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Abstract—Twister2 is an open source big data hosting envi-
ronment designed to process both batch and streaming data at
scale. Twister2 runs jobs in both high performance computing
(HPC) and big data clusters. It provides a cross-platform resource
scheduler to run jobs in diverse environments. Twister2 is
designed with a layered architecture to support various clusters
and big data problems. In this paper, we present the cross
platform resource scheduler of Twister2. We identify required
services and explain implementation details. We also present
job startup delays for single jobs and multiple concurrent jobs
in Kubernetes and OpenMPI clusters. We compare job startup
delays for Twister2 and Spark at a Kubernetes cluster.

Index Terms—HPC, big-data, resource scheduling, Kubernetes,
Slurm, Nomad, OpenMPI

I. INTRODUCTION

Today, there are many big data computing systems. These
systems are generally designed to process either batch or
streaming data. While Spark [1] and Hadoop are primarily
designed for processing batch data, Flink [2] and Heron [3] are
primarily designed for processing streaming data. Twister2 [4]
is designed to process both batch and streaming data at scale.
It is an open source big data hosting environment ! providing
a composable framework for high-performance data analytics.

Recently, there have been a lot of interest in converging
high performance computing (HPC) and big data technolo-
gies [5, 6]. A number of projects have been trying to integrate
big data technologies such as HDFS and Spark into HPC
environments [7, 8]. On the other hand, there have been other
projects that are trying to improve big data technologies by
integrating technologies from HPC, particularly MPI [9, 10].
The layered architecture of Twister2 makes it possible both
running big data applications in HPC clusters and integrating
HPC technologies into the big data applications.

Twister2 proposes a 4-layer approach to big data systems:
1) Resource Scheduling, 2) Communications, 3) Task System,
and 4) Distributed Data. Resource Scheduling layer handles
resource acquisition, thread/process initiation and cleanup.
Communications layer [11] provides MPI and dataflow style
big data communications. Task system layer [12] provides
task scheduling and task execution. Distributed data layer [13]
offers the distributed data structures and parallel operators.

Thttps://github.com/DSC-SPIDAL/twister2

Twister2 provides a polymorphic system by using these layers
to produce components according to the requirements of
the application types. Current big data systems are mostly
designed in a monolithic approach with the above mentioned
layers developed in a single project with tight integration.

In this paper, we present the resource scheduler of Twister2.
It provides the following services:

1) resource acquisition, worker initiation and cleanup

2) worker scaling

3) storage provisioning

4) job package transfer

5) setting up networking
6) logging and monitoring

Since Twister2 targets both HPC and big data environments,
the resource scheduler is responsible for running Twister2
jobs in many different clusters. Currently, we support Ku-
bernetes [14], Slurm [15], Nomad [16] and Standalone MPI.
Initially we also supported Mesos [17], but later on stopped
supporting it. Twister2 resource scheduler is a meta resource
scheduler. It talks to the resource managers in those clusters
and get the requested resources.

Twister2 users write their applications using the high level
APT’s that are provided by the framework, which expose dis-
tributed data structures and operators. Their code runs in any
one of the supported clusters when Twister2 is installed. The
main responsibility of the resource scheduling layer is to run
Twister2 in those clusters. All cluster managers are different.
Some services may not be available in all clusters and some
cluster managers may provide extra services. Therefore, it may
not be possible to provide uniform services in all clusters, but
we try to provide uniform services as much as possible.

Job initialization costs are very important in distributed clus-
ters. Usually big data jobs require initializing many containers
or processes in different nodes. A single container initialization
may take a few seconds. Therefore, it is important to minimize
job initialization costs. We try to minimize job initialization
delays in all supported clusters and provide performance
figures in this paper.

Main contributions of the paper are:

1) Identifying the features of a cross-platform resource

scheduler for big data systems and describing the solu-
tions in popular cluster managers.
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Fig. 1. Twister2 Runtime Architecture

2) Investigating resource scheduling costs in popular cluster
managers.

