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Preface

This volume contains a selection of revised papers presented at Bench 2019: the
Second BenchCouncil International Symposium, held in November, 2019, in Denver,
CO, USA. To advance the state of the art of AI and other benchmarking, the
International Open Benchmark Council (BenchCouncil) has three fundamental
responsibilities. First, it releases influential benchmarks and index to prevent from
chaotic competitions within AI, computer, finance, education, medical, and other
technological industries. Second, it encourages data-driven, intelligence-inspired, and
benchmark-based quantitative approaches to tackling multi-disciplinary challenges.
Finally but not least, BenchCouncil incubates benchmark projects and hosts the
BenchCouncil benchmark projects, and further encourages reliable and reproducible
research using the BenchCouncil benchmark projects or incubator benchmark projects.

This year, BenchCouncil released four top level AI benchmarking projects,
including AIBench – a scenario-distilling benchmarking methodology and an AI
benchmark suite, HPC AI500 – a benchmark suite for HPC AI systems, Edge
AIBench – an end-to-end edge AI benchmark Suite, and AIoTBench – an AI
benchmark suite for benchmarking mobile and embedded device intelligence. Using
AIBench as baseline, BenchCouncil hosted the 2019 AI System and Algorithm
Challenge (http://www.benchcouncil.org/competitions.html) and organized the 2019
BenchCouncil International Symposium on Benchmarking, Measuring and Optimizing
(Bench 2019) (http://www.benchcouncil.org/bench19/index.html). The 2019 AI
Challenge consists of four challenge tracks: International AI System Challenge based
on RISC-V, International AI System Challenge based on Cambricon Chip,
International AI System Challenge based on X86 Platform, and International 3D Face
Recognition Algorithm Challenge. The Bench 2019 symposium solicits papers that
address hot topic issues in benchmarking, measuring, and optimizing systems. This
book includes 31 regular papers from the Bench 2019 conference, which were selected
from 79 submissions, yielding an acceptance rate of 39%. The tutorials about AI
benchmarks for datacenter (AIBench), edge (Edge AIBench), and HPC (HPC AI500)
were presented at the conference, but are not included in this book.

The call for papers for Bench 2019 attracted a number of high-quality submissions.
During a rigorous review process, in which each paper was reviewed by at least three
experts. In addition, we invited five keynote speakers, including Dr. Dan Stanzione
from The University of Texas at Austin; Prof. Dhabaleswar K. (DK) Panda from The
Ohio State University; Mr. Gilad Shainer from Mellanox; Prof. Geoffrey Fox from
Indiana University; and Prof. Felix Wolf from TU Darmstadt in Germany. Bench 2019
also hosted five invited talks, including Dr. Zheng Cao from Alibaba; Dr. Dong Li from
ICT, Chinese Academy of Sciences, and Seaway Technology Co., LTD.; Prof. Bo Wu
from Colorado School of Mines; Dr. Weijia Xu from The University of Texas at
Austin; and Dr. Gabriel Antoniu from Inria.

http://www.benchcouncil.org/competitions.html
http://www.benchcouncil.org/bench19/index.html


During the conference, BenchCouncil sponsored two awards to recognize important
contributions in the area of benchmarking, measuring, and optimizing. The
BenchCouncil Achievement Award recognizes a senior member who has made
long-term contributions to benchmarking, measuring, and optimizing. Prof. Dr. Tony
Hey, the Chief Data Scientist at Rutherford Appleton Laboratory STFC, was named the
2019 recipient of the International Open Benchmark Council (BenchCouncil)
Achievement Award. The BenchCouncil Best Paper Award is recognizes a paper
presented at the Bench conferences, which demonstrates potential impact on research
and practice in benchmarking, measuring, and optimizing. Khaled Ibrahim, Samuel
Williams, and Leonid Oliker from Lawrence Berkeley National Laboratory received
the Bench 2019 Best Paper Award for their paper: “Performance Analysis of GPU
Programming Models using the Roofline Scaling Trajectories.” In addition,
13 challenge teams from Georgia Institute of Technology, The Ohio State University,
Google, etc., were honored with the 2019 AI Challenge Awards.

We are very grateful to the efforts of all authors related to writing, revising, and
presenting their papers at Bench 2019 conference. We appreciate the indispensable
support of the Bench 2019 Program Committee and thank them for their efforts and
contributions in maintaining the high standards of the Bench 2019 symposium.

February 2020 Wanling Gao
Jianfeng Zhan
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BenchCouncil Achievement Award

Tony Hey

Rutherford Appleton Laboratory STFC

Tony Hey has a doctorate in particle physics from the
University of Oxford. After a career in physics that inclu-
ded research positions at Caltech, MIT and CERN, and a
professorship at the University of Southampton, he became
interested in parallel computing and moved into computer
science. His group was one of the first to build and explore
the development of parallel software for message-passing
distributed memory computers. He was one of the authors
of the first draft of the MPI message-passing standard. Tony
led the UK eScience initiative in 2001 before joining
Microsoft in 2005 as Vice-President for Technical Com-
puting. He returned to work in the UK in 2015 as Chief
Data Scientist at the Rutherford Appleton Laboratory and
leads the ‘Scientific Machine Learning’ group. Tony is a
fellow of the Association for Computing Machinery, the
American Association for the Advancement of Science, and
the Royal Academy of Engineering.

Prof. Hey was honored for foundational contributions
to distributed memory parallel machines, message-passing
systems, and AI for sciences. Prof. Hey devised the first
parallel benchmark suite – the ‘Genesis’ benchmarks – for
performance evaluation of distributed memory parallel
machines, and recently launches a large-scale data science
benchmark.



Benchmarking Supercomputers
in the Post-Moore Era

Dan Stanzione

The University of Texas at Austin

Abstract: In this talk, we will cover the increasing gaps between headline
performance and application performance on Frontera and the last several
generations of TACC supercomputers. We will also discuss the challenges of
developing a new benchmark suite for the upcoming Leadership-Class
Computing Facility, and solicit community input on capability benchmarks.

Bio: Dr. Dan Stanzione, Associate Vice President for
Research at The University of Texas at Austin since 2018
and Executive Director of the Texas Advanced Computing
Center (TACC) since 2014, is a nationally recognized
leader in high performance computing. He is the principal
investigator (PI) for a National Science Foundation
(NSF) grant to deploy Frontera, which is the fastest
supercomputer at any U.S. university. Stanzione is also the
PI of TACC’s Stampede2 and Wrangler systems, super-
computers for high performance computing and for
data-focused applications, respectively. For six years he
was co-PI of CyVerse, a large-scale NSF life sciences
cyberinfrastructure. Stanzione was also a co-PI for TACC’s
Ranger and Lonestar supercomputers, large-scale NSF
systems previously deployed at UT Austin. Stanzione
received his bachelor’s degree in electrical engineering and
his master’s degree and doctorate in computer engineering
from Clemson University.



Benchmarks and Middleware for Designing
Convergent HPC, Big Data and Deep Learning

Software Stacks for Exascale Systems

Dhabaleswar K. (DK) Panda

The Ohio State University

Abstract: This talk will focus on challenges in designing benchmarks and
middleware for convergent HPC, Deep Learning, and Big Data Analytics
Software stacks for Exascale systems with millions of processors and acceler-
ators. For the HPC domain, we will discuss about the OSU Micro-Benchmarks
(OMB) Suite and associated middleware for designing runtime environments for
MPI+X programming models by taking into account support for multi-core
systems (x86, OpenPOWER, and ARM), high-performance networks, and
GPGPUs (including GPUDirect RDMA). Features and sample performance
numbers from the MVAPICH2 libraries (http://mvapich.cse.ohio-state.edu) will
be presented. An overview of RDMA-based designs for Hadoop (HDFS,
MapReduce, RPC, and HBase), Spark, and Memcached, together with the OSU
HiBD benchmarks (http://hibd.cse.ohio-state.edu) will be presented for Big Data
Analytics. For the Deep Learning domain, we will focus on a set of different
benchmarks and profiling tools to deliver scalable DNN training with Horovod
and TensorFlow using MVAPICH2-GDR MPI library (http://hidl.cse.ohio-state.
edu).

Bio: Dhabaleswar K. (DK) Panda is a Professor and
University Distinguished Scholar of Computer Science and
Engineering at The Ohio State University. He has pub-
lished over 450 papers in the area of high-end computing
and networking. The MVAPICH2 (High Performance MPI
and PGAS over InfiniBand, Omni-Path, iWARP, and
RoCE) libraries, designed and developed by his research
group (http://mvapich.cse.ohio-state.edu), are currently
being used by more than 3,025 organizations worldwide (in
89 countries). More than 600,000 downloads of this soft-
ware have taken place from the project’s site. This software
is empowering several InfiniBand clusters (including the
3rd, 5th, 8th, 15th, 16th, 19th, and 31st ranked ones) in the
TOP500 list. The RDMA packages for Apache Spark,
Apache Hadoop, and Memcached together with OSU
HiBD benchmarks from his group (http://hibd.cse.ohio-
state.edu) are also publicly available. These libraries are

http://mvapich.cse.ohio-state.edu
http://hibd.cse.ohio-state.edu
http://hidl.cse.ohio-state.edu
http://hidl.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
http://hibd.cse.ohio-state.edu
http://hibd.cse.ohio-state.edu


currently being used by more than 315 organizations in 35
countries. More than 31,300 downloads of these libraries
have taken place. High-performance and scalable versions
of the Caffe and TensorFlow framework are available from
https://hidl.cse.ohio-state.edu. Prof. Panda is an IEEE
Fellow. More details about Prof. Panda are available at
http://www.cse.ohio-state.edu/ panda.

xiv D. K. (DK) Panda

https://hidl.cse.ohio-state.edu
http://www.cse.ohio-state.edu/


InfiniBand In-Network Computing Technology
for Scalable HPC/AI

Gilad Shainer

Mellanox

Abstract: The ever-increasing demands for higher computation performance
drive the creation of new datacenter accelerators and processing units. Previ-
ously CPUs and GPUs were the main sources for compute power. The expo-
nential increase in data volume and in problems complexity, drove the creation
of a new processing unit the I/O processing unit or IPU. IPUs are interconnect
elements that include In-Network Computing engines, engines that can partic-
ipate in the application run time, and analyze application data as it being
transferred within the data center, or at the edge. The combination of CPUs,
GPUs, and IPUs, creates the next generation of data center and edge computing
architectures. The first generations of IPUs are already in use in leading HPC
and Deep learning data centers, have been integrated into multiple MPI
frameworks, NVIDIA NCCL, Charm++, and others, and have demonstrated
accelerate performance by nearly 10X.

Bio: Gilad Shainer serves as Mellanox’s Senior Vice
President of Marketing, focusing on high-performance
computing. Mr. Shainer joined Mellanox in 2001 as a
design engineer and later served in senior marketing man-
agement roles since 2005. Mr. Shainer serves as the
chairman of the HPC-AI Advisory Council organization, he
serves as the president of UCF and CCIX consortiums, a
board member in the OpenCAPI and OpenFabrics organi-
zations, a member of IBTA and contributor to the PCISIG
PCI-X and PCIe specifications. Mr. Shainer holds multiple
patents in the field of high-speed networking. He is a
recipient of 2015 R&D100 award for his contribution to the
CORE-Direct In-Network Computing technology and the
2019 R&D100 award for his contribution to the UCX
technology. Gilad Shainer holds MSc degree and BSc
degree in Electrical Engineering from the Technion Insti-
tute of Technology in Israel.



Benchmarking Perspectives on Emerging HPC
Workloads

Geoffrey Fox

Indiana University

Bio: Geoffrey Charles Fox (https://www.engineering.
indiana.edu/, http://www.dsc.soic.indiana.edu/, gcf@indi-
ana.edu). Fox received a PhD in Theoretical Physics from
Cambridge University where he was Senior Wrangler. He is
now a distinguished Professor of Engineering, Computing,
and Physics at Indiana University where he is director of the
Digital Science Center. He previously held positions at
Caltech, Syracuse University, and Florida State University
after being a postdoc at the Institute for Advanced Study at
Princeton, Lawrence Berkeley Laboratory, and Peterhouse
College Cambridge. He has supervised the PhD of 73
students and published around 1,300 papers (over 500 with
at least 10 citations) in physics and computing with an
hindex of 78 and over 35,000 citations. He is a Fellow of
APS (Physics) and ACM (Computing) and works on the
interdisciplinary interface between computing and applica-
tions. Current work is in Biology, Pathology, Sensor Clouds
and Ice-sheet Science, Image processing, Deep Learning,
and Particle Physics. His architecture work is built around
High-performance Computing enhanced Software Defined
Big Data Systems on Clouds and Clusters. The analytics
focuses on scalable parallel machine learning. He is an
expert on streaming data and robot-cloud interactions. He is
involved in several projects to enhance the capabilities of
Minority Serving Institutions. He has experience in online
education and its use in MOOCs for areas like Data and
Computational Science.

https://www.engineering.indiana.edu/
https://www.engineering.indiana.edu/
http://www.dsc.soic.indiana.edu/


Lightweight Requirements Engineering
for Exascale Co-design

Felix Wolf

Department of Computer Science of TU Darmstadt, Germany

Abstract: Given the tremendous cost of an exascale system, its architecture
must match the requirements of the applications it is supposed to run as pre-
cisely as possible. Conversely, applications must be designed such that building
an appropriate system becomes feasible, motivating the idea of co-design. In this
process, a fundamental aspect of the application requirements are the rates at
which the demands for different resources grow as a code is scaled to a larger
machine. However, if the anticipated scale exceeds the size of available plat-
forms this demand can no longer be measured. This is clearly the case when
designing an exascale system. Moreover, creating analytical models to predict
these requirements is often too laborious especially when the number and
complexity of target applications is high. In this paper, we show how automated
performance modeling can be used to quickly predict application requirements
for varying scales and problem sizes.

Bio: Felix Wolf is Full Professor at the Department of
Computer Science of TU Darmstadt in Germany, where he
leads the Laboratory for Parallel Programming. He works
on methods, tools, and algorithms that support the devel-
opment and deployment of parallel software systems in
various stages of their life cycle. Prof. Wolf received his
PhD degree from RWTH Aachen University in 2003. After
working more than two years as a postdoc at the Innovative
Computing Laboratory of the University of Tennessee, he
was appointed research group leader at Jülich Supercom-
puting Centre. Between 2009 and 2015, he was head of the
Laboratory for Parallel Programming at the German
Research School for Simulation Sciences in Aachen and
Full Professor at RWTH Aachen University. Prof. Wolf has
published more than a hundred refereed articles on parallel
computing, several of which have received awards.



FloraBench: An End-to-End Application
Benchmark Suite for Datacenter

Zheng Cao

Alibaba

Abstract: The topic is FloraBench: an end-to-end application benchmark suite
for datacenter. This talk abstracts the realistic application scenario of Alibaba
and provides an application benchmark for datacenter computing – FloraBench.
This Benchmark aims to identify the characteristics and bottlenecks of business
E-commerce applications, and further optimize the performance of large-scale
clusters.

Bio: Dr. Zheng Cao is a Senior Staff Engineer of the
Alibaba Group and leads the architecture team of Alibaba
Infrastructure Service BU. He received his PhD from ICT,
Chinese Academy of Sciences. Before joining Alibaba
Group, he served as a Professor at the Institute of
Computing Technology, CAS and was one of the core
architects of Dawning 5000, Dawning 6000 (ranked the
2nd in the TOP500 list), and Dawning 7000 supercomputer
systems. His team is working on the Alibaba’s workload
analysis, software-hardware codesign, and datacenter
architecture. He is a member of Advanced Computing
Expert Committee, and Blockchain Expert Committee of
China Computer Federation.



Towards Benchmarking AIOT Device Based
on MCU

Dong Li

ICT, Chinese Academy of Sciences Seaway Technology Co., Ltd.

Abstract: The topic is “Towards Benchmarking AIOT Device based on MCU”.
This talk introduces MCU-based AIOT device and discusses the benchmarking
requirements and goals. Seaway RTOS for AIOT devices provide KB-level
Seaway RTOS kernel, KB-level runtime, and KB-level EdgeStack, and allow
only one application for the whole end-Edge-cloud system.

Bio: Dr. Dong Li is an Associate Professor at Wireless
Sensor Network Laboratory, ICT, Chinese Academy of
Sciences and Seaway Technology Co., Ltd.



Harmonizing High-Level Abstraction and High
Performance for Graph Mining

Bo Wu

Colorado School of Mines

Abstract: Graph mining algorithms that aim at identifying structural patterns in
graphs are typically more complex than graph computation algorithms such as
breadth first search. Researchers have implemented several systems with
high-level and flexible interfaces customized for tackling graph mining prob-
lems. However, we found that for triangle counting, one of the simplest graph
mining problems, such systems can be several times slower than a
single-threaded implementation of a straightforward algorithm. In this talk, I will
reveal the root causes of the severe inefficiency of state-of-the-art graph mining
systems and the challenges to address the performance problems. I will describe
AutoMine, a system we developed to automatically generate both specialized
algorithms and high-performance low-level code for arbitrary patterns.

Bio: Bo Wu is an Associate Professor in the Department of
Computer Science at Colorado School of Mines. His
research focuses on leveraging compiler and runtime
techniques to build efficient software systems for
large-scale graph analytics and machine learning applica-
tions on heterogeneous platforms. He received the Best
Paper Award at SC’15, an NSF CRII Award, an NSF Early
Career Award, and an NSF SPX Award.



Deep Learning on HPC: Performance Factors
and Lessons Learned

Weijia Xu

The University of Texas at Austin

Abstract: In this talk, we report several ongoing efforts for deploying and
running deep learning applications using high performance computing clusters
at Texas Advanced Computing Center. From both lessons learned through
practices and designed experiments, we discuss several factors affecting the deep
learning performances, both accuracy and execution time, at various stages of
analysis pipeline from low level data storage to high level deep learning
framework. The talk will end with discussions and future outlooks on devel-
opment, deployment, and benchmark deep learning applications at scale.

Bio: Dr. Weijia Xu is a research scientist and lead the
Scalable Computational Intelligence group at Texas
Advanced Computing Center at The University of Texas at
Austin. He received his PhD from Computer Science
Department at UT Austin and has been an experienced data
scientist. Dr. Xu’s main research interest is to enable
data-driven discoveries through developing new computa-
tional methods and applications that facilitate the
data-to-knowledge transfer process. Dr. Xu leads the group
that supports large scale data driven analysis and machine
learning applications using computing resources at TACC.
His projects have been funded through various federal and
state agencies including NIH, NSF, City of Austin, and
USDA. He has served in Program Committees for several
workshops and conferences in Big Data, Cloud Computing,
and HPC areas.



Towards a Methodology for Benchmarking
Edge Processing Frameworks

Gabriel Antoniu

Inria

Abstract: With the spectacular growth of the Internet of Things, edge pro-
cessing emerged as a relevant means to offload data processing and analytics
from centralized Clouds to the devices that serve as data sources (often provided
with some processing capabilities). While a large plethora of frameworks for
edge processing were recently proposed, the distributed systems community has
no clear means today to discriminate between them. Some preliminary surveys
exist, focusing on a feature-based comparison. We claim that a step further is
needed, to enable a performance-based comparison. To this purpose, the defi-
nition of a benchmark is a necessity. In this talk, we make this step by discussing
the definition of a methodology for benchmarking Edge processing frameworks.

Bio: Dr. Gabriel Antoniu is a Senior Research Scientist at
Inria, Rennes. He leads the KerData research team, focus-
ing on storage and I/O management for Big Data process-
ing on scalable infrastructures (clouds, HPC systems). His
main current interests regard HPC-Big Data convergence
for data storage and processing aspects. He currently serves
as Vice Executive Director of JLESC – Joint Inria-Illinois-
ANL-BSC-JSC-RIKEN/AICS Laboratory for Extreme-
Scale Computing on behalf of Inria. He received his PhD
degree in Computer Science in 2001 from ENS Lyon. He
leads several international projects in partnership with
Microsoft Research, IBM, Argonne National Lab, the
University of Illinois at Urbana Champaign, and Huawei.
He served as program chair for the IEEE Cluster conference
in 2014 and 2017 and regularly serves as a Program
Committee member of major conferences in the area of
HPC, Cloud Computing and Big Data (SC, HPDC,
CCGRID, Cluster, Big Data, etc.). He has acted as advisor
for 19 PhD theses and has co-authored over 140 interna-
tional publications in the aforementioned areas.
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Abstract. Performance analysis is a daunting job, especially for the
rapid-evolving accelerator technologies. The Roofline Scaling Trajecto-
ries technique aims at diagnosing various performance bottlenecks for
GPU programming models through the visually intuitive Roofline plots.
In this work, we introduce the use of the Roofline Scaling Trajectories to
capture major performance bottlenecks on NVIDIA Volta GPU architec-
tures, such as warp efficiency, occupancy, and locality. Using this analysis
technique, we explain the performance characteristics of the NAS Parallel
Benchmarks (NPB) written with two programming models, CUDA and
OpenACC. We present the influence of the programming model on the
performance and scaling characteristics. We also leverage the insights of
the Roofline Scaling Trajectory analysis to tune some of the NAS Parallel
Benchmarks, achieving up to 2× speedup.

Keywords: Roofline model · Performance analysis · Parallel scaling ·
GPU · OpenACC · CUDA

1 Introduction

Accelerator technologies are nowadays prevalent in HPC computing. The top
two machines in the top500 list [17] of June 2019 are based on NVIDIA Volta
GPUs. The trend of using accelerator stems from the difficulty to improve the
performance of general-purpose cores based on CMOS technologies. The intro-
duction of GPU to general-purpose computing, although almost being more than
a decade old, is still a complex endeavor for many application developers. Part of
the difficulty is due to the architectural model, which impact how data should be
layed out for optimal performance, the memory consistency model which affects
handling data dependencies, the control-flow with its impact on lock-step exe-
cution, and the tradeoffs between doing recomputation or loading precomputed
data.

Performance analysis for accelerator architectures is a daunting process. Per-
formance tools, such as NVIDIA nvprof or Intel Vtune, could provide access to
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numerous hardware events capturing various events that could correlate to the
observed performance. They may always not provide a notion of performance
optimality, needed to assess whether further optimizations are needed.

For GPUs, metrics such as warp efficiency and occupancy are known to influ-
ence the observed performance, but there no agreed-upon method to assess the
dependency of the observed performance on these metrics, or how impactful are
these metrics on performance.

To this end, this paper introduces the use of Roofline Scaling Trajectories [10]
to analyze the performance of GPU architectures. Specifically, we show how the
Roofline Scaling Trajectory method stresses various architectural features as we
change the number of GPU SMs involved in the computations. As such, these
trajectories reveal the efficiency of GPU warp execution, the level of occupancy
while changing the GPU SM count, and the efficiency in handling the temporal
locality of the shared last level cache. The scaling trajectories shows the impact
of the above inefficiencies against the GPU performance limits that is a func-
tion of the arithmetic intensity of the algorithm. We perform the analysis for
several NAS Parallel Benchmarks [2] ported to the GPU architecture using the
CUDA programming model and the pragma-based OpenACC model.

We proposed the use of the Roofline Scaling Trajectories to reveal the root
cause of various performance inefficiencies. We show how to visually associate
the scaling trajectories to various sorts of warp inefficiencies, including those due
to branch divergence and those related to latency divergence, and occupancy
degradation due to the lack of thread block parallelism. Moreover, the Roofline
Scaling Trajectories has been shown [10] to reveal cache thrashing effects and its
impact on temporal locality as we scale applications. Identifying the performance
bottleneck of applications, we leveraged these insights in tuning the performance
of two of the NAS benchmarks, achieving up to a 2× improvement.

The rest of this paper is organized as follows. Section 2 presents the motiva-
tion of this study. We summarize the performance influencing factors for GPU
programming in Sect. 3. The programming model used for offloading computa-
tion to GPU accelerator and experimental setup are presented in Sect. 4 and
Sect. 6, respectively. We introduce our novel performance analysis technique
based on scaling trajectories in Sect. 5. We show the effectiveness of the pro-
posed analysis technique in studying various NPB in Sect. 7, and our tuning
efforts based on the introduced analysis in Sect. 8. We finally present related
work in Sect. 9 and conclude in Sect. 10.

2 Motivation

The performance of two GPU ports of NPB 3.3, detailed in Sect. 6.1, is shown
in Fig. 1. The first is based on OpenACC directives [15], and the other is based
on the CUDA programming model [6]. We run the problem sizes, or classes,
that could fit in the GPU memory for each implementation. We present strong
scaling behavior while changing the number of SMs involved in the computation
for multiple problem sizes. To conduct these experiments, we leveraged a new
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feature of the Volta architecture to enable Multi-Process Service (MPS) [14]. The
hardware support for MPS allows dedicating a subset of the compute resources
to a particular process or an application, thus achieving performance isolation
(or QoS) and address space isolation.

We could easily recognize various suboptimal performance trends. For the
OpenACC port of the NPB [19], we observe that LU and FT do not significantly
improve with the increase in SM count, while MG improves and then drop in
performance at high SM count. The performance does not improve significantly
with the increase of problem size from Class A to B or C. For the CUDA variant
of NPB [9], LU has a significant improvement with SM count. Increasing the
problem size from Class A to B further improves the performance, but the trend
is reversed when changing from Class B to C.

Unfortunately, the strong scaling curves show that there is room for improve-
ment, but they do not shed light on the causes of the observed behavior or where
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Fig. 1. Strong scaling of various NPB applications with the number of GPU SM using
two programming models, CUDA and OpenACC. We observe various suboptimal scal-
ing trends without a clear cause. The largest Class that could fit on a single GPU
depends on the programming model.
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the tuning effort of these GPU applications should be steered. Several profiling
tools tries to address this challenge by showing hotspot analysis, hardware met-
rics for various architectural activities, communication, or access pattern. These
tools include nvprof [13], TAU [16], etc. This paper extends the Roofline Scaling
Trajectory technique [10] to demystify some of the observed performance trends.

3 Performance on GPU Architecture

The performance on a GPU is typically correlated to the efficiency of leveraging
various architectural features. The NVIDIA GPU architectures have multiple
levels of parallelism [14]: threads within a warp, warps sharing an SM, and mul-
tiple SMs within a GPU. Threads within a warp use the SIMT execution model.
The execution of a warp of threads is typically more efficient when all threads
choose the same execution path and create coalesced memory access. Earlier
generations of GPUs use a single program counter for a warp of threads, as such
the impact of a branch divergence is severe on performance. Volta GPUs provide
a program counter and stack per thread, which alleviates the need for frequent
re-convergence, but the execution remains more efficient when branch divergence
is minimized. A CUDA thread block is a software abstraction that uses multiple
warps and provides low-overhead synchronization primitives and communica-
tion through the shared memory. All warps of a thread block are scheduled
and executed on the same SM. The hardware scheduler could schedule multiple
thread warps (and possibly blocks) within an SM, assuming sufficient hardware
resources are available, including registers, shared memory, etc. All warps co-
scheduled within an SM use the same set of function units, 64 FP32 for Volta.
The number of SMs in Volta is 80. Volta can schedule up to 64 warps per SM.
Volta provides the multiprocess service (MPS) facility to allow multiple kernels
to run concurrently on the GPU and to control the number of SM assigned to
a kernel. We leveraged the MPS support in this study to control the number of
SMs used concurrently.

The efficiency of performing computation on NVIDIA GPU requires careful
consideration for the following dimensions.

– Warp efficiency within a group of threads, or SIMT efficiency, i.e., all threads
follow the same path of execution or have the same latency to execute an
instruction.

– SM Occupancy, i.e., the ability to schedule as many warps per SM as possible
to hide the long latency of accessing the memory system. This also involves
keeping GPU busy most of the time.

– Data locality, i.e., effective memory request coalescing and temporal L2 cache
access.

