications are provided through the Web Service 
technology.  

In this study, we present the semantics and the architectural design of the 
centralized Digital Information Service. We introduce a prototype implementation of 
this architecture and present its performance evaluation. As the main focus of this 
research is information federation in online digital information systems, we discuss 
unification, federation, interoperability, and performance aspects and leave out 
distribution and fault-tolerance aspects of the proposed system. The main novelty of 
this study is that it describes an architecture, implementation, and evaluation of a 
Digital Information Service that supports both distributed and centralized paradigms 
and handles both dynamic, small-scale and static, large-scale metadata by utilizing 
event-based infrastructure and consistency maintenance mechanism. This novel 
approach unifies different implementations of research tools for scholarly 
publications to provide a common access interface to different kinds of metadata. It 
also provides federation of information among the scholarly publications tools for 
digital entities, so that they can share or exchange metadata with each other. This 
study should inspire the design of other information systems along with similar 
metadata management requirements. 

The organization of the rest of this paper is as follows. Section 2 provides 
background information relevant to this study. Section 3 provides an overview of the 
proposed Digital Information Service. Section 4 presents the semantics of the Digital 
Information Service. Section 5 presents the architectural design and the prototype 
implementation of the system in details. Section 6 evaluates the performance and the 
scalability test results for the prototype implementation of the Digital Information 
Service framework. Finally, Section 7 summarizes the work and describes further 
research opportunities. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:4                                                                                                                            A.F. Mustacoglu et al. 
 

   BACKGROUND 
We overview the event systems and the consistency maintenance issues for 
distributed systems that are crucial for the proposed Digital Information Service 
framework in the following sub-sections. 

  Event Systems 
In recent years, there has been an increasing amount of research focused on event 
based systems. Their main objective is to notify the necessary entities about the 
changes that occurred in the domain of interest. Today, event systems are needed 
and used in several areas such as graphical user interfaces, databases, web based 
applications, networking applications, distributed applications, publish-subscribe 
paradigm etc. For example, NaradaBrokering [Pallickara and Fox 2003], [Fox and 
Pallickara 2005] system implements publish-subscribe paradigm and it is an open-
source event-based messaging infrastructure developed by the Community Grids Lab 
at Indiana University [CGL 2011].  

There are two different approaches to the event definition. The first approach 
defines an event as it is an instantaneous atomic occurrence, so it is represented as a 
point in time [Gatziu 1995], [Dittrich and Gatziu 1993], [Liu et al. 1998]. Based on 
this approach, timestamps of event occurrences can be categorized in three different 
ways: 
— Absolute time point: It consists of date and time. 
— Relative time points: It is defined relative to a particular position. 
— Virtual Clocks are explained in detail in [Lamport 1978], and unique timestamp 

values are assigned automatically to each event by the system. 

The second approach defines an event as occurrence as an interval in time [Allen 
and Ferguson 1994], [Kam and Fu 2000], [Liebig et al. 1999], [Pietzuch et al. 2003]. 
Based on this approach, a state change of an event can be specified within a specific 
interval and the interval can be represented in two ways: 
— As relative, absolute, or virtual time points represent starting and ending point of 

an interval. 
— Event occurrences that represent the initial and the ending points of an interval. 

So, first approach defines events as having no duration while the second approach 
defines events by having them a particular duration. Most of the previous works 
regarding the event systems use the first approach for their event-based modeling 
and design. 

Discussion: In our research, we have chosen to use the first approach to define 
events due to its suitability to our design of the proposed Digital Information Service 
infrastructure. We assign a time stamp value to each minor or major event once they 
occur within the system as an absolute time point described in our prior work 
[Mustacoglu et al. 2007]. The assigned time stamp values provide us with ability to 
sort events based on their occurrences. Our proposed system can generate any 
version of a final document by using the sorted events. Furthermore, the proposed 
system uses time stamp values for consistency maintenance described in detail in 
Semantics of the Digital Information Service section. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                N/A:5  
                                                                                                                                         

  Event Representation 
According to [Tolksdorf 1992], [Kowalski and Sadri 1996], [Wyckoff et al. 1998], 
events are described as tuples. Since any state change of an event in a specific time 
point or an interval represents information, which is defined as a data structure with 
several attributes. Events are constructed in the form of tuple structure and 
delivered to external entities that are listening to the system for a particular state 
changes. The communication model for delivering events in the form of tuple 
structure to the external entities takes place in the form of messages. Message 
formats vary based on the domain of each system. Messages in event system portray 
a tuple structure and generic tuples composed of: 
— Unique Event Id. 
— Event attributes that carry additional information about the event. 

The unique event id helps an event to be separated from other events and it is a 
mandatory field for event representation. Event attributes carry extra information 
related to the event such as event type, event owner, etc. 

Events are described as in the form of tuples with already built in abstract data 
types in previous work such as CORBA Event Notification Service [Object 
Management Group 2011], Java AWT delegation Event Model [Sun Micro Systems 
2011], DOM [Document Object Model 2011] interfaces for tuple representation. In 
database programming, events are stored as tuples in the form of record structures 
composing the event histories. 

Every system has a response unit to the state changes coming from various 
environments to handle the changes. Reactive applications depend on the data that 
describe the current state of their environment due to changes. Each application 
continuously checks any state changes happening in their environment to obtain the 
changes in their interest. The process of uninterrupted checking for detecting the 
state changes and retrieving the changes that represents the current environment is 
called monitoring the environment. Instead of monitoring the state changes, most of 
the systems prefer to be notified by the changes that happened in their domain of 
interest so that they do not need to monitor the state changes, resulting in reducing 
the computational load. Use of event-based systems provides applications with the 
state changes in their domain of interest in the form of messages without monitoring 
their environment. As a result, external systems do not need to spend any additional 
computation to retrieve the state changes. They can be notified by the event-based 
systems once a state change occurred [Kowalski et al. 1996], [Alur and Henzinger 
1999]. 

In distributed event-based systems, multiple objects at different locations can be 
notified by events that could take place at any of these objects. To do so, they use 
publish-subscribe mechanism that allow an object to generate and propagate the type 
of events to all subscribed parties. Objects that are willing to receive updates from an 
object that has published its events subscribe to the type of events in their domain of 
interest. Different event types can point to different methods executed by the 
interested object. Notifications are the objects that represent events. Events and 
notifications can be used in various applications such as interactive applications, 
modifying a document, chat applications. Distributed event-based systems have two 
main characteristics [Coulouris et al. 2005]: 
— Heterogeneous: When event-based systems are used for communication between 

distributed objects, different components that are not designed to work together 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:6                                                                                                                            A.F. Mustacoglu et al. 
 

can be interoperated. It is described in detail how event-based system can be used 
to interoperate different components on the internet [John et al. 1998]. 

— Asynchronous: Event generating objects send notifications to all objects that 
subscribe to them so that publisher does not need to synchronize with the 
subscriber objects. Project Mushroom described in detail in [Kindberg et al. 1996] 
is a distributed event-based system that supports collaborative work. 