The rest of the paper is organized as follows; Section II
describes the resource scheduler in detail and Twister2 runtime
architecture. Section III explains Twister2 implementation on
Kubernetes and Section IV explains Twister2 implementation
on MPI based schedulers. We present the experiments con-
ducted to evaluate Twister2 job startup delays in Section V.
We conclude the paper in Section VI.

II. TWISTER2 RESOURCE SCHEDULER

Resource scheduling layer provides many services as out-
lined in the previous section. These services are implemented
in various components in Twister2 runtime. Twister2 runtime
consists of the following entities as shown in Fig. 1:

1) Job submission client
2) Job master

3) Workers

4) Twister2 Dashboard

Resource acquisition, worker initializations, and logging are
implemented in the job submission client. Storage provisioning
and the job package transfer are also mostly implemented in
the client with some parts implemented in workers. Setting up
networking is implemented in workers. Monitoring is imple-
mented in Twister2 Dashboard. Worker scaling and cleaning
up job resources are implemented in the job master.

A. Job Submission Client

Users employ the client program to submit, list and termi-
nate jobs. The client program is installed on the user machine
or on a cluster machine. It packs and uploads the job files,
acquires cluster resources and asks the cluster manager to start
the distributed workers and the job master. Users specify the
number of workers to be started and the types of resources
they will use.

The client program first packs all files related to the job
including configuration files, user executables, user supplied
parameters and environment specific variables. It either up-
loads this job package to a web server/shared file system,
or transfers directly to worker machines/containers. When
workers are started, they download the job package from the

web server/shared file system or use already delivered local
copy.

By default, workers are started in any available cluster
machines. However, users can request workers to be mapped
into machines with special hardware or software. Or, they can
request that workers be mapped to any machines except some.
In addition, they can request all workers in a job to be started
on the same machine or on separate machines. Furthermore,
worker binding is also supported. Workers can be bounded to
the CPUs they are assigned to and they can not be moved
during their lifetime.

B. Workers

Workers are the processes started in a cluster that perform
actual job computations. Each worker has its own resources
like CPU, memory and storage. Each worker has an IP address
and a port number to communicate with other workers in the
job. We also assign a unique sequential ID to each worker in
a job, starting from zero and increasing sequentially to N-1
(where N is the number of workers in a job). We require that
worker IDs are resilient to failures. They will be the same
after relocation or failures. Communication layer uses these
network identifiers to setup channels among the workers in a
job.

Task System schedules the tasks in workers to execute
computations [12]. It creates task execution graphs and assign
tasks to workers. It also establishes communication channels
between tasks (workers). Depending on the job specifications,
it can schedule one or more tasks on each worker. Task system
can use worker location information to provide locality aware
scheduling.

C. Job Master

Job Master manages job related activities during job ex-
ecution such as worker discovery, worker scaling, resource
cleanup, and driver execution. In addition, it implements a
barrier service to synchronize workers when needed.

There are three architectural alternatives for implementing
the job master:

1) A singleton job master: A single job master process
serves all Twister2 jobs in a cluster. It runs as a long
running service. All jobs are tracked by this single job
manager. Main disadvantage of this solution is that it puts
too much pressure on a single process to manage all jobs.
It may introduce scalability problems.

2) A separate job master for each Job: A separate job
master process is initiated for each job. This uses more
cluster resources, but provides better job isolation.

3) Job master in the client: When users submit a job,
submitting client runs the job master as a thread. This
thread has to run until the job completes. One disadvan-
tage of this solution is that the client has to run inside
the cluster, since all workers need to connect to the Job
Master. Another disadvantage is that this solution is not
really suitable for long running jobs.



Flink [2] implements the job master as a single long running
process as in the option 1. Heron [3] and Hadoop MapReduce
v2 [18] implements the option 2. Spark [1] implements both
the options 2 and 3. We designed the job master as a separate
process for each job. It can be initiated as a separate process
on the cluster or in the submitting client. So, it covers both the
options 2 and 3. Users specify the location of the job master
in the configuration files when submitting the job.