These objectives could be conflicting. For instance, GPU occupancy would
require pipelining small kernels, but one must provide enough parallelism to
saturate the SMs. Efficient use of the cache hierarchy may also conflict with
providing enough independent thread warps.
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Ideally, a performance tool or technique would identify the performance sub-
optimality and link it to one of the above performance dimensions.

4 GPU Programming Models in This Study

The benchmarks examined in this paper are written in two popular approaches
for programming accelerators: directive-based offloading, and vendor-specific
programming model (specifically CUDA for NVIDIA GPUs). The directive-
based approach is a more productive approach for porting code to GPUs, but
it may not leverage all vendor-specific architectural features. It allows for an
incremental approach for porting codes to GPUs. The use of the CUDA model
provides full control of vendor-specific hardware features, such as shared mem-
ory across threads, texture cache, etc. As such, it could provide a performance
advantage while sacrificing some portability and productivity.

The OpenACC code parallelization of the NPB relies on maintaining the
loop structure of the code, where the outer level of the loop nest is assigned to
gangs, the second level to workers, and the third to vectors. For loop nest levels
beyond three, some of the inner levels are unrolled manually. The objective of this
programming style for accelerators is to strike a balance between the achieved
performance and the coding effort to port the code. The OpenACC directive-
based approach generally preserves the code structure and data layout.

The CUDA version uses an explicit mapping of each level of the loop into
a dimension of the thread block or grid of threads. Because some of the inner
loops have small trip counts, the developer used one of the thread dimensions
to serve multiple levels of the loop nest. The developers also leveraged the GPU
shared memory for efficient communication between threads sharing an SM.

5 GPU Roofline Scaling Trajectories

In this paper, we leverage the Roofline Scaling Trajectory technique for analyzing
the performance and scalability of GPU-accelerated parallel applications. We
aim to leverage this analysis technique to identify various kinds of performance
bottlenecks that an application may experience on a GPU architecture. The
Roofline Scaling Trajectory visualizes the scaling behavior and identifies the
effects of cache and memory access locality, warp efficiency, and SM and GPU
occupancy on application performance.

Figure 2 shows an example of Roofline Scaling Trajectories curves. Nominal
machine-specific Rooflines are constructed for both the lowest and the highest
level of concurrency (2 SMs and 80 SMs on Volta). The trajectory is a trend
line of application performance and arithmetic intensity at each level of concur-
rency. One may apply this analysis for the full application or individual kernels.
We use the empirical measurement technique laid out in earlier GPU Roofline
studies [4,12] to characterize the machine characteristics. Our focus is mainly
on the DRAM Roofline model, where one must measure dram read transactions
and dram write transactions metrics through the NVIDIA nvprof profiling tool.
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We use the FLOPs reported by the application for all concurrency level to ensure
that throughput reflects the application performance. We calculate the applica-
tion arithmetic intensity as follows:

AI ← cannonical flop count

(dram read trans + dram write trans) × 32
(1)

The model could be easily extended to other levels of the hierarchy as presented
in [4]. We rely on the application canonical FLOP count, estimated by the appli-
cation developer rather than on relying on the profiling tool measurements. This
allows consistent performance comparison because the number of FLOPs could
change with the run configuration due to the use of data replication and reduc-
tion operations within a thread block, especially in the CUDA version. This
method allows for a fair comparison across programming models.

Fig. 2. The Roofline Scaling Trajectory on GPU architectures. Each point represents
the throughput at a certain SM concurrency level. We use the Roofline Scaling Trajec-
tories to diagnose various performance scaling bottlenecks, including warp execution
inefficiency, loss of occupancy while scaling, excessive data movement to the cache
hierarchy, etc.

Ideally, the performance should improve linearly with the increase of com-
putational resources without degrading the arithmetic intensity. On a Roofline
plot, this translates into a vertical change of throughput proportional to the
increase of computational resources while changing concurrency. In practice, an
application may experience a suboptimal change in throughput, or a change of
the arithmetic intensity while scaling, e.g., a scaling curve pending to the left.

The dominant bottleneck typically changes when strong scaling the appli-
cation. For instance, at low concurrency, it is typically difficult to saturate the
bandwidth to shared levels of the memory hierarchy. In such case, the warp effi-
ciency becomes the main limiting factor for an application to reach the Roofline.
Although lower occupancy could result in a similar effect at low concurrency, for
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a kernel with non-trivial size, this is unlikely. Additionally, the lack of occupancy
is easily distinguishable, as will be discussed later. As we strong-scale the appli-
cation run, observing a loss of arithmetic intensity implies some cache thrashing
at the shared cache levels. The potential of throughput improvement is typically
impacted by the loss of arithmetic intensity for memory-bound applications.
An occupancy reduction while scaling further lowers the observed performance
gains.

Identifying the performance bottleneck is typically the first step to steer the
optimization effort to the right problem. For instance, a warp efficiency issue
occurs due to divergent branches or inefficient data indexing that results in a
non-coalesced memory access across a thread warp. It would require particu-
lar code refactoring techniques, while loss of occupancy would require different
remedies. The occupancy issue involves dealing with two conflicting constraints.
First, improving parallelisms within a kernel requires a coarse-grained kernel to
improve the GPU occupancy. Second, reducing stalls to launch a kernel requires
pipelining kernel invocations by assigning a smaller task for each kernel. Bal-
ancing the two conflicting requirements requires some tuning for each target
architecture. The code should ideally be structured to handle different task
granularities.

6 Experimental Setup

6.1 Benchmark Suite

The NAS Parallel Benchmarks (NPB) [2] represent a broad set of computational
patterns. The suite uses FT for spectral methods, CG for sparse linear algebra,
LU for solving a regular-sparse lower and upper triangular system, and MG for
multigrid PDE solver using a hierarchy of meshes. In addition, the suite contains
two mini-apps, SP and BT, which carry key computational fluid dynamics (CFD)
calculations on a structured grid. They involve the solution of independent sys-
tems of block tridiagonal equations with a 5 × 5 block size. The inner block
dimensions are not friendly to warp sizes and different approaches are taken by
the CUDA [9] and OpenACC [19] implementations. The OpenACC implementa-
tion assigns the full block to a single thread, while the CUDA version split these
blocks between threads within a block. The first improves the efficiency of warp
execution, while the second enhances the level of parallelism. Unfortunately, the
CUDA authors only ported the SP, BT, and LU benchmarks.

6.2 System Setup

We conducted our experiments on the OLCF Summit supercomputer. Each sum-
mit node has two clusters of an IBM Power9 CPU and three NVIDIA Volta
GPUs. Each cluster is connected through high-speed NVLink. Each node has
a half-terabyte of coherent memory, and nodes are connected using dual-rail
Mellanox EDR InfiniBand interconnect. Our experiments focused on the perfor-
mance of a single Volta GPU. Each Volta GPU has 80 SMs each with a 256 KB
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register file and 96 KB of unified cache/shared memory. The SMs shared 6 MB
of L2 cache and 16 GB of HBM2 memory, and each GPU has a theoretical peak
of 7.8 TFLOP/s in double precision.

7 Scaling Trajectory Analysis for Computational Kernels

Before presenting the Roofline Scaling Trajectory, we show the wrap efficiency of
various kernels for the studied set of benchmarks. The warp efficiency is defined
as the ratio of the average active threads per warp to the maximum number
of threads per warp [13]. This metric captures thread execution divergence and
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Fig. 3. Warp efficiency for various kernels of the NPB benchmarks. Generally, we
observe higher warp efficiency for the OpenACC version compared to the CUDA ver-
sion, specifically for the BT and LU benchmarks. Warp efficiency remains constant
while changing the SM count and could change with the problem size.
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typically does not change with the workload distribution across SMs. Latency
divergence for application with irregular memory access [5] has the same impact
on performance.

Figure 3 shows the warp efficiency for various kernels of each NPB applica-
tion. Generally, the OpenACC port has a higher warp efficiency compared with
the CUDA port, especially for the BT and LU. Changing the dataset size (i.e.,
the Class) could result in improvement of the warp efficiency, such as in the case
of CUDA LU, or reduction in efficiency as in the case of OpenACC BT, or may
have irregular change as with the CUDA SP. We will show that warp efficiency,
as well as the indexing scheme of the arrays, influences the performance at low
SM concurrency.

Figure 4 shows the Roofline line scaling behavior of the NPB applications.
First, we observe that all applications are memory-bound based on their arith-
metic intensity. As such, we simplified the Roofline architectural limits by remov-
ing the fused multiply-add ceiling for the compute-bound region as it is unattain-
able. The CUDA LU and OpenACC MG show the most noticeable change in AI,
during strong or weak scaling. For BT, we notice a better efficiency at low concur-
rency for the OpenACC implementation compared with the CUDA variant due
to the better warp efficiency, but the CUDA variant has a better occupancy when
scaling. Except for CG and LU, OpenACC implementations have a high starting
efficiency, due to the better warp efficiency. The OpenACC CG warps have a
low efficiency at low concurrency that is due to the latency divergence [5], which
reduces the warp efficiency. Importantly, this sort of warp inefficiency is typi-
cally not captured by the nvprof metric, but is captured by the Roofline Scaling
Trajectory. The CUDA BT low warp efficiency manifests at low SM count in the
Roofline scaling plot. For applications where both OpenACC and CUDA imple-
mentation exist, the arithmetic intensity is higher for the CUDA implementation,
i.e., less data movement to the L2 cache is involved, which is critical for achieving
a higher performance for memory-bound applications.

For CUDA LU and SP, we observe the loss of arithmetic intensity as we
change the problem class (size). For LU, increasing the problem size improves
the GPU occupancy, as such change from Class A to B results in performance
improvement. For Class C, the reduction in arithmetic intensity, due to exces-
sive data movement, reduced the overall gains. We observe a similar but less
profound trend for SP. For OpenACC MG, we observe a performance exceeding
the memory bound at low concurrency due to the efficient reuse of the L2 data.
This results in arithmetic intensity improvement with weak-scaling at low con-
currency. As one strong scales, the arithmetic intensity is reduced, especially at
high concurrency.

For the OpenACC LU, we notice both low efficiency at small scale and subop-
timal occupancy improvement as one strong scales. There is a slight improvement
with the change of SM count. This application has a GPU occupancy problem
that manifests at low SM count, as will be discussed later. For the CUDA LU,
we notice the improvement at low concurrency while increasing the problem size,
which correlates with the warp-efficiency improvement.
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Fig. 4. Roofline Scaling Trajectories for Volta GPUs. CUDA BT and OpenACC LU
application are limited by warp efficiency, while CUDA LU, OpenACC SP, BT, FT are
limited by GPU occupancy. The arithmetic intensity of CUDA LU and OpenACC MG
is noticeably affected by strong and weak scaling.

The change in occupancy affects the strong scaling behavior of applications.
An application needs enough parallelism to saturate all available SMs to achieve
optimal performance. As discussed in Sect. 5, the occupancy term affects the
potential improvements while increasing the SM count. In Fig. 5, we consider
the detailed SM occupancy behavior for CUDA BT and CUDA LU. For BT, we
observe a constant occupancy during both weak and strong scaling. The scaling
trajectory shows a high correlation with the measured SM occupancy behavior.

The occupancy of CUDA LU degrades with strong scaling. Increasing the
problem size improves the occupancy, and the impact is not uniform across
kernels. The jacld blts kernel is the most affected by the loss of occupancy.
The Roofline Scaling Trajectories for individual kernels captures such behavior
precisely as shown in Fig. 6, both for loss of occupancy for the jacld blts kernel,
and the maintenance of good occupancy for the rhs kernel *. We notice that
the rhs kernel x has a small change in arithmetic intensity during weak scaling
compared with the rhs kernel y, z. Inspecting the code, we found a unit strided
access in the x-direction and strided jumps for the y and z direction. Applying
data transposes could typically be used to tackle such bottleneck, but require
an efficient transpose that is lower overhead than embedding the strided access.

In general, there are two sources of loss of occupancy. One is reported by
the nvprof profiling tool as achieved occupancy during the course of executing a
kernel, and is defined as the ratio of the average active warps per active cycle to
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Fig. 5. Occupancy of CUDA Kernels with various Classes. LU suffers occupancy loss
as we change the SM count, while BT has a stable occupancy for all concurrency levels.
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Fig. 6. CUDA LU scaling trajectories for individual kernels. The potential for per-
formance scaling is significantly influenced by the change in arithmetic intensity for
rhs kernel y, z, caused by strided access, compared with rhs kernel x.

the maximum number of warps supported on a multiprocessor [13]. We refer to
this type as SM occupancy. The second is due to the idle time between launching
kernels due to kernel invocation overhead, waiting for data movement between
the host and the GPU, etc. We refer to this type as GPU occupancy. Ideally,
we need to minimize the second type of occupancy loss because an idle GPU
results in no use for all the SMs. Sources of this loss of occupancy include launch
overhead and CPU pre-processing to launch a kernel. To quantify the CPU
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overhead to invoke a kernel on the GPU, we multiply the number of invocations
by the uncontended latency for an invocation. We estimate the uncontended
latency using the minimum observed at run time. We account not only for kernel
invocation but also for other CUDA routines, such as cudaMemcpy. Our aim is
to avoid considering the contention due to busy activity on the GPU as part of
the GPU idle time.

Depending on the programming model, the number of device invocations
could be significant. In general, we observed higher kernel invocation count in
the OpenACC port compared with the CUDA port due to the incremental app-
roach for porting each kernel. To preserve the loop structure for the CPU and
device offload case when porting a routine with multiple loops using OpenACC,
developers must individually annotate each of the loops, and the compiler must
generate a kernel for each loop. The application most impacted by the invoca-
tion count is OpenACC LU. The OpenACCimplementation does not leverage
the shared memory and as such can achieve high occupancy at low concurrency.
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Fig. 7. Left two figures: execution time decomposition for both OpenACC and
CUDA for the LU benchmark - Class B. Right two Figures: Kernel invocation count
for different Classes. The OpenACC invocation is roughly 5× the CUDA version, lead-
ing to smaller granularity for kernels, which affects the occupancy and exacerbates the
impact of CUDA runtime overheads.

Figure 7 depicts the invocation count for both the CUDA and the Ope-
nACC port. Both have high invocation count with the OpenACC port is about
6× the CUDA invocation count. As such, the percentage of execution time spent
in these overheads could be a significant time of the total execution time, as
shown in Fig. 7. The time for overhead for the OpenACC version is more than
5× the overhead for the CUDA version. To distinguish the two kinds of loss of
occupancy, we augment the scaling trajectory with an Amdahl shadow curve,
which shows the maximum attainable throughput if all CUDA overheads are
removed. The remaining loss of occupancy is due to limited concurrency during
the kernel scaling. As shown in Fig. 9 for LU application, when the shadow curve
hits the roofline, like the CUDA case, the application is suffering solely from GPU
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occupancy issue (no GPU activity due to overheads). When the shadow curve
does not hit the roofline, like the OpenACC case, the application is suffering
from active SM occupancy issue in addition to the inactive GPU issue.
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Fig. 8. Tuning tile size for BT and its impact on occupancy and warp efficiency. The
best performing variant at the bottom sees improved warp efficiency at the cost of
reduced occupancy, but the occupancy does not degrade with SM count.

7.1 GPU Cache Impact on Scaling Trajectories

We note that the overall capacity of the L1/shared memory1 exceed the L2
capacity starting with a concurrency level of 48 SMs. Similarly, the register file
capacity2 exceed the L2 capacity starting with a concurrency level of 24 SMs. As
such, leveraging the L2 temporal locality becomes hard to achieve beyond a cer-
tain concurrency level, unless the compiler or the programmer annotates memory
accesses with appropriate cache hints to distinguish streaming memory accesses
from accesses likely to leverage temporal locality. Moreover, while L2 could be
effective in filtering traffic to the memory at low concurrency, the L1 surpass

1 Volta configurable L1 cache/shared memory capacity is 128KB per SM.
2 Volta register file is 256 KB per SM.
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the L2 in filtering effect at high concurrency leading to the improved arithmetic
intensity applications with high SM concurrency. This arithmetic intensity tra-
jectory reversal appears in multiple kernels including the Class C LU rhs kernel y
routine, which we initially thought to be a performance anomaly.
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Fig. 9. Scaling trajectories with occupancy limits due to Amdahl’s law serialization
factor for LU using OpenACC and CUDA. Hitting the roofline with Amdahl shadow
curve indicates inactive GPU occupancy issue (CUDA LU-Class B), otherwise active
SM occupancy is an additional factor in the observed performance degradation.

8 Performance Tuning

While the main focus of this study is to develop a performance diagnostic tech-
nique, we explored the performance tuning for a couple of cases of the studied
kernels, the CUDA BT and OpenACC FT. For the CUDA BT, the scaling tra-
jectories reveal inefficiency at low concurrency, a symptom of a warp inefficiency
issue. Inspecting the code, we found that a tuning parameter controls the num-
ber of 5 × 5 blocks that are assigned to a thread block and could be loaded
into the shared memory. Increasing the block count leads to a reduced occu-
pancy, as fewer threads blocks could share an SM, but it increases the efficiency.
We explored different value for this parameter, and we found the best block-
ing value at 4× the default value. The performance improvement ranged from
32–41% at full concurrency for the three problem sizes. In Fig. 8, we present the
change in occupancy and warp efficiency before and after changing the blocking
factor. Improving warp efficiency is key to performance. The reduction in occu-
pancy does not hurt the performance as long there is no drop in occupancy as
we change the SM count. This reduction in occupancy in this particular case
is due to the decrease in thread block count and warps sharing an SM. The
improvement in efficiency is 2.47×, while the drop in occupancy is 1.33×.

The second example is the OpenACC FT implementation, which is one of
the applications that did not show efficient scaling due to poor GPU occupancy.
Analyzing the kernel-wise scaling trajectory, we found that the bottleneck is part
of the initialization routine, which is included in the benchmark execution time.
On earlier generations of GPUs, the overhead of this phase is small compared
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with the rest of the execution time. On Volta, parallelization of the initialization
part provided a 2× speedup for the whole benchmark. Overall, identifying the
source of the performance degradation is half the road to tuning the application.
The main limitation of the proposed technique is that it is mainly applicable at
the kernel-level granularity.

9 Related Work

Performance analysis techniques can be categorized into two complementary
classes: microscopic analysis, which relies on hardware events associated with a
kernel invocation or a line of the source code, and macroscopic analysis, which
focuses on system utilization or use efficiency.

Attributing hardware events—such as cycle count, cache misses or vector-
ization efficiency—to the source code steers the optimization efforts to hotspots
within the program. Numerous tools, such as Intel Vtune [11] the CrayPAT [7],
HPCToolkit [1] Tau [16] Scalsca [3], provide effective communication of underly-
ing events and typically rely on sampling techniques to reduce overhead. These
tools may not assess the potential for performance improvement.

The roofline technique can be classified as a macroscopic analysis technique
that compares the application performance relative to realistic architectural lim-
its that vary with the application arithmetic intensity. It identifies when the per-
formance hits the machine limits. Various methods are typically used to charac-
terize the application arithmetic intensity, including DRAM-based roofline tech-
nique [18] and the cache-aware roofline Model (CARM) [8], which considers the
data movement to the L1 cache. The roofline method has been extended to dif-
ferent cache levels, incorporated into production quality tools such as Vtune [8],
and is recently extended to the GPU architectures [4], but the main focus of
these efforts is for the performance at the full node concurrency.

The roofline scaling trajectory [10] has recently been introduced for CPU-
based architectures, where it is used to study the interaction with the cache
hierarchy. In this work, we extend its use to the performance analysis for GPU
architectures and show its effectiveness in exposing various performance bottle-
necks such as warp efficiency and SM occupancy. We also show the influence of
the programming model on various performance bottlenecks.

10 Conclusions

In this paper, we introduce the use of the Roofline Scaling Trajectory tech-
nique for analyzing GPU-accelerated workloads. The technique leverages a new
NVIDIA Volta capability that allows controlling the number of SMs. The intro-
duced method intuitively visualizes various performance bottlenecks such as
warp inefficiency, suboptimal SM occupancy, in addition to characterizing the
efficiency of utilizing the cache hierarchy for capturing locality. We used this
analysis technique to study two implementations of NAS benchmarks using the
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CUDA and the OpenACC programming models. Our analysis reveals the per-
formance bottlenecks of the studied applications and the influence of the pro-
gramming model on warp efficiency, SM occupancy, and memory access. We
leveraged these insights to tune two of the studied applications, achieving up to
a 2× improvement in run time.
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Abstract. In the Big data and IoT era, graph data processing is widely
used. The graph data is a kind of structural data that defined enti-
ties as vertices and described dependencies between different entities as
edges. Today, a lot of graph computing systems emerge with massive
diverse graph applications deployed, evaluating graph computing sys-
tems become a challenge work. Existing graph computing benchmarks
are constructed with prevalent graph computing applications. However,
the graph micro-benchmark is lacking, which is a key for the system fine-
grained evaluation and obtaining the upper bound performance of the
system. In this paper, we take graph computing applications as the com-
bination of basic operations and user-defined operations. Then, we build
the GraphBench benchmark suite with micro-benchmarks (basic opera-
tions) and component benchmarks (graph computing applications). At
last, we evaluates the current mainstream graph computing frameworks
with GraphBench. We found that there is no one-size-fits-all solution for
the graph computing system. Using GraphBench, we can evaluate the
graph computing system at the fine-grained level and get more insights.

Keywords: Graph computing · Performance evaluation · Benchmark

1 Introduction

In the Big data and IoT era, more and more information is linked together as
the large-scale graph data. The graph data is a kind of structural data that
defined entities as vertices and described dependencies between different enti-
ties as edges. Processing large-scale graph data has been a major challenge
for industry and academia communities. For example, Facebook needs to push
advertisements to more than nine hundreds million users based on its graph anal-
ysis results. The PageRank algorithm of Google determines the index quality of
more than one trillion Web pages. Today, lots of graph processing frameworks
keep emerging, such as Gstore [5], Neo4j [6], OrientDB [7], GraphDB [8], Power-
Graph [9], PowerLyra [10], GraphX [11], and Gemini [12]. Graph data processing
frameworks can be divided into graph data management frameworks and graph
computing frameworks. Graph data management framework is similar with the
data management frameworks. Gstore, Neo4j, OrientDB and GraphDB are typ-
ical graph data management frameworks. On the other hand, graph computing
c© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 20–31, 2020.
https://doi.org/10.1007/978-3-030-49556-5_2
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frameworks process the graph data with different graph algorithms, such as page
ranking, shortest path finding and so on. PowerGraph, PowerLyra, GraphX and
Gemini are typical graph computing frameworks. In this paper, we focused on
the graph computing systems , which are the computer systems equipped with
graph computing frameworks and graph computing workloads.

Today, several graph computing benchmark suites are emerged, such as
GraphBIG [1], LDBC [2], CRONO [3], and so on. These graph computing bench-
mark suites are all constructed with prevalent graph computing applications,
the fine-grained micro-benchmark is lacking, which is a key for the system fine-
grained evaluation and obtaining the upper bound performance of the system.
From our observations, the public basic operations, such as loading data, count-
ing the number of vertices, and so on, take a large proportion of the execution
time of the graph workload. For example, the basic operations take more than
53% execution time of the PageRank workload. We define the graph computing
workload as the combination of basic operations and user-defined operations.
The basic operations are the public basic operations for the graph computing,
whatever workloads or frameworks. The user-defined operations are the specific
operations for the specific workloads. For example, loading graph data into the
memory is the basic operation for all of graph workloads, and the weight calcu-
lating of the Web page is the user-defined operation for the PageRank workload.
Based on this idea, we proposed GraphBench, which is the benchmark suite for
graph computing system. Our contributions are three-fold as follows:

First, we proposed eight basic operations for graph computing, which are
loading graph data(Load), counting the number of vertices(VerticeNum), count-
ing the number of edges(EdgesNum), counting the out-degree of the specific ver-
tex(VertexOutDegree), counting the in-degree of the specific vertex (VertexIn-
Degree), obtaining the source vertex of the specific edge(EdgeSource), obtaining
the destination vertex of the specific edge (EdgeDestination), and storing graph
data(Store).

Second, we construct the GraphBench benchmark suite for the graph com-
puting system. The GraphBench includes five component benchmarks and eight
micro-benchmarks. The component benchmarks are chosen from eighteen typi-
cal graph computing applications and the micro-benchmarks are original from
the graph basic operations. We chose five typical graph computing frameworks
to implement the GraphBench, now the GraphBench benchmark suite includes
65 workloads.

Third, we evaluated five current mainstream graph computing frameworks
with GraphBench. We found that CPU utilization, computation intensity and
branch prediction are correlated with the user-observed performance of graph
computing system, and the IPC (Instructions per cycle) does not totally conform
with the user-observed performance. There is no one-size-fits-all solution for the
optimization of the graph computing system, and we can evaluate the graph
computing system at the fine-grained level and get more insights.
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2 Related Work

GraphBIG [1] is a graph computing benchmark suite, which designed for eval-
uating the performance of graph computing systems. GraphBIG includes four
categories and thirteen typical graph applications. LDBC [2] is a benchmark
suite for evaluating different graph computing frameworks, which includes six
graph applications, and its data sets include real data sets and synthetic data
sets. CRONO [3] is a graph computing benchmark suit for multi-core processor,
which can be applied for multi-core simulators or the real multi-core computers.
CRONO includes four categories and ten typical graph applications. Yong’ work
[4] focuses on evaluating the graph computing performance of the GPU plat-
form, they do the performance evaluation on the three typical GPU platform
with nine different graph data sets and three typical graph applications.

Existing graph computing benchmarks are all constructed with prevalent
graph computing algorithm workloads, and take graph computing algorithm
workloads as a whole for evaluation. We cannot fine-grained analyze the graph
computing system. For example, what is the critical path of the graph workload
and what is the upper bound performance of the graph computing system?

3 The Methodology of GraphBench

The methodology of GraphBench is shown in the Fig. 1. GraphBench is composed
with workloads and data sets. The workloads are Component Benchmarks and
Micro Benchmarks. We choose eighteen typical graph computing algorithms to
represent the graph computing applications. Component benchmarks are repre-
sentative workloads which chosen from eighteen graph computing algorithm work-
loads, and Microbenchmarks are the basic operations set of graph computing.

Fig. 1. The methodology of GraphBench

The eighteen typical graph computing algorithms are shown in the Table 1.
We divided graph computing algorithms into five categories, which are path
planning, search, social analysis, network analysis and graph analysis. Then, we
chose the representative workloads from each category. They are Single-Source
Shortest Path (SSSP) of path planning, Breadth-first search algorithm (BFS)
of search, Connected Components (CC) of social analysis, K-core algorithm
(K-core) of network analysis and PageRank algorithm (PageRank) of graph
analysis.
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Table 1. Eighteen graph computing algorithms

Categories Algorithms

Path planning Single source shortest path

All pairs shortest path

Minimum spanning tree

Search Breadth-first search

Depth-first search

The traveling salesman problem

Social analysis Connected component

Strongly connected component

Weakly connected component

Community detection

Triangle counting

Network analysis K-core

Degree centrality

Closeness centrality

Betweenness centrality

Graph analysis PageRank

Graph coloring

Topological sort

4 Basic Operations of Graph Computing

For graph computing workloads, there are a lot of basic operations in the exe-
cution of graph computing algorithm. Such as: graph import, return an edge
source (head) vertex, return an edge destination vertex and other basic opera-
tions, and these basic operations in the graph calculation algorithm regardless of
proportion and frequency are very important. Therefore, the graph computing
workload can be described as the combination of graph basic operations (GBOs)
and user-defined operations (UDOs). We selected five representative graph com-
puting algorithms for analysis. The Fig. 2 shows the PageRank algorithm flow :
1) Importing of graph data; 2) Counting the number of edges and vertices; 3)
Setting vertex values as 1; 4) Obtaining the vertices’ corresponding edges; 5)
Calculating the outliers of the edges; 6) Returning new value to each vertex, and
the value is the source vertex value obtaining from step 4 over the corresponding
vertex degree value of step five; 7) Obtaining the new vertex value and calculat-
ing the value through the absolute value of the difference of above values; 8) if
the absolute value is less than the threshold, the algorithm end, Otherwise, go
to step four.