Discussion: In this study, each event has a unique event id, and we have 
distinguished our events as major and minor events. We have defined our events as a 
time-stamped action on a digital document with additional information described in 
detail in [Mustacoglu et al. 2007]. In our study, we have unified and federated 
heterogeneous annotation tools to communicate with each other via event-based 
infrastructure and Web Service technology. Moreover, we have integrated search and 
academic search tools that are used for retrieving and collecting data and metadata 
into the proposed system. We did not use publish-subscribe paradigm to disseminate 
updates since the integrated annotation tools do not support publish-subscribe 
mechanism. However, any application that requires and supports publish-subscribe 
mechanism, then broker address and topic can be defined in a property file of our 
proposed system to provide updates via publish-subscribe mechanism by connecting 
to the broker and subscribing to a topic. Finally, our update propagation falls into 
unicast communication technology that requires sending updates to each annotation 
tool separately by the system not the underlying mechanism. 

    Consistency Maintenance 
Consistency is an important issue in distributed systems. Consistency means that all 
copies of a same document should be the same. When one copy is updated, then it 
must be ensured that all copies are updated as well [Tanenbaum and Steen 2002]. 

According to [Tanenbaum and Steen 2002], consistency models can be classified 
into two groups: a) Data-Centric Consistency Models; b) Client-Centric Consistency 
Models. Details about these two models, update propagation and consistency 
protocols are given in the following sections. 

2.3.1 Data-Centric Consistency Models 
A consistency model is an agreement between processes and hosting environment, 
where data is stored. As long as processes obey the rules, the hosting environment 
promises to work correctly. A process that executes a read operation on a data item 
expects to get a value that is a result of the last write operation on the data item. 
However, in the absence of a global clock, it is difficult to say which write operation is 
the last one. So to maintain consistency in different ways, there are other data-
centric consistency model definitions. Each data-centric consistency model has 
different restrictions on what a read operation can return on a data item. It is easy to 
implement and use consistency models with minor restrictions whereas it requires 
lots of effort to use consistency models with major restrictions. But the gain is 
different in each model since the one with major restrictions provides better results 
than the one with minor restrictions do [Tanenbaum and Steen 2002]. More 
information on consistency models can be found in [Mosberger 1993], [Adve and 
Gharachorloo 1996]. Tanenbaum classifies data-centric consistency models into seven 
sub-categories: a) Strict Consistency; b) Linearizability and Sequential Consistency; 
c) Casual Consistency; d) FIFO Consistency; e) Weak Consistency; f) Release 
Consistency; and g) Entry Consistency [Tanenbaum and Steen 2002]. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                N/A:7  
                                                                                                                                         
2.3.2 Client-Centric Consistency Models 
In the previous section, we have overviewed and summarized data-centric 
consistency models that are all about providing a system wide consistent view on a 
shared data. On the other hand, client-centric consistency models ensure the 
consistent view of data from a client’s perspective. They allow copies of a data to be 
inconsistent with each other as long as the consistency is maintained from a single 
client’s point of view. Tanenbaum classifies client-centric consistency models into five 
sub-categories: a) Eventual Consistency; b) Monotonic Reads; c) Monotonic Writes; d) 
Read Your Writes; and e) Writes Follow Reads. 

Discussion: The consistency framework of the proposed Digital Information 
Service falls into a client-centric consistency model, and the implementation protocol 
is the replicated-write protocol because updates can be originated from several 
replicas [Mustacoglu and Fox 2010]. In this research, the optimistic replication 
approach [Yasushi and Marc 2005], [Kung and John 1979] has been adopted to 
ensure eventual consistency between replicas. Details can be found in the following 
sections of this paper. 

   DIGITAL INFORMATION SERVICE 
We designed and built a novel Information Service called Digital Information Service 
to provide an ideal approach to unify and federate major annotation/search tools, 
support collaboration, retrieve, represent and manage content of scientific documents 
coming from various sources in a flexible fashion. Digital Information Service forms 
an add-on architecture that interacts with the various social networking tools and 
unifies them in a higher-level system. In other words, it provides a unifying 
architecture, where one can assemble metadata instances of different information 
services. We built a prototype implementation called Internet Documentation and 
Integration of Metadata (IDIOM) [IDIOM 2008] that showed that the proposed 
Digital Information Service achieves unification and federation of the three academic 
publication management tool implementations, namely, Connotea, Delicious and 
Citeulike, and support their communication protocols. Furthermore, the prototype 
implementation also supports ability to use major academic search tools (Windows 
Live Academic and Google Scholar etc.) to collect metadata and store them into a 
local system. We also showed that the Digital Information Service achieves 
information federation by utilizing a global schema called Merged Schema. The 
merged schema consists of annotation tools’ schemas, academic search tools’ schemas, 
Dublin Core Metadata Initiative (DCMI) [DCMI 2011] schemas and BibTex [BibTex 
2011] schemas. With these capabilities, the proposed Digital Information Service 
enables implementations of different digital metadata management and academic 
search tools to interact with each other and to share each other’s metadata. We 
discuss the semantics and architecture of the proposed Digital Information Service in 
the following sections. 

   SEMANTICS OF THE DIGITAL INFORMATION SERVICE 
In this section, we discuss three core underlying mechanism of the proposed Digital 
Information Service: uniform access interface, event-based infrastructure and 
consistency maintenance. General architectural design of the Digital Information 
Service appears in Fig. 2.  
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:8                                                                                                                            A.F. Mustacoglu et al. 
 

 
 

Fig. 2. General Architectural Design of the Digital Information Service 

    Unified Access Interface 
Digital Information Service system supports one to many annotation/academic search 
tools interactions and their communication protocols by utilizing Unified Access 
Interface. The Uniform Access Interface presents a common access interface to the 
integrated annotation and academic search tools. Namely, the Uniform Access 
Interface imports APIs of the supported annotation and academic search tools so that 
they are all accessible from a common interface. This way, the proposed system 
unifies different annotation/academic search tools under one hybrid system. 

To meet the federation requirements, Digital Information Service framework 
presents a federation capability where different annotation/academic search tools 
and their services can be federated in metadata instances. To enable this capability, 
we introduce a global schema for annotation/search tools by integrating different 
annotation/search tools data models. The global schema for annotation/search tools 
provides a common platform to enable interaction between the annotation/search 
tools, and it represents a merged schema from the federated annotation/search tools 
by integrating their schemas into one. Schema integration is a functionality of 
providing a unified representation of multiple data models [Rahm and Bernstein 
2001]. To meet the comprehensive metadata field requirements, Digital Information 
Service infrastructure supports various metadata fields to represent the complete 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                N/A:9  
                                                                                                                                         
metadata about a scholarly publication. Supported metadata fields by the proposed 
study are compatible with the one that specified by the Dublin Core Metadata 
Initiative and BibTex. Table I portrays the stored metadata comparison in Connotea, 
Citeulike, and Delicious annotation tools that are integrated with the prototype 
implementation of the Digital Information System called IDIOM. 

