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Abstract  
  

The requirements for collaborative services, especially pertaining to order and delivery, are quite 
different compared to traditional distributed applications. The NaradaBrokering (NB) messaging 
substrate enables scalable, fault-tolerant, distributed interactions between entities, and is based on the 
publish/subscribe paradigm. The substrate also incorporates support for Grid and Web Service. More 
recently, we have incorporated services within the substrate which enable us to facilitate richer 
collaborative interactions. We have performed benchmark tests on machines in the USA, UK and 
Australia to gauge the performance and scalability of the NaradaBrokering substrate over worldwide 
networks using benchmarking software developed alongside NaradaBrokering with varying message 
payloads and large attachments over Parallel TCP. In this paper, we demonstrate how our results show 
that the substrate can indeed be utilised to achieve maximum performance in a collaborative messaging 
environment over worldwide networks with the ability to maintain performance notwithstanding 
scalability constraints.  

 

1. Introduction 
 

Message-Oriented Middleware (MOM) can be 
viewed as a middleware layer lying between the 
application and transport layers at both ends of a 
communication path. MOM virtualizes communication 
in distributed, heterogeneous environments, thereby 
increasing interoperability, portability, and flexibility. 
MOM supports asynchronous communication, typically 
through the use of message queues, which help insulate 
distributed applications from the impact of destinations 
that are busy due to high message traffic, or that are 
temporarily disconnected. MOM is well-suited for 
applications requiring event or notification services, and 
for service-based systems in general since it provides a 
conceptual model for communication between services. 
The notification service being developed at Southampton 
University for the MyGrid project and the iJob 
environment developed at San Jose State University by 
Fatoohi [1] may both be regarded as examples of MOM. 

As the Open Grid Services Architecture (OGSA) 
gains increasing acceptance in the e-Science community, 
it is becoming apparent that MOM is an important aspect 
of the service-oriented architecture (SOA) that has not 
received sufficient attention. The main motivation for the 
research detailed in this paper is to demonstrate that the 
NaradaBrokering (NB) MOM substrate developed at 
Indiana University could be incorporated into a SOA for 
grid computing.  A table that compares the main features 
of some leading messaging systems with 
NaradaBrokering is available at 
http://www.cs.cf.ac.uk/User/David.W.Walker/NB.pdf. 

NaradaBrokering [2,3,4] is a distributed messaging 
infrastructure, which provides support for centralized, 
P2P and distributed interactions. NaradaBrokering 
efficiently routes any given message between the 
originators and registered consumers of the message in 
question. The objective of the NaradaBrokering substrate 
is to provide a recognised open-source standard for a 
messaging infrastructure to build SOAs and Grids upon.  
It is hoped that these results will influence others to use 
NaradaBrokering as a messaging protocol for their own 



applications and develop its credibility within the 
distributed computing workgroups and consortia. 

To test the performance issues of NaradaBrokering on 
a worldwide scale, Narada brokers were set up at Cardiff 
in the UK, Indiana in the USA and Melbourne in 
Australia.  This facilitated global testing over intern-
Continental networks.  Port connection speeds of 
100mbs were used as standard with extra testing over 1 
gigabit networks between Cardiff and Indiana.  
Benchmarking software developed alongside the 
NaradaBrokering substrate was used to send message 
packets of varying sizes between messaging clients at all 
sites using exhaustive permutations of brokers and 
clients. A test bed application has also been developed to 
collate results of global network tests with varying 
message payloads and large attachments over Parallel 
TCP. 

In this paper we report the results of these tests and 
identify the benefits of the NaradaBrokering substrate to 
the collaborative working community with regard to 
delivering high performance, scalable and reliable 
distributed messaging across inter-continental networks. 

The remainder of the paper is organised as follows: In 
section 2 we provide a brief overview of the 
NaradaBrokering substrate, in which we compare and 
contrast the advantages of the publish/subscribe 
paradigm that NaradaBrokering adopts over hardware 
Multicast.  In section 3 the various services made 
available by the NaradaBrokering substrate which can be 
leveraged by high performance collaborative 
applications, and report on the benchmark testing results 
that we achieved when profiling the performance of the 
substrate over inter-Continental networks. In section 4 
we present an overview of related work. Finally, in 
section 5 we outline our conclusions. 
 

2. NaradaBrokering Substrate  
 

NaradaBrokering is based on the publish/subscribe 
paradigm. Communication within the NaradaBrokering 
infrastructure is asynchronous and the system can be 
used to support different interactions by encapsulating 
them in specialized messages (also referred to as events).   