D. Twister2 Dashboard

Dashboard runs in a web server. It is a singleton long
running service. It presents the job related data to users. Users
monitor their jobs through Dashboard. The job masters collect
status data from workers and transfer them to Dashboard.
Another option for users to monitor their job status is to enable
client logging and checking the log files from client machines.

E. Storage Provisioning

Twister2 workers have the following four types of storage

options:

1) Memory volume: This is a memory based file system.
Its primary purpose is to provide high performance data
sharing among the workers on the same pod in Kuber-
netes clusters.

2) Local disk based volatile volume: This is a volume
based on the physical disk of the machine running the
worker. The data on this volume will be deleted after
the job completion. Therefore, only the intermediate
data during the job computation should be saved to this
volume.

3) Persistent storage: Currently we support an NFS based
persistent storage volume. All workers access the same
shared NFS drive. All saved data to this volume will live
there after the job completion. Workers can output the
results of the computations to this volume. They can also
save log files to this drive by enabling persistent logging.

4) HDFS: Twister2 workers can access HDFS files installed
on the cluster. They can read input data from HDFS
files and write output data to them. Task system can also
perform locality aware scheduling based on data locality
of HDFS files.

III. KUBERNETES IMPLEMENTATION

Kubernetes [14] is a popular open source container orches-
tration system developed by Google. It is designed to manage
containers for both long running high priority applications and
batch jobs on the same cluster. It deploys applications in nodes,
scales up and down the deployments, provisions storage,
provides security services, lets users monitor applications, etc.
Its popularity and feature set attracted the attention of many
big data systems. All popular big data systems such as Spark 2
and Flink 3 are already ported to Kubernetes.

Zhttps://spark.apache.org/docs/latest/running-on-kubernetes.html
3https://ci.apache.org/projects/flink/flink-docs-
stable/ops/deployment/kubernetes.html

A. Controller Selection

Kubernetes runs applications in a cluster as pods. Pods can
be considered as light weight virtual machines. Each pod is
assigned dedicated CPU, memory and storage resources. Each
pod is also assigned a unique IP for networking. Pods run
applications as containers. Each pod runs one or multiple
containers. Pods on the same node are isolated from the
others. Since many applications in the cloud require multiple
concurrent instances, Kubernetes provides controllers to run a
group of pods in parallel. Controllers initiate, scale up/down,
update and clean up pods.

When implementing Twister2 on Kubernetes, first we need
to decide the type of controller we will be using to man-
age workers and the job master. Kubernetes provides many
controllers to manage pods. Possible alternatives are Jobs,
Deployments, StatefulSets or plain pods *.

Job controller is designed to manage jobs that are supposed
to complete after finishing its computation. Since we would
like to support both batch and long-running streaming jobs,
we decided not to use the Job controller. Deployments and
StatefulSets are similar controllers that are designed to sup-
port long running applications. StatefulSets provide the extra
services of unique ordinal indexes. In addition, StatefulSets
support persistent storage. These features are important for
us to implement fault tolerance. Therefore, we decided to
implement Twister2 jobs with StatefulSets.

We create two StatefulSet controllers for each job. First
one manages the job master and the second one manages
the workers. We create a service with cluster local IP address
for the StatefulSet controller of the job master. Workers can
discover the job master by using this service. The StatefulSet
controller of the workers uses a headless service by default.
They only use a service with an IP address when they want to
provide services to external entities. In this case, we employ
NodePort service.

Since StatefulSets are designed to run long running appli-
cations, they expect pods to run continually. If a StatefulSet
pod completes and exits, that pod is restarted automatically.
Therefore, we need to monitor the status of worker pods and
terminate them explicitly. Job master handles this task. When
workers finish computations, they send a message to the job
master and wait for the job master to delete their pods. Job
master deletes all worker pods and its own pod when the
Twister2 job completes.

Spark works with plain pods. When a job is submitted, a
pod is created for Spark driver. The driver creates executor
pods as plain pods. It deletes the executor pods when the job
completes. Flink uses Kubernetes Deployment controller to
start Flink Job Manager and Task Managers.