 
Table I. Stored Metadata Comparison in Major Annotation Tools 

Stored Metadata Citeulike Connotea Delicious 
   

URL  R R 
TITLE R   
DOI    
PMID    
ISBN/ASIN    
REFERENCE TYPE R   
AUTHORS    
PUBLICATION NAME    
VOLUME NO    
ISSUE NO    
CHAPTER    
EDITION    
START PAGE    
END PAGE    
PAGES    
YEAR    
MONTH    
DAY    
PUBLICATION DATE    
DATE OTHER    
EDITORS    
JOURNAL    
BOOK TITLE    
HOW PUBLISHED    
INSTITUTION    
ORGANISATION    
PUBLISHER    
ADDRESS    
SCHOOL    
SERIES    
BIBTEX KEY    
ABSTRACT    
DISPLAY TITLE    
TAGS † R  
TAG SUGGESTIONS    
DESCRIPTION   R 

MY WORK    
EVERYONE’S TAG    
PRIVACY SETTINGS    
RELEASE DATE TO ALL 
USERS 

   

PRIORITY OF RECORDS    
NOTE    
COMMENT    

 
= Supported,    R = REQUIRED,   † = Adds “no-tag”footnote. 

   Event-based Infrastructure and Consistency Maintenance 
To meet the requirements for handling data and metadata coming from different 
sources such as online collaboration tools, peer to peer systems, social bookmarking 
websites, academic search engines, scientific databases, journal and conference 
 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:10                                                                                                                            A.F. Mustacoglu et al. 
 
content management systems, the event-based infrastructure utilizes the use of 
event concept as its building block. According to this concept, the content of scientific 
documents originating from various sources is represented as events. Events 
constitute the base atomic unit for our event-based infrastructure, and an event is 
commonly defined as the act of changing the value of an attribute of some object 
[David and Balachander 1991]. Storing all the events about an object enables the 
actions on this object to be reviewed and undone [Fox 2001]. An event may also be 
defined as an action with a time stamp and a message [Pallickara and Fox 2003]. In 
our event-based infrastructure of the proposed Digital Information Service, we adopt 
the view of an event as a time-stamped action on a document, which only maintains 
the modifications to an object. We distinguish between minor and major events: 
insertion of a new digital entity (DE), which is a collection of metadata representing 
a scholarly publication represented in Fig. 3., into the system or deletion of an 
existing digital entity from the system is considered a major event; 
updates/modifications to existing digital entities are considered minor events. Each 
minor event is defined with its parameters including its unique id, its operation type 
(replace, merge, delete), which DE it belongs to, its timestamp value, and its data. 
These parameters are transferred as an XML message to the necessary modules. 
Schema of parameters of a minor event is depicted in Fig. 4.. Examples of 
modification are: deleting one or more fields of a digital entity, changing the value of 
one or more fields of a digital entity by adding or deleting metadata, and so on. 
 

 
 

Fig. 3. Content of a Digital Entity 
 
 

 
 

Fig. 4. Minor Event Parameters 
 

Another concept underlying the event-based infrastructure is that of dataset. A 
dataset is a collection of minor events related to a user. A dataset creation is a way to 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:11  
                                                                                                                                         
group the modifications of a digital entity. There are two important issues requiring 
attention during the process of dataset creation: a) Events that are selected as 
members of a dataset must belong to the same digital entity (we do not want to 
include into a dataset events belonging to different digital entities), b) The order of 
the events is a key factor in that the events related to a DE are applied in the order 
they occur. A document representation by collection of events is depicted in Fig. 5.. 
As it is seen on the figure, documents are constructed from major and minor events. 
A major event represents the original entry in the system, while the minor events are 
the modifications to the original entry during the time. Details about how a 
document is formed from major and minor events are explained in the sub-section of 
Event Processing Engine. 

 

 
 

Fig. 5. Document Representation as an event 
 

The supported annotation tools by the Digital Information Service hold metadata 
about scholarly publications forming a digital record being referred as a distributed 
annotation records (DARs). Furthermore, each integrated annotation tool acts as a 
replica to the Digital Information Service. Consistency maintenance mechanism of 
the Digital Information Service has been designed to ensure eventual consistency 
between distributed annotation records that are stored at the integrated annotation 
tools and a primary copy of each DAR that is located in a local database of the 
proposed Digital Information Service. An earlier version of our approach to maintain 
consistency is briefly discussed in [Mustacoglu and Fox 2008]. The consistency 
framework is a client-centric consistency model, and the implementation protocol is 
the replicated-write protocol since updates can be originated from several replicas. 
We have adopted the optimistic replication approach [Yasushi and Marc 2005], 
[Kung and John 1979] to ensure eventual consistency between replicas. In our 
proposed study, update propagations are carried out through pull and push based 
approaches. Push approach enforces consistency model on primary copies of DARs 
located in a central database. In this model; whenever updates occurred on a primary 
copy of a DAR, they are being propagated immediately to each integrated annotation 
tool to update existing DARs on their site. However, pull approach is a time-based 
consistency control approach [Rui et al. 2004]. Each supported annotation tool and 
DARs located on the annotation tools is periodically checked for any updates. 
Collecting updates from supported annotation tools require: 1) Finding the primary 
copy of each replica record by using duplicate detection algorithm; 2) Comparing each 
replica record with its primary copy to figure out modifications if there is any. After 
identifying the updates, next step is to apply them to their primary copies and 
disseminate them to all replicas located at annotation tools. If there is any 
concurrent update on a shared document, then the concurrent updates are handled 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:12                                                                                                                            A.F. Mustacoglu et al. 
 
based on optimistic approach as defined in [Tanenbaum and Steen 2002]. Integrated 
annotation tools do not support publish-subscribe paradigm forcing Digital 
Information Service to use unicast communication to propagate updates to replicas. 
However, any application that require and support publish-subscribe concept, then 
broker address and topic can be defined in a property file to provide updates via 
publish-subscribe methodology by connecting to the broker and subscribing a topic. 
Digital Information Service also supports roll-back ability to help maintain 
consistency due to the nature of the proposed event-based mechanism. It basically 
allows users to roll-back to a previous state at any time. It is also a critical issue to 
find out if a document that is about to be inserted into the system already exists in 
the system or not. The event-based infrastructure executes its duplicate detection 
algorithm to decide whether two given digital entity is similar or not with a defined 
threshold value. The duplicate detection algorithm works based on hashing the 
available metadata fields of a given document including URL, title, authors and 
publication venue. As the main focus of this paper is to discuss information 
federation in academic search/annotation tools, a detailed discussion on concurrent 
access to shared document and duplicate detection aspects of the system is omitted 
here. 

