
Internet Calendaring and Scheduling Core Object Specification (iCALENDAR) Compatible 

Collaborative Calendar-Server (CCS) Web Services 

 

 

Ahmet Fatih Mustacoglu
1, 2

, Wenjun Wu
1
, and Geoffrey Fox

1, 2 

1
Community Grids Lab, Indiana University, Bloomington, IN, 47404, USA 

2
Department of Computer Science, Indiana University  

{amustaco, wewu, gcf}@indiana.edu  
 

 

ABSTRACT 

 
 There has been a clear need to have a common format 

for representing calendar data to solve the 

interoperability issues between different types of 

Calendaring and Scheduling applications. Internet 

Calendaring and Scheduling Core Object Specification 

(iCalendar) defines a common format for calendar data 

exchange to progress the level of interoperability possible 

between different calendaring and scheduling 

applications. In this paper, we describe our approach to 

resolve interoperability issues by providing 

implementations of a Collaborative Calendar-Server 

(CCS), a bridge module, and a Global Multimedia 

Collaboration System (GlobalMMCS) Client Module. The 

CCS is implemented based on the iCalendar specification 

as a collection of Web Services. The bridge module allows 

the CCS to communicate with different Calendaring and 

Scheduling applications, which are based on the 

iCalendar specification and use http methods for 

interactions. GlobalMMCS portal interacts with the CCS 

to schedule meetings, and to store and to retrieve 

calendar information through the GlobalMMCS Client 

Module. 

 

 

KEYWORDS: iCalendar, Web Services, Calendar 

Server, Collaborative Calendar, GlobalMMCS Portal. 
 

 

1. INTRODUCTION 
 

Internet Calendaring and Scheduling Core Object 

Specification (iCalendar) [1] introduces a new format for 

calendaring and scheduling applications. Without a 

common format, there will be interoperability problems 

between dissimilar applications that are not supporting the 

same format for defining the calendar information. 

Different organizations and commercial vendors develop 

their own calendaring and scheduling model and 

structures. If the calendar representation format is not 

interoperable, calendar applications can not communicate 

with each other even if they are in the same organization 

or they are coming from the same commercial vendor.  

 

To solve interoperability problems, The Internet 

Engineering Task Force (IETF) [2] introduced some 

standards by publishing specifications for the calendar 

data exchange. IETF is an open community of network 

designers, operators, vendors, and researchers for every 

interested individual. 

 

We need to implement a calendaring and scheduling 

module for Global Multimedia Collaboration System 

(GlobalMMCS) Portal [4] of Community Grids Lab at 

Indiana University so that it can both handle its own 

calendaring and scheduling needs and also communicate 

with other scheduling applications. To do so, we have 

investigated the possible interoperability problems for 

calendaring and scheduling applications that we might 

have, and we have decided to handle interoperability 

issues by implementing the Collaborative Calendar-Server 

(CCS) based on the iCalendar specification [1]. We have 

extended the CCS’s ability to interact with other 

calendaring and scheduling applications through the http 

methods by defining a bridge module, which provides a 

mechanism to handle coming http requests. Hence, 

iCalendar based calendaring and scheduling applications 

can publish and subscribe to a calendar of the CCS. 

Furthermore, GlobalMMCS Portal users can also access 

their private calendar and a collaborative calendar of the 

system, where meeting schedules are made into, by using 

GlobaMMCS Client module. 

 

This paper gives the details about the design, the 

architecture, and the implementation details of our Web 

Service oriented CCS that supports the iCalendar 

specification. The CCS also has a bridge module that 

enables other calendaring and scheduling clients to 

communicate with the CCS such as Mozilla Calendar 

Client [3], which use http methods to call our services. In 

this paper, we will first give some background 

information. Then, we will talk about the design and the 

architecture of the system. Next, we are going to discuss 

the CCS’s implementation details, which include elaborate 



explanation of GlobalMMCS [4] Client Module for the 

CCS, implementation of the CCS as Web Services, and 

the bridge module for the CCS. Then we are going to 

present our test results for the CCS. Finally, we will 

provide the conclusion and future work as a last chapter. 