B. Worker Implementation

There are a number of architectural choices when imple-
menting Twister2 workers in pods:

“https://kubernetes.io/docs/concepts



1) One Worker One Pod: Exactly one worker runs in
every container and every container runs in a separate
pod. This is the recommended approach for long running
containerized applications in Kubernetes.

2) One Worker One Container: Exactly one worker runs in
every container, but multiple containers may run in a pod.
This helps to get better performance for data exchanges
among the workers on the same pod. They can share
memory based volumes and physical disks on the same
node. Pod failures may affect all workers on the same
pod.

3) One Worker One Process: Each worker runs in a
separate process and multiple workers may run in each
container. This approach does not provide resource iso-
lation among workers on the same pod. It also leaves
process management to Twister2 runtime.

We take the second approach and let the user specify the
number of workers in pods. This option also covers the first
one, when the user sets the number of workers on the pods
to 1. However, when we execute OpenMPI jobs, then we go
with the third option. We start a single container in each pod,
and OpenMPI starts MPI worker processes in those containers.
OpenMPI initiates the worker processes based on the number
of workers specified for pods. OpenMPI performs process
management in this case.

Before starting a worker on a pod, we perform a number of
initialization steps. First, we get the job package and read the
configuration files. We setup logging. We calculate the worker
ID by using the unique pod indexes and container indexes. We
setup volatile and persistent storage if they are requested. We
register the worker with the Job Master and start the worker
thread.

C. OpenMPI Support

OpenMPI requires password-free-ssh enabled among the
workers in a job and the hostfile generated on the mpi
master pod. To enable password-free SSH, an ssh key pair is
distributed to all pods in the job by using Kubernetes Secret
object. This pair is mounted to the secret volume on each pod.
An initialization script starts OpenSSH on each pod and uses
this key pair to let other pods to have password-free ssh access.
Users need to generate an ssh key pair and create a Secret
object on Kubernetes master before submitting OpenMPI jobs.
We provide instructions and a template for that. Each user
needs to create only one Secret object and it can be reused by
all subsequent job submissions.

First worker in the StatefulSet acts as the MPI master. It
first watches other pods to start and get their IP addresses.
It saves these IP addresses to the hostfile. Then, it executes
mpirun to start Twister2 workers.

D. Uploader Implementation
We currently support two types of job package transfer to
workers:

1) HTTP Uploader: The client program uploads the job
package to a web server running in the cluster or to S3

storage in the case of AWS. A script in worker pods
download the job package using HTTP with wget utility.
When there are multiple workers on a pod, only the
first worker downloads and extracts the job package. We
designed a sample web server pod to run in the cluster
as the uploader server.

Direct Uploader: The client program uses “kubectl cp”
command to upload the job package to each pod in the
job. The client program watches each pod in the job and
gets the pod status events. When the first container in
a pod becomes “Running”, it uploads the job package
directly to that pod. This method does not require running
a separate web server or accessing S3 storage, however it
is not scalable. The client needs to upload the job package
to all pods separately. This should only be used in jobs
with fewer workers.
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IV. MPI BASED SCHEDULERS: SLURM, NOMAD,
STANDALONE

MPI implementations handle worker process initialization
and setting up networking among workers in distributed
clusters. MPI is generally used together with Network File
System, so all nodes in the cluster have the same shared file
system. There is no need to transfer the job package to worker
nodes. Instead, the submitting client puts the job package to
a directory on NFS. MPI assigns a unique rank for each MPI
process starting from O and increasing sequentially. We use
this rank as the worker ID in Twister2 jobs.

There is no need to run Job Master in MPI clusters unless
a Twister2 driver will be running in the job. If the job master
is used, it can run either in the submitting client or at the
first worker. When it runs at the first worker, the first worker
becomes the job master and we start an extra worker in the
job.