Finally, the Digital Information Service has a well-defined update model that is 
built on the event-based structure to provide flexible choices to users.  The update 
model uses events for applying updates on existing digital entities. It provides users 
with flexible choices to apply the updates as minor events when faced with existing 
DEs within the repository as: 
— Keep the existing version, 
— Replace the existing version with the new one, 
— Merge the existing and the new version. 

So, the update model supports the above choices to be applied for all matching 
digital entities or each existing individual digital entity in the system. By doing that, 
updates can be applied to each individual or all digital entities as a default based on 
the selected choice. 

4.2.1 Event Processing Engine 
Main duty of the Event Processing Engine is to build a complete document by using 
the document’s dataset and events for a given state. To do so, Event Processing 
Engine collects all the dataset and the events belong to the requested DE from the 
database of the Digital Information Service. Having done that, Event Processing 
Engine processes all the minor events sorted by time using their timestamp on top of 
the major event to retrieve the final version of the requested document. Another 
word, by using the initial metadata, which is a major event, of a digital entity and by 
applying dataset(s) on top of it, one can retrieve any version of a DE. Hence, in case 
of an error or users’ request, the proposed architecture supports to restore the system 
to a previous safe state by using the related dataset for that state. 

The Fig. 6 shows the process of building a document by using its major event and 
datasets. Each dataset (Dataset-1… Dataset-N) is composed of a number of minor 
events, and each dataset modifies the digital entity metadata based on the events 
that it has. In event-based infrastructure of the Digital Information Service, all 
available datasets of a digital entity are applied on top of the initial digital entity 
metadata, which is the major event of this DE, based on their increasing creation 
time to retrieve the latest digital entity metadata. During the application process, we 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:13  
                                                                                                                                         
apply each dataset and its associated events in the increasing order of their creation 
time. 

 
 

Fig. 6. Forming a document from its events 
 

As depicted in Fig. 6, to build a digital entity metadata for a certain point, we just 
apply the related dataset(s) on top of the initial digital entity metadata based on 
their creation time, and the plus sign (+) in the formula indicates the application of 
the related dataset(s) on top of the initial digital entity metadata. As a result, we 
have: 

 
                    Current DE Metadata = Initial DE Metadata + ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑘𝑘)𝑛𝑛

𝑘𝑘=1 , (1) 

   ARCHITECTURE 
The Digital Information Service is an add-on system that interacts with major 
academic search/annotation tools and unifies them in a higher-level architecture. An 
earlier version of our approach to develop a community-centric platform of tools and 
services that integrate the major existing annotation tools, academic search tools, 
 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:14                                                                                                                            A.F. Mustacoglu et al. 
 
and scientific databases into the Cyberinfrastructure based scholarly research is 
briefly discussed in [Fox et al. 2007]. Fig. 7. illustrates the detailed architectural 
design of the prototype implementation of the Digital Information Service. The 
annotation/academic search tools interact with the system through the uniform 
access interface. The prototype implementation IDIOM supports XML API for 
Connotea, Citeulike, Delicious annotation tools, Google Scholar and Windows Live 
Academic search engines, and the Merged Schema (combines different schemas for 
representing the metadata of scholarly publications into one global schema for 
federation of web-based annotation tools). This layer is designed as generic as 
possible so that it can support one-to-many XML APIs, as the new web-based tools 
are integrated with the system. 
 

 
 

Fig. 7. Internet Documentation and Integration of Metadata (IDIOM) Architecture 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:15  
                                                                                                                                         

The IDIOM prototype implementation consists of five main layers: a) the client 
layer; b) the service layer; c) the server layer; d) the helper layer; and e) the data 
layer. The client layer of the IDIOM system is made up of Java Server Pages [JSP 
2011], which is translated into servlets by an Apache Tomcat J2EE Web container 
and generates dynamic content for the browser. The service layer provides interfaces 
to access the IDIOM’s Web Services, and the client layer communicate with the 
Server layer over the HTTP protocol through SOAP messages encapsulating WSDL-
formatted objects. The Server layer consists of several modules that constitute the 
main architecture blocks of the IDIOM system to handle the coming requests from 
the service layer. The helper layer provides synchronized timestamp values and 
handles the requests to be forwarded to Data Manager so that it can communicate 
with the data layer through JDBC connection. Finally, the data layer is composed of 
a MySQL system database. 

Annotation Tools are the integrated annotation tools into the IDIOM system to 
store replica copies of the primary copies referred as DEs stored in a MySQL system 
database of the IDIOM system. The records kept at annotation tools called DARs can 
be accessed via IDIOM system services and user interfaces. Users can upload records 
from repository to these tools, download records from these tools into a repository, or 
transfer records between the integrated annotation tools. In the current 
implementation, IDIOM system unifies and federates Connotea, CiteULike, and 
Delicious annotation tools. 

IDIOM Web Services provide access to modules and their services via SOAP calls 
over HTTP protocol in current implementation. The IDIOM Web Services can be 
accessed via different protocols through the supported interfaces as well. 

The goal of session and event management sub-module is to store user specific 
data such as cookie-based user credentials (password/username), modifications to a 
DE as minor events, and the “view options”, which control the level of detail with 
respect to the metadata fields displayed for each DE, into users’ session.  A session is 
a user’s state information, and maintained on the server side [IBM 2011]. From the 
moment user logged in the IDIOM system, user credentials, any changes made to a 
DE, and view options for metadata fields of a DE are all saved in the user session. It 
also serves as a private workspace for the user and users can concurrently modify 
their copy of records. When a user logs out from the IDIOM system, all unused minor 
events (modifications to a DE) for a dataset creation are removed. 

Digital Entity Management module is responsible for: 1) Providing a service for 
inserting a new DE into the IDIOM system, and push the new entry to the integrated 
annotation tools via Communication Manager; 2) Implementing the Events and 
Dataset Management services, and providing a service to view detailed information 
about a DE by utilizing Event Processing Engine; 3) Providing services for updating 
an existing DE, and it utilizes push-based consistency maintenance approach by 
pushing the updates immediately after they occur to the integrated annotation tools 
via Communication Manager; 4) Providing an access to the history of a DE and 
rollback mechanism, from its entry into IDIOM system to present; 5) Providing a 
service to retrieve and apply updates belonging to other users on their DEs by 
Periodic Update Management service. 

Communication Manager transports the data between the computing nodes. It is 
responsible for uploading or downloading data from annotation tools through their 
defined gateways. It retrieves the records from annotation tools via HTTPClient 
[HttpClient 2011] native libraries by using either: 1) Annotation tool’s API and get 
the response in XML format. Records are then parsed by using a DOM parser and 
 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:16                                                                                                                            A.F. Mustacoglu et al. 
 
XPATH (XPATH, 2011); or 2) HTTP GET, and POST method resulting in getting the 
response in RSS or HTML format. In RSS type responses, documents are parsed by 
using a DOM parser and XPATH, and in HTML type responses, data is parsed after 
cleaning faulty HTML by using JTidy [JTidy 2011] native libraries. 