The graph computing workload can be described as the combination of graph
basic operations (GBOs) and user-defined operations (UDOs). Figure 3 is the
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Fig. 2. The algorithm of PageRank

Fig. 3. The combination of GBOs and UDOs, taking PageRank as an example

description of the PageRank algorithm, which includes seven GBOs and five
UDOs. The combination of GBOs and UDOs for other representative algorithms
are shown on Fig. 4. We finally abstract eight basic operations of graph comput-
ing, which are described as following:

1) Loading graph data (Load). Load is the operation that imports the data into
memory to build the specific graph data structure. This is the first step that
all of graph computing applications need to do.

2) Counting the number of vertices (VerticeNum). VerticeNum is the operation
that counts the number of imported vertices of the graph data.

3) Counting the number of edges (EdgesNum). EdgesNum is the operation that
counts the number of imported edges of the graph data.

4) Counting the out-degree of the specific vertex (VerticeOutDegree). Vertice-
OutDegree is the operation that counts the Out-degree of the specific vertex.

5) Counting the in-degree of the specific vertex (VerticeInDegree). VerticeInDe-
gree is the operation that counts the In-degree of the specific vertex.

6) Obtaining the source vertex of the specific edge (EdgeSource). EdgeSource is
the operation that returns the source vertex of the specific edge.

7) Obtaining the destination vertex of the specific edge (EdgeDestination).
EdgeDestination is the operation that returns the destination vertex of the
specific edge.

8) Storing graph data(Store). Store is the operation that exports the result to
the file on the disk.
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Fig. 4. The combination of GBOs and UDOs, for other algorithms

5 The Implementations of GraphBench

5.1 Component Benchmarks

Component benchmarks are representative workloads of eighteen graph comput-
ing algorithm workloads:

1) Single-Source Shortest Path (SSSP) of path planning [17]. The Single-Source
Shortest Path algorithm is finding the shortest path from a specified source
vertex to other vertices.

2) Breadth-first search algorithm (BFS) of search [18]. Breadth-First Search, is
one of the commonly used algorithms for traversing the graph.

3) Connected Components (CC) of social analysis [19]. A connected component
is a subgraph of an undirected graph, in which any two vertices are connected
to each other by paths, and which is connected to no additional vertices in
the supergraph [19]. CC is a algorithm to find the subgraphs.

4) K-core algorithm (K-core) of network analysis [20]. K-Core is a algorithm to
identify smaller interconnect areas in the graph.

5) PageRank algorithm (PageRank) of graph analysis [21]. The PageRank algo-
rithm is an algorithm used by Google to rank pages in the searching results
of their search engine.

5.2 Micro Benchmarks and Fine-Grained Analysis

We implement graph basic operations as micro-benchmarks of GraphBench.
micro-benchmarks of GraphBench are independent workloads and process the
same data sets with component benchmarks. In order to do the fine-grained
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analysis, we can break down the execution time of the component bench-
mark, through counting the execution time and times of the base operation’s
micro-benchmarks. And the execution time and times of each basic operation
is obtained by insert counting codes into the component benchmark. As show
on the Fig. 5, the Top five operations of PageRank workload are UDOs, Load,
VertexOutDegree, VerticeNum and EdgeSource.

Fig. 5. The execution time breakdown of PageRank

5.3 Data Sets

We chose the data sets based on two principles. First, considering the power law
characteristic of the data. The power law of the graph data is a very important
factor for graph computing [9,10], and we chose the average clustering coefficient
as the metric to evaluate the power law of the graph data. Second, considering
graph data structure diversity. There are two types of data structure, one is the
directed graph structure, another is the un-directed graph structure. At last, we
choose four typical data sets:

1) EU email graph data set (Email) [13]
The Email data set was the email data from October 2003 to May 2005 of a
large European research institution. The Email data set is a directed graph
data set, it has 265,214 vertices and 420,045 edges, and the average clustering
coefficient of Email data set is 0.07.

2) Wikipedia graph data set (Wikipedia) [14]
The Wikipedia graph data set is a data set from Wikipedia. The Wikipedia
data set is a directed graph data set, it has 2,394,385 vertices and 5,021,410
edges, and the average clustering coefficient is 0.05.

3) Pokec social network data set (Pokec) [15]
Pokec is a popular social network in the Slovak Republic. The Pokec data set
is a directed graph data set, it has 1,632,803 vertices and 30,622,564 edges,
and the average clustering coefficient is 0.1.
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4) Live Journal graph data set (LJ) [16]
Live Journal is a free online blog community. Live Journal also allows users to
form groups, and other members can join this group. The Live Journal dataset
is a un-directed graph data set, it has 3,997,962 vertices and 34,681,189 edges,
and the average clustering coefficient is 0.3.

5.4 Software Stacks

We chose four typical graph computing frameworks with the consideration of
different partitioning strategies and execution models, which are PowerGraph,
PowerLyra, GraphX and Gemini. We also implement all of GraphBench work-
loads with native C++ programs.

5.5 Summary

The GraphBench benchmark suite includes 65 implementations, which is sum-
marized on the Table 2.

Table 2. The summary of the GraphBench

Types Workloads Data sets Frameworks

Component SSSP Pokec PowerGraph, PowerLyra, Gemini, GraphX, C++

BFS LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

CC LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

K-core LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

PageRank Wikipedia PowerGraph, PowerLyra, Gemini, GraphX, C++

Micro Load LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

VerticeNum LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

EdgesNum LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

VertexOutDegree Email PowerGraph, PowerLyra, Gemini, GraphX, C++

VertexInDegree Email PowerGraph, PowerLyra, Gemini, GraphX, C++

EdgeSource Email PowerGraph, PowerLyra, Gemini, GraphX, C++

EdgeDestination Email PowerGraph, PowerLyra, Gemini, GraphX, C++

Store LJ PowerGraph, PowerLyra, Gemini, GraphX, C++

6 Evaluations

6.1 Experimental Configurations and Methodology

Experimental Configurations. The experimental platform is equipped with
the Intel Xeon E5645 processor and 96 GB memory, the operating system is
Linux Ubuntu 16.04. The detailed configurations are summarized in Table 3.
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Table 3. The configuration of the server node

CPU Intel(R) Xeon(R) E5645 2.40G

Memeory 96 GB DDR3 1333MHz bandwidth:8GB/s

Network Ethernet 1 G bandwidth:943Mbits/s

Disk SATA 1T bandwidth:154.82MB/s

OS Ubuntu 16.04 and the kernel is 4.13.0-43-generic

GCC 4.3

Redis 4.2.5

We use GraphBench as the experimental workloads. In the experiments, we
evaluate the current mainstream graph computing frameworks, which include
PowerGraph, PowerLyra, GraphX, Gemini and C++.

6.2 Experiment Results and Observations

The User-Observed Metric. At the user-observed level, we choose the execu-
tion time as the metric. Figure 6 shows the execution time of the five component
benchmarks of GraphBench. First, component benchmarks of GraphX have the
longest average execution time. The main reason is that GraphX is implemented
based on the Spark (which have a deep software stacks), other graph comput-
ing frameworks are implemented based on the C++. Furthermore, GraphX’s
micro-benchmarks also have the longest average execution time, which also proof
that the deep software stacks result in the longest execution time of GraphX’s
workloads. Second, except the PageRank workload, Gemini’s workloads have
the highest performance among four graph computing frameworks (Gemini,
GraphX, PowerGraph and PowerLyra). The main reason is that Gemini uses
an adaptive push-pull model, which is a simple but high efficiency partition
model. Gemini’s push-pull model can improve the data importing efficiency

Fig. 6. The user-observed metric of GraphBench’s component benchmarks
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dramatically. So, the performance of Gemini’s ‘Load’ workload is also out per-
formance than others. Third, Gemini’s PageRank workload execution time is
slightly higher than PowerGraph and PowerLyra workload. This is because the
average clustering coefficient of the Wikipedia data set, which used by the PageR-
ank, is only 0.05. This resulted that PageRank needs more EdgeSource and
EdgeDestination operations, and the perforamcne of EdgeSource and EdgeDes-
tination of PowerGraph and PowerLyra are out performance than those of
Gemini.

The System Level Metrics for the System. At the system level, we choose
CPU utilization, I/O wait ratio, and computation intensity as metrics. The CPU
utilization is defined as the ratio of the execution time of the CPU in the system
level or user level to the total running time of the workload. The I/O wait ratio is
defined as the ratio of the time the CPU waits for DISK I/O to the total system
time of the CPU. The computation intensity is defined as the total number of
floating point and integer instructions divided by the total number of memory
accesses in terms of bytes in a run of the workload. For example, in a run of
program A, it has n computation (floating point and integer) instructions and m
bytes of memory accesses, so the computation intensity of program A is (n/m).

Fig. 7. The CPU utilization of GraphBench’s component benchmarks

As shown in Fig. 7, first, the CPU utilization of the five component bench-
marks of GraphBench. The average CPU utilization of the Gemini’s workloads is
49%, those of PowerLyra, GraphX, PowerGraph and C++ are 37%, 24%, 35%,
and 25% respectively. Gemini’s workloads have the highest CPU utilization.
Second, the average I/O wait ratio of GraphBench is not more than 4%, which
implied that IO is not the bottleneck of GraphBench workloads. This is reason-
able, as most of graph workloads do the operations on the memory, and Loading
data to the memory is the first step for graph workloads. Third, the computation
intensity of GraphBench also variant. The higher computation intensity of the
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workload implied that better locality of the workload. The average computation
intensity of the Gemini workloads is 3.5, which is larger than others.

The Architecture Level Metrics for the System. At the architecture level,
we chose IPC (Instructions per cycle), cache behaviors, and branch prediction
behaviors as metrics. First, as shown in Fig. 8, the average IPC of the GraphX
workload is 1.3, those of C++, PowerGraph, PowerLyra and Gemini are 1.2,
1.0, 1.0, and 1.0 respectively. The GraphX graph computing system is based
on the Spark system, and the IPC of other the Spark system’s workloads are
also higher. Therefore, although the user-observed performance of GraphX is the
lowest in the four graph computing frameworks, it is still a higher IPC. Second,
the average L1I Cache MPKIL2 Cache MPKIL3 Cache MPKI are 9.2, 9.4 and
2.0 respectively. Third, the average branch miss ratio of GraphBench is 0.7%.
The branch miss ratio of Gemini is only 0.6%, but that of GraphX is 1.3%.

Fig. 8. The IPC of GraphBench’s component benchmarks

From the above experimental results, we can see that there is no one-size-fits-
all solution for the graph computing system. Using GraphBench, we can evaluate
the graph computing system at the fine-grained level and get more insights. For
example, we find that for the graph computing workload, the CPU utilization,
the computation intensity and the branch prediction are correlated with the
user-observed performance of graph computing system, and the IPC does not
totally conform with the user-observed performance.

7 Conclusion

We build the graph computing benchmark suite–GraphBench, which includes
micro-benchmark (graph basic operations) and component benchmarks (graph
computing applications). Then, we evaluates the current mainstream graph com-
puting frameworks with the GraphBench, experiments show that GraphBench
can help people to better understand the graph computing system at the fine-
grained level.
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Abstract. Nowadays, GPGPU plays an important role in data centers
for Deep Learning training. However, GPU might not be suitable for
many Deep Learning inference applications, especially for Edge Comput-
ing scenarios, due to its high power consumption and high cost. Thus,
researchers and engineers have spent a lot of effort on designing edge-side
artificial intelligence (AI) processors recently. Because of different edge-
side application requirements, edge AI processors are designed with dif-
ferent approaches, which make these processors very diversified. This sce-
nario makes it hard for customers to decide what kind of processors may
be more beneficial for their requirements. To provide a selection guid-
ance, this paper proposes a three-dimensional benchmarking methodology
and shares the early experience of evaluating three different kinds of edge
AI processors (i.e., Edge TPU, NVIDIA Xavier, and NovuTensor) with
object detection workloads (i.e., Tiny-YOLO and YOLOv2 with Microsoft
COCO dataset). We also characterize a GPU platform (i.e., GTX 1080
Ti) from the three dimensions of accuracy, latency, and energy efficiency.
Based on our experimental observations, we find that edge AI processors
are able to deliver better energy efficiency (e.g., Edge TPU has the highest
energy efficiency in our experiments.), while NovuTensor and Xavier, can
also provide comparable performance in latency as GPU. Further, all these
edge AI processors can achieve similar accuracy as GPU. The differences
among these processors and GPU are less than 3%.

Keywords: Benchmarking · Edge Computing · AI Processor · Deep
Learning

1 Introduction

The advancement of Deep Learning has been significantly taking advantage of
high-performance computing technologies, such as multi-/many-core processors
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and accelerators, high-speed interconnects, etc. General Purpose GPUs (GPG-
PUs) recently have become the most popular platforms for Deep Learning train-
ing workloads. Many modern data centers in the world provide efficient solutions
for Deep Learning training with GPUs. However, Deep Learning infrastructures
in data centers might not be suitable for Deep Learning inference workloads,
due to the high power consumption and high cost of modern data centers, espe-
cially with many of the GPGPUs on cloud servers. Thus, Edge Computing based
AI platforms are replacing GPGPUs for many Deep Learning inference applica-
tions [29]. The convergence of AI and Edge Computing provides more opportu-
nities to businesses by efficiently running Deep Learning inference applications
on edge-side AI platforms.

Edge-side AI platforms are typically equipped with specialized edge AI pro-
cessors, which can support diverse Deep Learning inference applications, elimi-
nate the high response time from data centers, and provide much cheaper solu-
tions than GPU-based solutions for end users. Thus, more and more research
and development activities have been spent on designing edge-side AI processors
for Deep Learning inference applications and scenarios [11].

Due to different requirements from diversified Deep Learning applications,
edge AI processors are typically designed with different approaches. For example,
an edge AI processor may have a larger design space to have more memory. Or an
edge AI processor may be designed to support only some specific Deep Learning
operations in different requirements of performance, accuracy, and cost. Different
designs of edge AI processors may lead to different performances. Thus, it is hard
for customers to select an edge AI processor that may be most beneficial for their
requirements. This scenario implies that the Deep Learning community needs
more standard benchmarks, data-sets, and open research studies to evaluate
and compare different edge AI processors for diverse applications.

However, we find that such kind of benchmark-oriented studies for edge AI
processors are still not yet prevalent in the community. For example, the study in
[1] has run several deep learning models on multiple edge devices, but the work
mainly measures the latencies of running object detection workloads on those
devices, which does not cover other important aspects for evaluating edge-side
AI processors, such as accuracy and energy efficiency.

In order to provide more guidance to the community about how to select
more appropriate edge AI processors for end users, this paper proposes a three-
dimensional benchmarking methodology (i.e., accuracy, latency, and energy effi-
ciency) on evaluating and comparing different edge AI processors. Deep Learning
inference applications are usually customer-facing, which means the inference
response time (i.e., latency) and the response accuracy may be more impor-
tant than other performance metrics. In addition, since these AI processors are
designed for Edge Computing platforms, energy efficiency will also be a very
important factor for customers in selecting a device.

Based on our benchmarking methodology, we deploy Tiny-YOLO and
YOLOv2, which are two popular object detection applications, on three different
edge AI platforms (i.e., Edge TPU, NVIDIA Xavier, and NovuMind’s NovuTen-
sor). Accurate object detection is one of the most essential challenges for the
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Deep Learning community to solve. YOLO-based Deep Learning solutions are
extremely fast one-stage object detection systems in the Convolutional Neural
Networks (CNN) architecture to detect objects efficiently from an image [37]. To
mimic real object detection scenarios, we choose an open data-set from industry,
i.e., Microsoft COCO [30] , which provides both training and validation images.
We also compare these edge AI processors with a GPU platform (i.e., GTX
1080 Ti) from the three dimensions. These edge AI processors and GPUs typ-
ically support different machine learning frameworks and provide deployment
tools individually. Note that Edge TPU and NovuTensor do not support some
Deep Learning operations (e.g., leaky ReLU) in YOLO’s neural network. We
retrain a neural network model that is fully supported by these processors in
our experiments.

Through our benchmarking experience, the major observations we find
include: 1) All edge AI devices can provide similar-accuracy inference results
with only 1% to 3% accuracy differences due to lower precision arithmetic. 2)
All edge AI processors have better energy efficiency than the GTX 1080 Ti GPU.
3) NovuTensor and Xavier have good and comparable performance in latency as
well as energy efficiency. 4) Edge TPU can achieve 6.7X higher energy efficiency
but may be 14.79X slower than the GTX 1080 Ti GPU.

Overall, this paper makes the following specific contributions:

– We successfully deploy Tiny-YOLO and YOLOv2 inference applications on
multiple edge AI platforms by leveraging deployment tools and modifying
standard models to be hardware friendly. Then we compare multiple edge
AI processors’ performance through running representative object detection
workloads (Sect. 5).

– Through our experimental results and observations (Sect. 5.4), we provide
guidance to select edge AI platforms for consumers with our proposed three-
dimensional benchmarking methodology.

– We share our early experience in benchmarking edge AI processors to the
community and encourage more benchmarking efforts to promote the evolu-
tion of edge AI processors.

The rest of this paper is organized as follows. Section 2 provides the necessary
background for this paper. Section 3 gives a high-level overview of modern edge
AI processors. The benchmarking methodology is stated in Sect. 4. Section 5
gives our experiments results and observations. Section 6 introduces related work.
Section 7 concludes the paper.

2 Background

In this section, we introduce inference and object detection task in deep learning
as well as the edge AI platforms in our experiments.
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2.1 Inference in Deep Learning

Training and inference are two important steps in Deep Learning. A Deep Learn-
ing model usually has millions of parameters to train. Modern GPGPUs can exe-
cute billions of floating-point operations per second (FLOPS), which has made
GPGPUs the most popular training platforms for deep learning models. Deep
Learning models are usually trained with Big Data in tens of hours to even
hundreds of hours. Using multiple GPUs with large training batch sizes can
accelerate training time. Trained models can be loaded on edge AI processors or
GPUs to do real-time inference. Inference takes new input data to infer results
using trained models. Deep Learning training requires high throughput while
inference requires low latency. Thus, GPU-based clusters are used to train mod-
els because of their parallel computing capabilities, while a single edge device
can be used to do inference. Inference brings Deep Learning models to many
aspects in our real life. For example, a face recognition system takes a small
batch of face images as input each time and infers the identities of the images
in a short response time.

2.2 Object Detection and YOLO-Based Systems

Object detection is a typical inference workload that combines localization and
classification tasks. For example, an autonomous driving system needs to detect
objects in a short time using deep learning models. An object detection system
can correctly infer several bounding boxes, which contain the object’s location
and category in the input image. Each training image is labeled with rectangu-
lar bounding boxes that annotate the locations and categories of the objects.
Inference will predict multiple bounding boxes. A predicted bounding box with
location and category information represents an inferred object. Gradient-based
learning approach is used in CNNs to solve object detection tasks [27]. CNN has
stronger expressive capability since it has deeper architecture compared with
traditional models [41]. Multiple methods on object detection tasks have been
proposed in these years such as R-CNN [19], Fast R-CNN [18], YOLO [36],
YOLOv2 [37], and SSD [31].

YOLOv2 is a state-of-the-art object detection system [37]. Tiny-YOLO is a
lite version of YOLOv2. Tiny-YOLO is faster but less accurate than YOLOv2,
since YOLOv2 has more convolutional layers than Tiny-YOLO. Applications
of YOLO are able to predict the location and category of objects from any
input images. YOLOv2 has two main training components. The first pre-trained
model has trained on ImageNet [16] dataset for the classification task. The second
component is trained from the previous pre-trained model in the first component.
The output of YOLO’s neural networks is a feature map with multiple grid cells.
Each grid cell predicts five bounding boxes with the probabilities of each class.

3 Overview of Edge AI Processors

This section provides a high-level overview of three different kinds of modern
Edge AI processors.
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3.1 Edge TPU
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Fig. 1. Workflow to Create an Edge TPU
Model

Edge TPU from Google provides an
end-to-end edge AI solution. Edge
TPU integrates onboard TPUs to exe-
cute neural networks (e.g., CNNs).
TPU consists of Matrix Multiplier
Unit (MXU), Unified Buffer (UB), and
Activation Unit (AU) to execute con-
volutional calculations [25]. The key
technology in TPU is called Systolic
Array. Multiple ALUs are combined
together in the systolic array and input
data can be reused from one single reg-
ister. But TPU can only execute a few
specific operations in a trade-off between performance and energy efficiency.
The workflow to create an Edge TPU compatible model is shown in Fig. 1. A
quantized TensorFlow Lite model is converted from a TensorFlow model using
some calibration data. TensorFlow Lite is a lightweight version of TensorFlow
designed for mobile and embedded devices. Then this quantized model needs to
be compiled to a hardware compatible model via the Edge TPU compiler before
deployment on the board. Edge TPU only supports INT8 or INT16 based quan-
tization models and the quantization method can be found in this paper [24].
Some pre-trained and pre-compiled models for image classification and object
detection tasks are provided in this project [5], which can be deployed on Edge
TPU directly.

3.2 NVIDIA Xavier

NVIDIA Jetson AGX Xavier is an embedded system on a module, containing
a Volta GPU, dual Deep Learning accelerators, a Carmel ARMv8.2 CPU, and
16GB memory [7]. Jetson AGX Xavier is an edge computing device for deploy-
ing AI applications and providing end-to-end AI solutions. Xavier allows users
to configure operating modes at 10 W, 15 W, and max 30 W. Xavier supports AI
software libraries like CUDA [35], cuDNN [12], and TensorRT to improve the
inference performance. With the speeding up by TensorRT, Xavier can achieve
high performance according to our experiments. NVIDIA TensorRT is a runtime
for high-performance Deep Learning inference. Developers can use TensorRT to
optimize their Deep Learning models and deploy them on any platforms that
have TensorRT runtime from NVIDIA. TensorRT supports INT8 and FLOAT16
optimizations for Deep Learning models as well as the original FLOAT32 data
type. TensorRT supports almost all the popular frameworks like TensorFlow,
PyTorch, and Caffe. TensorRT takes trained models from those popular frame-
works, optimizes the neural network models, and generates light-weight runtime
engines for GPUs. Developers only need to deploy the generated runtime engines
on the NVIDIA platforms like Jetson Xavier. Figure 2 illustrates the workflow
to deploy a model on an NVIDIA platform using TensorRT.
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Fig. 2. Deployment using TensorRT

3.3 NovuTensor

NovuMind’s NovuTensor uses domain specific architecture focusing on perform-
ing 3D tensor computations. Traditional tensor processors like TPU implement
convolution layer using 2D matrix multiplication. TPU and GPU calculate 3D
convolution multiplication by unfolding the matrix into a 2D matrix and then
multiplying the 2D matrix with convolution kernels. NovuTensor’s architecture
includes a patented design that natively performs 3D tensor computations on
the chip, which can avoid the overhead of unfolding 3D tensors into 2D matrices
that is inherent in other chips [32]. Processing natively 3D tensor computations
achieves high performance and less memory usage. The native tensor processors
inside NovuTensor chip convolve 3D tensors of input feature maps with 3 × 3
convolution kernels. 3 × 3 convolution kernels are very common in CNNs in
previous work [13]. Thus, native tensor processors in NovuTensor can gain much
bigger performance improvements for CNN models.

4 Benchmarking Methodology

This section presents workload, platform, and metric selection in our three-
dimensional benchmarking methodology.

4.1 Workload Selection

A representative workload for benchmarking AI systems needs a real dataset.
Microsoft COCO [30] (MS COCO) is one of the most popular open dataset in
the community, which has been widely used in the computer vision field. MS
COCO contains hundreds of thousand images from the real world for training,
validation, and testing. The training and validation images are labeled with
segmentation and bounding boxes. Annotations of MS COCO are arranged in
the JSON format. MS COCO mainly contains three tasks (i.e., object detection,
key-point detection, and segmentation). MS COCO has 80 categories, which
is larger than other datasets like PASCAL VOC [17]. Object instances in MS
COCO are also annotated more than those in PASCAL VOC. Developers can
use C++ or Python APIs provided by MS COCO to load images and calculate
the accuracy [6]. Based on these advantages of MS COCO, this paper chooses it
to construct our object detection workloads with YOLOv2 and Tiny-YOLO.
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4.2 Platform Selection

We choose GTX 1080 Ti, which is a general-purpose GPU, as our baseline to
compare with Edge TPU, Xavier, and NovuTensor, which are edge-side AI plat-
forms using application-specific integrated circuit (ASIC) for inference. These
platforms are popular in the industry and use innovative technologies in their
designs. Developers can deploy Deep Learning applications on these platforms.
They have similar low power consumption (e.g., 20 W for NovuTensor and 30 W
for Xavier). We also consider the software support when we select platforms in
our experiments. These platforms support different Deep Learning frameworks
(e.g., Caffe, TensorFlow, TensorFlow Lite, and PyTorch).

4.3 Metrics and Dimensions

To evaluate the performance of different edge AI processors, we record real-
time statistics in our experiments. These statistics help us compare and explore
characteristics of these platforms from the three dimensions we have selected in
this paper, which include:

– Accuracy: This is typically the most important factor (i.e., how well the pro-
cessor can infer correct answers) to consider for end users to select appropriate
edge AI processors for their applications. We take the accuracy into account
since the accuracy may be influenced by different hardware restrictions on
Deep Learning operations, such as supporting lower-precision data types. A
standard metric for the accuracy dimension is called mean Average Precision
(i.e., mAP). mAP has been popularly used to evaluate the accuracy with
object detection workloads [17]. mAP is the mean value of Average Precision
(AP). One AP value is calculated for one category of images. To introduce
mAP further, we first introduce the basic concepts of precision and recall in
the following equations.

Precision =
TruePositives

TruePositives + FalsePositives
(1)

Recall =
TruePositives

TruePositives + FalseNegatives
(2)

Based on Eq. 1 and Eq. 2, we can draw a precision-recall curve for all pre-
dictions from validation dataset. In the curve, we can choose 11 points in
the axis of recall, ranging from 0, 0.1, 0.2 until to 1.0. Then the correspond-
ing 11 precision values will be used to calculate the Average Precision value.
Equation 3 calculates an AP value for one category of images based on the
11 interpolated precision values, where Pr is the interpolated precision value
in Eq. 1 and r corresponds to the recall in Eq. 2.

AP =
1
11

∑

r∈{0,0.1,...1.0}
Pr (3)
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mAP =
∑N

i=1 AP

N
(4)

Then, mAP can be calculated by Eq. 4, where N is the total number of cate-
gories. The MS COCO dataset contains 80 categories, which means N equals
80 in Eq. 4. The mAP for MS COCO is the mean value of these 80 average
precision values.

– Latency: The time to complete an inference on the input images in one batch is
defined as latency. Latency is one of the most important and critical dimension
for inference since Deep Learning inference applications are usually customer-
facing.

– Energy Efficiency: This means the number of input images can be fully pro-
cessed per unit-power, which is usually expressed as performance/watt or
images/second/watt. Energy efficiency is another key factor to be considered
for choosing edge AI devices, since Edge Computing environments usually
need lower energy-consumption technologies.

The dimensions and corresponding metrics mentioned above can help us
benchmark different edge AI processors. Through these metrics, we are able
to evaluate the performance of these edge AI processors and provide selection
guidance for end users.

