
Worldwide Messaging Support for High Performance
Real-time Collaboration

Pete Burnap2, Hasan Bulut1, Shrideep Pallickara1, Geoffrey Fox1, David Walker2, Ali Kaplan1,

Beytullah Yildiz1, and Mehmet A. Nacar1

P.Burnap@cs.cardiff.ac.uk, hbulut@indiana.edu, spallick@indiana.edu, gcf@indiana.edu,
David.W.Walker@cs.cardiff.ac.uk, alikapla@indiana.edu, byildiz@indiana.edu, and mnacar@indiana.edu

Community Grids Lab, Indiana University1

School of Computer Science, Cardiff University, UK2

Abstract

The requirements for collaborative services, especially pertaining to order and delivery, are quite
different compared to traditional distributed applications. The NaradaBrokering (NB) messaging
substrate enables scalable, fault-tolerant, distributed interactions between entities, and is based on the
publish/subscribe paradigm. The substrate also incorporates support for Grid and Web Service. More
recently, we have incorporated services within the substrate which enable us to facilitate richer
collaborative interactions. We have performed benchmark tests on machines in the USA, UK and
Australia to gauge the performance and scalability of the NaradaBrokering substrate over worldwide
networks using benchmarking software developed alongside NaradaBrokering with varying message
payloads and large attachments over Parallel TCP. In this paper, we demonstrate how our results show
that the substrate can indeed be utilised to achieve maximum performance in a collaborative messaging
environment over worldwide networks with the ability to maintain performance notwithstanding
scalability constraints.

1. Introduction

Message-Oriented Middleware (MOM) can be
viewed as a middleware layer lying between the
application and transport layers at both ends of a
communication path. MOM virtualizes communication
in distributed, heterogeneous environments, thereby
increasing interoperability, portability, and flexibility.
MOM supports asynchronous communication, typically
through the use of message queues, which help insulate
distributed applications from the impact of destinations
that are busy due to high message traffic, or that are
temporarily disconnected. MOM is well-suited for
applications requiring event or notification services, and
for service-based systems in general since it provides a
conceptual model for communication between services.
The notification service being developed at Southampton
University for the MyGrid project and the iJob
environment developed at San Jose State University by
Fatoohi [1] may both be regarded as examples of MOM.

As the Open Grid Services Architecture (OGSA)
gains increasing acceptance in the e-Science community,
it is becoming apparent that MOM is an important aspect
of the service-oriented architecture (SOA) that has not
received sufficient attention. The main motivation for the
research detailed in this paper is to demonstrate that the
NaradaBrokering (NB) MOM substrate developed at
Indiana University could be incorporated into a SOA for
grid computing. A table that compares the main features
of some leading messaging systems with
NaradaBrokering is available at
http://www.cs.cf.ac.uk/User/David.W.Walker/NB.pdf.

NaradaBrokering [2,3,4] is a distributed messaging
infrastructure, which provides support for centralized,
P2P and distributed interactions. NaradaBrokering
efficiently routes any given message between the
originators and registered consumers of the message in
question. The objective of the NaradaBrokering substrate
is to provide a recognised open-source standard for a
messaging infrastructure to build SOAs and Grids upon.
It is hoped that these results will influence others to use
NaradaBrokering as a messaging protocol for their own

applications and develop its credibility within the
distributed computing workgroups and consortia.

To test the performance issues of NaradaBrokering on
a worldwide scale, Narada brokers were set up at Cardiff
in the UK, Indiana in the USA and Melbourne in
Australia. This facilitated global testing over intern-
Continental networks. Port connection speeds of
100mbs were used as standard with extra testing over 1
gigabit networks between Cardiff and Indiana.
Benchmarking software developed alongside the
NaradaBrokering substrate was used to send message
packets of varying sizes between messaging clients at all
sites using exhaustive permutations of brokers and
clients. A test bed application has also been developed to
collate results of global network tests with varying
message payloads and large attachments over Parallel
TCP.

In this paper we report the results of these tests and
identify the benefits of the NaradaBrokering substrate to
the collaborative working community with regard to
delivering high performance, scalable and reliable
distributed messaging across inter-continental networks.