Search tools module provides services and interfaces to the web-based search tools 
including Google Scholar, Google Scholar Advanced, and Windows Live Academic. It 
also provides services for local folder search and integrates the PubsOnline software - 
“an open source tool for management and presentation of databases of citations via 
the Web” [Scott et al. 2005] - into the IDIOM system and providing an interface for 
searching the logical folders of IDIOM system database. 

User Registration, Username and Password Recovery, User’s Profile 
Management, and DE Metadata View Options modules exist in the other modules of 
the system architecture. These modules are responsible for providing users with 
services to register with the system, retrieve their forgotten username, reset their 
forgotten password, manage their profile such as name, email, password etc., and 
define the view options of digital entities to view or hide specific metadata fields of 
them. 

Timestamp Generator module is responsible for producing unique timestamp 
values for the requesting processes. In order to impose an order on events, each event 
has to be time-stamped before it is generated and stored in the session or the MySQL 
system database. Since, events are processed by Event Processing Engine by their 
ordered timestamps. Timestamp values are also used by the consistency mechanism 
to maintain consistency by imposing an order on updates. To assign a unique 
timestamp value, Timestamp Generator interacts with Network Time Protocol (NTP) 
–based time service [Bulut et al. 2004]. This service provides synchronized 
timestamp values by synchronizing the distributed machine clocks with atomic time 
servers available across the universe. 

Data Manager is responsible for executing the coming requests on data items. 
Data Manager uses JDBC connection to connect to MySQL system database. 

   THE EVALUATION OF THE PROPOSED SYSTEM 
We performed extensive series of measurements to evaluate the prototype 
implementation of the proposed architecture and investigate its practical usefulness 
in real life applications. 
 

Table II. Summary of Cluster Nodes 
 Cluster Nodes 
 cluster1.ucs.indiana.edu cluster2.ucs.indiana.edu 

Processor Intel® XeonTM CPU (E5345 
2.33GHz) 

Intel® XeonTM CPU (E5345 
2.33GHz) 

RAM 8 GB (each node) 8 GB Total 

OS GNU/Linux (kernel release 
2.6.9-5.ELsmp) 

GNU/Linux (kernel release 
2.6.9-5.ELsmp 

 Testing Environment 
We tested the IDIOM prototype implementation by using gf12-15 and gf16 Linux 
machines that are part of clusters (cluster1 and cluster2) located at Community 
Grids Laboratory at Indiana University [CGL 2011]. We have run our client 
programs on gf12-gf15 Linux machines, we have deployed the IDIOM system on gf16 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:17  
                                                                                                                                         
Linux machine, and we have installed our database on gf16 Linux machine. 
Summary of these machine configurations are given in Table II. 

In our general experiments methodology, we have used single-threaded and multi-
threaded client programs. The IDIOM system is also a multi-threaded service-
enabled system running on cluster node gf16.ucs.indiana.edu. We have sent various 
requests from the client programs to our proposed system implementation to test the 
performance, and the scalability of our proposed system. 

We have implemented the IDIOM system in Java Language, using Java 2 
Standard Edition compiler with version 1.5.0_12. In our experiments with the 
prototype implementation, we used Apache Tomcat Server as a container with 
version 5.0.28 and Apache Axis technology for Web Service technology with version 
1.2. We set the maximum heap size of Java Virtual Machine (JVM) to1024MB by 
using the option –Xmx1024m. In our experiments, we also increased the maximum 
number of threads from default value to 1000 in Apache Tomcat Server to be able to 
test the system behavior for the huge numbers of concurrent clients. 

  System Responsiveness Experiments 
Our main goal in doing this experiment is to measure the baseline performance of the 
IDIOM Framework implementation. We have tested the performance of our proposed 
system by measuring the times necessary to download a record from an annotation 
tool into a repository, and to upload a new record from a repository to an annotation 
tool (forms a DAR). Furthermore, we have investigated latency values for More Info 
functionality with DB access and memory utilization, and Update DE functionality. 
The performance evaluation is done when there is no additional traffic in the system. 
The primary interest for doing system responsiveness experiment was to investigate 
the optimum performance of the system for download, upload, more info and update 
digital entity primary operations for the proposed system. The client programs were 
running on a cluster nodes gf12-gf15, while service-enabled IDIOM system was 
running on a cluster node gf16. In this experiment, we were exploring the 
performance of our methodology for download, upload, more info and update digital 
entity operations of the proposed system. We have conducted the following test cases: 
a) A single client sends a request to download a DAR from an annotation tool as a 
major event required to access to the DB; b) A single client sends a request to make a 
new DAR required to access to an annotation tool; c) A single client sends a request 
to get a more info on a digital entity from a repository required to access to the DB; d) 
A single client sends a request to get a more info on a digital entity from the cache 
required to access to the memory; and e) A single client sends a request to update a 
digital entity existed in a repository. In our each testing case, the clients send 400 
sequential requests for download, upload, more info and update digital entity 
standard operations. We recorded the average execution time, and this experiment 
was repeated 5 times. Fig. 8. shows the design of these experiments. 

6.2.1 System Responsiveness Experiment Results 
We conduct experiments where we investigate the base performance of the proposed 
system. Fig. 9, Fig. 10, and Table III, Table IV represent basic responsiveness results 
of our system. In this experiment we first recorded execution times for: a) calling the 
download service to measure the processing time of our implemented service; b) 
calling the upload service to measure the processing time of our implemented service. 
Next, we recorded round trip times for: a) calling the More Info service with database 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:18                                                                                                                            A.F. Mustacoglu et al. 
 
access to measure the latency of our implemented service; b) calling More Info service 
with memory utilization to measure the latency of our implemented service; c) calling 
Update DE service to measure the latency of our implemented service. Downloading 
a new entry requires to store this entry as a major event in the database and it is one 
of the major services provided by the prototype IDIOM system. Furthermore, the 
IDIOM propagates the updates via push mechanism by using upload service of the 
system in order to maintain consistency. This experiment shows the necessary time 
requirements for these major services to download or to upload a digital entity 
between the database and annotation tools (replicas). 
 
 

 
 

Fig. 8. Testing Cases for System Responsiveness Experiment 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:19  
                                                                                                                                         
 

 
Fig. 9. Download and Upload a Record 

 
 

Table III. Statistics of the Experiment Depicted in Fig. 9 
Repeated Test Cases 1 2 3 4 5 
Download Process 

time (msec) 145.44 146.49 145.72 147.77 147.37 

Download STDev 12.74 13.64 13.09 14.54 13.94 
Upload Process time 

(msec) 146.24 144.23 144.75 146.33 144.3 

Upload STDev 6.61 5.52 7.11 7.6 7.24 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:20                                                                                                                            A.F. Mustacoglu et al. 
 