NaradaBrokering allows clients to register their 
subscriptions (interest in the content of messages) using 
a variety of formats. The subscriptions can be in the form 
of String, Integer, Long and <tag, value> based topics, or 
in the form of XPath, SQL and Regular expression 
queries.  Support for this variety of subscription formats 
also implies richer collaborative interactions since 
actions may be triggered only under very precise 
conditions. The complexity of managing these 
subscriptions and routing relevant messages is delegated 

to the middleware substrate. Since the individual entities 
do not need to cope with the complexity of constraints, 
this in turn facilitates easier development of 
collaborative applications which enable these complex 
interactions.   

2.1 Inter-continental benchmarks 
 

We now report results pertaining to communications 
within the NaradaBrokering substrate. The experimental 
setup for our measurements is depicted in Figure 1. The 
results are depicted in Figure 2, Figure 3 and Figure 4, 
where each point in the delay-curve corresponding to the 
average of 50 messages. The standard deviation-curve 
reports the deviation in these delays. The per-hop latency 
in cases up until 4KB is around 1 millisecond (transit 
delay corresponds to traversal from publisher-broker-
subscriber).   

 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: Experimental setup for measuring 
communication latencies 

 
Figure 2 depicts the results of our benchmarking in 

trans-Atlantic settings. Figure 3 depicts the results in 
settings involving machines in the UK and Australia. 
Finally, Figure 4 depicts results in settings involving 
machines in the US and Australia 

The machines configurations for these tests were as 
follows: 

 
UK: 2x AMD Opteron 246 (@2GHz, 1Mb cache) 
processors with 2Gb RAM running 64-bit Linux (Fedora 
core 2, running kernel 2.6.10-1.771_FC2smp). It has 2x 
SATA drives. 
US: Sun Fire V880 machine has 8x1.2 GHz 
UltraSPARC III processors with 16 GB of RAM on 
Solaris 9. It has 6x72GB 10K rpm internal HD  
Australia: IBM eServer xSeries with 2 x Intel Xeon 2.6 
Ghz processors and 2 GB RAM. 70 GB HD running 
Redhat Linux 8 

Broker

Publisher Subscriber 

Publisher/Subscriber on same machine to 
eliminate need for clock synchronizations 

TCP Link 
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Figure 2: Transit delays and standard deviations for 

payloads (UK-US settings) 
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Figure 3: Transit delays and standard deviations for 

payloads (UK-Australia settings) 
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Figure 4: Transit delays and standard deviations for 

payloads (US-Australia settings) 

2.2 Parallel TCP Streams 
 
Data transfer across high-performance networks 

suffers within the current TCP implementation because 
of its tendency to hold back maximum bandwidth usage, 
even though advancement in network technologies are 
providing higher data rates. Transferring data on a high 
speed wide area network is especially adversely affected 
by this problem. It can be solved either by using multiple 
streams in parallel or increasing the TCP window size by 
tuning network settings. However, the main drawback to 
the latter solution is that it can not be considered as a 
cross platform solution because there is no automatic 
network tuning, and tuning network settings is different 
in different operating systems. Therefore, we chose 
multiple parallel TCP streams to achieve maximum 
bandwidth usage. 

Our design of multiple parallel TCP streams consists 
of three basic steps; splitting of data into sub packets at 
sender side, sending these sub packets over the network 
by using multiple Java socket streams in parallel, and 
merging of received sub packets at the receiver side. 
Using multiple parallel TCP streams gives better transfer 
rate by aggregating individual socket bandwidth, 
although the default socket buffer size is not set to the 
value of the bandwidth delay product. 
 
2.2.1 Overheads and timing 
 

A simplified formula for calculation of the file 
transmission time is as follows: 
 
The time for normal TCP (TCPT): Duration for 
transferring a given data with normal TCP connection. 
The time for parallel TCP (PTCPT): Duration for 
transferring a given data with parallel TCP connection. 
 
 PTCPT consists of the maximum transfer time among 
the parallel streams (TxPTCPTmax) and overhead 
(OHT) that mainly comes from fragmentation and 
coalescence of data. Network transfer time for the same 
size of data is nearly the same as the TCPT network 
transfer time. In other words, we expect that the 
transmission time should be close for the same size of 
data within the same network environment. However, 
since we can not send all parallel streams at the same 
time, there must be a delay between parallel streams 
before sending the data to actual physical network layer.  
PTCPT = TxPTCPTmax + OHT  
 
Since TCP is the bottom level of transport mechanism on 
both TCPT and PTCPT, we can assume that  
 



TCPT/n ≈ TxPTCPTmax (But in reality, as we 
explained above, TCPT should be smaller than 
TxPTCPTmax) 
Then, 
TCPT > TCPT/n + OHT  ==>  OHT < (n-1)TCPT/n 
 