The remainder of the paper is organised as follows: In
section 2 we provide a brief overview of the
NaradaBrokering substrate, in which we compare and
contrast the advantages of the publish/subscribe
paradigm that NaradaBrokering adopts over hardware
Multicast. In section 3 the various services made
available by the NaradaBrokering substrate which can be
leveraged by high performance collaborative
applications, and report on the benchmark testing results
that we achieved when profiling the performance of the
substrate over inter-Continental networks. In section 4
we present an overview of related work. Finally, in
section 5 we outline our conclusions.

2. NaradaBrokering Substrate

NaradaBrokering is based on the publish/subscribe
paradigm. Communication within the NaradaBrokering
infrastructure is asynchronous and the system can be
used to support different interactions by encapsulating
them in specialized messages (also referred to as events).

NaradaBrokering allows clients to register their
subscriptions (interest in the content of messages) using
a variety of formats. The subscriptions can be in the form
of String, Integer, Long and <tag, value> based topics, or
in the form of XPath, SQL and Regular expression
queries. Support for this variety of subscription formats
also implies richer collaborative interactions since
actions may be triggered only under very precise
conditions. The complexity of managing these
subscriptions and routing relevant messages is delegated

to the middleware substrate. Since the individual entities
do not need to cope with the complexity of constraints,
this in turn facilitates easier development of
collaborative applications which enable these complex
interactions.

2.1 Inter-continental benchmarks

We now report results pertaining to communications
within the NaradaBrokering substrate. The experimental
setup for our measurements is depicted in Figure 1. The
results are depicted in Figure 2, Figure 3 and Figure 4,
where each point in the delay-curve corresponding to the
average of 50 messages. The standard deviation-curve
reports the deviation in these delays. The per-hop latency
in cases up until 4KB is around 1 millisecond (transit
delay corresponds to traversal from publisher-broker-
subscriber).

Figure 1: Experimental setup for measuring
communication latencies

Figure 2 depicts the results of our benchmarking in

trans-Atlantic settings. Figure 3 depicts the results in
settings involving machines in the UK and Australia.
Finally, Figure 4 depicts results in settings involving
machines in the US and Australia

The machines configurations for these tests were as
follows:

UK: 2x AMD Opteron 246 (@2GHz, 1Mb cache)
processors with 2Gb RAM running 64-bit Linux (Fedora
core 2, running kernel 2.6.10-1.771_FC2smp). It has 2x
SATA drives.
US: Sun Fire V880 machine has 8x1.2 GHz
UltraSPARC III processors with 16 GB of RAM on
Solaris 9. It has 6x72GB 10K rpm internal HD
Australia: IBM eServer xSeries with 2 x Intel Xeon 2.6
Ghz processors and 2 GB RAM. 70 GB HD running
Redhat Linux 8

Broker

Publisher Subscriber

Publisher/Subscriber on same machine to
eliminate need for clock synchronizations

TCP Link

0

200

400

600

800

1000

1200

100 1000 10000

D
el

ay
 (M

illi
se

co
nd

s)

Content Payload Size (Bytes)

Transit Delay & Standard Deviation for different payloads
 Cardiff (UK) and Bloomington (US)

 Transit Delay
 Standard Deviation

Figure 2: Transit delays and standard deviations for

payloads (UK-US settings)

0

200

400

600

800

1000

1200

1400

100 1000 10000

D
el

ay
 (M

illi
se

co
nd

s)

Content Payload Size (Bytes)

Transit Delay & Standard Deviation for different payloads
 Cardiff (UK) and Melbourne (Australia)

 Transit Delay
 Standard Deviation

Figure 3: Transit delays and standard deviations for

payloads (UK-Australia settings)

0

200

400

600

800

1000

1200

100 1000 10000

D
el

ay
 (M

illi
se

co
nd

s)

Content Payload Size (Bytes)

Transit Delay & Standard Deviation for different payloads
 Bloomington (US) and Melbourne (Australia)

 Transit Delay
 Standard Deviation

Figure 4: Transit delays and standard deviations for

payloads (US-Australia settings)

2.2 Parallel TCP Streams

Data transfer across high-performance networks

suffers within the current TCP implementation because
of its tendency to hold back maximum bandwidth usage,
even though advancement in network technologies are
providing higher data rates. Transferring data on a high
speed wide area network is especially adversely affected
by this problem. It can be solved either by using multiple
streams in parallel or increasing the TCP window size by
tuning network settings. However, the main drawback to
the latter solution is that it can not be considered as a
cross platform solution because there is no automatic
network tuning, and tuning network settings is different
in different operating systems. Therefore, we chose
multiple parallel TCP streams to achieve maximum
bandwidth usage.