 

2. BACKGROUND 
 

Grid computing is an emerging technology, and it is 

the next logical level of distributing computing. Grid is a 

secure, controlled and coordinated resource sharing 

among dynamic collections of individuals, institutions, 

and resources [17]. Interoperability is the central issue in 

Grid computing. Setting common protocols helps to 

increase interoperability, and the iCalendar specifications 

tend to solve interoperability problems among different 

calendar and scheduling applications. Grid architecture 

identifies fundamental system components, specifies the 

purpose and function of these components, and indicates 

how these components interact with one another. The 

Open Grid Services Architecture (OGSA) [18], developed 

by the members of the Global Grid Forum (GGF) [19], 

defines the grid services and the whole system structure 

and services that need to be supported in the grid 

environments. Grid services in OGSA are defined based 

on Web Services Description Languages (WSDL) with 

minor extensions. Grid specifications are developing over 

time, and Web Services Resource Framework (WSRF) is 

taking the place of Open Grid Services Infrastructure 

(OGSI), described by OGSA [20]. The main purpose of 

WSRF is to keep the grid architecture evolution aligned 

with the developments in Web Services. WSRF is a 

collection of Web Services specifications that provide a 

way to access stateful resources using Web Services [21]. 

 

The calendaring and scheduling needs have been 

increasing rapidly for the last decade. Companies have 

been trying to implement this technology into their 

businesses. Unfortunately, there is a lack of Internet 

standards for the message content types that are crucial to 

calendaring and scheduling applications. As a result of 

this trend, the iCalendar specification have been defined 

in RFC2445 [1] and intended to advance the 

interoperability among the calendaring and scheduling 

applications that are not similar. The iCalendar 

specification defines the format for specifying iCalendar 

object methods. 

 

The iCalendar specification is a result of the work of 

the Internet Engineering Task Force Calendaring and 

Scheduling Working Group (chaired by Anik Ganguly of 

Open Text Inc.) [2], and was authored by Frank Dawson 

of Lotus Development Corporation [5] and Derik 

Stenerson of Microsoft Corporation [6]. iCalendar is 

heavily based on the earlier vCalendar [7] industry 

specification by the Internet Mail Consortium (IMC) [8]. 

 

The CCS has been implemented as Web Services 

using Java programming language. Web Services leverage 

the level of interoperability between different software 

applications that are running on different platforms. Web 

Services have an interface which is described in a 

machine-processable format, and Web Services support 

interoperable machine to machine interaction over a 

network. Web Services are defined in a language called 

Web Services Description Language (WSDL) [14]. The 

clients can communicate with a web service by 

exchanging messages in SOAP (Simple Object Access 

Protocol) format. 

 

SOAP [15] is a platform and language independent 

communication protocol for exchanging information in 

distributed environment. SOAP is an XML based 

protocol, and consists of three parts: the envelope, the 

encoding rules, and the Remote Procedure Call (RPC) 

convention.  SOAP can be used in any combination with 

other protocols such as HTTP, FTP etc. In our 

implementation, the CCS’s Web Services use SOAP over 

HTTP. 

 

By combining the Web Services technology and the 

iCalendar specification in the CCS, which can be 

deployed as a Grid service, we are planning to advance 

the level of interoperability for different types of 

applications running on different platforms. 

 

3. DESIGN AND ARCHITECTURE 

OVERVIEW 
 

The CCS has been designed to provide Web-Service 

oriented calendaring and scheduling services over the 

internet. The CCS stores the users’ calendar and a 

collaborative calendar in iCalendar format (with “ics” 

extension) as specified in RFC 2445 [1] on the machine 

where the Collaborative Calendar-Server is running. Each 

user has his/her own iCalendar file for his/her private 

calendar. There is only one iCalendar file for the 

collaborative calendar shared by all users. Users’ access 

to the collaborative calendar has been synchronized. An 

overview of the CCS architecture design is depicted in 

Figure 1. For the CCS’s services please see the project 

home site [12].  