2.2.2 Tests 
 
In this section, we will discuss how well our multiple 
stream transfer mechanism architecture performs. To see 
how the underlying networks impacts its performance, 
we performed three tests; LAN testing, continental WAN 
testing, and inter-continental WAN testing.  All the 
bandwidth capacity was measured by using Iperf with 
these options: 
 
iperf -s -w 256k 
iperf -c <hostname> -w 512k -P 40 
 
LAN Test: 
It was performed between two Indiana University 
machines which are nearly 50 miles away from each 
other. We used the following environments for our 
performance tests.  
Server: Sun Fire V880 machine has 8x1.2 GHz 
UltraSPARC III processors with 16 GB of RAM on 
Solaris 9. It has 6x72GB 10K rpm internal HD. 
Client:  Dell Optiplex GX280 has Pentium 4 3.4 GHz 
CPU with 1GB of RAM on Microsoft Windows XP 
Professioanl version 2002 with service pack 2. It has 
Seagate ST3160023AS, which features speeds of 7200 
rpm, an 8.5 ms average seek time, 8 MB cache and 160 
GB capacity. 
Bandwidth reported by IPerf: 94.6 Mbps 
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Figure 5: Bandwidth results for different file size 

(Mbytes) 

In LAN, there is no significant improvement in 
bandwidth usage while using multiple parallel streams, 
because today's LAN connection is very fast, and 
transmission time is smaller than overhead time (TCPT 
<< OHT). Files with smaller size are suffering from 
multiple streams because overhead time is much more 
dominant when compared to the transmission time. Like 
the smaller sized files, larger files also suffer from this 
over head time, however these overheads are less drastic 
because of longer transmission times associated with 
them. Hence, multiple streams do not have a positive 
impact on LAN environments. Figure 5 illustrates that 
multiple parallel streams have a negative effect on data 
transfer over LAN environments.  
 
Continental WAN Test: 
 
This test was performed between Indiana University and 
University of California at San Diego. 
Server: Dual Pentium III 731MHz CPU with 512 MB of 
RAM on GNU/Linux 2.4.21-4.ELsmp located at 
University of California at San Diego. 
Client: Sun Fire V880 machine has 8x1.2 GHz 
UltraSPARC III processors with 16 GB of RAM on 
Solaris 9. It has 6x72GB 10K rpm internal HD. 
Bandwidth reported by IPerf: 89.4 Mbps 

 
As we can see from Figure 6 the gain from the 

multiple streams becomes dominant in long-distance data 
transfer. Even though, both smaller and larger size file 
gets the benefits of multiple streams, the overhead 
of fragmentation and coalescence of data is still traceable 
in files which sizes are smaller than 100 MB. 
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Figure 6: Transfer times - Continental WAN settings 



Inter-Continental WAN Test: 
 

We performed this test between Indiana University at 
United State and Cardiff University at United Kingdom. 
Server: Dual Pentium III 1GHz CPU with 1.5 GB of 
RAM on Red Hat Linux 7.2 located at Cardiff 
University. 
Client: Sun Fire V880 machine has 8x1.2 GHz 
UltraSPARC III processors with 16 GB of RAM on 
Solaris 9. It has 6x72GB 10K rpm internal HD at Indiana 
University (Indianapolis). 
Bandwidth reported by IPerf:: 69.1 Mbps 
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Figure 7: Transfer times - Trans-Atlantic settings 
As we can see in Figure 7, the gain from the multiple 

parallel streams becomes dominant in long-distance data 
transfer. Even though, both smaller and larger size file 
gets the benefits of multiple streams, the overhead 
of fragmentation and coalescence of data is still traceable 
in files which sizes are smaller than 100 MB. 

3. Services enriching collaboration within 
the NaradaBrokering substrate 

 
In this section we outline services that we have 

incorporated into the NaradaBrokering substrate to 
facilitate richer collaborative interactions. The section 
elaborates on issues related to time ordering, spacing and 
the reduction of jitters during collaboration. 

3.1 High resolution timing services 
 

To ensure that messages are time-stamped as 
accurately as possible we have also incorporated a high 

resolution timer service into the substrate. This high 
resolution timer works on the Windows, Linux and 
Solaris operating systems; here we have leveraged native 
libraries available on these systems along with the Java 
Native Interface to enable high resolution timers. On 
Solaris and Linux the gettimeofday() function is used to 
retrieve the current time in microseconds. It returns time 
since 1/1/1970; the resolution is hardware dependent and 
is usually around 1 microsecond. The 
QueryPerformanceCounter on Windows is used to 
get number of ticks; the number of ticks in one second is 
3759545, which is around one per 279 nanoseconds. This 
returns ticks from the start of the machine, but does not 
have limitations as in the getTickCount() function, which 
rolls-over every 49 days. Note that this gives us better 
results than relying only on the Java call. The resolution 
of the System.currentTimeMillis()  on Windows is 
around 15 milliseconds and 1 millisecond on Linux.  We 
have measured the resolution of the high resolution timer 
to be around 3~4 microsecond.  