Our design of multiple parallel TCP streams consists
of three basic steps; splitting of data into sub packets at
sender side, sending these sub packets over the network
by using multiple Java socket streams in parallel, and
merging of received sub packets at the receiver side.
Using multiple parallel TCP streams gives better transfer
rate by aggregating individual socket bandwidth,
although the default socket buffer size is not set to the
value of the bandwidth delay product.

2.2.1 Overheads and timing

A simplified formula for calculation of the file
transmission time is as follows:

The time for normal TCP (TCPT): Duration for
transferring a given data with normal TCP connection.
The time for parallel TCP (PTCPT): Duration for
transferring a given data with parallel TCP connection.

 PTCPT consists of the maximum transfer time among
the parallel streams (TxPTCPTmax) and overhead
(OHT) that mainly comes from fragmentation and
coalescence of data. Network transfer time for the same
size of data is nearly the same as the TCPT network
transfer time. In other words, we expect that the
transmission time should be close for the same size of
data within the same network environment. However,
since we can not send all parallel streams at the same
time, there must be a delay between parallel streams
before sending the data to actual physical network layer.
PTCPT = TxPTCPTmax + OHT

Since TCP is the bottom level of transport mechanism on
both TCPT and PTCPT, we can assume that

TCPT/n ≈ TxPTCPTmax (But in reality, as we
explained above, TCPT should be smaller than
TxPTCPTmax)
Then,
TCPT > TCPT/n + OHT ==> OHT < (n-1)TCPT/n

2.2.2 Tests

In this section, we will discuss how well our multiple
stream transfer mechanism architecture performs. To see
how the underlying networks impacts its performance,
we performed three tests; LAN testing, continental WAN
testing, and inter-continental WAN testing. All the
bandwidth capacity was measured by using Iperf with
these options:

iperf -s -w 256k
iperf -c <hostname> -w 512k -P 40

LAN Test:
It was performed between two Indiana University
machines which are nearly 50 miles away from each
other. We used the following environments for our
performance tests.
Server: Sun Fire V880 machine has 8x1.2 GHz
UltraSPARC III processors with 16 GB of RAM on
Solaris 9. It has 6x72GB 10K rpm internal HD.
Client: Dell Optiplex GX280 has Pentium 4 3.4 GHz
CPU with 1GB of RAM on Microsoft Windows XP
Professioanl version 2002 with service pack 2. It has
Seagate ST3160023AS, which features speeds of 7200
rpm, an 8.5 ms average seek time, 8 MB cache and 160
GB capacity.
Bandwidth reported by IPerf: 94.6 Mbps

65

67

69

71

73

75

77

79

81

83

85

1 2 3 4 5 6

Numbe r of S t r e a ms

10 MB

20 MB

30 MB

40 MB

50 MB

60 MB

70 MB

80 MB

90 MB

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

900 MB

1 GB

Figure 5: Bandwidth results for different file size

(Mbytes)

In LAN, there is no significant improvement in
bandwidth usage while using multiple parallel streams,
because today's LAN connection is very fast, and
transmission time is smaller than overhead time (TCPT
<< OHT). Files with smaller size are suffering from
multiple streams because overhead time is much more
dominant when compared to the transmission time. Like
the smaller sized files, larger files also suffer from this
over head time, however these overheads are less drastic
because of longer transmission times associated with
them. Hence, multiple streams do not have a positive
impact on LAN environments. Figure 5 illustrates that
multiple parallel streams have a negative effect on data
transfer over LAN environments.

Continental WAN Test:

This test was performed between Indiana University and
University of California at San Diego.
Server: Dual Pentium III 731MHz CPU with 512 MB of
RAM on GNU/Linux 2.4.21-4.ELsmp located at
University of California at San Diego.
Client: Sun Fire V880 machine has 8x1.2 GHz
UltraSPARC III processors with 16 GB of RAM on
Solaris 9. It has 6x72GB 10K rpm internal HD.
Bandwidth reported by IPerf: 89.4 Mbps

As we can see from Figure 6 the gain from the

multiple streams becomes dominant in long-distance data
transfer. Even though, both smaller and larger size file
gets the benefits of multiple streams, the overhead
of fragmentation and coalescence of data is still traceable
in files which sizes are smaller than 100 MB.