 
Fig. 10 Latency and STDev Values for Update DE and More Info Standard Operation (with DB and 

Memory Utilization) 
 

Table IV. Statistics of the Experiment Depicted in Fig. 10 
Repeated Test Cases 1 2 3 4 5 

Latency-MoreInfo with DB 
access 2.58 2.55 2.56 2.54 2.54 

STDev-MoreInfo with DB access 0.49 0.49 0.50 0.49 0.49 
Latency-MoreInfo with cache 

utilization 1.62 1.61 1.63 1.62 1.64 

STDev-MoreInfo with cache 
utilization 0.49 0.48 0.48 0.48 0.48 

Latency-Update DE 4.46 4.45 4.49 4.43 4.48 
STDev-Update DE 0.49 0.51 0.50 0.49 0.51 

 Scalability Experiment 
The primary interest in doing this experiment was to investigate the scalability of 
the IDIOM prototype implementation. We conducted three testing cases and tried to 
answer the following research questions: a) how well does the system perform when 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:21  
                                                                                                                                         
the message rate per second is increased for More Info standard operation request on 
a DE with DB access?; b) how well does the system performs when the message rate 
per second is increased for More Info standard operation request on a DE with 
memory utilization?; c) how well does the system perform when the message rate per 
second is increased for Update DE standard operation request? 

In first experiment, our main goal is to identify the number of concurrent requests 
requiring DB access that can be handled by the proposed system when message rate 
per second are increased in the IDIOM system. We have completed this test case by 
increasing the message rate/sec until the response time degrades. In this testing 
case, we recorded round trip time at each MoreInfo request on a DE with DB access. 
In the second testing case, we have applied the same technique as previous 
experiment except that each request is responded by using memory utilization. In the 
third experiment, we have investigated the concurrent requests for an Update DE 
main operation that can be serviced by the IDIOM while message rate per second are 
increased. The designs of these testing cases are depicted in Fig. 11. 
 

Single 
Thread

Event-based 
Infrastructure 

and Consistency 
Framework

Database

Event-based Infrastructure and Consistency 
Framework – More Info request (database 

access) with increasing Message rates

Single 
Thread

Various # of Clients

Single 
Thread

Single 
Thread

Various # of Clients

Event-based 
Infrastructure 

and Consistency 
Framework

Event-based Infrastructure and Consistency 
Framework – More Info request (memory usage) 

with increasing Message rates

Single 
Thread

W
S
D
L

Single 
Thread

Database

Event-based Infrastructure and Consistency 
Framework – Update DE request with 

increasing Message rates

Event-based 
Infrastructure 

and Consistency 
Framework

Message rate scalability investigation

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

Various # of Clients

 
Fig. 11. Testing Cases of Scalability Experiment for More Info and Update DE Requests 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:22                                                                                                                            A.F. Mustacoglu et al. 
 
6.3.1 Scalability Experiment Results 
Based on the results depicted in Fig. 12, we determined that concurrent inquiry 
requests may be well responded by the IDIOM prototype implementation without 
any error. According to the experiment result, we identified that IDIOM’s major 
operations performed well for the increased message rate. 

However, after a certain number of messages per second, performance starts to 
degrade due to high message rate. We observe that after around 1060 inquiry 
messages per second for More Info with DB access, after around 2068 inquiry 
messages per second for More Info with memory utilization, after around 533 inquiry 
messages per second for Update DE, the system performance degrades due to high 
message rate. This threshold is mainly due to Apache Tomcat (thread scheduling and 
context switches) as explained in the following sub-section. Experiment results are 
depicted in Fig. 12. 

 

 
Fig. 12. Update DE and MoreInfo Message Rate with DB and Memory Access 

 Investigation of the Threshold Value in Scalability Graphs 
To investigate the reasons of the threshold value, we have investigated the possible 
causes for the threshold value: a) Network bandwidth investigation; b) Limitation on 
open sockets in Linux; c) Tomcat limitations such as thread scheduling and context 
switches. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:23  
                                                                                                                                         
6.4.1 Network Bandwidth Investigation 
In this section, we have measured a message size and calculated the total network 
need to see whether this threshold value is due to the network bandwidth or not. 

• Message size in empty service method call is 466 bytes. Message size in bits 
466 bytes * 8 = 3728 bits. A total network is needed at the threshold value is: 
3,738 bits/message * 3,693 message/sec = 13.8 Mbits/sec. 

• Message size in More Info request is 879 bytes. Message size in bits 879 bytes 
* 8 bits = 7,032 bits. A total network is needed at the threshold value is: 7,032 
bits/message * 2,068 message/sec = 14.5 Mbits/sec. 

• Message size in Update metadata request is 3,700 bytes. Message size in bits 
3,700 bytes * 8 bits = 29,600 bits. A total network is needed at the threshold 
value is: 29,600 bits/message * 533 message/sec = 15.8 Mbits/sec. 

Our network capability in CGL is 1GBits/sec. In the first case, its value is almost 
%1 percent of the network capacity. So, this cannot be the reason for this threshold 
value. In the second case, its value is also almost %1 percent of the network capacity. 
So, this cannot be the reason for this threshold value as well. In the third case, its 
value is also almost %1 percent of the network capacity. So, this cannot be the reason 
for this threshold value as well. So, finally we concluded that the network bandwidth 
cannot be the cause for the threshold value in these figures. 

6.4.2 Limitation on Open Sockets in Linux 
As default, each user has 1024 open socket connections in Linux. We have performed 
our scalability tests with the increased open sockets from 1024 to 2048, and we have 
retrieved the similar results that we obtained with the 1024 open socket connections. 
So, we have concluded that the numbers of allowable open sockets are not the cause 
for our threshold value in our graphs. 

6.4.3 Apache Tomcat Limitations 
In this section, we have investigated that the threshold value is occurring due the 
tomcat limitations. To test whether tomcat causing this threshold value or not, we 
have implemented an empty service method that has nothing in it with no 
parameters. We have measured the round trip time while we increase the message 
rates with this empty service method calls. Fig. 13 represents our investigation 
results. 

Finally, we have concluded based on the results that we obtained in Fig. 13 that 
the reason for the threshold value is due to Apache Tomcat limitations (thread 
scheduling and context switches to satisfy the coming requests at high message 
rates) since we are obtaining the same pattern with empty service call 
measurements. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 



N/A:24                                                                                                                            A.F. Mustacoglu et al. 
 

 
 

Fig. 13. Verification of the Service Message Rate 

 CONCLUSIONS 
We introduced a novel Digital Information Service architecture for a Collaborative 
Framework for Distributed Digital Entities that supports handling metadata coming 
from different sources. The proposed Digital Information Service provides unification, 
federation, and interoperability of different annotation and academic search tools. 
The proposed study deploys an event-based infrastructure and adopts a consistency 
technique for distributed systems to maintain consistency among distributed 
annotation records and their primary copies stored at a central repository. It 
introduces an event-based infrastructure and utilizes optimistic replication approach 
to ensure eventual consistency between distributed annotation records representing 
scholarly publications. 