3.2 Time buffering service 
 

Jitter is considered to be one of the most important 
Quality of Service (QoS) measurements within A/V 
collaborative systems. In the case of audio streams, high 
jitter values can cause voice breaks while in the case of 
video streams high jitters may cause degenerations in the 
image quality. In order to overcome the negative effects 
of high jitter, real-time audio/video clients typically have 
a buffer which buffers events up to 200 milliseconds and 
then proceeds to release them. In order to reduce the 
effect of high jitters in large distributed networked 
environment we provide a buffer whose size can be 
customized based on an entity’s needs. 

The Buffering Service within NaradaBrokering stores 
messages and releases them after sorting them according 
to their timestamps. The design of the buffering service 
has incorporated four configurable parameters pertaining 
to the release of time-stamped messages. The first 
criterion is the number of messages in the buffer 
maintained by the buffering service. If the number of 
messages reaches the maximum number of entries, it 
starts to release the time-ordered messages. The second 
criterion is the total size of the messages in the buffer. 
This along with the first criterion enables us to 
circumvent buffer overflows. The third criterion 
corresponds to the time spent by messages within the 
buffer. In some cases, the rate of messages arriving at an 
entity may be too slow and this may cause longer and 
unwanted delays within the buffer. The time-duration 
factor makes sure that the messages are released after a 
maximum specified duration if the first two criteria are 



not met. The final criterion is the release factor of the 
buffer. This typically has a value between 0.5 and 1.0. 
When any of the release criteria is met, it releases at least 
release_factor X total_bufer_size messages.  

3.3 Time differential service 
 

In collaborative systems simply receiving messages in 
time-order may not be enough. An entity may also place 
constraints on the maximum jitter that it is willing to 
tolerate. The Time Differential Service (TDS) provides 
two very important functions. First, it reduces the jitter in 
messages caused by the network. Second, it releases 
messages while preserving the time spacing between 
consecutive messages. Preserving time spacing between 
messages is not an easy task primarily because most 
operating systems do not provide strict real-time 
capabilities. Depending on the operating system, the 
scheduling of processes and threads does not necessarily 
guarantee the CPU for that process or thread after a 
specified interval. For example, using Java on the 
Windows operating system, user-level threads can obtain 
the CPU back only after 10 milliseconds. Based on the 
scheduling configuration of Linux operating system this 
duration can vary from 1 millisecond to 10 milliseconds 
or more.  

One of the main reasons that TDS uses threads rather 
than traditional polling to release events in the queue is 
to avoid high CPU utilizations. In the case of polling, in 
order to release events in the queue their timestamps 
should be checked very frequently. This can lead to very 
high CPU utilizations. Furthermore, since rate at which 
events are generated is not constant: the time spacing 
between consecutive events vary. Using threads ensures 
that CPU utilizations are significantly lower. The reason 
that we have multiple threads instead of one thread to 
release the events in the queue is due to issues related to 
the underlying programming language (Java) and the 
operating system. For e.g. on Linux (Fedora 2), in order 
to check the timestamps every millisecond, we need to 
use at least three inter-leaving threads since each thread 
wakes up after a minimum of 3 milliseconds. On 
Windows, this value is 10 milliseconds; this high value 
may not be able to address jitter reduction adequately. . 

TDS spawns five threads to process messages 
released by the buffering service. Note that TDS itself 
maintains another buffer for processing. Each thread is 
initiated one after another with a specified time 
difference between consecutive initiations. Each thread 
sleeps for a specified time-slice. By interleaving the 
durations at which these threads wake-up TDS can 
operate on the buffer at finer intervals while ensuring 
that CPU utilizations are low. The time-slice interval for 

individual threads impacts CPU utilization. We have 
observed that if the time interval between threads is 1 
millisecond the CPU utilization stays around 5~6%, 
when this interval is decreased to 10 microseconds, it can 
reach about 20~25% on a Linux machine (1.5 GHz CPU 
512 MB RAM). When a thread wakes up it checks to see 
if any messages need to be released, and does so if 
needed. It does so by comparing the message’s 
timestamp, the local clock obtained from the high 
resolution timer and the time at which the last message 
was released. By preserving the time-spacing between 
messages TDS reduces jitter significantly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Experimental setup for TDS measurements 

Figure 8 depicts the experimental setup for our TDS 
related measurements. The transmitter (publisher) 
captures the input-video stream from a camera and 
publishes them using NaradaBrokering messages, which 
are time-stamped appropriately. In the reported results, 
we ignored the first few messages that resulted in spikes 
due to media-player initializations. 
 