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6

N umb er o f St reams

10 M B
20 M B
30 M B
40 M B
50 M B
60 M B
70 M B
80 M B
90 M B
100 M B
200 M B
300 M B
400 M B
500 M B
600 M B
700 M B
800 M B
900 M B
1 GB

Figure 6: Transfer times - Continental WAN settings

Inter-Continental WAN Test:

We performed this test between Indiana University at
United State and Cardiff University at United Kingdom.
Server: Dual Pentium III 1GHz CPU with 1.5 GB of
RAM on Red Hat Linux 7.2 located at Cardiff
University.
Client: Sun Fire V880 machine has 8x1.2 GHz
UltraSPARC III processors with 16 GB of RAM on
Solaris 9. It has 6x72GB 10K rpm internal HD at Indiana
University (Indianapolis).
Bandwidth reported by IPerf:: 69.1 Mbps

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 3 4 5 6

Number of Streams

B
an

dw
ith

 (M
bp

s)

10 MB

20 MB

30 MB

40 MB

50 MB

60 MB

70 MB

80 MB

90 MB

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

Figure 7: Transfer times - Trans-Atlantic settings
As we can see in Figure 7, the gain from the multiple

parallel streams becomes dominant in long-distance data
transfer. Even though, both smaller and larger size file
gets the benefits of multiple streams, the overhead
of fragmentation and coalescence of data is still traceable
in files which sizes are smaller than 100 MB.

3. Services enriching collaboration within
the NaradaBrokering substrate

In this section we outline services that we have

incorporated into the NaradaBrokering substrate to
facilitate richer collaborative interactions. The section
elaborates on issues related to time ordering, spacing and
the reduction of jitters during collaboration.

3.1 High resolution timing services

To ensure that messages are time-stamped as
accurately as possible we have also incorporated a high

resolution timer service into the substrate. This high
resolution timer works on the Windows, Linux and
Solaris operating systems; here we have leveraged native
libraries available on these systems along with the Java
Native Interface to enable high resolution timers. On
Solaris and Linux the gettimeofday() function is used to
retrieve the current time in microseconds. It returns time
since 1/1/1970; the resolution is hardware dependent and
is usually around 1 microsecond. The
QueryPerformanceCounter on Windows is used to
get number of ticks; the number of ticks in one second is
3759545, which is around one per 279 nanoseconds. This
returns ticks from the start of the machine, but does not
have limitations as in the getTickCount() function, which
rolls-over every 49 days. Note that this gives us better
results than relying only on the Java call. The resolution
of the System.currentTimeMillis() on Windows is
around 15 milliseconds and 1 millisecond on Linux. We
have measured the resolution of the high resolution timer
to be around 3~4 microsecond.

3.2 Time buffering service

Jitter is considered to be one of the most important
Quality of Service (QoS) measurements within A/V
collaborative systems. In the case of audio streams, high
jitter values can cause voice breaks while in the case of
video streams high jitters may cause degenerations in the
image quality. In order to overcome the negative effects
of high jitter, real-time audio/video clients typically have
a buffer which buffers events up to 200 milliseconds and
then proceeds to release them. In order to reduce the
effect of high jitters in large distributed networked
environment we provide a buffer whose size can be
customized based on an entity’s needs.

The Buffering Service within NaradaBrokering stores
messages and releases them after sorting them according
to their timestamps. The design of the buffering service
has incorporated four configurable parameters pertaining
to the release of time-stamped messages. The first
criterion is the number of messages in the buffer
maintained by the buffering service. If the number of
messages reaches the maximum number of entries, it
starts to release the time-ordered messages. The second
criterion is the total size of the messages in the buffer.
This along with the first criterion enables us to
circumvent buffer overflows. The third criterion
corresponds to the time spent by messages within the
buffer. In some cases, the rate of messages arriving at an
entity may be too slow and this may cause longer and
unwanted delays within the buffer. The time-duration
factor makes sure that the messages are released after a
maximum specified duration if the first two criteria are

not met. The final criterion is the release factor of the
buffer. This typically has a value between 0.5 and 1.0.
When any of the release criteria is met, it releases at least
release_factor X total_bufer_size messages.