4.4 Experimental Methodology

To capture the real inference execution time on hardware, our experiments split
the whole execution flow of running an inference application into three steps:

– Pre-processing time: is the time of the pre-processing step (e.g., normalization
of input images).

– Execution time: measures the time of transferring the input feature maps into
devices, execution, and receiving the output feature maps from devices.

– Post-processing time: is the time of the post-processing step (e.g., parse the
output tensors to get readable prediction results).

To evaluate the performance of edge AI processors, only the execution time
should be accounted. As for YOLO-based applications, the pre-processing step
includes getting input images and normalization. The post-processing step gets
a 3-dimensional tensor from neural network’s output and decodes this tensor to
get the prediction results.

5 Experiments

This section presents our experimental configuration and setup to perform the
benchmarking on edge AI processors.
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5.1 Hardware Configuration

The specifications of edge AI processors in our experiments are shown in Table 1.
Table 1 illustrates the theoretical metrics for comparing these edge AI processors.
Tera Operations per Second (TOPs) is a common metric for evaluating the
throughput of AI processors, which represents the processing capability of an AI
processor.

5.2 Setup

We deploy Tiny-YOLO and YOLOv2 applications on three edge AI plat-
forms as shown in Table 1. The YOLO-based applications include three com-
ponents, which are image pre-processing, trained CNN models, and inference
post-processing. We select five thousands images in MS COCO’s 2014 valida-
tion dataset as the inference workload for all AI platforms. We evaluate the AI
devices with input images of both regular and large sizes. Thus, input images
will be re-sized to 416 × 416 and 1024 × 1024 before feeding them into the neural
network models. Every edge AI platform processes the same five thousands val-
idation images and generates a JSON file with all the inferred bounding boxes.
We use MS COCO API to parse the JSON file and calculate the mAP, which is
the common accuracy evaluation metric for object detection task [6].

Edge TPU: We first convert Tiny-YOLO and YOLOv2 applications from Dark-
net framework to TensorFlow framework using DarkFlow [2], as Egde TPU
only supports TensorFlow Lite. Darknet is the framework that supports orig-
inal YOLO-based applications [3]. A model in Darknet includes two compo-
nents, a configuration file and a binary file. The configuration file defines the
architecture of the neural network and the binary file is the trained weights
of convolutional kernels. We combine the configuration file and binary file into
a TensorFlow SavedModel format file via DarkFlow. TensorFlow provides two
ways to do quantization (i.e., post-training quantization and quantization-aware
training). Post-training quantization creates a small model by using 8-bit values,
but during inference, it is converted back to 32-bit floats. Quantization-aware
training creates fake quantization nodes containing the minimum and maximum
values of layers’ weights during training. Edge TPU utilizes the quantized values
to do inference. However, developers have to modify the training source code to
do training-aware quantization. We use a new quantization toolkit without mod-
ifying training source code [8]. We feed 80 calibration images into the models,
which can quantize and generate a TensorFlow Lite model. Then we compile the
TensorFlow Lite model to an Edge TPU model that has instructions supported
by Edge TPU.

Edge TPU does not support dynamic tensor sizes and only supports 3-
dimensional tensors. If a tensor has more than three dimensions, only the three
innermost dimensions can have a size greater than one. In this case, the batch
size for inference could only be one when the input image has three channels.
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YOLOv2 and Tiny-YOLO use leaky rectification (leaky ReLU) [26] as the acti-
vation function for all the convolutional layers. But leaky ReLU is not supported
by Edge TPU. We replace leaky ReLU with ReLU and retrain the models, using
four GTX 1080 Ti GPUs. Reorganization and route layers are also not sup-
ported by Edge TPU. Before deploying the models on Edge TPU, it is necessary
to make sure that all the operations are supported with INT8 data type, because
operations that do not have quantized implementations will not work with Edge
TPU.

In addition, Edge TPU only supports 8-bit input data. As a consequence,
the input image’s pixels can not be normalized to Float32 data type between 0
and 1. So we modify the weights of the first convolutional layer to additionally
transform input tensors to appropriate forms without normalization, which can
match with the input requirements of Edge TPU.

Table 1. Specifications of platforms

Specification Edge TPU Xavier NovuTensor 1080 Ti

Precision INT8 INT8/FP16/FP32 INT8 FP32

TOPS 4 22.6/11.3/1.3 15 11.3

Memory 1 GB
32-bit
LPDDR4

16GB
256-bit
LPDDR4X

2GB
128-bit
DDR4

11 GB
352-bit
GDDR5X

Power (watt) – 10/15/30 20 250

Process (nm) – 12 28 16

Note that TOPS stands for Tera Operations per Second. We found or calculated
from official specifications according to the corresponding precision. The power
and process of Edge TPU are not reported by Google. We approximate the power
as 2.5 W by our experimental devices.

Xavier: Our experiments deploy NVIDIA’s deepstream reference applica-
tions [4], which contain YOLO-based applications implemented by TensorRT,
on Xavier platforms. TensorRT 5.0.3 is installed in our experimental Xavier
device. TensorRT is able to parse Deep Learning models and deploy optimized
models on Xavier. TensorRT provides a plugin layer for developers to implement
customized operations that are not supported by TensorRT (e.g., leaky ReLU).
Using the plugin layer, we are able to deploy the original YOLO-based applica-
tion on Xavier without modifying and retraining the model. We evaluate Xavier
in both 15-W and 30-W modes. We set the INT8 data type in the deepstream
application to compare with other hardware devices.

NovuTensor: NovuMind’s NovuTensor is a special-purpose processor for AI
inference applications. Designed for convolutional neural networks, it achieves
high throughput and low latency for convolution computations. NovuTensor con-
volves the feature map with 3 × 3 kernels using the native tensor processors.
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In our experiments, we deploy Tiny-YOLO and YOLOv2 applications on
NovuTensor using NovuSDK. Hardware-friendly YOLOv2 and Tiny-YOLO
models are deployed on NovuTensor by replacing the activation functions by
ReLU and removing reorganization and route layers. NovuSDK provides APIs
for developers to control the hardware.

5.3 Results

Figure 3 illustrates the mAPs of Tiny-YOLO and YOLOv2 applications running
on different edge AI processors with 416 × 416 resolution input images. After
quantization, the accuracy of YOLOv2 drops 2% to 3% and the accuracy of Tiny-
YOLO drops 1% to 2% on all edge AI processors compared to the accuracy on
GPU. Low precision arithmetic like INT8 reduces accuracy but accelerates the
execution time [22]. The differences of accuracy degradation among different edge
AI processors are varied, which is because these edge AI processors implement
the quantization in different ways.
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Fig. 3. Accuracy of YOLOv2 and Tiny-YOLO with 416 × 416 image size

Figure 4 shows the latency of processing a batch of input images. Edge
TPU is slower than other edge AI processors, which are 28.74 ms and 94.37 ms
for Tiny-YOLO and YOLOv2 applications, respectively. The architecture of
YOLOv2 is more complex than Tiny-YOLO. The latency of Edge TPU increases
more than other edge AI processors, when the neural network’s architecture
becomes complex. NovuTensor can achieve 14.08 ms and 24.78 ms for one batch
of input images, which is faster than Xavier in the 15-W mode (i.e., 16.68 ms
and 38.39 ms) and similar with (i.e., 14.16 ms for Tiny-YOLO) or slower than
(i.e., 17.85 ms for YOLOv2) Xavier in the 30-W mode, respectively.
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Figure 5 illustrates the energy efficiency by taking the energy consumption
into account. Edge TPU achieves relatively higher energy efficiency consider-
ing its very low power usage and GTX 1080 Ti seems not very energy-efficient
since its large power consumption. NovuTensor has better energy-efficiency than
Xavier in both 15-W and 30-W modes for the YOLOv2 application. NovuTen-
sor also shows better energy-efficiency than Xavier in the 30-W (max) mode and
comparable energy-efficiency as Xavier in the 15-W mode for the Tiny-YOLO
application.
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Fig. 5. Energy Efficiency of YOLOv2 and Tiny-YOLO with 416 × 416 image size

We also evaluate the performance of these edge AI processors with larger
input images (i.e., 1024 × 1024), as shown in Fig. 6. All the devices can pro-
vide similar-accuracy inference results compared with GPU, thus the accuracy
results are not shown here. Through our experiments, Xavier and NovuTensor
can achieve comparable low latency and high energy efficiency.
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Fig. 6. Performance of YOLOv2 with 1024 × 1024 image size

5.4 Observations and Summary

We combine all the measured results in our experiments and demonstrate them
in three-dimensional charts as shown in Fig. 7. In order to compare edge AI
processors clearly, we normalize the experimental results into these three dimen-
sions. Performance, one of the three dimensions, is defined as the reciprocal of
latency. In this way, if an edge AI processor can achieve a bigger score in the
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three-dimensional charts, it means the edge AI processor can be a better choice
in the corresponding dimension. Through these two radar charts, we obtain some
interesting observations as follows:

– All these edge AI processors are able to provide similar-accuracy inference
results compared with the GTX 1080 Ti. Quantization from FP32 to INT8
data type during inference causes an accuracy drop around 1% to 3%.

– These edge AI processors are slower than GTX 1080 Ti GPU due to less com-
puting cores and less power consumption. Edge TPU is 9.5X and 14.79X
slower than GTX 1080 Ti with running Tiny-Yolo and YOLOv2, respec-
tively. Despite Xavier and NovuTensor are slower than the GPU, Xavier is
2X and 5.28X faster than Edge TPU in the max power mode, and NovuTen-
sor is 2.04X and 3.8X faster than Edge TPU, respectively, when running
with Tiny-Yolo and YOLOv2 applications.

– Edge TPU exceeds other edge AI processors in energy efficiency, and it deliv-
ers 2.9X and 1.13X higher energy efficiency than Xavier as well as 1.96X
and 1.04X higher energy efficiency than NovuTensor for Tiny-Yolo and
YOLOv2, respectively.

As specified by our observations, these edge AI processors can perform Tiny-
YOLO and YOLOv2 applications within a 3% accuracy drop. NovuTensor and
Xavier achieve low latency and relatively high energy efficiency for object detec-
tion workloads. Edge TPU has the advantage of energy efficiency.

6 Related Work

This section presents related work about benchmarking AI processors.
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Fig. 7. Comparison of factors on YOLOv2 and Tiny-YOLO with 416 × 416 image size
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6.1 Modern AI Processors

Deep learning especially neural networks have been proven in many state-of-the-
art application systems to solve classification and object detection tasks [23,28].
The opportunity to design AI processors with high performance and efficiency
attracts more and more researchers and engineers [10]. Multiple methods can
execute deep learning workloads on modern AI processors, such as GPUs [14],
FPGAs [9], or ASICs [11,20,25]. Some customized AI processors have been effec-
tively studied such as k-NN accelerator on FPGA [39], k-NN classifier of IP cores
design [34,38].

6.2 Edge AI Benchmarking

Due to the emergence of different edge AI processors for inference, we do see the
effort of benchmarking these devices in the community. AIoT Bench [33] contains
benchmarks for image classification, speech recognition, transformer translation,
and micro workloads on Android-based systems and Raspberry Pi. The urgent
requirements of edge AI benchmarking are also discussed in this paper [33].
The study in [1] runs several Deep Learning models on multiple edge devices
and it mainly measures the latency of object detection workloads. A survey
on different Deep Learning benchmarks summarizes multiple popular available
benchmarks in the community [40]. EdgeAI Bench [21] contains four different
benchmarking frameworks. These frameworks aim at benchmarking four specific
scenarios using Deep Learning technologies in Edge Computing environments.
EdgeBench [15] compares two serverless edge computing services on a standard
Raspberry Pi 3B model. Compared to these related studies, this paper focuses
on benchmarking three modern edge AI processors (i.e., Edge TPU, NVIDIA
Xavier, and NovuTensor) with object detection workloads.

7 Conclusion and Future Work

We propose a benchmarking methodology to systematically evaluate three differ-
ent kinds of edge AI processors (i.e., Edge TPU, NVIDIA Xavier, and NovuTen-
sor) from the three dimensions of accuracy, latency, and energy efficiency. Based
on our experimental results, we observe that NovuTensor and Xavier can pro-
vide comparable performance in latency and energy efficiency, which satisfy the
major requirements for Deep Learning inference applications. They also have
comparable performance in latency compared with GTX 1080 Ti. Edge TPU
consumes less energy but is much slower for inference, which may influence the
consumers’ usage experience. Accuracy is important but seems not a major fac-
tor to make a selection on these edge AI processors, since they all can provide
similar inference accuracy.

In the future, we will evaluate more combinations of different neural networks
and edge AI platforms. We plan to propose an easy-to-use benchmarking toolkit
for different edge AI processors.



46 Y. Hui et al.

References

1. Benchmarking Edge Computing. https://medium.com/@aallan/benchmarking-
edge-computing-ce3f13942245

2. DarkFlow. https://github.com/thtrieu/darkflow
3. Darknet. https://github.com/pjreddie/darknet
4. Deepstream Reference Applications. https://github.com/NVIDIA-AI-IOT/deep

stream reference apps
5. Models Built for Edge TPU. https://coral.withgoogle.com/models/
6. MS COCO API. https://github.com/cocodataset/cocoapi
7. NVIDIA Jetson AGX Xavier. https://developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit
8. Post-Training Integer Quantization. https://medium.com/tensorflow/tensorflow-

model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
9. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S.: A dynamically config-

urable coprocessor for convolutional neural networks. In: ACM SIGARCH Com-
puter Architecture News, vol. 38, pp. 247–257. ACM (2010)

10. Chen, T., et al.: BenchNN: on the broad potential application scope of hardware
neural network accelerators. In: 2012 IEEE International Symposium on Workload
Characterization (IISWC), pp. 36–45. IEEE (2012)

11. Chen, Y., Chen, T., Zhiwei, X., Sun, N., Temam, O.: DianNao family: energy-
efficient hardware accelerators for machine learning. Communi. ACM 59(11), 105–
112 (2016)

12. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

13. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexi-
ble, high performance convolutional neural networks for image classification. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

14. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with COTS HPC systems. In: International Conference on Machine Learning, pp.
1337–1345 (2013)

15. Das, A., Patterson, S., Wittie, M.: Edgebench: benchmarking edge computing plat-
forms. In: 2018 IEEE/ACM International Conference on Utility and Cloud Com-
puting Companion (UCC Companion), pp. 175–180. IEEE (2018)

16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

17. Everingham, M., Gool, L.V., KI Williams, C., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

18. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

20. Han, S., et al.. EIE: efficient inference engine on compressed deep neural network.
In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 243–254. IEEE (2016)

21. Hao, T., et al.: EdgeAI bench: towards comprehensive end-to-end edge computing
benchmarking. In: 2018 Bench Council International Symposium on Benchmark-
ing, Measuring and Optimizing (Bench 2018) (2018)

https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://github.com/thtrieu/darkflow
https://github.com/pjreddie/darknet
https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps
https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps
https://coral.withgoogle.com/models/
https://github.com/cocodataset/cocoapi
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
http://arxiv.org/abs/1410.0759


Early Experience in Benchmarking Edge AI Processors 47

22. Hashemi, S., Anthony, N., Tann, H., Bahar, I.R., Reda, S.: Understanding the
impact of precision quantization on the accuracy and energy of neural networks.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
pp. 1474–1479. IEEE (2017)

23. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

24. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713 (2018)

25. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 1–12. IEEE (2017)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

27. Wick, C.: Deep learning. Informatik-Spektrum 40(1), 103–107 (2016). https://doi.
org/10.1007/s00287-016-1013-2

28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

29. Lee, Y.-L., Tsung, P.-K., Wu, M.: Techology trend of edge AI. In: 2018 Interna-
tional Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2.
IEEE (2018)

30. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

31. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

32. Lu, C.P., Tang, Y.-S.: Native Tensor Processor, and Partitioning of Tensor Contrac-
tions. https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&
tab=NATIONALBIBLIO

33. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: 2018 Bench Council International Symposium
on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

34. Manolakos, E.S., Stamoulias, I.: IP-Cores design for the kNN classifier. In: Pro-
ceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.
4133–4136. IEEE (2010)

35. Nickolls, J., Buck, I., Garland, M.: Scalable parallel programming. In: 2008 IEEE
Hot Chips 20 Symposium (HCS), pp. 40–53. IEEE (2008)

36. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

37. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

38. Stamoulias, I., Manolakos, E.S.: Parallel architectures for the kNN classifier-design
of soft IP cores and FPGA implementations. ACM Trans. Embedded Comput.
Syst. (TECS) 13(2), 22 (2013)

http://arxiv.org/abs/1207.0580
https://doi.org/10.1007/s00287-016-1013-2
https://doi.org/10.1007/s00287-016-1013-2
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&tab=NATIONALBIBLIO
https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&tab=NATIONALBIBLIO


48 Y. Hui et al.

39. Yeh, Y.-J., Li, H.-Y., Hwang, W.-J., Fang, C.-Y.: FPGA implementation of kNN
classifier based on wavelet transform and partial distance search. In: Ersbøll, B.K.,
Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 512–521. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-73040-8 52

40. Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new ones?
In: 2018 Bench Council International Symposium on Benchmarking, Measuring and
Optimizing (Bench 2018) (2018)

41. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: A review. IEEE Transactions on Neural
Networks and Learning Systems, Object Detection with Deep Learning (2019)

https://doi.org/10.1007/978-3-540-73040-8_52


AI Challenges on Cambricon Using
AIBench



XDN: Towards Efficient Inference
of Residual Neural Networks

on Cambricon Chips

Guangli Li1,2, Xueying Wang1,2, Xiu Ma1,3,4, Lei Liu1(B),
and Xiaobing Feng1,2

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{liguangli,wangxueying,maxiu01,liulei,fxb}@ict.ac.cn
2 School of Computer Science and Technology,

University of Chinese Academy of Sciences, Beijing, China
3 College of Computer Science and Technology, Jilin University, Changchun, China

4 MOE Key Laboratory of Symbolic Computation and Knowledge Engineering,
Jilin University, Changchun, China

Abstract. In this paper, we present XDN, an optimization and infer-
ence engine for accelerating residual neural networks on Cambricon
chips. We leverage a channel pruning method to compress the weights
of ResNet-50. By exploring the optimization opportunities in compu-
tational graphs, we propose a layer fusion strategy, which dramatically
decreases the number of scalar computation layers, such as Batch Nor-
malization, Scale. Furthermore, we design an efficient implementation of
XDN, including data preprocessing, hyper-parameter auto-tuning, etc.
The experimental results show that the ResNet-50 model can achieve
significant speedup without accuracy loss by using our XDN engine.

Keywords: Artificial intelligence systems · Residual neural networks ·
Cambricon chips · Performance optimization

1 Introduction

Recent years, neural networks have been achieved remarkable performance in
various areas, including image classification [12,17,21], object detection [7,8,20],
etc. However, the deep neural networks with increasing computational complex-
ity are inefficient on traditional general-purpose hardware such as CPU. Accord-
ingly, research on machine learning specific processors becomes an inevitable
trend to satisfy the ever-increasing demand on computation capability in
artificial intelligent domains [9]. A batch of domain-specific processors have
been developed, such as Cambricon chips [1–3]. 2019 BenchCouncil Interna-
tional AI System and Algorithm Challenges include the system challenges on
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Cambricon [18], X86 [4,11], RISC-V [13] and a 3D face recognition algorithm
challenge [22], which poses challenges to the optimization of artificial intelligence
algorithms and systems.

2 Our Approach

Fig. 1. Overview of XDN Engine

In this paper, we focus on optimizing the performance of ResNet-50 [12], a
widely used residual neural network architecture, on Cambricon chips. An opti-
mization and inference engine, namely XDN (XiaoDianNao), is presented, which
is composed of a channel pruning approach, fusion strategies, hyper-parameters
tuning, data preprocessing, and an efficient executor. Figure 1 demonstrates the
approach of our XDN engine.

2.1 Pruning Optimizer and Trainer

The original Caffe prototxt is converted to a computational graph. An Advisor
is used to guide the channel pruning and the pruned model is re-trained by the
Trainer. The pruning approach by Optimizer and Trainer is iteratively performed
until all layers are optimized or unless the accuracy of model is not satisfied.

2.2 Fusion Optimizer

The layers of pruned neural network are fused by an Advisor. The main fusion
strategies including: 1) fusing convolution layers with correlative batch normal-
ization layers and scale layers; 2) fusing convolution layers in different branches
of building blocks. Then, a fused and pruned neural network model is obtained.



XDN: Towards Efficient Inference of Residual Neural Networks 53

2.3 Auto-tuner

Cambricon chips supports multi-core parallel execution and have several hyper-
parameters, such as the number of threads, model parallel, and data paralell.
The Auto-Tuner performs all options in the search space and the best option
of hyper-parameters, which has minimum execution time, is recorded. The final
offline model with the best option is generated by the “genoff” command of the
Cambricon Caffe.

2.4 Executor and Evaluator

In order to decrease the time of reading data, the images of CIFAR-10 dataset
are preprocessed and converted to a binary file by the Data Preprocessor. We
design a Clas offline XDN Executor, which executes the final offline model with
best hyper-parameters using Cambricon CNML and Cambricon CNRT. Finally,
the execution time and the accuracy are calculated by the Evaluator.

3 Experimental Evaluation

3.1 Environmental Setting

We use Cambricon Caffe, a modified BVLC Caffe [14], as the development frame-
work to train, test and generate neural network models. All experiments are per-
formed on a server node of the BenchCouncil New Technology Testbed1, which
is equipped with an Intel i7-4770K CPU and a Cambricon MLU100 accelera-
tor. The Cambricon MLU100 is a multi-core machine learning accelerator which
contains 32 cores. The 32 cores are connected to 4 DDR controllers through
network-on-chip (NOC) and each DDR controller is connected with 8 cores. In
addition, Cambricon also provides the Cambricon Neuware Machine Learning
Library (CNML) and the Cambricon Neuware Runtime Library (CNRT) for
users to develop deep learning applications.

3.2 Overall Performance

We evaluate the performance by using the ResNet-50, which is a widely used neu-
ral network model, on the AIBench [5,6,10,15,19] and the dataset is CIFAR-
10 [16]. The source code of AIBench is publicly available from http://www.
bench\discretionary-council.org/benchhub/AIBench/ (Sign up to get access).
Table 1 illustrates the performance of the ResNet-50 model with different opti-
mization options of XDN.

OPT-0 denotes the baseline model and the original executor, which provided
in Cambricon Caffe with default hyper-parameters of generation and paralleliza-
tion.

1 http://www.benchcouncil.org/testbed/index.html.

http://www.benchdiscretionary {-}{}{}council.org/benchhub/AIBench/
http://www.benchdiscretionary {-}{}{}council.org/benchhub/AIBench/
http://www.benchcouncil.org/testbed/index.html
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Table 1. Performance of ResNet-50 with XDN Engine

Optimization Speedup Accuracy

OPT-0 Baseline 1× 0.8439
OPT-1 OPT-A-1 4.48× 0.8439

OPT-B-1 5.04× 0.8462
OPT-C-1 5.29× 0.8191

OPT-2 OPT-A-2 4.67× 0.8441
OPT-B-2 7.44× 0.8455
OPT-C-2 7.62× 0.8203

OPT-1 denotes the optimized model by channel pruning and our XDN
executor. OPT-A, OPT-B, OPT-C represent the model without pruning, the
model with pruning of 17 layers which without accuracy loss, and the model
with pruning of 25 layers which is faster but has slightly accuracy loss, respec-
tively. The results of OPT-1 show that the efficiency of our channel pruning
method.

OPT-2 denotes the optimized model by OPT-1 and layer fusion. The deno-
tations of A, B, and C are similar to OPT-1. The results of OPT-2 show that
the efficiency of our layer fusion strategy. As can be seen, OPT-B-2 is the best
optimization without accuracy loss, which improves the performance by 7.44×
over the baseline model with the original executor.

3.3 Analysis and Discussion

The experiment results prove the efficacy of our XDN engine. Firstly, OPT-A-1,
which uses the original ResNet-50 model provided by the organizer, illustrates
the efficiency of the XDN executor and auto-tuner. For the same model, the
XDN executor is faster than original executor by using data preprocessing. The
parallel hyper-parameters, such as the number of threads, are selected by an
auto-tuning approach in the auto-tuner. Then, the performance improvement of
the channel pruning optimizer can be proved by OPT-A, OPT-B, and OPT-C,
which with different pruning degrees. As can be seen, the speed increases with
more pruned layers. However, the pruned layers also lead to the accuracy loss.
OPT-B is the best model without accuracy loss and OPT-C is the faster model
which drops about 2% accuracy loss. Finally, OPT-2 confirms the efficacy of layer
fusion optimizer. As can be seen, the performance of fused models (OPT-2) are
better than the un-fused models (OPT-1).

We analyze the contributions of each optimization for OPT-B-2 performance,
as shown in Table 2. The performance of first row is the baseline, which uses the
original model and the default Cambricon Caffe executor, and the performance
of last row the OPT-B-2, which is our best optimization method. As can be seen,
each optimization method has necessity and effectiveness, which contributes the
final performance in the XDN engine.
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Table 2. Analysis of OPT-B-2 performance

Optimizations of XDN Speedup
Pruning Fusion Data preprocess Auto-tuning

× × × × 1×
� × × × 1.75×
� � × × 2.72×
� � � × 3.03×
� � � � 7.44×

4 Conclusion

In this paper, we presented an optimization and inference engine, namely XDN,
for accelerating deep neural networks on Cambricon chips. The experimental
results show that the optimized model can achieve high speedup without accu-
racy loss. The optimization methods of the XDN can not only be used to optimize
residual neural networks, such as ResNet-50, but also other deep neural networks,
such as GoogLeNet. In the future work, we plan to formalize our approach and
test more deep neural network models.
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Abstract. In recent years, domain-specific hardware has brought signif-
icant performance improvements in deep learning (DL). Many frequently-
used optimization techniques, such as data parallelism, model paral-
lelism, data pipeline, weights pruning and quantization have been pro-
posed to accelerate the inference phase of DL workloads. However, there
is still lack of a comparison of these optimization techniques to show their
performance difference on dedicated accelerators. This paper evaluates
these frequently-used optimization techniques on a commercial accelera-
tor, namely Cambricon MLU100. Considering the requirement of accu-
racy of DL nature, our metric not only measures the inference through-
put but also has an accuracy constraint. Based on our analysis method-
ology and performance numbers, we have some key observations and
implications that are valuable for the future DL hardware and software
co-design. Furthermore, we explore the upper bound of MLU100 infer-
ence performance under the standard ResNet-50 model and CIFAR-10
dataset.

Keywords: Deep learning · Domain specific hardware · Performance
analysis

1 Introduction

Deep learning (DL) has revolutionized many challenge AI domains, such as image
recognition [14,23] and natural language processing [28,29]. However, the large
quantity of numerical operations and parameters induced by deep neural net-
works (DNNs) pose a signicant challenge to general-purpose processors. To keep
pace with the growing computational demand in modern DL workloads, hard-
ware specialization has become a popular way [3,5,15,21,25]. Therefore, many
dedicated accelerators are gaining popularity for their performance efficiency.
They have been deployed in edge devices, servers, and datacenters. For exam-
ple, Huawei Meta10 and P20 cellphones integrated Cambricon-1A DL processor
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core [27]. Cambricon released MLU100 [1], which is a custom ASIC deployed in
datacenter to accelerate the inference phase of morden DL workloads. And like-
wise, Google proposed Tensor Processing Unit to accelerate distributed machine
learning [20].