Figure 9 contrasts the jitters resulting from the 
experimental setup (1) involving machines at Cardiff and 
Indiana; the graph compares the jitters in the Input to the 
buffering service and the Output of the TDS. Please note 
that in the absence of the buffering service and TDS at a 
client, the jitters experienced at that node would be 

Experiment 2: 
Broker at Indiana (Red Hat Linux 3.2.3-6, 
Intel® Xeon™ CPU 2.40 GHz, 2068240 KB, JVM 
:1.4.2_03), 
 
Clients at Indiana: Red Hat 3.4.2-6.fc3 
Intel® Pentium® 4 CPU 1.5 GHz, 1GB, JVM 
1.4.2_07 

Experiment 1: 
Broker at Cardiff (Red Hat Linux 7.1 2.96-79, 
Pentium III, 1 GHz, 1.5GB RAM, JVM 1.4.1, 
 
Clients at Indiana: Red Hat 3.4.2-6.fc3 
Intel® Pentium® 4 CPU 1.5 GHz, 1GB, JVM 
1.4.2_07 

Broker 

Publisher Subscriber



similar to that corresponding to the input of the buffering 
service.  
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Figure 9: Jitter values comparing Buffering Service 

Input and TDS Output (Trans-Atlantic) 
 

Figure 10 depicts only the jitters as a result of TDS 
for this experimental setup. The results demonstrate the 
significant reduction in jitter as a result of deploying the 
TDS. 
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Figure 10: Jitter values from the TDS Output (Trans-

Atlantic) 
 

We also performed measurements in the same 
experimental setup by varying the time-slice intervals 
associated with the threads spawned by the TDS. Here 
we report results (Figure 11) from our measurements for 
intervals of 1 millisecond and 100 microseconds. The 
results demonstrate that reducing the time intervals also 
reduces the jitter in the messages that are output by the 
TDS.  
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Figure 11: Jitter values from the TDS output for 

different thread intervals (Trans-Atlantic) 
 

We have also performed measurements within a local 
area network to profile the performance of TDS, the 
results reported here correspond to the experimental 
setup (2) depicted in Figure 8. Figure 12 contrasts the 
jitters in the input to the buffering service and the output 
of TDS. Once again, the results demonstrate jitter 
reduction even in cluster settings.  
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Figure 12: Jitter values comparing Buffering Service 

Input and TDS Output (Cluster setting) 
 

In our last experiment we investigated if TDS would 
be able to space messages accurately if they were time 
stamped a few hundred microseconds apart. Here we 
generated messages that were spaced at intervals of 500 
microseconds. Figure 13 depicts these results; the results 
demonstrate that TDS can be deployed in settings where 
messages are spaced a few hundred microseconds apart. 
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Figure 13: Jitter values for spacing messages with a 

fixed 500 microsecond spacing between them 
 

4. Related Work 
 

There are several publish/subscribe systems that have 
been developed. While it is not possible to enumerate all 
of these works, some of these systems include Elvin [5], 
Sienna [6] and Gryphon [7]. An exemplar of 
publish/subscribe in the area of distributed object 
technology is the CORBA Event service [8]. Another 
area of interest is peer-to-peer (P2P) systems. Here, 
examples include the JXTA [9] system, Pastry [10] and 
FLAPPS [11, 12]. A comprehensive discussion of the 
architectural similarities, differences, strengths and 
weaknesses of these systems vis-à-vis capabilities 
available within the NaradaBrokering substrate can be 
found in Ref [4].  Examples of collaborative 
infrastructures include JSDT [13] from Sun 
Microsystems. JSDT provides the basic abstractions of a 
session and also supports full-duplex multi-point 
connections between entities. Additionally, JSDT 
provides a token-based distributed synchronization 
mechanism to facilitate access to shared resources.  
 

5. Conclusions  

 
In this paper we presented results related to the 
substrate’s messaging communications. These 
experiments were performed in inter-continental settings 
involving the US, UK and Australia. We have also 
reported on tests performed using parallel TCP in WAN 
and trans-Atlantic settings. Finally, we also included 
discussions and results pertaining to new collaboration 
related services that were incorporated into the substrate.  
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