3.3 Time differential service

In collaborative systems simply receiving messages in
time-order may not be enough. An entity may also place
constraints on the maximum jitter that it is willing to
tolerate. The Time Differential Service (TDS) provides
two very important functions. First, it reduces the jitter in
messages caused by the network. Second, it releases
messages while preserving the time spacing between
consecutive messages. Preserving time spacing between
messages is not an easy task primarily because most
operating systems do not provide strict real-time
capabilities. Depending on the operating system, the
scheduling of processes and threads does not necessarily
guarantee the CPU for that process or thread after a
specified interval. For example, using Java on the
Windows operating system, user-level threads can obtain
the CPU back only after 10 milliseconds. Based on the
scheduling configuration of Linux operating system this
duration can vary from 1 millisecond to 10 milliseconds
or more.

One of the main reasons that TDS uses threads rather
than traditional polling to release events in the queue is
to avoid high CPU utilizations. In the case of polling, in
order to release events in the queue their timestamps
should be checked very frequently. This can lead to very
high CPU utilizations. Furthermore, since rate at which
events are generated is not constant: the time spacing
between consecutive events vary. Using threads ensures
that CPU utilizations are significantly lower. The reason
that we have multiple threads instead of one thread to
release the events in the queue is due to issues related to
the underlying programming language (Java) and the
operating system. For e.g. on Linux (Fedora 2), in order
to check the timestamps every millisecond, we need to
use at least three inter-leaving threads since each thread
wakes up after a minimum of 3 milliseconds. On
Windows, this value is 10 milliseconds; this high value
may not be able to address jitter reduction adequately. .

TDS spawns five threads to process messages
released by the buffering service. Note that TDS itself
maintains another buffer for processing. Each thread is
initiated one after another with a specified time
difference between consecutive initiations. Each thread
sleeps for a specified time-slice. By interleaving the
durations at which these threads wake-up TDS can
operate on the buffer at finer intervals while ensuring
that CPU utilizations are low. The time-slice interval for

individual threads impacts CPU utilization. We have
observed that if the time interval between threads is 1
millisecond the CPU utilization stays around 5~6%,
when this interval is decreased to 10 microseconds, it can
reach about 20~25% on a Linux machine (1.5 GHz CPU
512 MB RAM). When a thread wakes up it checks to see
if any messages need to be released, and does so if
needed. It does so by comparing the message’s
timestamp, the local clock obtained from the high
resolution timer and the time at which the last message
was released. By preserving the time-spacing between
messages TDS reduces jitter significantly.

Figure 8: Experimental setup for TDS measurements

Figure 8 depicts the experimental setup for our TDS
related measurements. The transmitter (publisher)
captures the input-video stream from a camera and
publishes them using NaradaBrokering messages, which
are time-stamped appropriately. In the reported results,
we ignored the first few messages that resulted in spikes
due to media-player initializations.

Figure 9 contrasts the jitters resulting from the
experimental setup (1) involving machines at Cardiff and
Indiana; the graph compares the jitters in the Input to the
buffering service and the Output of the TDS. Please note
that in the absence of the buffering service and TDS at a
client, the jitters experienced at that node would be

Experiment 2:
Broker at Indiana (Red Hat Linux 3.2.3-6,
Intel® Xeon™ CPU 2.40 GHz, 2068240 KB, JVM
:1.4.2_03),

Clients at Indiana: Red Hat 3.4.2-6.fc3
Intel® Pentium® 4 CPU 1.5 GHz, 1GB, JVM
1.4.2_07

Experiment 1:
Broker at Cardiff (Red Hat Linux 7.1 2.96-79,
Pentium III, 1 GHz, 1.5GB RAM, JVM 1.4.1,

Clients at Indiana: Red Hat 3.4.2-6.fc3
Intel® Pentium® 4 CPU 1.5 GHz, 1GB, JVM
1.4.2_07

Broker

Publisher Subscriber

similar to that corresponding to the input of the buffering
service.

-2

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values comparing the Input to the Buffering
Service and the Output of the TDS

Buffering Input
TDS Output

Figure 9: Jitter values comparing Buffering Service

Input and TDS Output (Trans-Atlantic)

Figure 10 depicts only the jitters as a result of TDS
for this experimental setup. The results demonstrate the
significant reduction in jitter as a result of deploying the
TDS.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values from the output of the TDS

TDS Output

Figure 10: Jitter values from the TDS Output (Trans-

Atlantic)

We also performed measurements in the same
experimental setup by varying the time-slice intervals
associated with the threads spawned by the TDS. Here
we report results (Figure 11) from our measurements for
intervals of 1 millisecond and 100 microseconds. The
results demonstrate that reducing the time intervals also
reduces the jitter in the messages that are output by the
TDS.