Meanwhile, there are many frequently-used optimization techniques which
enable the acceleration of the inference phase of modern DL workloads. These
optimization techniques include but not limited to data parallelism, model par-
allelism, data pipeline, weights pruning and quantization [9,10,17,32]. The per-
formance variance among these optimization techniques poses a challenge for the
future DL hardware and software co-design. Design or select appropriate opti-
mization techniques on the dedicated DL accelerators is important and not easy.
Moreover, there is still lack of a comparison of these optimization techniques
to show their performance variance on dedicated accelerators. In this paper,
we evaluate these frequently-used optimization techniques on a commercial DL
accelerator—Cambricon MLU100. To systematically evaluate the platform, we
sweep these frequently-used optimization techniques as hyperparameters. We
take the standard ResNet-50 [13] model and CIFAR-10 [22] dataset as our bench-
mark, which is provided by BenchCouncil 2019 International AI system and
Algorithm Challenges (Cambricon Track1). Our workload is from AIBench [6,7],
which is an AI benchmark for datacenter. The source code of AIBench is publicly
available from http://www.benchcouncil.org/benchhub/AIBench (Sign up to get
access). BenchCouncil organizes the international AI system challenges based
on RISC-V [16], Cambricon chips [24,30] and X86 platforms [2,4,12], and the
international 3D face recognition algorithm challenges [8,31]. BenchCouncil also
provides AI benchmark for Edge [11], AIoT [26] and HPC [19]. Based on our
analysis methodology and performance numbers, we conclude our observations
and implications as following:

– Data pipeline and data parallelism significantly reduce the inference time
while maintain the qualified accuracy.

– Compared with data parallelism, the impact of model parallelism on end to
end inference throughput is not so significant.

– Weight pruning leads to a decline in accuracy although it may bring faster
inference.

– High hardware throughput does not mean high end to end throughput.

Our observations and implications should help other researchers and practition-
ers to better the future DL hardware and software co-design. Furthermore, we
explore the upper bound of MLU100 inference performance under the standard
benchmark and reach an inference time of 384ms while preserving the target
accuracy.

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground. Sect. 3 presents the evaluation methods and result is shown in Sect. 4.
Section 5 concludes and discusses the future work.

1 http://www.benchcouncil.org/competition/index.html.

http://www.benchcouncil.org/benchhub/AIBench
http://www.benchcouncil.org/competition/index.html
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2 Background

2.1 Hardware Characteristics

Cambricon MLU100 [1] is a DL accelerator deployed in datacenter to acceler-
ate the inference phase of modern DL workloads. Its ISA is based on Cambri-
con [25]. The general architecture of MLU100 is shown in Fig. 1. Cambricon
MLU100 is based on the multi-core architecture. It includes four channels con-
nected via a network on chip (NOC). Each channel contains one DDR and eight
computational cores. For example, Channel0 contains one DDR memory con-
troller (DDR0) and eight computational cores, namely C0, C1, ..., C7. DDR is
responsible for the storage of DNN model, input and output of DL workloads.
While those computational cores perform the execution of DNN computation
tasks.

Fig. 1. Architectural information of Cambricon MLU100. Note that this picture is from
Cambricon Caffe V0.9.7 documentation.

2.2 Software Stack

Figure 2 shows the software stacks of Cambricon MLU100. As we all know,
Caffe [18] is an open-sourced software framework used for DL training and infer-
ence. It is written in C++ and widely adopted in research experiments and
industry deployments. Cambricon MLU100 provides Caffe as its high-level pro-
gramming framework. Application programmers can simply deploy their applica-
tions via Cambricon Caffe. CNRT is the runtime toolkit of Cambricon MLU100.
It provides some common low-level utility APIs, such as device and memory
management, kernel launch, task queue scheduler and etc. CNML is a wrap-
per of CNRT. It provides some helper functions for DNN models’ loading and
execution and common highly-tunned DNN operators at MLU100, e.g., convo-
lution and pooling operators. Driver and kernel is responsible for the handling
of memory management and interrupts of MLU100.

2.3 Optimization Techniques

Cambricon Caffe provides some common utilities for optimization, such as data
parallelism, model parallelism and data pipeline. These optimization techniques
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Fig. 2. Software Stacks of Cambricon MLU100. Note that this picture is from Cam-
bricon Caffe V0.9.7 documentation.

usually improves the execution performance and preserves the final top-1 accu-
racy of DNN models during the inference phase. Besides, Cambricon Caffe sup-
ports weight pruning and quantization. While these optimization techniques usu-
ally have side effects over the final top-1 accuracy but improves the throughput.
All these optimization techniques are not mutually exclusive.

Data Parallelism. In the inference phase of DL workloads, data parallelism
means that given a CNN model, the input data is partitioned and assigned
to different computational cores. As is shown in Fig. 3a, different cores have a
complete copy of the DNN model. Each core simply gets a different part of the
input data, and results from each core are somehow combined to get the final
output. Data parallelism can greatly improve the throughout, since different
parts of the input data can be executed concurrently.

Model Parallelism. As is shown in Fig. 3b, model parallelism means that dif-
ferent cores are responsible for the computations of different parts in a single
network. For example, each layer in the neural network may be assigned to a dif-
ferent core. In the DL domain, we can take use of model parallelism by dividing a
neural network into several subnets, and then putting each subnet into different
cores of MLU100. Model parallelism can also improve the throughout, since for
a single input, different parts of the DNN model can be executed concurrently.

Data Pipeline. In the inference phase of DL workloads, the input data flow
will be fetched into host memory of CPUs from the disks, and then they will be
uploaded into the device memory of MLU. Finally they will be fed to the com-
putational cores of MLU. In this case, data pipeline can improve the workload
balance of data prefetching, transfering and infeeding (Fig. 4).

Weights Pruning and Quantization. As the large amounts of synaptic
weights incur intensive computation and memory accesses in the inference phase
of DL workloads, researchers have proposed a number of effective techniques to
explore the sparsity of DNN, including weight pruning, model compression and
quantization [9,10,17,32]. Cambricon MLU100 trys to exploit the sparsity and
irregularity of DNN models for the performance and power efficiency. It pro-
vides tools for weights pruning by setting the sparsity of the weights of input
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Fig. 3. Illustration of data parallelism and model parallelism.

Fig. 4. Illustration of data pipeline. Note that to improve the throughput, we can
launch multiple threads to read data from disks into the CPU memory and then dis-
patch the computational tasks into a queue that will be executed asynchronously. For
those computational tasks within the same queue, they will be executed by their dis-
patching FIFO order. While those inter-queue tasks will be executed concurrently.

DNN model. Besides it provides tools to quantize the weights of DNN models
into low-precision fixed-point numbers, e.g., INT8. We will discuss the effects of
these optimization techniques over execution performance and top-1 accuracy in
Sect. 4.

3 Evaluation Methods

Our experiments run on a heterogeneous environment. The host CPU is a 2.10
GHz Intel(R) Xeon(R) CPU E5-2620 v4 machine and 16 cores/32 threads and 20
MB of L3 cache per socket and 128 GB of memory, running Ubuntu 16.04.10 LTS
and GCC 5.4.0. The device accelerator is Cambricon MLU100 [1]. For Cambricon
MLU100, its device memory is 8GB, whose bandwidth is 102.4 GB/s. The peak
performance of MLU100 is 16 TFLOPS.
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Table 1. The ranges of the hyperparameters chosen in this paper.

Variable Batch size Data
parallelism

Model
parallelism

Thread
number

Sparsity

Min 1 1 1 1 0.10

Max 1024 32 32 128 0.90

Inc *2 *2 *2 *2 +0.01

(a) Batch size vs thread number. (b) Batch size vs data parallelism.

(c) Batch size vs model parallelism. (d) Data parallelism vs model parallelism.

Fig. 5. The effects of batch size, thread number, data parallelism and model paral-
lelism over execution performance. Note: the blank space means NaN. The FPS values
are normalized to the speedup ratio over the end to end case where batch size, data
parallelism, model parallelism and thread number are 1, 1, 1, 1 respectively.

Table 1 summarizes the hyperparameters chosen in this paper and how they
are swept. Cambricon Caffe provides tools to set the data parallelism and model
parallelism for the inference task. Thread number is the number of threads to be
launched to read data from disks. Batch size is a hyperparameter that defines
the number of image samples to be loaded in current iteration of inference tasks.
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Sparsity is a hyperparameter that specifies the degree of zeros of the weights.
For example, if its value is 0.3, that means 30% of the weights data will be
zero. We evaluate the performance of Cambricon MLU100 under the standard
ResNet50 [13] model and CIFAR-10 [22] datasets. The programming framework
in this paper is Cambricon Caffe. For all workloads, we run 20 times and calculate
the average.

4 Performance Numbers

All these hyperparameters in Table 1 are not mutually exclusive, we group these
hyperparameters based on whether they affect the final top-1 accuracy. In this
section, we discuss the effects of these hyperparameters over the final accuracy
and execution performance.

4.1 Optimizations Preserving Accuracy

Hyperparameters like batch size, thread number, data parallelism and model par-
allelism usually have no side effects over the final top-1 accuracy. By sweeping
the first four hyperparameters in Table 1, we find that the final top-1 accuracy
of ResNet-50 over CIFAR-10 datasets at MLU100 preserves at 84.39%. In the
terms of end to end FPS, the best configuration for the first four hyperparam-
eters in Table 1 is 16, 4, 1, 8. To demonstrate the effects of batch size, thread
number, data parallelism and model parallelism over execution performance, we
choose this best configuration as guideline. For each case in Fig. 5, we sweep the
corresponding two hyperparameters by fixing the other twos. As we can see from
Fig. 5a and Fig. 5b, data pipeline and data parallelism significantly improve the
end to end throughput. Meanwhile, we can see from Fig. 5c and Fig. 5d that the
impact of model parallelism on end to end throughput is not so significant. For
ResNet-50, best model parallelism is 1 in the terms of end to end throughput.

4.2 Optimizations Affecting Accuracy

As we mentioned in Sect. 4.1, the best configuration for the first four hyperpa-
rameters in Table 1 is 16, 4, 1 and 8 separately in the terms of end to end FPS. To
demonstrate the effects of weight pruning over execution performance and top-1
accuracy, we choose this best configuration as guideline. We sweep the sparsity
hyperparameter from 0.1 to 0.9 by fixing the other fours to the best configu-
ration. As we can see from Fig. 6, weights pruning significantly affects the end
to end and hardware throughput. In Fig. 6a, the hardware FPS increases when
the input weight sparsity increases, since higher sparsity means more zeros in
the weights data and higher throughput of the device accelerators. However,
as is shown in Fig. 6b, with the increase of weights sparsity, the end to end
FPS improvement slows down. That means high hardware throughput does not
mean high end to end throughput, because of the load imbalance of data feeding
between host CPUs and device accelerators. Besides, the top-1 accuracy drops
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(a) Sparsity over accuracy and end to end
FPS.

(b) Sparsity over accuracy and hardware
FPS.

Fig. 6. The effects of weight pruning over execution performance and top-1 accuracy.
Note that the x-axis is the sparsity of weights; the left y-axis is the global top-1 accu-
racy; the right y-axis is normalized FPS (frame per second), which can be treated as a
proxy of FLOPS. The FPS values are normalized to the speedup ratio over the end to
end case where batch size, data parallelism, model parallelism and thread number are
1, 1, 1, 1 respectively.

significantly with the increase of weights sparsity. In the real production environ-
ment, although weights pruning brings higher end to end throughput, a very low
accuracy may not be acceptable. For the quantization optimization techiniques,
the top-1 accuracy of MLU100 maintains at a qualified level.

5 Conclusion and Future Work

In this paper, we investigate many frequently-used optimization techniques
including but not limited to data parallelism, model parallelism, data pipeline,
weights pruning and quantization. And compare these optimization techniques
to show their performance difference at throughput and top-1 accuracy on Cam-
bricon MLU100. Based on our analysis methodology and performance numbers,
we conclude our observations and implications which will help to better the
future DL hardware and software co-design. As future work, we are planning to
evaluate more DNN models on more DL accelerators.

Acknowledgement. This work is partially supported by the National Key R&D Pro-
gram of China(under Grant No. 2017YFB1003103).
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Abstract. Deep learning algorithms have become pervasive in a broad
range of industrial application scenarios. DianNao/Cambricon family is
a set of energy-efficient hardware accelerators for machine learning, espe-
cially for deep learning, covering from edge embedded devices to cloud
data centers. However, in the real application scenario, the complicated
software stack and the extra overhead (memory copy) hinder the full
exploitation of the accelerator performance. In this paper, we try to
explore the performance bound of Cambricon accelerator MLU100 in
end-to-end deep learning inference scenarios (from data/model load to
inference results store). We leverage the offline model to bypass the gen-
eral deep learning framework, use the multiple threads programming
to fully exploit the parallelism of the multi-core accelerator and apply
specific data structure to decrease the memory copy overhead. The eval-
uation results show that, for RetNet-50 on CIFAR-10 dataset, our opti-
mization methods are 32.09× faster than the baseline of the optimized
batch size (64), and achieve 85% of the performance upper-bound on the
Cambricon MLU100 board.

Keywords: DianNao/Cambricon accelerator · End-to-End
Optimization · RetNet-50 on CIFAR-10

1 Introduction

Deep learning algorithms have become pervasive in a broad range of industrial
application scenarios, such as autonomous driving, natural language process-
ing, and advertisement recommendation. To meet the explosive growth of deep
learning application requirements, many machine learning accelerators have been
designed both from the academic and the industry, such as DianNao/Cambricon
accelerators [3,4], Google TPU systolic architecture [15], and IBM TrueNorth
neuromorphic processor [19].
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These hardware accelerators achieved high performance to process machine
learning workloads in ideal evaluation environments. However, in the real appli-
cation environments, developers usually utilize the hardware accelerators via
machine learning frameworks, which are too high-level to handle the specific
operator-level optimization on hardware [2,24], hindering the full exploitation of
the accelerator performance. To address this problem, we focus on a specific end-
to-end inference scenario, using a Cambricon MLU100 board [1] to process the
image classification task over 10,000 images. This task is the Cambricon track
on BenchCouncil AI Challenges, the other three tracks are AI system challenge
of RISC-V [13] and X86 platform [7], and 3D face recognition algorithm chal-
lenge [23]. AIBench provides the workloads, datasets, and the baseline for the AI
challenges [9,10]. The source code of AIBench is publicly available from http://
www.benchcouncil.org/benchhub/AIBench/ (Sign up to get access).

To explore the performance bound of the Cambricon board over the specific
end-to-end inference scenario, we adopt three optimization methods. Firstly,
we use the serializing tool provided by Cambricon to generate a offline model,
which bypasses the deep learning framework, accessing the hardware accelerator
via runtime library. Secondly, we use the multiple threads programming to max-
imize the memory bandwidth of the external DRAM on the Cambricon board,
fully exploiting the parallelism of the multi-core accelerator. Thirdly, we convert
the image data to the expected input data structure of the Cambricon chip to
decrease the memory copy overhead. According to evaluation results, our opti-
mization methods are 32.09× faster than the baseline of the optimized batch size
(64), and achieve 85% of performance upper-bound on the Cambricon MLU100
board.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
background. Section 3 presents our optimization methods. Section 4 illustrates
the evaluation results. Finally, we conclude our work in Sect. 5.

2 Background

In this section, we briefly introduce the specific deep learning task, including the
hardware accelerator, the neural network model and the input dataset.

DianNao Family and Cambricon MLU100 Accelerator. DianNao [3] is a
high-throughput and energy-efficient accelerator for the deep neural network pro-
posed in 2014. A large neural network can be split into small workloads to reuse
the NFU (Neural Functional Unit) and SRAM buffers efficiently, so DianNao
can execute neural networks on different scales. To support more machine learn-
ing algorithms and application scenarios, they have proposed various accelerator
architectures, such as PuDianNao [18] for polyvalent machine learning algo-
rithms and ShiDianNao [8] for computer vision algorithms on edge. Cambricon
MLU100 is a commercial product based on DaDianNao [5] architecture, which
is a multi-core supercomputer for machine learning. Cambricon MLU100 boards
have been widely deployed in cloud servers to accelerate numerous machine learn-
ing applications.

http://www.benchcouncil.org/benchhub/AIBench/
http://www.benchcouncil.org/benchhub/AIBench/
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Residual Neural Network and CIFAR-10 Dataset. Residual Network
(ResNet) [12] is a classic deep neural network for image classification, which
has been adopted in a lot of deep learning benchmarks as the evaluation work-
load [6,10,11]. ResNet leverages the residual blocks to address the degradation
problem and achieves the lowest error on the ImageNet test set in 2015, and
wins the ILSVRC classification competition [20] in 2015. And the deep resid-
ual learning framework has been one of the main trends in designing the deep
neural networks [14,21,22]. CIFAR-10 dataset consists of 60,000 32 × 32 colour
and labeled images in 10 classes [16], which is a standard dataset to evaluate
the algorithm performance [12,17]. And CIFAR-10 also has been used in lots of
deep learning benchmarks as the standard input [6,10].

Fig. 1. Online (left) and offline (right) deployment.

3 Design and Implementation

In this section, we present the detailed optimization methods of the end-to-end
inference workload mentioned above. Meantime, we illustrate the optimization
results for each step.

3.1 Offline Model

Cambricon accelerators provide two programming libraries for users, the CNML
(Cambricon Neuware Machine Learning) library and the CNRT (Cambricon
Neuware Runtime) library. These two libraries allow developers to leverage the
machine learning acceleration engine in the Cambricon board with the user-
friendly programming framework and interface.

The libraries support online and offline approaches to deploy the machine
learning algorithms on Cambricon accelerators, as shown in Fig. 1. The online
method is a traditional way to deploy the machine learning model. The model
is managed by the CNML framework, or other general machine learning frame-
works (e.g. Caffe and TensorFlow). The offline method usually serializes the
compiled computing graph and operators to a new file, generating a new model
file (offline model), which can be loaded directly by the CNRT library. The online
or offline approach decides whether the system will load the machine learning
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framework when executing the machine learning applications. The offline method
makes the machine learning model bypass the machine learning framework and
achieves higher performance than the traditional way in the end-to-end inference
scenario.

The performance of the offline deployment method is shown in Fig. 2. Com-
pared with the online deployment method, the offline method is 1.58× faster on
average and 1.52× faster on the optimal bath size (64).
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Fig. 2. Speedup of offline model optimization method over online, and batch size = n
over batch size = 1 in offline model method.

3.2 Multiple Threads

The Cambricon MLU100 provides n machine learning acceleration cores and m
memory controllers (channels), n mod m = 0. Each channel manages an external
DRAM and creates a hardware-queue (HQ) in the OS kernel. For a single thread
program, the n acceleration cores access the data from 1 external DRAM, which
will cause the bandwidth contention and degrade the accelerator performance. To
exploit the parallelism of the memory controller, we create a m-thread program
and bind each thread to a different channel (hardware-queue in OS), to maximize
the data access bandwidth between the acceleration cores and external DRAMs.

There are two methods to leverage multiple acceleration cores on MLU100,
model parallel and data parallel. The model is partitioned into n cores in the
model parallel method, and the n cores will process 1 image collaboratively. In
the data parallel method, each core is allowed to access the whole model, and
the n cores will process n images concurrently and independently. The model
parallelism introduces extra overhead because of the intermediate result copy
and fusion. To exploit the parallelism of the multi-core, we set model parallelism
to 1 and data parallelism to n (number of cores).

As shown in Fig. 3 after exploiting the parallelism of the MLU100, compared
with the single-thread method, the parallel programming method is 11.83× faster
on average and 12.17× faster on the optimal bath size (64).
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Fig. 3. Speedup of multiple-thread optimization method over single-thread, and
batch size = n over batch size = 1 in multiple-thread method.
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Fig. 4. Running time breakdown and data structure conversion.

3.3 Data Structure Conversion

To fully understand the bottleneck of the program, we collect the running time of
each step in the program, and the running time breakdown is shown in Fig. 4(a).
While leveraging the two optimization methods mentioned above, the data load-
ing, model processing, and results writing to file only cost 6.06%, 25.74%, and
0.81% of the total processing time, respectively, while the image data type con-
version costs 67.39% of the total time. The data structure conversion overhead
is caused by the mismatch problem. The loaded images are formatted accord-
ing to the data structure in the CIFAR-10 dataset, each image has 1 byte label
data and 3, 072 bytes pixel data. However, the MLU100 takes contiguous address
space of the image data as the input, and each pixel is represented by a float32
value. The data type conversion process is illustrated in Fig. 4(b).

To reduce the extra processing time caused by the data type mismatch, we
reformat the image data according to the MLU100 input data structure, and
the performance is shown in Fig. 5. After eliminating the data type mismatch
problem, the performance is 1.60× faster on average and 1.73× faster on the
optimal bath size (64).
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Fig. 5. Speedup of data structure matching optimization method over mismatch, and
batch size = n over batch size = 1 in matching method.

4 Evaluation

As we presented above, our optimization methods are 32.09× faster than the
baseline. The peak performance of Cambricon MLU100 board is 64 TeraFlops
(half-precision, 16-bit) [1], and the I/O bandwidth of the 4 channels PCIe is 8
GB/s, the Roofline Model of Cambricon MLU100 board is illustrated in Fig. 6.
The Opt.3 is the final performance after we adopt three optimization methods,
which achieve 85% of performance upper-bound on the Cambricon MLU100
board.
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Fig. 6. Roofline model of Cambricon MLU100 board

5 Conclusion

Even though some hardware accelerators are energy-efficient in micro-
benchmarks, a lot of potential is under the performance upper-bound while the
end-to-end applications are executed on accelerators. To explore the performance
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bound of Cambricon board over the specific end-to-end inference scenario, we
adopt three optimization approaches, while reducing the memory copy overhead
and speeding up by utilizing better parallelism. The evaluation results show
our optimization methods reveal 32.09× faster than the baseline on the optimal
batch size (64). In addition, we achieve 85% of performance upper-bound of the
Cambricon MLU100 board.
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Abstract. Cambricon provides us with a complete intelligent applica-
tion system, how to use this system for deep learning algorithms devel-
opment is a challenging issue. In this paper, we exploit, evaluate and val-
idate the performance of the ResNet101 image classification network on
Cambricon with Cambricon Caffe framework, demonstrating the avail-
ability and ease of use of this system. Experiments with various opera-
tional modes and the processes of model inference show, the optimal run-
ning time of a common ResNet101 network that classifies the CIFAR-10
dataset on Cambricon is nearly three times faster than the baseline. We
hope that this work will provide a simple baseline for further exploration
of the performance of convolutional neural network on Cambricon.

Keywords: Cambricon · Convolutional neural network · ResNet101

1 Introduction

Image classification is a fundamental task in the field of computer vision that
labels a picture to distinguish different categories visually and concisely. Classifi-
cation task can also guide the development of other tasks: object detection [11],
segmentation [15] and many more, such as instance segmentation, which per-
forms per-pixel labeling of pictures at instance level. Therefore, since ResNet [18]
was proposed as an effective image classification network at 2015, superior per-
formance has enabled it to be applied as a backbone network to almost all
other tasks [11,17,31]. Whether the ResNet network can run normally should be
regarded as the basic standard to test whether an intelligent application system
can run robustly.

As the calculation of neural network is a quite computationally intensive pro-
cess, the computing capability of traditional CPU is far from meeting current
computational complexity. Even the GPU is not designed originally specifically
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for artificial intelligence algorithms. The Cambricon chip is the first deep learn-
ing processor in the world as far as we know. It uses the hardware’s digital logic
structure, NFU (Neural Functional Units), to simulate the neural network con-
nection structure to execute multiplication, addition, activation and other oper-
ations [7]. With ASIC (Application Specific Integrated Circuit) mode, which
reduces a lot of unnecessary logic functions [22], Cambricon is extremely fast
and consumes very low power, making it a superior alternative to GPU in video
parsing, autonomous driving, and many more other real-world scenarios.

This work is implementing the ResNet101 classification network based on
Cambricon with CIFAR-10 dataset [8]. By trying various operational modes, we
find out the optimal operation strategy and running time to verify the perfor-
mance and efficiency of Cambricon.

This year, joint with Cambricon, China RISC-V alliance, Sugon, and Intel-
lifusion, BenchCouncil organizes four challenge tracks, including international
AI system challenge based on RISC-V [19], international AI system challenge
based on Cambricon chip [25,26,34], international AI system Challenge based on
X86 platform [2,6,14] and international 3D face recognition algorithm callenge
[12,35]. Notably, we won the third prize on the Cambricon Track of BenchCoun-
cil Challenges.

2 Related Work

Image Classification. Image classification, a fundamental problem in computer
vision, can be described as categorizing images into one of several predefined
classes [1]. It forms the basis for other computer vision tasks such as localiza-
tion [37], detection [11,16,27,28,31], and segmentation [15,17,32]. Traditionally,
handcrafted features can be extracted from images using feature descriptors for
the purpose of classification. The major disadvantage of this approach is that
the accuracy of the classification result is profoundly dependent on the design of
the feature extraction stage. In recent years, deep learning has developed to be
a convenient, effective and robust tool to extract features from images, audio,
etc, which does not require handcrafted features. Especially, DCNNs for image
classification tasks achieved state-of-the-art results in the ImageNet Large Scale
Visual Recognition Challenge since 2012 [1].

ResNet. In theory, the performance of the neural network should be posi-
tively related to the depth of the network, because the deeper the network,
the more parameters it has, the more complicated it is. But the early experi-
menters observe that as the number of network layers increases, the model accu-
racy will rise first and then reach saturation, and continuing to increase layers
will result in a decrease in accuracy sharply, which we called degradation [18].
ResNet’s [17,18,24,33] proposal solves this problem very well. By introducing
the residual network structure, it can make the network very deep, at the same
time the final classification result is also very satisfactory. In this case, the depth
of the network can be extended to tens, hundreds or even thousands of layers,



Improve Image Classification by Convolutional Network on Cambricon 77

providing the feasibility of extracting and classifying high-level semantic fea-
tures. ResNet made a stunning appearance in the ILSVRC2015 competition,
which raised the network depth to 152 layers, reducing the error rate to 3.57.
In terms of image recognition error rate and network depth, it has greatly been
improved compared with previous models. This also makes the network become
the backbone network of the later convolutional neural network model, and many
models with excellent performance subsequently are transformed on the basis of
ResNet [11,15–17,27,31].

Cambricon. CPU and GPU are designed to handle many different comput-
ing tasks originally. They have multiple functional logic units inside, which are
widely applicable. But for a computationally intensive computing task, they are
not so efficient [4,5]. Current artificial intelligence algorithm mainly includes two
aspects: convolutional neural network and recurrent neural network. From the
point of view of decomposition, they are composed of a lot of matrix multipli-
cation or tensor element-by-element multiplication, so the CPU will no longer
be suitable for this algorithm, and the GPU will be better, but there is still a
lot of room for improvement. Since the introduction of the Cambricon chip, it
has sparked a wave of research and application of deep learning accelerators.
It is designed for the local and computational characteristics of artificial intel-
ligence algorithms and neural network models to achieve better performance
acceleration ratio and computing capability consumption ratio. On this basis,
the application scenarios targeted by the deep learning chip are further divided,
so the high-performance computing architecture DaDianNao [7] for the server
side, the ShiDianNao [3] for the edge-end device application scenario, the PuDi-
anNao [29] for the more generalized machine learning algorithms, all appeared.
And the Cambricon instruction set [36] for a wider range of machine learn-
ing accelerators and the Cambricon-X [20] for hardware acceleration using data
sparsity have been proposed for better use of these architectures.