 

The bridge module, which has been designed as a Java 

Servlet Technology, provides communication between the 

CCS and various calendaring and scheduling client 

applications, which support the iCalendar specification 

and use http methods to communicate. The CCS can 



currently interact and communicate with Mozilla Calendar 

Client [3]. A user, who is using Mozilla Calendar Client 

[3], can subscribe to a calendar of the CCS, or the user 

can publish events to a calendar stored on the CCS.  

 
Collaborative Calendar-Server 

Web Services 

(WSDL)

        CLIENTS

GlobalMMCS 

Client Module

  D
isplay P

rivate/C
ollab

orative 

C
alen

dar, S
ch
ed
ule a M

eetin
g in

 

P
rivate/C

ollab
orative C

alen
dar Mozilla 

Calendar Client

Bridge Module

(Java Servlet 

Technology)

Invokes associated Web Services

Internet Internet

`

 
Figure 1. Collaborative Calendar-Server Architecture 

 

With CCS’s user friendly web-interface integrated into 

GlobalMMCS portal [10], end users can access their 

personal calendar (private calendar) or group calendar 

(collaborative calendar) from anywhere, anytime by using 

web browser. Users can also schedule a new event into 

their private calendar or into the group calendar. 

 

4. IMPLEMENTATION  
  

The CCS is implemented as Web Services in pure Java 

Language using Apache Axis 1.2 [9], and it uses iCal4j 

Java library [11] supported by SourceForge.net [13] for 

reading and writing iCalendar data streams as defined in 

RFC2445 [1]. Java Servlet Technology has been used for 

the bridge technology, which basically gets the requested 

http methods and calls the associated Web Service of the 

CCS based on the coming requests. 

 

We are going to discuss the implementation details of 

the client module, which is integrated into the 

GlobalMMCS Portal [10], for the CCS. Next, we are 

going to give a detailed explanation of web services that 

composes the CCS. Finally, we are going to express the 

bridge module implementation of the CCS.  

 

4.1. GlobalMMCS Client Module for CCS 
  

After users signed-in to the GlobalMMCS Portal, there 

are four operations currently supported from the 

GlobalMMCS Portal’s user interface: 

 

Private Calendar: It basically calls the associated 

services of the CCS to retrieve the user’s private calendar 

file from the server. When the Web Service is called, it 

first checks to see whether or not this user has an 

iCalendar file on the calendar server. If not, then one 

empty calendar file is created by using 

“makeEmtyCalendar” service and returned to the user in 

the html table form. If the user has an iCalendar file, the 

required information is read from the calendar file, then 

the html table is constructed, and it is transferred over http 

as a text file, and finally showed to the user in the html 

table form. 

 

Collaborative Calendar (Group Calendar): This menu 

option calls the associated CCS’s Service to bring up the 

group/collaborative calendar from the calendar server. 

Once this service is called, if there is no collaborative 

calendar file, first it creates an empty calendar file by 

calling “makeEmtyCalendar” service. Then, it returns an 

empty html table to the user to show in the client portal. If 

the collaborative calendar file exists on the server, the 

service reads the collaborative calendar file into java 

object, and then it sets up the html table to be returned to 

the client. 

 

Schedule a Meeting: This menu item enables users to 

schedule a meeting into the collaborative calendar. It 

requires users to fill out the necessary information through 

the jsp page implemented in the GlobalMMCS portal, and 

then the associated CCS Service is called to process this 

request and data. Once the service received this data, it 

first gets all the GlobalMMCS Portal’s registered users. 

Then, the service checks each user’s calendar file to see 

whether there is a conflict or not with the new meeting 

time. If there is no conflict, then the service inserts the 

new schedule into the collaborative calendar, updates the 

collaborative calendar file with the latest one, and finally 

returns a confirmation to the client. If there is any conflict, 

then it returns a warning to the client so that the client can 

change the time for this meeting. Time-Zone information 

is calculated based on the client’s running location.  