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values from the Output of the TDS
Different Thread Intervals

1 millisecond
100 microseconds

Figure 11: Jitter values from the TDS output for

different thread intervals (Trans-Atlantic)

We have also performed measurements within a local
area network to profile the performance of TDS, the
results reported here correspond to the experimental
setup (2) depicted in Figure 8. Figure 12 contrasts the
jitters in the input to the buffering service and the output
of TDS. Once again, the results demonstrate jitter
reduction even in cluster settings.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values comparing the Input to the Buffering
Service and the Output of the TDS

Buffering Input
TDS Output

Figure 12: Jitter values comparing Buffering Service

Input and TDS Output (Cluster setting)

In our last experiment we investigated if TDS would
be able to space messages accurately if they were time
stamped a few hundred microseconds apart. Here we
generated messages that were spaced at intervals of 500
microseconds. Figure 13 depicts these results; the results
demonstrate that TDS can be deployed in settings where
messages are spaced a few hundred microseconds apart.

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600 700 800 900 1000

Ji
tte

r (
M

ic
ro

se
co

nd
s)

Sample Number

Jitter values for 500 microsecond spacing between
events. TDS Thread interval = 100 microseconds

Jitter

Figure 13: Jitter values for spacing messages with a

fixed 500 microsecond spacing between them

4. Related Work

There are several publish/subscribe systems that have
been developed. While it is not possible to enumerate all
of these works, some of these systems include Elvin [5],
Sienna [6] and Gryphon [7]. An exemplar of
publish/subscribe in the area of distributed object
technology is the CORBA Event service [8]. Another
area of interest is peer-to-peer (P2P) systems. Here,
examples include the JXTA [9] system, Pastry [10] and
FLAPPS [11, 12]. A comprehensive discussion of the
architectural similarities, differences, strengths and
weaknesses of these systems vis-à-vis capabilities
available within the NaradaBrokering substrate can be
found in Ref [4]. Examples of collaborative
infrastructures include JSDT [13] from Sun
Microsystems. JSDT provides the basic abstractions of a
session and also supports full-duplex multi-point
connections between entities. Additionally, JSDT
provides a token-based distributed synchronization
mechanism to facilitate access to shared resources.

5. Conclusions

In this paper we presented results related to the
substrate’s messaging communications. These
experiments were performed in inter-continental settings
involving the US, UK and Australia. We have also
reported on tests performed using parallel TCP in WAN
and trans-Atlantic settings. Finally, we also included
discussions and results pertaining to new collaboration
related services that were incorporated into the substrate.

References

[1] R. Fatoohi and N. Gokhale, A Distributed Job Execution

Environment using Asynchronous Messaging and Web
Technologies, Proceedings of the 5th International
Conference on Enterprise Information Systems (Angers,
April 2003), pp. 246-251, April 2003.

[2] The NaradaBrokering Project at the Community Grid
Labs: http://www.naradabrokering.org

[3] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering:
A Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of
ACM/IFIP/USENIX International Middleware
Conference Middleware-2003.

[4] Shrideep Pallickara and Geoffrey Fox. On the Matching
Of Events in Distributed Brokering Systems. Proceedings
of IEEE ITCC Conference on Information Technology.
April 2004. Volume II pp 68-76.

[5] Bill Segall and David Arnold. Elvin has left the building:
A publish/subscribe notification service with quenching.
In Proceedings AUUG97, pages 243–255, Canberra,
Australia, September 1997.

[6] Antonio Carzaniga, et al Achieving scalability and
expressiveness in an internet-scale event notification
service. In Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing, pages 219–227
2000.

[7] G. Banavar et al. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In Proceedings
of the IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 1999.

[8] The Object Management Group (OMG). OMG’s CORBA
Event Service. Available from http://www.omg.org/

[9] Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

[10] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. Proceedings of Middleware 2001.

[11] B. Scott Michel, Peter L. Reiher: Peer-through-Peer
Communication for Information Logistics. GI
Jahrestagung (1) 2001: 248-256

[12] B. Michel and P. Reiher. Peer-to-Peer Internetworking. In
OPENSIG, September 2001.

[13] Java Shared Data Toolkit (JSDT).
http://java.sun.com/products/java-media/jsdt/index.jsp