3 Experiments

3.1 Multiple Operating Modes of Cambricon

To support the Cambricon machine learning processor, Cambricon modifies the
open source deep learning programming framework Caffe, and adds some func-
tions like offline, multi-core forward inference and so on, to form Cambricon
Caffe. It is compatible with native Caffe’s python/C++ programming inter-
face and the native Caffe network model [23]. Besides, it provides a convenient
interface to run various types of deep learning applications and a series of APIs
provided by the Cambricon Neuware Machine Learning Library (CNML) for effi-
cient inference. CNML interacts with the Cambricon machine learning processor
by calling the Cambricon Neuware Runtime Library (CNRT) and drivers. Appli-
cations can also call CNML or CNRT directly to use the Cambricon Machine
Learning Processor [36].
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In the Cambricon operating environment, a variety of different programming
models are supported. Firstly, the Cambricon machine learning processor is a
multi-core processor architecture with 32 cores and supports two parallel modes:
model parallelism and data parallelism. The setting of two parallelism param-
eters is based on the specific model. Reasonable model parallelism and data
parallelism can optimize the performance of MLU (Machine Learning Unit).
The MLU also supports multi-card mode, such as multiple MLU cards installed
on a single server, allowing the model to run on different cards or distributing
the calculations to multiple MLU cards. MLU supports two different modes of
operating mode: online and offline. Online mode refers to the mode that depends
on the Cambricon Caffe framework to run, and offline mode refers to the mode
that uses the runtime function interface directly from the framework.

3.2 Design Details

In this work, our main concern is the running time of the model, that is, selecting
the most suitable model settings, and completing the inference process of the
ResNet101 classification model on the CIFAR-10 dataset in the shortest time.
As we mentioned above, in order to speed up the inference process of the model,
we try to select multi-core, multi-card, offline operation mode.

First of all, for programming model, we can choose multi-core and multi-
card. The multi-core is determined by model parallelism and data parallelism.
MLU provides us with up to 32 cores. The degree of parallelism of model and
data decides the number of cores used. We use grid computing to choose the
best combination of model parallelism and data parallelism for this problem.
On the other hand, the BenchCouncil [9,10,13,21,30] provides only one MLU
in the runtime environment, we can’t try the multi-card programming process.
The source code of AIBench is publicly available from http://www.benchcouncil.
org/benchhub/AIBench/ (Sign up to get access). In terms of the model’s oper-
ating mode, the online process depends on the operation of the Cambricon Caffe
framework, while the offline mode is independent of the framework, so we choose
the offline mode. The final result of the operation is shown in the Fig. 1.

3.3 Results in Challenge

In the subsequent experiments, we test model inference on pre-trained ResNet101
with the CIFAR-10 dataset. The three parameters that need to be adjusted are:
parallelism of the model, parallelism of the data, and number of threads. The
degree of parallelism of model and data together determines the number of cores
used by the model. Because BenchCouncil provides us with a total of 32 cores,
single card MLU, in order to get the best inference time, we use the most number
of cores. In addition, we did some experiments to find out the influence of threads
on the speed of model inference. In order to fully use the 32 cores, our model
parallel number and data parallel number will be set as 2/16, 4/8, 8/4, 16/2 and

http://www.benchcouncil.org/benchhub/AIBench/
http://www.benchcouncil.org/benchhub/AIBench/
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32/1 in order. Meanwhile, we select 2, 4, 6, ..., 14, 16 to test the optimal number
of threads. The experimental results are shown in Fig. 1. According to it, we can
summarize as follow:

With the same degree of parallelism, the more threads, the longer the time
of model inference: we believe that when the degree of parallelism of the model
and the data both are 1, a total of 32 threads can be created, so the degree
of parallelism and threads are mutually exclusive. Now, in order to maximize
the number of cores, the degree of parallelism is also set to a maximum of 32,
and then increase the number of threads, which will cause resource preemption
among different threads, reducing the speed of reasoning.

Under the specific number of threads, when the model parallelism and data
parallelism are 4 and 8, model inference time is the shortest, and it can be
considered that the performance matching of the two factors is optimal.

Fig. 1. Illustration of results of model inference under the influence of three factors.
The abscissa represents the number of threads, and the ordinate represents the time
of model inference. Different colors are different model and data parallelism matching.
For example, 2/16 indicates that the model parallelism is 2 and the data parallelism
is 16. Specifically, the first one is our baseline. Under certain thread numbers, the
combination of different parallelism will cause MLU out of memory. For example, in
16 threads, if 2/16 is used, the memory will overflow, we don’t display these results in
this figure. (Color figure online)
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4 Conclusion

In order to solve the problem of image classification on Cambricon, we find out
a model setting that is most suitable for the execution of ResNet101 network,
and adopt the multicore and multithreading method to transplant the network
to the Cambricon operating environment for faster speed. Our transplantation is
effective and efficient. We also record the differences among these combinations,
and hope the implementation details publicly available can help the community
adopt these useful strategies for object detection, scene parsing and semantic
segmentation and advance related techniques.
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Abstract. The open-source instruction set architecture RISC-V has
developed rapidly in recent years, and its combination mode of mul-
tiple sub-instruction sets has attracted the attention of IoT vendors.
However, research on the IoT scenario inference framework based on the
RISC-V architecture is rare. Popular frame-works such as MXNet, Ten-
sorFlow, and Caffe are based on the X86 and ARM architectures, and
they are not optimized for the IoT scenarios. We propose RVTensor that
a light-weight neural network inference framework based on the RISC-V
architecture. RVTensor is based on the SERVE.r platform and is opti-
mized for resource-poor scenarios. Our experiments demonstrate that the
accuracy of RVTensor and the Keras is the same.

Keywords: RISC-V · Deep Learning · ResNet20 · SERVE.r

1 Introduction

This paper is for 2019 BenchCouncil International Artificial Intelligence System
Challenges. The Challenges has four tracks: International AI System Challenge
based on RISC-V (we participate in this), International AI System Challenge
based on Cambricon Chip [1,2], International AI System Challenge based on
X86 Plat-form [3–5], International 3D Face Recognition Algorithm Challenge
[6,7].

The RISC-V instruction set architecture [8] consists of a basic instruction set
and multiple extended instruction sets, which is more flexible than the X86 and
ARM architectures. The flexible combination mode of the RISC-V architecture
is suitable for the IoT domain with various requirements. The IoT vendors can
personally combine and customize the instruction set according to the specific
scenarios, so the RISC-V architecture has a good application prospect in the
IoT field.

Few deep learning inference frameworks support the RISC-V architecture.
TensorFlow [9], MXNet [10], Caffe [11], and PaddlePaddle [12] are based on the

c© Springer Nature Switzerland AG 2020
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X86 and GPU architectures, lacking support for RISC-V architectures, and these
frameworks often run on resource-rich servers and have few optimizations for the
IoT domain.

We propose a deep learning inference framework RVTensor that is optimized
for resource-poor application scenarios based on the RISC-V architecture. It
has few third-party dependent libraries, small memory requirements, and small
executable files. We have evaluated RVTensor by the ResNet20 model, and find
that the accuracy of its results is the same as the Keras [13].

2 Overall Architecture

The overview of RVTensor architecture is shown in Fig. 1, it consists of four
parts: model analysis, op operators, construction calculation graph, and execu-
tion calculation graph.

Fig. 1. Overview of RVTensor architecture.

Model Analysis. It mainly parses model files such as .pb, and extracts infor-
mation such as operator operations and weight data.

Op Operators. It mainly includes the implementation of each operator, includ-
ing conv, add, active, pooling, fc [14] and other operations. These operators are
the basic computing unit of the neural network execution.

Construction the Calculation Graph. It builds a calculation graph based
on the model analysis and the op operator modules. In the calculation graph,
the order between the operators, the dependencies between the weights and the
operators are clarified.

Execution the Calculation Graph. It obtains the inference results based on
the input data (such as image data) and the calculation graph.
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3 Optimization Skills

RVTensor is optimized for resource-poor scenarios by reducing dependencies on
third-party libraries and increasing memory utilization. To reduce the depen-
dence on third-party libraries, we propose many light-weight API interfaces,
e.g., we re-implement thread function APIs. To improve memory utilization, we
reuse the memory.

Re-implement thread API. Pthread [15] is a popular open-source thread
library, which provides APIs such as thread creation, thread waiting, thread
exit, thread lock. However, RVTensor mainly involves two thread functions:
thread creation and thread waiting, most functions in the Pthread library are
not involved. Therefore the Pthread is quite heavy for RVTensor, and we re-
implemented the involved functions based on the RISC-V architecture instead
of using the Pthread. The way we implement the functions is shown in Fig. 2.
We propose the thread creation interface in thread.c. First, we allocate the stack
memory for the new thread and then invoke the clone function to create the
thread. The clone function is implemented in the clone.c file. In the clone.c, we
first parse the parameters and then call the interface in the clone.s to create
threads based on the parameters. The clone.s is an assembly file that wraps the
sys clone system call to really create the thread. Compared to the Pthread, the
new thread API is more lightweight and more suitable for IoT scenarios.

Fig. 2. Thread function call procedure.

Memory Reuse. The hardware of the IoT scenario generally has a small mem-
ory capacity. If the memory optimization is lacking, the inference system is
prone to have OOM errors [16]. We propose a memory reuse strategy to save the
memory. The classic segment of the calculation graph is shown in Fig. 3(a), the
memory space for the current opi operator is necessary, and the space for the
opi−1 and opi+1 do not need to be allocated immediately. So we create a global
memory block for the current op operator to reuse.

The memory space Mop required for the op operator is calculated as follows:

Mop =
N∑

i=0

(Mii + Mik + Mib) + Mo (1)

Where Mii represents the size of the i-th input data, Mik represents the
kernel size of the i-th input data, Mib represents the bias size of the i-th input
data, and Mo represents the output size of the op operator.
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(a) segment of the calculation graph (b) two sub-branches in the calculation graph

Fig. 3. Execution branch of calculation graph

The global memory block Mpool shared by each operator is calculated as
follows:

Mpool = max(Mop1,Mop2, ...,Mopn) (2)

If the graph has multiple branches in a stage, as shown in Fig. 3(b), we treat
the sub-branches as a atomic operation, take the sum of the Mop i of each sub-
branch as the Mop br that represents the memory space needed in this stage, as
shown in the following formula:

Mop br =
N∑

i=0

Mop i (3)

Where Mop i represents the max Mop in the i-th sub-branch.
The memory reuse strategy saves memory space while reducing the number

of memory allocations.

4 Evaluation

We evaluate RVTensor based on the SERVE.r platform [17], the test model
is the ResNet20 [18], and the data set is the CIFAR-10 [19], involving 10,000
images. Our experiment refers to the benchmark for image classification in
AIBench [20][21][22]. AIBench source code is publicly available from http://
www.benchcouncil.org/ben-chhub/AIBench/ (Sign up to get access) (Table 1).

Accuracy. We use the Keras as the baseline. After analyzing the test results,
the accuracy of RVTensor on Top1 and Top5 is 77% and 98%, respectively, which
is the same as the Keras. It should be noted that the Keras cannot be installed
and run on the SERVE.r platform due to the memory limitation, so its accurate
evaluation is based on the X86 platform.

http://www.benchcouncil.org/ben-chhub/AIBench/
http://www.benchcouncil.org/ben-chhub/AIBench/


RVTensor: A Light-Weight Neural Network Inference Framework 89

Table 1. Accuracy based on the ResNet20 model.

Top1 Top5

RVTensor 77% 98%

Keras 77% 98%

Performance. The average time to process each image is 13.51 s.

Execution File Size. The executable file size of RVTensor is 193 KB.

5 Future Work

The performance of RVTensor is still low, and we will improve it in the following
ways:

– Memory optimization. Due to the limited memory of the SERVE.r, there
will be memory swapping in and out, which will cause the time overhead of
some op operators to increase significantly and reduce the performance. We
will try to solve this issue.

– Optimization for sparse convolution. The relu activation will result in
an ample number of zeros in the input data, these zeros occupy a large space
and cause the convolution operation to be inefficient. We will optimize the
sparse convolution operation.

– The V instruction set adaptation. We will try to re-implement the op
operator based on the V instruction set, improving the operator execution
efficiency.

– Model pruning. We will compress the model parameters through pruning
techniques to make them more suitable for IoT scenes.

6 Summary

We propose a deep learning inference framework RVTensor for the IoT scenario
based on the RISC-V architecture. We reduce the dependency on third-party
libraries by implementing light-weight API interface, and save memory space
during the op operator calculation process through the memory reuse strategy.
Our experiments demonstrate that the accuracy of RVTensor and the Keras is
the same, and RVTensors executable file is quite small.
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Abstract. Recently the emerging RISC-V instruction set architecture
(ISA) has been widely adopted by both academia and industry. Mean-
while, various artificial intelligence (AI) applications have been exten-
sively deployed in cloud, edge, mobile and IoT devices due to latest
breakthroughs in deep learning algorithms and techniques. Therefore,
there is an increasing need for enabling deep learning inference on RISC-
V. However, at present mainstream machine learning frameworks have
not been ported to RISC-V, which poses challenges to deep learning
application developers. In this paper, we explore approaches to enabling
deep learning inference on RISC-V. Experimental results show that in
our work, there is a great gap between the performance of deep learn-
ing inference on RISC-V and that on x86; thus compared with direct
compilation on RISC-V, cross-compilation on x86 is a better option to
significantly improve development efficiency.

Keywords: RISC-V · Deep learning · Machine learning framework ·
Cross-compile

1 Introduction

RISC-V [1] is a clean-slate, open and free instruction set architecture (ISA),
which allows anyone to develop both open-source and proprietary implementa-
tions. Its modular design for extensibility and specialization makes itself suit-
able for computing systems ranging from microcontrollers to supercomputers.
Hence RISC-V is attracting extensive attention from both academia and indus-
try. Meanwhile, as deep learning has become state-of-the-art in domains such as
computer vision, voice recognition, natural language processing, etc., artificial
intelligence (AI) is experiencing a renaissance, and a large variety of AI appli-
cations are being deployed in a wide range of computing platforms, including
cloud, edge, mobile and IoT devices. Therefore, deep learning is expected to
be enabled on RISC-V for both research and commercial purposes. However,
mainstream machine learning frameworks (e.g. TensorFlow [2]) do not have a
full-fledged RISC-V port for now, posing challenges to the development of AI
applications targeting RISC-V.
c© Springer Nature Switzerland AG 2020
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On the other hand, since server and desktop markets are dominated by Intel
x86, and mobile and IoT markets dominated by Arm, machine learning frame-
works and applications have to be developed for different ISAs respectively, in
order to cover various computing platforms. However, this may induce a large
amount of development efforts. Fortunately, RISC-V would provide an unique
opportunity for both machine learning frameworks and applications to be devel-
oped for only one ISA and to be deployed on a wide range of computing plat-
forms. Therefore, machine learning frameworks and applications are especially
worth porting to RISC-V.

In this paper, AIRV stands for “AI on RISC-V”. Our vision is to enable a
large variety of AI applications on a wide range of RISC-V platforms. At present,
we focus on enabling deep learning inference on RISC-V, and evaluate the per-
formance of deep learning inference on multiple platforms. Our contributions are
summarized as follows:

– We explore approaches to enabling deep learning inference on RISC-V;
– We evaluate the performance of deep learning inference both on RISC-V and

on x86;
– We show that in our work, compared with direct compilation on RISC-V,

cross-compilation on x86 is a better option to reduce the development cycle
of deep learning inference applications targeting RISC-V.

The paper is organized as follows. Section 2 summarizes related work.
Section 3 briefly introduces the ResNet-20 deep neural network (DNN) and
the CIFAR-10 dataset. Section 4 illustrates the architecture for deep learning
inference applications in our work. Section 5 implements the architecture using
TensorFlow Python, TensorFlow C and TensorFlow Lite for Microcontrollers,
respectively. Section 6 compares two compilation methods: direct compilation
and cross-compilation. Section 7 presents experimental results. Section 8 con-
cludes the paper.

2 Related Work

Most prior work [3–5] focused on offloading deep learning inference tasks espe-
cially key kernels (e.g. convolution, activation, pooling) from RISC-V cores to
a dedicated hardware accelerator to achieve high performance and/or energy
efficiency for deep learning inference applications targeting mobile and/or IoT
devices. They usually use a hardware/software co-design method which features
an SoC incorporating RISC-V cores, a dedicated hardware accelerator for deep
learning inference, and a specialized software toolchain comprised of customized
libraries, compilers, etc.

In the aforementioned solutions, most deep learning inference tasks are actu-
ally executed on a deep learning accelerator, rather than a RISC-V core which
is usually used as a microcontroller. Therefore, their solutions rely on dedicated
hardwares and specialized softwares, which potentially incur additional program-
ming efforts for application developers. Moreover, it may not be able to port the
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applications developed using their software tools to other RISC-V platforms
especially those without a required hardware accelerator.

In this paper, we focus on directly running all deep learning inference tasks on
a RISC-V based processor, instead of a dedicated hardware accelerator. One of
our goals is to enable a large variety of deep learning inference applications on a
wide range of RISC-V platforms using mainstream machine learning frameworks.
Furthermore, we plan to accelerate deep learning inference on RISC-V using a
pure hardware solution to improve performance and energy efficiency without
incurring extra programming efforts for application developers, and we leave this
optimization for future work.

3 Background

We briefly introduce the ResNet-20 deep neural network and the CIFAR-10
dataset, in preparation for illustration of the architecture for deep learning infer-
ence applications in our work.

3.1 ResNet-20

The ResNet [6] deep neural network originates from the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [7], which provides millions of labeled
images for the contestants to train and evaluate their deep neural networks. On
the ILSVRC 2015 classification task, ResNet achieved 96.4% accuracy on the
ImageNet test set and won the first place, which outperformed human accuracy
(94.9%) [7] on image classification.

The ResNet-20 deep neural network in this paper is a pre-trained model
from the 2019 BenchCouncil International AI System and Algorithm Chal-
lenges [8], which consist of four tracks: International AI System Challenge based
on RISC-V, International AI System Challenge based on Cambricon Chip, Inter-
national AI System Challenge based on X86 Platform, and International 3D Face
Recognition Algorithm Challenge. The topics of the tracks are derived from
AIBench [9,10], the source code of which is publicly available from http://www.
benchcouncil.org/benchhub/AIBench/ (sign up to get access). The ResNet-20
model is used to predict the most possible category of an image: airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, or truck. The input of the model is
a color image with three channels (i.e. red, green and blue); each channel is com-
prised of 32 × 32 pixels and each pixel is an integer ranging from 0 to 255. The
output of the model is a vector consisting of ten floating point numbers (with
each number ranging from 0.0 to 1.0), indicating the possibilities of an image
belonging to the aforementioned categories, respectively. Thus we can predict
the most possible category of the image by finding the maximum element of the
vector.

http://www.benchcouncil.org/benchhub/AIBench/
http://www.benchcouncil.org/benchhub/AIBench/
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Fig. 1. Architecture for deep learning inference applications.

3.2 CIFAR-10

The CIFAR-10 [11] dataset consists of 60,000 color images and their labels; each
image shares the same attributes with that described in Sect. 3.1. CIFAR-10
is divided into two parts: a training dataset containing 50,000 labeled images
for training deep neural networks and a test dataset containing 10,000 labeled
images for evaluating deep neural networks. The label is used to judge whether
a deep neural network has made a right prediction on the corresponding image.
In other words, a right prediction has been made if the category of the image
predicted by the deep neural network is the same as the corresponding label;
otherwise, it’s a wrong prediction.

The ResNet-20 deep neural network model used in our work, is trained on
the CIFAR-10 training dataset, and achieves 84.03% accuracy on the CIFAR-10
test dataset.

4 Architecture

In this section, we illustrate the architecture for deep learning inference appli-
cations developed in our work. As depicted in Fig. 1, the architecture involves
loading a pre-trained deep neural network model and a labeled dataset from
corresponding files, pre-processing the data before input into the model (e.g.
reshaping, transforming, normalization), predicting on the data using the model,
post-processing the predictions (e.g. checking the predictions using the labels,
calculating prediction accuracy), and outputting useful information (e.g. logs,
final results).
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5 Implementations

We implement the architecture illustrated in Sect. 4 by using the ResNet-20
deep neural network model, the CIFAR-10 dataset and the TensorFlow machine
learning framework. Three applications are developed using three TensorFlow
libraries, i.e. TensorFlow Python, TensorFlow C and TensorFlow Lite for Micro-
controllers, respectively.

The first application developed using the TensorFlow Python library can be
successfully run on x86 and achieves 84.03% accuracy as expected. However,
the application can not be successfully run on RISC-V because the TensorFlow
Python library does not have a RISC-V version (for now). Although the library
could be ported to RISC-V using Bazel, an open-source build tool, it may require
a lot of developing efforts. For example, all machine-specific source code in the
library must be properly modified. Thus we leave this port for future work.

Similarly, the second application developed using the TensorFlow C library
can be successfully compiled and run on x86, and achieves 84.03% accuracy as
well. However, the application suffers a similar problem as described above. Also,
we leave the solution for future work.

The third application is developed using TensorFlow Lite for Microcon-
trollers, which is designed to have fewer dependencies. The application can be
successfully compiled and run on RISC-V as well as on x86, and achieves 84.03%
accuracy on both platforms.

6 Compilation Methods

In order to implement the architecture on RISC-V, as discussed in Sect. 5, the
application developed using TensorFlow Lite for Microcontrollers needs to be
compiled to produce a binary which can be executed on RISC-V. There are two
compilation methods: direct compilation and cross-compilation. As illustrated
in Fig. 2, direct compilation means compiling the application on RISC-V using
the RISC-V toolchain to produce a RISC-V executable, while cross-compilation
means compiling the application on x86 using the RISC-V toolchain to produce
a RISC-V executable.

Direct compilation seems to be the simplest way to compile the application,
since the required RISC-V toolchain has already been pre-installed on the host
platform which is exactly the target platform as well. However, we show that
direct compilation may not be a good option because there are resource and
performance challenges when directly compiling the application on RISC-V in
our work.

Resource Challenge. The application developed using TensorFlow Lite for
Microcontrollers can not be successfully compiled on a RISC-V based FPGA
board used in our work, due to limited memory on the board. Fortunately, this
problem can be solved by augmenting the virtual memory.

Performance Challenge. Although the aforementioned problem can be solved,
it takes more than three hours to complete the direct compilation process on the



96 Y. Kong

Fig. 2. Direct compilation vs. cross-compilation.

board, which is about 300× slower than the cross-compilation process on an x86
server used in our work. Therefore, we prefer to cross-compile the application
on the server so that we can save a large amount of time, despite it also takes
a little time to copy the produced RISC-V executable from the server to the
board.

7 Experimental Results

We evaluate the performance of compiling and running the application illustrated
in Sect. 5 on three different platforms: an Xilinx PYNQ Z2 FPGA board based
on RISC-V, RISCV-QEMU [12] (a QEMU emulator for RISC-V), and an x86
server. The environment configurations of the platforms are listed in Table 1. The
real time of compiling and running the application on the platforms is listed in
Table 2 and illustrated in Fig. 3. Experimental results show that compiling the
application on RISCV-QEMU and the RISC-V based FPGA board is about
16× and 293× slower than that on the x86 server, respectively; running the
application on the two RISC-V platforms is about 28× and 620× slower than
that on the x86 server, respectively. Therefore, high performance RISC-V based
platforms are expected to be used to reduce the development cycle of applications
targeting RISC-V.
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Fig. 3. Real time of compiling and running the application on the three platforms.

Table 1. Environment configurations of the three platforms.

FPGA (RISC-V) QEMU (RISC-V) Server (x86)

OS Linux 4.19.0 Linux 4.19.0 Linux 4.4.0

CPU SiFive Rocket0,
RV64GC, Sv39, 50 MHz,
1 core

RISC-V,
RV64GCSU, Sv48, 8
cores

Intel Xeon E5-2697 v4
@ 2.30 GHz, 18 cores

Memory 180 MB 16 GB 64 GB

gcc gcc 9.2.1 gcc 7.3.1 gcc 7.4.0

g++ g++ 9.2.1 g++ 7.3.1 g++ 7.4.0

Python Python 2.7.16+ Python 2.7.14 Python 2.7.6

Python3 Python 3.7.4+ Python 3.6.4 Python 3.6.8

Make GNU Make 4.2.1 GNU Make 4.2.1 GNU Make 4.2.1

Table 2. Real time of compiling and running the application on the three platforms.

FPGA (RISC-V) QEMU (RISC-V) Server (x86)

Compile time (s) 12744.30 713.40 43.55

Run time (s) 250601.78 11429.58 404.21

8 Conclusions

In this paper, we explore approaches to enabling deep learning inference on
RISC-V by implementing the architecture for deep learning inference applica-
tions using ResNet-20, CIFAR-10 and three TensorFlow libraries. At present,
since TensorFlow does not have a full-fledged RISC-V port, only the applica-
tion developed using TensorFlow Lite for Microcontrollers can be successfully
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compiled and run on RISC-V and achieves the expected accuracy. Still, we
show that there are resource and performance challenges when directly com-
piling and running the application on two RISC-V platforms in our work, and
cross-compiling the application on a high performance x86 platform is a bet-
ter option for us to save a large amount of time. We evaluate the performance
of compiling and running the application on three platforms: an Xilinx PYNQ
Z2 FPGA board based on RISC-V, RISCV-QEMU, and an x86 server. Experi-
mental results show that directly compiling the application on the two RISC-V
platforms is about 16× and 293× slower than that on the x86 server, respectively;
running the application on the two RISC-V platforms is about 28× and 620×
slower than that on the x86 server, respectively. Therefore, high performance
RISC-V based platforms are expected to be used to speed up the development
of applications targeting RISC-V.

Future work involves implementing the architecture on RISC-V using Ten-
sorFlow Python, TensorFlow C, and other mainstream machine learning frame-
works such as PyTorch. Furthermore, we plan to accelerate deep learning infer-
ence using a pure hardware solution to improve performance and energy effi-
ciency without incurring extra programming efforts for application developers.
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Abstract. Matrix factorization is a basis for many recommendation sys-
tems. Although alternating least squares with weighted-λ-regularization
(ALS-WR) is widely used in matrix factorization with collaborative fil-
tering, this approach unfortunately incurs insufficient parallel execution
and ineffective memory access. Thus, we propose a solution for accel-
erating the ALS-WR algorithm by exploiting parallelism, sparsity and
locality on x86 platforms. Our PSL can process 20 million ratings and
the speedup using multi-threading is up to 14.5× on a 20-core machine.

Keywords: Parallelism · Sparsity · Locality · Matrix factorization ·
ALS-WR · Acceleration

1 Introduction

There are lots of work on AI benchmarking [13,14,16,20,23]1. Some important
topics include neural network inference on RISC-V [19] and on Cambricon [21],
matrix factorization on x86 [17], 3D face recognition [27] and etc. Matrix factor-
ization is a popular solution to recommendation systems. Many recommendation
systems recommend items to users by collaborative filtering based on historical
records of items that the users have rated or bought. For example, online shop-
ping websites recommend goods to buyers and movie rating websites recommend
movies to users.

Recently, there are lots of research interest in improving the performance
of many applications like matrix factorization [6,8,15] and graph processing
[7,24]. One way is to accelerate through mathematical methods [6,15]. Another
approach is to optimize on architecture features [7,8,24,26].

Alternating least squares with weighted-λ-regularization (ALS-WR) is pro-
posed by Zhou et al. [28] to solve large-scale collaborative filtering. They use
parallel Matlab on a Linux cluster as the experimental platform. Nowadays x86
has powerful vector instructions [1], Intel Math Kernel Library (Intel MKL) [3],
1 The source code of AIBench is publicly available from http://www.benchcouncil.

org/benchhub/AIBench/ (sign up to get access).

c© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 101–109, 2020.
https://doi.org/10.1007/978-3-030-49556-5_10
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and multi-core computing resources. As a result, x86 platforms have shown great
potential in performance tuning. Equipped with flexible C++ and OpenMP [5],
we implement ALS-WR on x86 platforms by exploiting parallelism, sparsity, and
locality to achieve high performance.

The contributions of this paper are as follows:

– PSL, a multi-threaded ALS-WR implementation that scales well on x86.
– Achieving high parallelism by parallelizing loops.
– Reducing memory consumption by leveraging sparsity of input data.
– Improving spatial locality by adopting suitable layouts.