 

New Event: By this option, users can specify new 

events into their private calendar. Users need to fill out the 

required fields through the jsp page implemented in the 

GlobalMMCS portal such as Event Start Time, Event End 

Time, Public Event or Private Event, Event Name, Event 

Location, Event Description, and then the CCS Service is 

called to process this request and data. Users can specify 

whether this event is a public or a private event when they 

are posting it into their private calendar. Once the service 

receives the data, it first checks to see whether this user 

has a private calendar or not. If there is not, then it calls 

the “makeEmtyCalendar” service to create one for the 

client. If there is, then the service reads the user’s calendar 



into the java object, and then adds this new event into 

his/her private calendar. Finally, the service updates the 

user calendar file with the latest one. Time Zone 

information is calculated based on the client’s running 

location.  For the demo please see the GlobalMMCS 

client implementation home site [16]. 
 

 

4.2. Collaborative Calendar-Server (CCS) 
 

The CCS has been implemented by using java 

language as a collection of Web Services. The CCS’s 

currently implemented services can be listed as follow:

  

• importCalendar: This service receives three 

parameters; icalendar file as a byte array, 

username as a String, and calendar name as a 

String. It returns a confirmation to the user, if 

there is any exception, and then the warning is 

returned to the user as String as well. The service 

writes the user’s calendar file as an iCalendar 

(calendarname.ics) file under this user’s calendar 

path. 

• exportCalendar: The service requires two 

parameters; username and a calendar name to be 

exported. It reads the user’s calendar file into the 

byte array, and then returns the iCalendar file as 

a byte array to the user. If any exceptions occur, 

then it writes those exceptions into a file, and 

returns it to the user as a byte array as well. 

• makeEmptyCalendar: It makes an empty 

calendar for the specified user and for the 

specified calendar name. It returns a 

confirmation to the user as a String. If any 

exceptions occur, then it returns a warning to the 

client about it. 

• New/Add Event: This service of the CCS is used 

for setting up a new event for the user. It 

basically makes an event for this user, and adds 

this event into the user’s icalendar file as an 

icalendar VEVENT Component. Finally, it 

updates the user’s calendar file with the latest 

version. This service receives the following 

parameters; username as a String, calendar name 

as a String, event type (outdoor, private, meeting, 

holiday etc.) as a String, public or private event 

as a String, event start time as a long value, time 

zone id for the start time as a String, event end 

time as a long value, time-zone ID for the end 

time as a String, location of the event as a String, 

and notes/summary about this event as a String. 

• getUserCalendar: The CCS’s “getUserCalendar” 

service requires two parameters; username as a 

String and a calendar name as a String. When it 

receives the request from the client, it first 

locates the user’s calendar file on the server, and 

reads the calendar into java object. Next, it 

constructs the html table by using the user’s 

calendar data. Finally, it returns the result to the 

user as a String in html table form. If any 

exceptions occur, then it returns the exception as 

a String to the client in html table form. 

• scheduleMeeting: This CCS’s service is used for 

scheduling a meeting into the collaborative/group 

calendar. Once the request is made, the service 

checks each user’s calendar file to retrieve 

his/her schedule information, and compare them 

with the new event time to see if there is any 

conflict. If there is any conflict with any of the 

events, then it returns a warning as a String in 

html table form to the client so that he/she can 

select another time period for this event. If not, 

then it sets up a VEVENT, locks the calendar file 

so that nobody makes changes on it concurrently, 

and adds this event into the collaborative 

calendar file. Finally, it updates the collaborative 

calendar file on the server with the latest version. 

This service receives the following parameters; 

username as a String, calendar name as a String, 

event type (outdoor, private, meeting, holiday 

etc.) as a String, user names as String array, 

event start time as a long value, time zone id for 

the start time as a String, event end time as a long 

value, time zone id for the end time as a String, 

location of the event as a String, and summary 

about this event as a String. 