To achieve unification, the Digital Information Service is designed as a generic 
system with front and backend abstraction layers supporting one-to-many local 
information systems and their communication protocols. To achieve federation, the 
Digital Information Service is designed to support information integration technique 
in which metadata from several heterogeneous sources are transferred into a global 
schema referred as Merged Schema and queried with a uniform query interface.  

We performed a set of experiments to evaluate the performance and scalability of 
the prototype implementation of the Digital Information Service to understand 
whether it can achieve information federation with acceptable costs. This evaluation 
pointed out the following results. First, the Digital Information Service achieves 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 



A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:25  
                                                                                                                                         
information federation with negligible processing overheads for accessing/storing 
metadata. Second, the proposed study achieves noticeable performance 
improvements in standard operations by employing in-memory storage while 
preserving persistency of information. Third, the Digital Information Service scales 
to high message rates and message sizes while supporting information integration 
where metadata coming from different data storing systems. 

With this research, we revisited distributed data management techniques to 
achieve integrated access to annotation metadata coming from a different number of 
annotation tools. We intend to further improve this approach to be able to scale up to 
a high number of distributed metadata sources such as video collaboration domain 
(YouTube etc.) and social networking domain (Facebook etc.). An additional area that 
we intend to research is an information security mechanism for the distributed 
Digital Information Service and machine learning techniques to identify typing 
errors within the documents. 

REFERENCES 
Flickr (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.flickr.com 
Delicious (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.delicious.com 
Bibsonomy (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.bibsonomy.com 
Citeulike (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.citeulike.com. 
Connotea (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.connotea.com 
Youtube (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.youtube.com 
43Things (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 

January 12, 2013, from http://www.43things.com  
Topcu, A. E., Mustacoglu, A. F., Fox, G., & Cami, A. (2007). Integration of Collaborative Information 

Systems in Web 2.0, 3rd International Conference on Semantics, Knowledge and Grid, Xian, China: 
IEEE Computer Society, p. 523. 

Fox, G. C., Pierce, M. E., Mustacoglu, A. F., & Topcu, A. E. (2007). Web 2.0 for E-Science Environments, 
3rd International Conference on Semantics, Knowledge and Grid, Xian, China: IEEE Computer 
Society, p. 1. 

Pallickara, S., & Fox, G. (2003). NaradaBrokering: A Distributed Middleware Framework and 
Architecture for Enabling Durable Peer-to-Peer Grids, Middleware 2003, pp. 998-999. 

Fox, G., & Pallickara, S. (2005). Deploying the NaradaBrokering Substrate in Aiding Efficient Web and 
Grid Service Interactions, Grid Computing, vol. 93, pp. 564-577. 

Community Grids Lab (CGL) at Indiana University (2011), Electronic source for references without author 
nor publication time. (n.d.). Retrieved January 12, 2013, from http://www.cgl.com  

Sun Micro Systems (2011), "Java AWT: Delegation Event Model", Electronic source for references without 
author nor publication time. (n.d.). Retrieved January 12, 2013, from 
http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html  

Document Object Model (DOM) (2011), Electronic source for references without author nor publication 
time. (n.d.). Retrieved January 12, 2013, from http://www.w3.org/DOM/  

Dublin Core Metadata Initiative (DCMI) (2011), Electronic source for references without author nor 
publication time. (n.d.). Retrieved January 12, 2013, from http://dublincore.org/  

BibTex  (2011), Electronic source for references without author nor publication time. (n.d.). Retrieved 
January 12, 2013, from http://www.bibtex.org/  

Internet Documentation and Integration of Metadata (IDIOM) Project web site (2012). Access date: 
December 2012. http://gf16.ucs.indiana.edu:54571/IDIOM/login.jsp  

Jakarta Commons HttpClient with version 3.0.1. (2011), Electronic source for references without author 
nor publication time. (n.d.). Retrieved January 12, 2013, from 
http://jakarta.apache.org/httpcomponents/httpclient-3.x/  

XML Path Language (XPATH) (2011), Electronic source for references without author nor publication time. 
(n.d.). Retrieved January 12, 2013, from http://www.w3.org/TR/xpath  

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

http://www.delicious.com/
http://www.bibsonomy.com/
http://www.citeulike.com/
http://www.connotea.com/
http://www.youtube.com/
http://www.43things.com/
http://www.cgl.com/
http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html
http://www.w3.org/DOM/
http://dublincore.org/
http://www.bibtex.org/
http://gf16.ucs.indiana.edu:54571/IDIOM/login.jsp
http://jakarta.apache.org/httpcomponents/httpclient-3.x/
http://www.w3.org/TR/xpath


N/A:26                                                                                                                            A.F. Mustacoglu et al. 
 
JTIDY with version 04aug2000r7 (JTidy) (2011), Electronic source for references without author nor 

publication time. (n.d.). Retrieved January 12, 2013, from http://jtidy.sourceforge.net/  
Scott, A.M., Richard, K., Matt L., & Craig S. (2005). “PubsOnline: open source bibliography database", in 

Proceedings of the 33rd annual ACM SIGUCCS conference on User services. Monterey, CA, USA: ACM 
Press, 2005. 

Bulut H., Pallickara S., & Fox G. (2004). "Implementing a NTP-based time service within a distributed 
middleware system", in Proceedings of the 3rd international symposium on Principles and practice of 
programming in Java. Las Vegas, Nevada: Trinity College Dublin, 2004. 

Mustacoglu, A.F., Topcu, A. E., Cami, A., & Fox, G. (2007). "A Novel Event-Based Consistency Model for 
Supporting Collaborative Cyberinfrastructure Based Scientific Research", in Collaborative 
Technologies and Systems (CTS 2007) in Technical Cooperation with The IEEE Computer Society. 
Orlando, FL, USA: IEEE Computer Society, 2007. 

Fox, G., Mustacoglu, A. F., Topcu, A. E., & Cami, A. (2007). SRG: A Digital Document-Enhanced Service 
Oriented Research Grid, Information Reuse and Integration IRI-07, Las Vegas, NV, USA: IEEE 
Computer Society, pp. 61-66. 

JavaServer Pages Technology (JSP) (2011). Electronic source for references without author nor publication 
time. (n.d.). Retrieved January 12, 2013, from http://java.sun.com/products/jsp/  

Lamport, L. (1978), "Time, clocks, and the ordering of events in a distributed system," Commun. ACM, vol. 
21, pp. 558-565. 

Allen, J. F., & Ferguson, G. (1994), "Actions and Events in Interval Temporal Logic," Journal of Logic and 
Computation, vol. 4, pp. 531-579, 1994. 

Kam, P.-s., & Fu, A. W.-c. (2000). "Discovering temporal patterns for interval-based events," Lecture Notes 
in Computer Science, vol. 1874/2000, pp. 317-326. 

Liebig, C., Cilia, M. & Buchmann, A. (1999). "Event Composition in Time-Dependent Distributed 
Systems." vol. 00, p. 70. 