Twister2 currently supports bare metal MPI clusters, Slurm
and Nomad schedulers. We construct the proper command for
each scheduler and submit it for execution. They start Twister2
workers and those workers execute user provided codes. Log
messages are transferred to the job submitting client.

V. PERFORMANCE TESTS

We measured Twister2 job startup delays in Kubernetes
and bare metal OpenMPI cluster. We installed a Kubernetes
cluster at AWS using Kubernetes Operations (kops) tool and
installed an MPI cluster at AWS using AWS ParallelCluster
tool. Compute nodes were running on a machine instance of
type c¢5.9xlarge that has 36 cores, 72GiB of RAM and 10Gbps
of network bandwidth. There were 30 compute nodes on each
cluster. Each Twister2 worker is assigned 1 CPU core and
256MB of memory with no hard drive.

We measured job startup delays for single jobs and multiple
concurrent jobs. Fig. 2 shows delays to start up single Twister2
jobs. OpenMPI starts up jobs much faster. Kubernetes is
slower since it starts a container for each worker. Container
initialization usually takes much longer. OpenMPI just starts
processes in remote nodes using password-free-ssh and sets
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Fig. 3. 64 concurrent job startup delays each with 16 workers for Twister2

up the networking. On the other hand, Kubernetes provides
CPU and memory isolation and many other services.

It takes around 4 seconds to start up a job with one worker
in Kubernetes. Since we have 30 nodes in the cluster, it takes
around 5 seconds to start up 32 workers. One worker is started
on each node except two nodes. Starting a job with 1024
workers takes 55 seconds in Kubernetes. 34 or 35 workers
started on each node. It takes an extra 1.5 seconds to start up
a worker on a node. However, starting an OpenMPI job with
1024 workers takes only 7 seconds.

Fig. 3 shows delays to start up 64 concurrent Twister2 jobs
each with 16 workers. We submit 64 jobs concurrently using
a 16-core machine. We measure job startup delays for each
job. Delays in the figure shows job starting delays for each
job sorted from fastest to slowest. The first job is started in
7.5 seconds by OpenMPI and in 20 seconds by Kubernetes.
Kubernetes is much slower compared to OpenMPI. In total, it
takes 138 seconds to start up all 64 jobs on Kubernetes and
28 seconds on OpenMPL.

We also measured job startup delays for Spark on Kuber-
netes for single jobs and multiple concurrent jobs. Comparison
of Twister2 and Spark single job startup delays is shown
in Fig. 4. Spark creates jobs in two steps. When a job is
submitted, it first creates a driver pod in the cluster. This driver
pod creates executor pods. Therefore, starting a single job even
with one worker takes 13 seconds. However, it has better
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scalability compared to Twister2 in terms of startup costs.
While Twister2 starts up jobs with fewer than 256 workers
faster, Spark starts up jobs with more than 256 workers faster.
This is because Spark creates plain pods while Twister2 uses
StatefulSet controller. Kubernetes initiates plain pods in scale
much faster than StatefulSet pods.

Comparison of Twister2 and Spark multiple concurrent job
startup delays is shown in Fig. 5. Similar to single job startup
case, Twister2 starts up initial jobs faster, but Spark performs
better on scale.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Twister2 cross platform resource
scheduler. We identified provided services and explained im-
plementations details. We explored job startup delays for sin-
gle jobs and multiple concurrent jobs. We compared OpenMPI
and Kubernetes startup delays. The results show that OpenMPI
can start up jobs much faster particularly the jobs with high
number of workers. While OpenMPI can start a job with 1024
workers in 7 seconds, Kubernetes starts it in 55 seconds.

We also compared job startup delays for Twister2 and Spark.
While Twister2 starts up jobs with less than 256 workers faster,
Spark starts up jobs with higher number of workers faster.

We are working on implementing fault tolerance for
Twister2. We have implemented worker and job master rejoins
after failures. We are working on implementing fault tolerance



in all Twister2 layers to make the jobs fault tolerant. We
are also working on to compare the performance of parallel
computations in Kubernetes and OpenMPI environments.
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