We organize the rest of paper as follows. Section 2 introduces background.
Section 3 describes our design and implementation. Section 4 shows our evalua-
tion. Finally, Sect. 5 concludes this paper.

2 Background

2.1 Alternating-Least-Squares with Weighted-λ-Regularization

ALS-WR is widely used in matrix factorization problems, in which Root Mean
Square Error (RMSE) is used to evaluate the convergence. Let R = {rij}nu×nm

denotes the user-item matrix, in which rij represents the rating score of item j
rated by user i and is either a real number or missing, nu is the number of users
and nm is the number of items. Many recommendation systems try to predict
the missing rij values from known ones.

This approach assigns each user and each item a feature vector. Each pre-
dicted rating of an item is calculated by the inner product of the corresponding
user and item feature vectors. More specifically, let U = [ui] be the user feature
matrix, in which ui ∈ R

nf for 1 � i � nu, and let M = [mj ] be the item feature
matrix, in which mj ∈ R

nf for 1 � j � ni. Here nf is the dimension of the
feature space.

By introducing a regularization factor λ ∈ R, we define the objective function

f(U,M) =
rij is known∑

ij

(rij − uT
i mj)2

+ λ

⎛

⎝
∑

i

nui
‖ui‖ +

∑

j

nmj
‖mj‖

⎞

⎠ .

(1)

The ALS-WR algorithm runs as follows:

Step 1. Initialize matrix M by setting the first row as the average ratings of
every item, and assigning small random numbers for the rest.
Step 2. Fix M , solve U by minimizing the objective function.
Step 3. Fix U , solve M by minimizing the objective function similarly.
Step 4. Repeat Steps 2 and 3 until desired convergence of RMSE.



Accelerate Matrix Factorization on x86 Platforms 103

Let Iui denotes the set of items j that user i rated and nui
is the size of Iui ,

and let Imj denotes the set of users who rated item j and nmj
is the size of Imj .

We directly give the solution to minimizing the objective function here. When
we fix M and update U , we have

Ai = MIu
i
MT

Iu
i

+ λnui
E,

Vi = MIu
i
R(i, Iui )T,

ui = A−1
i Vi, ∀i,

(2)

where E is the nf ×nf identity matrix, MIu
i

denotes the sub-matrix of M where
columns j ∈ Iui are selected, and R(i, Iui ) is the row vector where columns j ∈ Iui
of the i-th row of R is taken.

Similarly when we fix U and update M , we have

Aj = UIm
j

UT
Im
j

+ λnmj
E,

Vj = UIm
j

R(Imj , j),

mj = A−1
j Vj , ∀j,

(3)

where UIm
j

denotes the sub-matrix of U where columns i ∈ Imj are selected, and
R(Imj , j) is the column vector where rows i ∈ Imj of the j-th column of R is
taken.

After we have N predicted values r̂i and N real values ri, we use RMSE to
evaluate convergence. RMSE is calculated as

RMSE(r̂, r) =

(
1
N

N∑

i=1

(r̂i − ri)
2

)1/2

. (4)

Optimization Opportunities. Analyzing main components of the ALS-WR
algorithm gives us opportunities to have optimizations. There is numerous mem-
ory access, while some layouts are less efficient. Besides, there are loops that can
be parallelized. Our PSL carefully solves these problems and therefore achieves
high performance.

2.2 Supported Techniques

We introduce the following three relative techniques, which are adopted by PSL.

Vector Instructions. Advanced Vector Extensions (AVX) [1] contain a set of
instructions for doing Single Instruction Multiple Data (SIMD) operations on
x86 architecture. The vector operations use a set of special vector registers. For
example, the maximum size of each vector register is 256 bits if the AVX instruc-
tion set is available, and 512 bits if the AVX512 instruction set is available. On
large-scale data, vector operations are useful when the same operation is per-
formed on multiple data elements and the dataflow allows parallel calculations.
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Intel Math Kernel Library (Intel MKL). Intel MKL [3] is a library of
optimized math functions. It equips with industry-standard C and Fortran APIs,
which is convenient to programmers. For the ALS-WR algorithm, there are lots
of performing linear algebra operations and solving linear equations. We use
Intel MKL to do mathematical calculations in ALS-WR.

Non-Uniform Memory Access (NUMA). NUMA is a memory architecture
for multi-core machines where processors are directly attached to their own local
memory. It is fast to access local memory but relatively slower to access remote
memory. In contrast, in uniform memory access (UMA) multi-core machines,
generally only one processor can control the memory bus at a time. Since pro-
cessors block the memory bus when accessing memory, it can lead to significant
performance degradation as the number of cores increases. There are lots of
research interest on NUMA-aware optimizations [9,10,22].

3 Design and Implementation

Benefiting from techniques mentioned in Sect. 2.2, we explore optimizations from
parallelism, sparsity and locality on multi-core CPU architecture.

3.1 Optimization Opportunity of ALS-WR Algorithm

Our revised ALS-WR is described in Algorithm 1. It describes the process of
updating U and M in one epoch. The function linalg.solve(A,B) returns
matrix X such that AX = B. As suggested in Intel Guide [2], Intel MKL should
run on a single thread when called from a threaded region of an application to
avoid over-subscription of system resources. So we let Intel MKL run on a single
thread, and make loops in lines 1 and 8 be multi-threaded.

Algorithm 1. Updating U and M in one epoch

1: for i = 0 to nu do in parallel
2: Mi ← M [:, Iu

i ]
3: Ri ← R[i, Iu

i ]
4: Vi ← MiR

T
i

5: Ai ← MiM
T
i + λnuiE

6: U [:, i] ← linalg.solve(Ai, Vi)
7: end for

8: for j = 0 to nm do in parallel
9: Uj ← U [:, Im

j ]
10: Rj ← R[Im

j , j]
11: Vj ← UiR

T
j

12: Aj ← UjU
T
j + λnmjE

13: M [:, j] ← linalg.solve(Aj , Vj)
14: end for
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3.2 Optimization Opportunity of RMSE Function

According to formula (4), the computation in ALS-WR only involves known
ratings. So we should enumerate all known ratings rij and calculate the difference
between rij and uT

i mj , rather than first calculate UTM . In this way, we can
save unnecessary overheads on unknown ratings. Similar to ALS-WR, we use
multi-threading on the enumerating loop.

Our revised RMSE is presented in Algorithm 2. For the summation variable
s in line 6, maintaining thread local copies of s and adding them up at last can
avoid atomic operations.

Algorithm 2. Calculating RMSE
1: s ← 0
2: for rij do in parallel
3: Ui ← U [:, i]
4: Mj ← M [:, j]
5: r̂ij ← UT

i Mj

6: s ← s + (r̂ij − rij)
2

7: end for
8: return (s/N)1/2

3.3 Sparsity and Locality Opportunity

First, since operations in lines 3 and 10 only access known ratings in rows and
columns, R should be stored as a sparse matrix with compressed sparse row
(CSR) and compressed sparse column (CSC) formats. By leveraging sparsity
of input data, we reduce memory consumption. Second, U and M are feature
matrixes and thus dense matrixes. As operations in lines 2, 6, 9 and 13 access
columns of U and M , they should be stored in column-major order. These layouts
of R, U and M improve spatial locality by increasing cache hits.

In all multi-threaded loops, the default first touch placement policy of NUMA
allocates all new data in the memory closest to the loop thread [25], which is
beneficial for memory access. For different threads, there are no race conditions
on global data. Thus, no synchronization on global data is needed.

4 Evaluation

Experimental Setup. Our experiments are performed on a 20-core (2 sock-
ets, each with 10 cores) machine with Intel Xeon Silver 4114 (hyper-threaded,
40 threads in total). The version of Intel Compiler and Libraries is 2019.4. The
compiler options are -mkl -O3 -qopenmp -std=c++17. We also use Intel Vtune
Amplifier 2019.4 to analyze core utilization and hotspots. The training parame-
ters of ALS-WR are set as follows. The dimension of feature matrixes nf is 100.
The number of epochs is 30. The train-test data ratio is 4:1.
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Data. MovieLens [4] is rating data collected from MovieLens website. We use
ml-20m as our input data, which has 20 million ratings and 465,000 tag appli-
cations applied to 27,000 movies by 138,000 users.

4.1 Scalability

Figure 1 shows the speedup of execution time using different number of threads.
As we can see, performance scales linearly as more threads are added (except
the 40 threads hyper-threaded from 20 cores). The speedup is up to 14.5× when
using 40 threads.

Fig. 1. Speedup of multi-threaded ALS-WR

Figure 2 shows the core utilization using different number of threads. It rep-
resents how efficiently the application utilized the available CPU cores and helps
evaluate the parallel efficiency. As the number of threads rises from 1 to 20, the
core utilization is increasing.

Fig. 2. Core utilization of multi-threaded ALS-WR

These show our implementation scales well. Besides, Intel hyper-threading is
most effective when each thread performs different types of operations and there
are under-utilized resources on the processor. However, Intel MKL uses most of
the available resources and performs identical operations on each thread [2]. So
we see the performance does not improve much when switching from 20 threads
to 40 threads.
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4.2 Hotspots

The top five hotspots of the 40-threaded ALS-WR are shown in Table 1. The
first two functions are matrix multiplications and solving linear equations respec-
tively. The overheads of the third function occur when accessing columns of
dense matrixes. As for the fourth and the fifth, they relate to memory allo-
cation. Therefore, further optimizing memory access and memory management
might help gain better performance.

Table 1. Hotspots of the 40-threaded ALS-WR

Hotspots Function CPU time

1 cblas sgemm 36.1%

2 LAPACKE sgesv work 23.7%

3 intel avx rep memcpy 10.8%

4 operator new 7.5%

5 [MKL SERVICE]@malloc 7.1%

4.3 Speedup of Different Optimization

Figure 3 shows the speedup of different optimization. The weakest baseline only
implements sparse matrix function and is single threaded. Firstly, improving
spatial locality brings 1.8× speedup. Secondly, using multi-threading with atomic
operations offers 4.9× speedup. At last, when we replace atomic operations with
thread local copies, we get a 2.9× speedup. Thus, it is vital to remove atomic
operations. In total, using multi-threading provides up to 14.5× speedup.

Fig. 3. Speedup of different optimization

5 Conclusion

This paper proposes a high performance multi-threaded implementation PSL for
matrix factorization. We exploit parallelism, sparsity and locality for acceleration
on x86 platforms. In particular, We analyze the speedup of different optimization.
In the future, we will research on how to optimize memory access and memory
management to gain better performance.
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Abstract. With the rapid development of the information age, the rec-
ommendation system becomes more and more significant to help people
find hidden information from the big dataset in daily lives. Collaborative
filtering is a popular technology often used in recommendation systems,
which recommend items to users according to other users having the
similar behaviors with the target user or according to the items having
the alike properties with the target item. In this paper, we implement
a parallel collaborative filtering algorithm called ALS-WR on the AMD
x86 platform and use an adaptive granularity tuning method to obtain
the best performance of 124.86 s in 30 training rounds.

Keywords: Recommendation systems · Collaborative filtering ·
Matrix decomposition

1 Introduction

With the arrival of the information age, users face a big challenge to extract
useful information from a massive amount of data. In addition, it’s also difficult
for systems to recommend the items to the users who are interested in them. In
that, the recommendation system, a kind of information filtering and pushing
system, is usually utilized to find the connections between users and items [1].
Collaborative filtering, a key technique in recommendation systems, aims at
filling the missing values of the user-item matrix with the help of similar users
or items. Collaborative filtering has been widely used by a lot of commercial
websites as well as social websites [2], such as Google News [3], Amazon [4],
Netflix [5], Reddit [6] and YouTube [7]. The key part of collaborative filtering
recommendation system is matrix factorization.

Movie recommendation is a representative application in various recommen-
dation systems. As one of the most widely used movie dataset, MovieLens [8]
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collects movie rating data from MovieLens website over various periods, describ-
ing audiences’ preferences for movies [9].

In this paper, we use python to implement the popular Alternating-Least-
Square with Weighted-λ-Regularization (ALS-WR) algorithm on AMD x86 plat-
form, and train 30 rounds using MovieLens dataset. Our method achieves a
good result on the BenchCouncil International AI System and Algorithm Chal-
lenges. Benchcouncil provides four challenges tracks including RISC-V subject
[28], Cambricon chip subject [26,27], X86 platform subject [22,23], and 3D face
recognition algorithm challenge subject [24,25]. And these tracks use Bench-
council AI benchmarks [17–21]. The source code of AIBench is publicly available
from http://www.benchcouncil.org/benchhub/AIBench/ (Sign up to get access).
Eventually, by optimizing and parallelizing the matrix decomposition process,
the best training time of 30 rounds of our ALS-WR implementation is 124.86 s.

2 Related Work

2.1 ALS

ALS [10] is the abbreviation of alternating least squares, an algorithm always
used in recommendation systems based on matrix decomposition. Traditional
matrix decomposition Singular Value Decomposition (SVD) is very slow and
cannot be used in sparse rating data because it is very common that the users
can only rate few items, but ALS solves this problem well in a clever way which
using an alternate strategy to update one matrix weight while fixing the another
and then vice versa. ALS aims to find two low dimension matrices Xm×k and
Yn×k to approximate the given matrix Rm×n.

Rm×n ≈ Xm×kY
T
n×k (1)

Xm×k calls the user matrix and Yn×k calls the item matrix. In order to find
the user and item matrices, the objective function is:

minxu,yi
L(X,Y ) =

∑

u,i

(rui − xT
u yi)2 + λ(|xu|2 + |yi|2) (2)

with λ being the regularization factor.

2.2 ALS-WR

The model mentioned above is suitable for the scenarios with a clear rating
matrix. Nevertheless, users don’t give explicit feedback in many cases, which
means there is no direct rating. Therefore, we can only infer the preference of
the users by their behavior. For example, in the TV recommendation scenario,
the recommendation system can speculate the preference of users by analyzing
the number of views and the view duration when users watch the TV program.
However, there is no way to decide whether users love the TV program when

http://www.benchcouncil.org/benchhub/AIBench/
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users never watch it. ALS-WR solves above problem by confidence weight: we
assign a larger weight to the item which has the explicit feedback and a smaller
weight to the item which doesn’t have the explicit feedback.

The objective function of ALS-WR [11] is:

minxu,yi
L(X,Y ) =

∑

u,i

cui(pui − xT
u yi)2 + λ(|xu|2 + |yi|2) (3)

pui =
{

1 if rui > 0
0 if rui = 0 (4)

cui = 1 + αrui (5)

with α being the confidence coefficient.
The solution method of above equation is least squares:

xu = (Y TCuY + λI)−1Y TCuru (6)

yi = (XTCiX + λI)−1XTCiri (7)

2.3 OpenBLAS

Basic Linear Algebra Subprograms (BLAS) [12] is a library including a lot of
linear algebra operations, such as vector addition, matrix decomposition and so
on. Implementations of these operations can be optimized for speed on the upper
application to pursue better performance. Considering AMD x86 processors are
based on AMD Zen microarchitecture and OpenBLAS [13] has optimized its
kernels for Zen-based processors using a template-based methodology [15,16],
we adopt OpenBLAS as our low-level BLAS library to speedup our matrix and
vector operations.

3 Implementation and Performance

3.1 Methodology

We present our methodology for implementing collaborative filtering on AMD
x86 in Fig. 1.

3.2 Implementation

Firstly, we analyze the dataset. The dataset we used is MovieLens 20 M
Dataset [8], which contains 20 million ratings and 465000 tag applications across
27000 movies by 13800 users. Table 1 shows the main data formats of this dataset.

Secondly, we implement a fast python collaborative filtering using ALS-WR
for implicit feedback datasets [14]. Multi-threaded training routines are sup-
ported in our implementation, using Python and OpenMP to fit the AMD x86
CPU cores.
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Fig. 1. Methodology

Table 1. Data format of movielens

File name Attribute Description

Movies

moviedID

title

geners

The attributes of movies

Rating

userID

movieID

rating

timestamp

User ratings of the movie

Tags

userID

movieID

tag

timestamp

User tags of the movie

Thirdly, we increase the speed of the program by fasting the matrix decom-
position, compiling OpenBLAS library on AMD x86 machines.

Finally, we use a mix-grained (fine-grained and coarse-grained) parallel per-
formance tuning framework. We tune both the threads of high-level ALS-WR
algorithm and low-level matrix operations, getting the best performance with
256 threads.

3.3 Evaluation

Above all, we implement the ALS-WR algorithm based on OpenBLAS library
on AMD x86 CPUs. Figure 2 shows the performance with the different total
threads. The best performance reaches 124.86 s on 30 rounds using 256 threads.
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Fig. 2. Performance chart

4 Conclusion

This paper implements ALS-WR on AMD x86 CPUs. Moreover, we choose
OpenBLAS as the underlying linear algebra library to optimize the matrix
decomposition. Finally, we use an adaptive granularity tuning method to reach
the best training performance (124.86 s for 30 rounds).
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Abstract. With the continuous development of computers and big data
technology, more recommendation systems are applied in the fields of
online music, online movies, games, online shopping, and so on, to
solve information redundancy and effectively to recommend interest-
ing products for users. In this paper, we implement and accelerate the
Alternating-Least-Squares with Weighted-λ-Regularization (ALS-WR)
by adopting a two-level parallel strategies on the x86-64 Zen-based CPUs.
As one of the most widely used recommendation algorithms, the ALS-
WR algorithm is based on matrix factorization. In the mathematical
discipline of linear algebra, a matrix decomposition or matrix factor-
ization is a dimensionality reduction technique that factorizes a matrix
into a product of matrices. Therefore, vector and matrix operations are
the computational core of the ALS-WR algorithm, accelerating these
computational kernels can effectively improve the overall performance of
the ALS-WR algorithm. The experimental results show that our high-
performance ALS-WR implementation can achieve 185.09 s (with 100
features and 30 iterations) on the MovieLens 20 M dataset.

Keywords: ALS-WR · Matrix factorization · Matrix multiplcation ·
Recommendation algorithm

1 Introduction

Recommender systems are utilized in a variety of areas and are most commonly
recognized as multimedia recommenders like Netflix, YouTube, and Spotify,
product recommenders such as Amazon, Taobao in Alibaba, or content rec-
ommenders for social media platforms such as Facebook and Twitter [7]. These
systems aim to provide users with personalized online product or service recom-
mendations by predicting the rating score or preference that a user would give to
an item based on users’ buying or browsing behaviors. In this way, the user can
handle the increasing online information overload problem and improve customer
c© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 116–122, 2020.
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relationship management. Given the predicted rating score, the business will
then recommend preferable new items to the user for further purchases. There
are three main kind of recommendation systems: content-based, collaborative
filtering-based and deep learning based. Collaborative filtering method is sim-
ple and effective and widely used in lots of internet companies like Amazon [16],
Google News [2], and other academic contests or related evaluations like AIBench
[5,6], Edge AIBench [8], Netfix, HPC AI500 [13], AIoT Bench [17] and so on.
AIBench is open source http://www.benchcouncil.org/benchhub/AIBench/. A
major appeal of collaborative filtering is that it is domain free, yet it can address
data aspects that are often elusive and difficult to profile using content filtering,
while generally more accurate than content-based techniques. Collaborative fil-
tering relies solely on the rating scores that a user gave to the item, where the
features of the user (such as age and gender) or the item (such as perishable or
not) itself do not play an important role in the algorithm.

BenchCouncil organizes a series of International AI challenges in 2019. It
contains four challenges tracks: (1) International AI System Challenge based on
RISC-V Subject [11]; (2) International AI System Challenge based on Cambricon
Chip [14]; (3) International 3D Face Recognition Algorithm Challenge [23]; and
(4) International AI System Challenge based on X86 Platform. Our work is based
on the track 4. In this paper, we focus on the Alternating Least Squares with
Weighted-λ-Regularization (ALS-WR) algorithm [24], one of the most commonly
used approaches for performing matrix factorization on recommender systems
on the MovieLens dataset [10] and update the two low-rank matrices’ weight
alternately which save a lot of time and operate in a clever way without hurting
the performance. The ALS-WR algorithm was developed for the Netflix Prize
competition, which also involved a sparse matrix of reviewers by items being
reviewed. It has the advantage over the Stochastic Gradient Descent (SGD) [1]
and Restricted Boltzmann Machines (RBM) [20] algorithms that require fewer
features to be specified and has been previously been shown to have great effi-
ciency potential on CPUs [18].

Assuming that we have a user-item rating matrix R = {rij}u×m. Each ele-
ment rij represents a rating score of movie j rated by user i with its value
neither being a real number or being missing, u indicates the number of users
and m indicates the number of movies. A high-quality recommendation system
can estimate some of the missing values based on the existing values.

In real-world problems, the user-item matrix R is normally large, so matrix
factorization is introduced to decompose matrix R into products of smaller matri-
ces. As presented in Fig. 1 [19], the user-item matrix R is decomposed by the
product of two smaller matrices U = [ui] and M = [mj ]. In the factorization
process, we assume each row of the user matrix U represents one user with d
features. Similarly, each column of the item matrix M represents an analogous
set of d features. In order to generate a low-rank approximation of the user-item
matrix R, all we have to do is to perform a matrix multiplication of the user
matrix U and the item matrix M .

http://www.benchcouncil.org/benchhub/AIBench/
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Fig. 1. Matrix factorization process.

First, we denote d features with each user by representing each user i has a d-
dimensional vector xi

T , which is normally referred to as the user latent vectors.
Similarly, a movie j also has a d-dimensional vector yj , and the rating score that
we predict user i will give for movie j is the dot product of the two vectors, as
presented in Eq. 1.

r̂ij = xiyj
T =

∑

d

xidydj (1)

where r̂ij represents the approximate pridction of the ground truth rating score
rij .

Then we define the objective function to minimize the square of the difference
between all rating scores in the dataset S and our predictions, as presented in
Eq. 2.

L =
∑

i,j∈S

(rij − xiyj
T )2 + λ(

∑

i

‖xi‖2 +
∑

j

‖yj‖2) (2)

where λ is a hyperparameter used for preventing overfitting of the user and item
vectors.

2 Alternating Least Squares with Weighted-λ-
Regularization

In order to solve this low-rank approximation problem, the iterative algorithm
ALS-WR [24] is adopted. Many optimization [3,9] approaches are adopted for
ALS-WR algorithm. ALS-WR starts by treating one set of latent vectors as
constant. For this example, it picks the item vectors yj , then takes the derivative
of the loss function with respect to the user vectors xi, and solve for the user
vectors, as presented in Eq. 3.

∂L

∂xi
= −2

∑

j

(rij − xiyj
T )yj + 2λxi = 0

= xi = riY (Y TY + λI)
−1

(3)
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where vector ri represents the ith user from the rating score matrix with all
scores for all movies; Y is a m × d representing all movies row vectors vertically
stacked together; and I is the identity matrix with dimension d × d.

Next, after updating the user vectors xi, we take them as constant and alter-
natively update the item vectors yj in a similar way, as presented in Eq. 4. Then
we alternate back and forth and carry out these two steps until convergence.

∂L

∂yj
= yj = rjX(XTX + λI)

−1
(4)

2.1 The ALS-WR Process

In general, the ALS algorithm can be summarized as the following four steps:

1. Initialize matrix M by assigning the average rating for that movie as the first
row, and small random numbers for the remaining entries.

2. Fix M , Solve U by minimizing the objective function (the sum of squared
errors).

3. Fix U , solve M by minimizing the objective function similarly.
4. Repeat Steps 2 and 3 until a stopping criterion is satisfied.

Here we use the observed root-mean-square error (RMSE) as the stopping
criterion on the MovieLens dataset. Each round we will update both matrices
U and M , if the criterion is obtained, then we use the obtained matrices U and
M to make final predictions on the test dataset.

2.2 Two-Level Parallelization

In each round of the ALS-WR algorithm, we need to update matrices U and
M , respectively. In order to accelerate each iteration, we implement a two-level
parallel method.

1. High-level Parallelism. In order to update each user’s feature vector xi,
we need to take the rating score matrix R and the movie matrix M as inputs.
This process contains native parallelism: we can parallel the computational
operations of multiple users and update their feature vectors simultaneously.
Similarly, while updating the movie matrix M , the same parallel strategy can
be adopted.

Table 1. Experimental Environment

CPU Arch # of threads L1d cache OpenBLAS

AMD Zen Zen 64 32 KB 0.3.7
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2. Low-level Parallelism. The core operations of the ALS-WR algorithm are
updating the user matrix U and the movie matrix M , as presented in Eq. 3 and
Eq. 4, their operations can be simplified to some basic vector and matrix oper-
ations, such as matrix multiplication, matrix-vector multiplication, matrix
transposition, and so on. These basic routines are provided by most of BLAS
(Basic Linear Algebra Subprograms) libraries. Existing BLAS libraries, such
as OpenBLAS [22] and Intel MKL [12], are highly optimized and tuned by
researchers and vendors. These implementations have undergone extensive
architecture-dependent tuning on specific microarchitecture features to pur-
sue peak system performance. Most important of all, these BLAS libraries
also provide high-performance multi-threaded implementations for users to
make full use of their underlying computing resources. As for large matrix
multiplication, we can replace it by the FFT algorithm. Efficient FFT librar-
lies [4,12,15] can accelerate this process. In our ALS-WR (Zen-ALSWR), we
adopt OpenBLAS to carry out these vector and matrix operations.

3 Performance Evaluation

This section evaluates the performance of Zen-ALSWR on server-grade Zen x86-
64 (AMD Zen microarchitecture [21]) CPUs. The experimental conditions are
listed in Table 1. Considering OpenBLAS 0.3.7 version has been deeply optimized
for its kernels for Zen Dhyana zen CPUs, we take this version as our underlying
BLAS library to accelerate the performance of vector and matrix operations.

Table 2. MovieLens ml-20m dataset

Dataset # Ratings # Users # Movies Sparsity RMSE Loss

All 20,000,263 138,493 25,809 0.540% Null

Train 16,003,852 138,493 25,809 0.448% 2.882

Test 3,996,411 138,493 25,809 0.112% 2.473

Our experiments are based on the MovieLens ml-20m dataset. We randomly
take 80% of the ml-20m dataset according to ratings as training data and take
the remaining 20% of the data as the test dataset which is listed in Table 2.
Moreover, we set the number of features as 100 and the number of iterations as
30, then the performance will be evaluated by recording the training time (wall
clock time).

Figure 2 represents the performance of our Zen-ALSWR on AMD Zen CPUs.
As the number of threads increases, the training time is greatly reduced. For the
single-threaded Zen-ALSWR, it costs about 6237.28 s to complete the whole
training process. When we adopt 64 threads within a node to parallel the train-
ing progress, the training time decreases into 185.09 s. Figure 2 shows that Zen-
ALSWR seems to be a scalable and efficient implementation for large-scale col-
laborative filtering.
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Fig. 2. The performance of the multithreaded Zen-ALSWR on MovieLens ml-20m
dataset.

4 Conclusion

This paper introduces a high-performance ALS-WR implementation named Zen-
ALSWR on AMD Zen CPUs. Because the parallel strategies are straightforward
for the ALS-WR implementation, the Zen-ALSWR is designed to be scalable
and efficient to very large datasets on server-grade CPUs.
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Abstract. Collaborative Filtering (CF) is an important building block
of recommendation systems. Alternating Least Squares (ALS) is the most
popular algorithm used in CF models to calculate the latent factor matrix
factorization. Parallel ALS on Hadoop is widely used in the era of big
data. However, existing work on the computational efficiency of parallel
ALS on Hadoop have two defects. One is the imbalance of data distri-
bution, the other is lacking the fine-grained parallel processing on the
rating data. Aiming on these issues, we propose an integrated optimized
solution. The solution first optimizes the rating data partition with the
consideration of both the number of involved data records and the par-
titioned data size. Then, the multithread-based fine-grained parallelism
is introduced to process rating data records within a map task concur-
rently. Experimental results demonstrate that our solution can reduce
the overall runtime of Hadoop ALS by 82.17% by maximum.