Mustacoglu, A. F., & Fox G. (2010). Performance of a Collaborative Framework for Federating Distributed 
Digital Entities, The 2010 International Symposium on Collaborative Technologies and Systems (CTS 
2010), Chicago, IL: IEEE Computer Society, ACM, pp. 603-610. 

Pietzuch, Peter R., Shand B., & Bacon, J. (2003). "A Framework for Event Composition in Distributed 
Systems," in 4th International Conference on Middleware (MW'03) Rio de Janeiro, Brazil: Springer, 
2003, pp. 62-82. 

Gatziu, S. (1995) Events in an active, object-oriented database system. Hamburg: Verlag Dr. Kovac. 
Dittrich, K. R., & Gatziu, S. (1993). "Time Issues in Active Database Systems," in International Workshop 

on an Infrastructure for Temporal Databases, Arlington, Texas. 
Liu, G., Mok, A., & Konana, P. (1998). "A Unified Approach for Specifying Timing Constraints and 

Composite Events in Active Real-Time Database Systems." vol. 00, p. 199. 
Tolksdorf, R. (1992). "Laura: a coordination language for open distributed systems", Berlin: Tech. Univ. 

Berlin. 
Kowalski, R., & Sadri, F. (1996). "Towards a unified agent architecture that combines rationality with 

reactivity," in Logic in Databases. International Workshop LID '96 Proceedings, D. Pedreschi and C. 
Zaniolo, Eds.: Springer-Verlag, pp. 137-149. 

Wyckoff, P., McLaughry, S. W., Lehman, T. J., & Ford, D. A. (1998).  "Tspaces", IBM Systems Journal 37, 
pp. 454-474. 

Object Management Group (2011), "The Common Object Request Broker: Architecture and Specification". 
Electronic source for references without author nor publication time. (n.d.). Retrieved January 12, 
2013, from http://www.omg.org/spec/CORBA/3.1/  

Object Management Group (2011), "CORBA Services: Common Object Services Specification-Event Service 
Specification". Electronic source for references without author nor publication time. (n.d.). Retrieved 
January 12, 2013, from  ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf 

Alur, R., & Henzinger, T. A. (1999). "Reactive Modules", Formal Methods in System Design, vol. 15, pp. 7-
48.  

Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed Systems Concepts and Design: Addison-
Wesley. 

John, B., Jean, B., Ken, M., & Mark, S. (1998). "Using events for the scalable federation of heterogeneous 
components", in Proceedings of the 8th ACM SIGOPS European workshop on Support for composing 
distributed applications. Sintra, Portugal: ACM. 

Kindberg, T., Coulouris, G., Dollimore, J., & Heikkinen, J. (1996). "Sharing objects over the Internet: the 
Mushroom approach", in Global Telecommunications Conference, 1996. GLOBECOM '96. 
'Communications: The Key to Global Prosperity. London, UK: IEEE Computer Society,pp. 67-71. 

Tanenbaum, A. S., & Steen, M. V. (2002). Distributed Systems Principles and Paradigms. 
Mosberger, D. (1993). "Memory consistency models", SIGOPS Oper. Syst. Rev., vol. 27, pp. 18-26. 
Adve, S. V., & Gharachorloo, K. (1996). "Shared Memory Consistency Models: A Tutorial", vol. 29, 1996, pp. 

66-76. 
 

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

http://jtidy.sourceforge.net/
http://java.sun.com/products/jsp/
http://www.omg.org/spec/CORBA/3.1/
ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf


A Novel Digital Information Service for Federating Distributed Digital Entities                                                
N/A:27  
                                                                                                                                         
Mustacoglu, A. F., & Fox G. (2008). Hybrid Consistency Framework for Distributed Annotation Records in 

a Collaborative Environment, The 2008 International Symposium on Collaborative Technologies and 
Systems (CTS 2008), Irvine, CA: IEEE Computer Society, ACM, pp. 267-274. 

Yasushi, S., & Marc, S. (2005). "Optimistic replication", ACM Comput. Surv., vol. 37, pp. 42-81. 
Kung, H. T., & John, T. R. (1979). "On optimistic methods for concurrency control", in Proceedings of the 

fifth international conference on Very Large Data Bases - Volume 5. Rio de Janeiro, Brazil: VLDB 
Endowment. 

Rahm, E., Bernstein, & P. A. (2001). "A survey of approaches to automatic schema matching", The VLDB 
Journal The International Journal on Very Large Data Bases, vol. 10, pp. 334-350. 

David, S. R., & Balachander, K.  (1991). "An event-based model of software configuration management", in 
Proceedings of the 3rd international workshop on Software configuration management. Trondheim, 
Norway: ACM Press. 

Fox, G. C. (2001), "Collaboration within an Event based Computing Paradigm". Available from: 
http://aspen.ucs.indiana.edu/collabtools/extras/indianafeb01.html  

Pallickara, S., & Fox, G. C. (2003). "A Scalable Durable Grid Event Service", in Middleware 2003. 
Available from: http://grids.ucs.indiana.edu/ptliupages/publications/GESOverview.pdf  

Rui, L., Du, L., & Chengzheng, S. (2004). "A Time Interval Based Consistency Control Algorithm for 
Interactive Groupware Applications", vol. 00, pp. 429. 

IBM WebSphere Session Management (IBM, 2011). Electronic source for references without author nor 
publication time. (n.d.). Retrieved January 12, 2013, from 
http://www.informit.com/articles/article.asp?p=332851&rl=1  

 
 
 
 
Received April 2013;  revised NA;  accepted NA  
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

http://aspen.ucs.indiana.edu/collabtools/extras/indianafeb01.html
http://grids.ucs.indiana.edu/ptliupages/publications/GESOverview.pdf
http://www.informit.com/articles/article.asp?p=332851&rl=1

	A Novel Digital Information Service for Federating Distributed Digital Entities0F(
	1.   INTRODUCTION
	2.   BACKGROUND
	2.1  Event Systems
	2.2  Event Representation
	2.3    Consistency Maintenance
	2.3.1 Data-Centric Consistency Models
	2.3.2 Client-Centric Consistency Models


	3.   DIGITAL INFORMATION SERVICE
	4.   SEMANTICS OF THE DIGITAL INFORMATION SERVICE
	4.1    Unified Access Interface
	4.2   Event-based Infrastructure and Consistency Maintenance
	4.2.1 Event Processing Engine


	5.   ARCHITECTURE
	6.   THE EVALUATION OF THE PROPOSED SYSTEM
	6.1 Testing Environment
	6.2  System Responsiveness Experiments
	6.2.1 System Responsiveness Experiment Results

	6.3 Scalability Experiment
	6.3.1 Scalability Experiment Results

	6.4 Investigation of the Threshold Value in Scalability Graphs
	6.4.1 Network Bandwidth Investigation
	6.4.2 Limitation on Open Sockets in Linux
	6.4.3 Apache Tomcat Limitations


	7. CONCLUSIONS