• getPublicCalendar: This service requires two 

parameters in order to return the 

collaborative/group calendar schedule to the 

client; username as a String, and a calendar name 

as a String. When the service receives the 

request, it first reads the user’s calendar file into 

java object, and then goes through the each 

component of the calendar (VEVENT, VTODO, 

VTASK etc) and its properties to construct the 

schedule to return to the client as a String in html 

table form. If there is no collaborative calendar 

defined on the server, then the service creates 

one by calling “makeEmptyCalendar” web 

service, and returns the calendar schedule (empty 

schedule) to the client as a String in html table 

form as well. If any exceptions occur, then the 

service returns a warning to the client as a String 

in html table form. 

 

 

 

 



4.3. Bridge Module for CCS 

 
The CCS can communicate with different calendar 

clients, which use http methods for communication, 

through the bridge module. For example, Mozilla 

Calendar Client can publish an event(s) to the CCS, or it 

can subscribe to any of the calendars that exist on the 

CCS. This functionality is implemented as a Java Servlet 

Technology, and the Java Servlet plays a middle layer 

between the clients and the CCS’s Services. The Java 

Servlet basically invokes the services of our calendar 

server based on the coming requests from the clients. For 

example, if it receives an http “PUT” request, then it calls 

the importCalendar service of the CCS to import the 

events from the client into our calendar server. In this 

case, the client needs to specify the required parameters, a 

username and a calendar name as a String, for the 

importCalendar service in order to execute the service. 

 

Sample requests can be made from a Mozilla client to 

subscribe to a calendar on the CCS: 

http://gf8.ucs.indiana.edu:28088/CalendarServer/calen

dar?username=guest&calendarname=guest 

 

5. TEST RESULTS 
 

We performed some tests to evaluate our investigated 

framework by calculating turnaround time, standard 

deviation, and standard error values. In each time, our 

web service has been called 100 times to measure the turn 

around time, and it has been called 1000 times as a total. 

Summary of testing environments is depicted in Table 1. 

 

Table 1. Summary of Environment and Machine 

Configurations 
 

Axis: Running on GridFarm8 

Processor Intel® Xeon
TM

 CPU (2.40 GHZ) 

RAM 2GB total 

Bandwidth 100Mbps 

OS GNU/Linux (kernel release 2.4.22) 

Java 

Version 

Java 2 platform, Standard Edition(1.5.0_01) 

SOAP 

Engine 

AXIS 1.2 and Tomcat 5.0.28 

 

CCS Service Client 

Processor Intel Centrino Pentium M725 (1.6GHZ) 

RAM 512MB total 

Bandwidth 100Mbps 

OS Windows XP Professional 

Java 

Version 

Java 2 platform, Standard Edition (1.5.0_06) 

 

In Figure 2, we have calculated the average turnaround 

time for our web services. In each test case, our service 

returns the requests in an acceptable response time. There 

is almost no fluctuation for the turnaround time 

measurement for the CCS Web Services. 

 

We have also measured the Standard Deviation and 

Standard Error values for the CCS Web Services. 

Standard Deviation test results are given in Figure 3, and 

Standard Error test results are given in Figure 4. Our 

results for Figure 3 and Figure 4 also do not have high 

fluctuation. 

 

Average Turnaround Time

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im
e
 [
m
se
c
]

Series1

 
Figure 2. Average Turnaround Time 

 

Standard Deviation

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im
e
 [
m
se
c
]

Series1

 
Figure 3. Standard Deviation 

 

Standard Error

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im
e 
[m

se
c]

Series1

 
Figure 4. Standard Error 



6. CONCLUSION AND FUTURE WORK 
 

The CCS currently can be accessed in various ways 

such as from GlobalMMCS portal, from any iCalendar 

based calendaring and scheduling applications or from 

any application that requests a service from the CCS by 

using its available Web Services. Password protection has 

not been implemented in the CCS, since in GlobalMMCS 

portal users need to have a username and a password in 

order to access the system. However, for the bridge model 

of the CCS, we are planning to implement user access list 

to utilize authorized access into the system. Notification 

of new event service, which sends a notification to all 

registered users through the email, will also be 

implemented in the future.  

 

With the development of Internet Calendaring and 

Scheduling application and the network technique, the 

calendar data between different applications need to be 

shared and to be interoperated. The iCalendar 

specification defined in RFC2445 provides the definition 

of a common format for openly exchanging calendaring 

and scheduling information across the Internet, and 

provides the interoperability between the different 

calendaring and scheduling applications. 

 

Web Services are essential in grid computing, and 

Web Service Technology provides the interoperable 

capability of cross-platforms and cross-language in 

distributed computing and grid computing environments. 

Furthermore, Web Service technology is not object 

oriented, and it overcomes the shortcoming of traditional 

Distributed Object technique. 

 

In this document, we basically have been trying to 

explain the efforts spent on building the CCS as a 

collection of Web Services. By using Web Service 

technology and the iCalendar specification in our 

implementation, we will improve the level of 

interoperability between different applications and 

different platforms. As Web Services technology evolves, 

our proposed Collaborative Calendar-Server system 

evolves. 

 

RERERENCES 
 
[1] Internet Calendaring and Scheduling Core Object     

Specification Web Site: 

http://www.ietf.org/rfc/rfc2445.txt  

 

[2] The Internet Engineering Task Force Web Site: 

http://www.ietf.org/  

 

[3] Mozilla Calendar Project Web Site: 

http://www.mozilla.org/projects/calendar/  

[4] Global Multimedia Collaboration System Web Site: 

http://www.globalmmcs.org/  

 

[5] IBM Lotus Software Web Site:  

http://www-306.ibm.com/software/lotus/  

 

[6] Microsoft Web Site: http://www.microsoft.com/  

 

[7] Internet Mail Consortium vCard and vCalendar Web Site: 

http://www.imc.org/pdi/  

 

[8] Internet Mail Consortium Web Site: http://www.imc.org/  

 

[9] Apache AXIS Web Services Web Site: 

http://ws.apache.org/axis/  

 

[10] Global Multimedia Collaboration System Portal Web Site: 

http://gf8.ucs.indiana.edu:28088/globalmmcs/portal  

 

[11] ical4j Web Site: 

http://ical4j.sourceforge.net/  

 

 

[12] Collaborative Calendar-Server Project web site 

http://www.opengrids.org/wscalendar/  

 

[13] Sourceforge.net Web Site: http://sourceforge.net/  

[14] Erik Christiensen, Francisco Curbera, Greg Meredith, 

Sanjiva Weerawarana, Web Service Description Language 

(WSDL) Version 1.1, March 2001. Available at 

http://www.w3.org/TR/wsdl 

 

[15] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew 

Layman, Dave Winer, Simple Object Access Protocol (SOAP) 

Version 1.1, May 2000. Available at 

http://www.w3.org/TR/2000/NOTE-SOAP-20000508 

 

[16] Global Multimedia Collaboration System Portal Web Site: 

http://gf8.ucs.indiana.edu:28088/globalmmcs/portal 

 

[17] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy 

of the Grid. Available at: 

http://www.globus.org/alliance/publications/papers/anatomy.pdf 

 

[18] The Open Grid Services Architecture (OGSA) Web Site: 

http://www.globus.org/ogsa/ 

 

[19] Global Grid Forum (GGF) Web Site: 

http://www.gridforum.org/ 

 

[20] New to Grid Computing by IBM Developer works. 

Available at: 

http://www-128.ibm.com/developerworks/grid/newto/ 

 

[21]Superceded: Web Services Resource Framework by IBM 

Developer works. Available at: 

http://www-

128.ibm.com/developerworks/library/specification/ws-resource/ 