Keywords: Collaborative Filtering · Alternating Least Squares ·
Hadoop

1 Introduction

Recommendation [1,3,5,14] systems are designed to analyze and find available
user data to recommend relevant and interesting items to consumers, which
have become increasingly indispensable for the online businesses. Collaborative
Filtering (CF) [2,4] is an important building block in recommendation systems,
which predicts the user preference based on the preferences of a group of users
who are considered to be similar to the active user. Alternating Least Squares
(ALS) [16,22] is the most popular algorithm used in CF models to calculate the
latent factor matrix factorization. ALS can easily be parallelized and efficiently
handle the CF models that incorporate implicit data, and hence, it has been
proved to be more general and efficient than traditional methods.

Map/Reduce is a parallel programming model as well as the correspond-
ing framework that enables to process a massive volume of data with low-end
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computing nodes in a scalable and fault-tolerant manner. Hadoop is the most
popular implementation of Map/Reduce. The parallel Hadoop implementations
of ALS (for short, Hadoop ALS) are of great interest in the era of big data. In
this paper, we mainly focus on the computational efficiency of parallel ALS on
Hadoop. The user-item rating data are the major data to be processed in ALS.
Existing works on Hadoop ALS have two limitations in the rating data pro-
cessing. The first is the rating data distribution imbalance [13,15]. In Hadoop
ALS, the rating data of a user or an item are represented as the < key, value >
record. The size of the records in the rating data are various. Existing works
partition the rating data equally among the parallel map tasks in term of the
data size and do not consider the different amounts of records involved in the
partitioned data [23]. However, our observation demonstrates that the execu-
tion time of a parallel task is mainly determined by the amount of processed
rating data records. Hence, existing rating data partition in Hadoop ALS leads
the load among parallel tasks imbalance. The second limitation is lacking the
fine-grained parallel processing on the rating data. In Hadoop ALS, the rating
data are parallel processed by multiple map tasks. In each map task, a bunch
of rating data records is processed in serial. However, these data records can be
processed independently without any data dependency. Hence, more fine-grained
parallelism should be exploited within a map task to accelerate Hadoop ALS.

Aiming to overcome the above limitations, an integrated optimized solution
for Hadoop ALS is proposed. The solution first optimizes the rating data par-
tition with the consideration of both the number of involved data records and
the partitioned data size. Then, the multithread mechanism in each map task is
introduced to process rating data records concurrently. With our solution, the
load balance and fine-grained parallelism can be achieved to accelerate the rat-
ing data processing in Hadoop ALS. In generally, the main contributions of the
paper can be summarized as follows.

1) Record-based rating data partition model. In this model, the rating data
records are partitioned into HDFS files. Each data record is mapped into one
HDFS file. To select the mapping file for a data record, the model partitions
these HDFS files based on their size and the number of involved records. The
model chooses the file with the minimum amount of records, when all files
have the similar file size, so as to balance the amount of involved records
in the rating data partitions and avoid the extreme situation that too many
small-sized rating records are mapped into one partition.

2) Fine-grained parallelism within the map task. In our solution, the multi-
thread mechanism is introduced into the map tasks. We adopt the producer-
consumer model in rating data processing. That is, the main process of map
task reads the rating data records and the forked threads parallel process
these records. We also introduce the golden section search method to deter-
mine the map task number and the concurrent thread number, so as to
balance the data parallel reading and processing capacity of Hadoop ALS.

3) Performance Evaluation. We evaluate our solution with the MovieLens
20M Dataset from GroupLens. Experimental results demonstrate that our
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solution can reduce the overall runtime of Hadoop ALS by 82.17% by maxi-
mum, while not hurting RMSE of Hadoop ALS significantly.

Works in this paper are supported by 2019 BenchCouncil AI System and
Algorithm Challenge. 2019 BenchCouncil AI System and Algorithm Challenge
includes three system tracks and an algorithm track, i.e, Cambricon track
[24,25], RISC-V track [26], X86 track [27,28], and 3D face recognition track
[29]. The challenge uses BenchCouncil AIBench as baseline [17,18], which is
publicly available from http://www.benchcouncil.org/benchhub/AIBench/(Sign
up to get access). Also, BenchCouncil provides AI benchmarks for HPC [19],
AIoT [21] and Edge [20].

The rest of the paper is organized as follows. Section 2 describes the principle
of the ALS algorithm and implementation of Hadoop ALS. Section 3 proposes the
record-based rating data partitioning model. Section 4 present the multithread-
based fine-grained parallelism with the map task. In Sect. 5, the performance eval-
uation is present in detail. Section 6 describes the conclusion and future works.

2 Related Work

Many works optimize the ALS algorithm at the algorithm level. Based on
Hadoop, [12] proposed the collaborative filtering algorithm KASR to reduce
the load on the system by increasing parallelism at the thread level, so that
it can reduce the energy consumption. Based on spark, [10] proposed a GPU-
based NMF algorithm, which can achieve high-speed operation and effectively
handle non-negative decomposition of high-order matrices and greatly improve
computational efficiency. [8] enables the ALS algorithm to achieve high preci-
sion results with less iterations and time. [9] extends the HALS to a distributed
version and compare with the existing ALS in Spark MLlib to proves its superi-
ority. However, these works all optimize and accelerate the ALS algorithm at the
algorithm level, but ignoring the load imbalance problem of the sparse dataset
on the distributed computing platform, and lacking the work of optimizing the
ALS algorithm from the system level.

There are also works for layered parameter optimization and system modeling
for Hadoop. [6] and [7] construct a fine-grained what-if performance prediction
model, which integrates MapReduce job summary information, Hadoop clus-
ter configuration information in job runtime, program input data and cluster
hardware resource configuration information. Based on this model, the authors
simulate the running effect of the program by adjusting the dataset size and
changing the core configurations, so as to further optimize the system.

[11] analyses various adjustment parameters on system level (number of map
task running simultaneously for each microserver node, block size of HDFS),
application level (application type and input data size), and architecture level
(operating voltage and frequency). The authors also discuss the impact of the
performance, power and energy efficiency of the Hadoop micro-benchmark. Their
work enlightens us to adjust the parameters and optimize the system at different
levels.

http://www.benchcouncil.org/benchhub/AIBench/
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3 Background of Hadoop ALS

In this section, we first describe the principle of ALS algorithm, then analyze
the problems existing in the parallel implementation of ALS on Hadoop.

3.1 Principle of ALS

Collaborative filtering is an important building block in recommendation sys-
tems, which generates recommendation based on the similarity of users or items.
In the famous Netflix Prize algorithm competition, [16] proposed the collabora-
tive filtering based on Alternating Least Squares (ALS), which has significant
advantages over other algorithms on the computational efficiency because of
the embarrassing parallel characteristic of ALS. ALS adopts the iterative way
to solve a series of least squares regression problems. For the user-item rating
matrix R, a low rank matrix X is found to approximate the original matrix R.
Solving R can be expressed as follows.

R ≈ X = UIT , (1)

where U ∈ Cm×d, I ∈ Cn×d and C represent complex numbers, m and n rep-
resent the numbers of rows and columns of the matrix R and d represents the
number of eigenvalues.

The specific process is to randomly generate U0, and fix it to solve I0, then
fix I0 to solve U1, which is called alternating computing. ALS is convergent
because each iteration reduces the reconstruction error which has a lower bound.
However, the Matrix Factorization speed of ALS is slow with high computing
cost, which reflects the characteristics of computing-intensive workload.

3.2 Hadoop Implementation of ALS

Hadoop is the most popular implementation of Map/Reduce program model. A
typical Hadoop job consists at most one map phase and one reduce phase. Each
phase is executed with parallel tasks. In Hadoop job, the input data are represent
as the < key, value > pairs, the map/reduce task consumes one pair each time.
The user-item rating data are the major input data of ALS. In Hadoop ALS,
the rating data are organized in term of UserID or ItemID. That is, all rating
data associated with one user or item are represent by one < key, value > pair,
with UserID or ItemID as the key and all related rating data as the value. In
Hadoop ALS, we call such < key, value > pair as a rating data record.

Figure 1 shows the workflow of Hadoop ALS. In Hadoop ALS, the rating
data are first preprocessed and partitioned.Then,for each data partition, an ALS
map task is launched to process it. When all parallel map task finished, the new
Matrix U and I are generated. The above operations are conducted iteratively
until the number of iterations reaches the threshold.

In Hadoop ALS job, there isn’t the reduce phase. ALS map task consumes
one rating data record each time. There is no data dependency among record
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Fig. 1. Workflow of Hadoop ALS

processing. On the other hand, due to the uncertainty of user’s rating behavior,
the amount of rating data associated with users/items are various. Hence, the
size of the data records are quite different in rating data.

4 User-Item Rating Data Partitioning

In this section, we first analyze the distribution and time consuming of the user-
item rating data records, then propose the record-based partition model for the
rating data.

4.1 Imbalance in Rating Data Processing

In Hadoop ALS, the user-item rating data are the major data to be processed
iteratively. In each iteration, the user-item rating data need to be processed in
term of user id and item id alternatively. Hence, in the Hadoop implementation
of ALS, the user-item rating data are represented as < key, value > list and
stored in two copies. In one copy, a record has the key as the user id and the
value as the collection of all rating data of a specific user and can be formatted as
〈userid,[itemid:rating,itemid:rating...]〉. The other copy has the key as the item
id and the value as the collection of all rating data of a specific item, and can be
formatted as 〈itemid,[userid:rating,userid:rating...]〉. On the data processing, the
rating records are partitioned among the map tasks in the same data size. The
map task reads one key-value record in each time and works out the statistics
of the comprehensive rating data of one user or item.
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Fig. 2. Runtime of map tasks in Hadoop ALS

We evaluate the performance of ALS in Hadoop with the Movielen 20 M data
on three computing nodes. The total size of user-item rating data is 724 MB.
The number of map task is set to 6. In our evaluation, the jobs for the User
and Item matrix training are dominant the execution time of parallel ALS in
Hadoop. Among these, QR factorization is the core part, which takes up 86% of
User and Item Matrix training time. Figure 2 demonstrates the load imbalance
in the runtime of Item matrix training jobs. Among 6 map tasks, task 1 has
the significantly longer execution time than the other five tasks, at least four
times longer than others. We then analyze the data processed by each map task.
Figure 3 shows the data size and the key-value records processed by the six
tasks, respectively. Even though the rating data are partitioned equally in term
of data size, the key-value records distribution among parallel map tasks are
quite imbalanced. Particularly, the number of records processed by task #1 is 7
times larger than others at least. It is reasonable due to that with the amount
of items growing up, the user has more possibility to give the explicit ratings
to part of items randomly. This leads the various value numbers in key-value
records, and thus, the various record numbers in rating data partitions. On the
other hand, the computational complexity of QR factorization in Hadoop ALS
is represent as km3, where k is the record number and m is the feature number.
Hence, in Hadoop ALS, tasks, which process the rating data partitions with
larger record amount, will have longer runtime.

4.2 Record-Based Rating Data Partitioning

Based on our evaluation, We propose a record-based rating data partition model
in this section. Be different from the data partition in Hadoop ALS, for the two
rating data copies, the model partitions the data with the consideration of both
the partition data size and the records involved in each partition.
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Fig. 3. Data size and record numbers of map tasks in Hadoop ALS

Figure 4 demonstrates the framework of our data partition model. In this
model, the rating data are partitioned and stored into several HDFS files. Each
data record is stored into only one file. The number of files is equal to that of
map tasks in Hadoop ALS jobs. We implement the rating data partitioning in
the rating data pre-processing job. The data partitioning algorithm is described
in Algorithm 1.

Fig. 4. Record-based rating data partitioning model

In this strategy, the inputs are the raw rating data record set and the number
of map tasks, the output is the HDFS file set containing the partitioned rating
data. The rating data are processed once a record. For each output file, a storing
priority is assigned. The priority can be expressed as Eq. 2.

weight = (nvi/Nv) × wv + (nri/Nr) × wr, (2)

where, nvi is the number of values in the output file, nri is the amount of records
involved in output file i, Nv is the total number of values of all output files, Nr is
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Algorithm 1: Rating data partitioning algorithm

Input: the rating records list RecordsList,the number of output files OutputNum
Output: the output files set OutputfileSet

1: Initialize:OutputfileSet ← ∅;file ← ∅ ;
2: for i ← 1 to OutputNum do
3: filei ← createOutputfile(i) ;
4: filei.nv ←0 ;
5: filei.nr ←0 ;
6: AddFile(filei,OutputfileSet) ;
7: for each recordi ∈ RecordsList do
8: CalculateFilesWeight(OutputfileSet) ;
9: file ← FindTheMinWeightFile(OutputfileSet) ;
10: WriteRecord(recordi,file) ;
11: UpdateWeight(recordi,file) ;
12: return OutputfileSet ;

the total amount of records stored in all output files, wr and wv are determined
by empirical values, but they need to satisfy Eq. 3.

wr + wv = 1 (3)

We initialize an OutputfileSet, each file of it has four attribute which are
nv, nr, weight and there records list (Line 1). nvi and nri of each output file
are initialized to 0 (Lines 2 to 6). For each rating record, the following steps
are conducted. First, the storing priority of each output file is calculated with
Eq. 2 (Line 8). Second, the file with highest priority is selected as the record’s
target output. Once there are multiple files with the highest priority, the target
output is selected randomly (Line 9). Finally, nv and nr of the selected output
file are increased by the number of values in the rating record and by one,
respectively (Line 10 to 11). Our partition strategy can balance the amount of
records involved in output files and avoid the extreme situation that too many
small-sized rating records are stored in one file. The priority weights wr and wv

enable users to make trade-off between the balance of data size and the record
amount among output files.

5 Multithread-Based Parallelism Within Map Task

As described in Sect. 2, the processing of each rating data record is indepen-
dent. Existing Hadoop ALS processes the rating data records in serial within a
map task. Hence, we introduce the multithread mechanism into the map task to
achieve the fine-grained parallelism in Hadoop ALS. Based on the multithread
mechanism, we adopt the Producer-Consumer model in the rating record pro-
cessing. The model is shown in Fig. 5. The main process of map task acts as the
producer to read the rating data records from HDFS files and put the records
into the record queue. The multiple threads forked in a map task are taken as
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Fig. 5. Producer-Consumer model

consumers to fetch and compute the queued records concurrently. The proposed
Producer-Consumer model not only pipelines the rating data reading and com-
puting, but also enables the fine-grained parallelism of rating data computation
within a map task.

Fig. 6. Overall run time of different concurrent thread sizes

For a specific ALS job, the size of parallel map tasks determines its data read-
ing capacity and the size of concurrent threads within the map task determines
its data computing capacity. To achieve the capacity balance of data reading and
computing, we need to make the trade-off between these two size settings. We
first fix the map task size setting and examine Hadoop ALS performance under
different concurrent thread size settings. As Fig. 6 shown, the execution time of
Hadoop ALS job decreases with the concurrent thread size increase, and reaches
to the minimum when the total size of concurrent threads across all map tasks
is equal to the size of allocated computing resources. It is reasonable for that
Hadoop ALS workload is computing-intensive and each thread needs to consume
one computing core during its computation. Larger thread size setting leads to
the less average workload dispatched to a thread. However, when the total size
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of threads exceeds that of allocated resources, the surplus threads will be sus-
pended due to the computing resource contention and make no contributions to
the Hadoop ALS performance improvement.

We further examine the relationship between Hadoop ALS performance and
the map task size setting under the constraint of the fixed size of allocated
computing resources. Denoting N as the size of allocated resources and m as
the map task size, we set the concurrent thread size as N

m . As shown in Fig. 7,
the relation function satisfies unimodal nonlinearity. Overall run time decreases
with the map task size goes up, because the data reading capacity increases
which matches the concurrent data computation capacity. Larger map task size
leads to less inner concurrent threads, degrading rating data records processing
throughput and in this situation, the capacity of data reading and computation
is imbalance, which increases overall run time.

Fig. 7. Overall run time of different map task sizes

Hence, we adopt one-dimensional search strategy based on golden section
heuristic method to find the optimal size settings. The search strategy can be
described as Algorithm 2.

During the search, we attempt to find the optimal configuration for perfor-
mance of ALS. In this algorithm, we record all attempted performance in the
form of a tuple, (map task size, concurrent thread size), and all of tuples are
stored in Sampleset. First, we initialize Sampleset and the search boundary as
Mmin and Mmax(Line 1 to 2). Next, we iterated the following processing: we
employ Golden Section Method to calculate candidate lower and upper bound-
aries(Line 4 to 5), and we find performance by these in Sampleset. If not find,
set the map task size as b

′
l or b

′
u, the concurrent thread size as �Mmax

b
′
l

� or �Mmax

b′
u

�
to run ALS(Line 6 to 15). Then compare performance of two candidate bound-
aries, so as to determine how to update the search area(Line 16 to Line 19). The
above operations are conducted iteratively until the lower and upper boundaries
converge to small enough(Line 20). Finally, the optimal map task size is the one
of the lower and upper boundaries that performs better(Line 21 to 22).
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Algorithm 2: Optimized Map Task Size Searching Algorithm

Input: Mmin: the minimum map task size, Mmax: the maximum map task size,
λ: the Golden Section coefficient, ε: the search threshold
Output: m: the optimal map task size

1: InitializeSampleset()
2: bl ← Mmin; bu ← Mmax

3: repeat

4: b
′
l ← bl + (1 − λ)(bu − bl)

5: b
′
u ← bl + λ(bu − bl)

6: if(FindByKey(Sampleset, b
′
l) == False)

7: tl ← runALS(b
′
l , UpRct(b

′
l , Mmax))

8: AddElement(Sampleset, (b
′
l , tl))

9: else

10: tl ← FindByKey(Sampleset, b
′
l)

11: if(FindByKey(Sampleset, b
′
u) == False)

12: tu ← runALS(b
′
u, UpRct(b

′
u, Mmax))

13: AddElement(Sampleset, (b
′
u, tu))

14: else

15: tu ← FindByKey(Sampleset, b
′
u)

16: if (tl ≥ tu)

17: bl ← b
′
l

18: else

19: bu ← b
′
u

20: until bu − bl ≤ ε
21: m ← GetMinByV alue(Sampleset, bl, bu)
22: return m

6 Performance Evaluation

We compare the performance of our optimized Hadoop ALS with the origi-
nal Hadoop ALS from AIBench. Besides the record-based rating data parti-
tion model and the fine-grained parallelism within the map task, we optimize
the JVM heap configurations of Hadoop ALS. In this section, we quantify the
contributions of these optimization options to the performance enhancement of
Hadoop ALS.

6.1 Experimental Design

The experiments are conducted on a cluster of 3 identical nodes supported by
2019 BenchCouncil AI System and Algorithm Challenge [17–21]. There is always
one master node. Configurations of the cluster are described in Table 1. We exe-
cute Hadoop ALS on MovieLen dataset, which contains rating data of multiple
users for movies and is often used as the dataset for recommendation system and
machine learning algorithm evaluations. We use two metrics in our performance
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Table 1. Experimental environment

Name Configuration

CPU X86 platform, 64 cores, 8MB LLC

Memory 250 GB, 2667 MHz

OS Kernel Linux 3.10.0

JVM HotSpot JDK 8u221

Hadoop Version 3.2.0

Mahout Version 0.12.2

evaluations, Overall Run Time (ORT) for the computational efficiency and Root
Mean Square Error (RMSE) for the training accuracy.

ORT = te − ts (4)

RMSE =

√∑
i(vi − v

′
i)2

n
(5)

where te and ts represents the time stamp obtained at the end and the beginning
of ALS algorithm, v

′
i and vi are the estimated value and the ground truth of

instance i, respectively and n is the total number of observed values.

6.2 Performance Result Analysis

We first compare the overall performance of our optimized Hadoop ALS (OPHA)
with the original Hadoop ALS (HA). The original Hadoop ALS are configured
and executed in two ways, MP and MT. For MP, we disable the multithread
mechanism in the map task and configure the size of map tasks as that of the
allocated resources. For MT, we deploy one map task in each node and configure
the thread size within a map task as the size of allocated resources in one node.
The experimental results are shown in Fig. 8.

Fig. 8. ORT and RMSE of OPHA and original Hadoop ALS
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The experimental results demonstrate that OPHA outperforms both HA-MP
and HA-MT. The overall runtime is decreased by 82.17% and 61.19% respec-
tively. However, RMSE is only increased by 0.22% by maximum. Even though
all three Hadoop ALS implementations are executed with the same parallelism
(that is, HA-MP with 180 parallel task processes, HA-MT and OPHA with 180
concurrent threads), HA-MP achieves the worst performance on overall runtime.
This is for that, the process-level parallelism makes the rating data partitioned
into more pieces and processed by map tasks separately, which leads to the higher
possibility of load imbalance among these parallel tasks. On the other hand, the
thread-level parallelism enables the data sharing among concurrent threads, and
hence, increases the rating data records processing throughput within a map
task and lower the possibility of load imbalance among map tasks. Compared to
HA-MT, OPHA dispatches the rating data records among map tasks evenly and
optimizes the map task size and concurrent thread size settings to balance the
data reading and computation capacity, and hence, achieves better performance.

Fig. 9. Performance contributions of proposed optimization options

Figure 9 shows the performance enhancement contributions of all proposed
optimization options, which include Record-based rating Data Partitioning
(RDP), Fine-grained Parallelism (FP) and JVM heap size Optimization (JO).
The overall runtime of Hadoop ALS can be reduced by 63.59% with RDP, fur-
ther by 37.07% with FP, and finally by 22.18% with JO. The results prove that
the rating data distribution imbalance and the serial data processing within the
map task are the main sources of inefficiency of the original Hadoop ALS, and
our integrated solution solve these two problems effectively.

7 Conclusion

In our work, we propose an integrated optimized solution for the parallel ALS
on Hadoop, which incorporates the record-based rating data partition and
multithread-based fine-grained parallelism within the map task. Experimental
results demonstrate that our solution can reduce the overall runtime of Hadoop



136 Y. Liang et al.

ALS by 82.17% by maximum, while not hurting RMSE of Hadoop ALS signifi-
cantly. In the future work, we will optimize the rating data partitioning strategy
to accommodate the situation of larger-sized rating data and multi-waved map
task execution.
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Abstract. 2D Face recognition has been extensively studied for decades
and has reached remarkable results in recent years. However, 2D Face
recognition is sensitive to variations in poses, facial expressions and illu-
minations. Depth images provide valuable information to help model
facial boundaries and understand the global facial layout and provide low
frequency patterns. Intuitively, RGB-D images are more robust to exter-
nal environments than RGB images. Unfortunately, RGB-D datasets are
orders of magnitude smaller than 2D datasets and insufficient to train a
deep CNN model as effective as RGB-based models. To tackle these chal-
lenges, we present an RGB-D ResNet50 model which can be transferred
from a pretrained RGB model and takes RGB-D images as input. We
achieved an accuracy of 94.64% and won the 1st place on 3D Face Recog-
nition Algorithm Challenge, 2019 BenchCouncil International Artificial
Intelligence System Challenges.

Keywords: Face recognition · RGB-D images · Transfer learning

1 Introduction

Face recognition is one of the most significant topics in the field of Artificial
Intelligence. In recent years, deep models (e.g. AlexNet [20], VGGNet [30],
GoogLeNet [32] and ResNet [13]) based on convolutional neural network (CNN)
have made great progress in face recognition. But neural network structure is
just one side of the coin. To explore the potential of CNN, a dataset with abun-
dant RGB face images is required. There are several such large scale RGB image
datasets available online. After LFW (13,233 images) [15], dataset volume has
grown all the way (e.g. IJB series [24], CASIA-WebFace [35] and MF2 [26]) to
millions of images.

However, 2D face recognition under bad environmental illumination, large
head pose or big expression variations still remains challenging. An RGB-D
image contains one more channel of depth information compared with RGB
images. Depth information provides clues about illumination, pose and scale,

The source code is available at https://github.com/xingwxiong/Face3D-Pytorch.

c© Springer Nature Switzerland AG 2020
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and a stabler facial texture [40]. Intuitively, RGB-D image based face recogni-
tion models are more robust and could have a better performance [4], or a better
upper bound at least.

Nowadays, depth sensors such as Microsoft Kinect [39] and Intel RealSense
[18] are becoming easily available and popular, and even some mobile phones
are equipped with depth cameras. RGB-D data volume is growing, but still far
smaller than RGB ones. For example, Lock3DFace contains 5,711 images and
video clips taken by Kinect V2 [37]. Datasets like ND 2006, Bosphorus and BU-
3DFE also only have thousands of 3D face images [6,19,28,36]. Those datasets
are insufficient to train an efficient CNN model.

To leverage conventional RGB-based works and depth features on limited
RGB-D dataset, we present an RGB-D ResNet50 model which can be trans-
ferred from a pretrained RGB model and takes RGB-D images as input. We
achieved a competitive accuracy of 94.64%, outperforming RGB models taking
merely RGB images as input and RGB-D models training from scratch. And we
won the 1st place on 3D Face Recognition Algorithm Challenge, one track of
2019 BenchCouncil International Artificial Intelligence System Challenges. To
our knowledge, among all the winning teams, we are the only one who uses
inter-modal transfer learning to improve RGB-D face recognition [9,34].

3D Face Recognition Algorithm Challenge’s topic is derived from AIBench
[7,8], one of benchmarking projects proposed by BenchCouncil. Besides AIBench,
BenchCouncil also proposes several other active benchmarking projects, such as
BigDataBench [33], HPC AI500 [17], AIoT Bench [23], Edge AIBench [11]. The
source code of AIBench is publicly available from http://www.benchcouncil.org/
benchhub/AIBench/ (Sign up to get access).

2019 BenchCouncil International Artificial Intelligence System Challenges
contains a total of 4 challenge tracks, namely International AI System Challenge
based on RISC-V [14], International AI System Challenge based on Cambricon
Chip [21,22], International AI System Challenge based on X86 Platform [2,5,12]
and International 3D Face Recognition Algorithm Challenge [9,34], respectively.

2 Related Work

Face recognition, one of the earliest tasks in computer vision, has been researched
for decades. 2D face recognition has achieved remarkable results, while 3D face
recognition gets less attention.

2.1 3D Face Datasets and 3D Face Recognition

Many organizations collect data or use simulation to create 3D face datasets.
However, all of them are much smaller than that of 2D face. 3D face images
are usually stored in three types: depth-image, point cloud and mesh. Among
them, depth-image method is cheaper than the other ones, so it’s widely used
nowadays.

http://www.benchcouncil.org/benchhub/AIBench/
http://www.benchcouncil.org/benchhub/AIBench/
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Traditional methods for cloud point images use distances to recognize faces,
such as Iterative Closest Point (ICP) [3] and Hausdorff distance. However, these
methods are quite limited. Extracting features is a more flexible method, which
can deal with all types of images. In recent years, deep learning plays an impor-
tant role in 3D face recognition and has a better performance [40] (Table 1).

Table 1. Some typical 3D face dataset

Name Number of persons Number of images Data type

Bosphorus [28] 105 4,666 Point cloud

BU-3DFE [36] 100 2,500 Mesh

GavabDB [25] 61 540 Mesh

Lock3DFace [37] 509 5,671 Depth-image

ND 2006 [6] 888 13,450 Depth-image

FRGC Ver2.0 [27] 466 4,007 Depth-image

FaceWarehouse [1] 150 – Depth-image

Intellifusion RGB-D dataset [7] 1,205 403,068 Depth-image

2.2 RGB-D Images and Datasets

RGB-D is one kind of depth-image. It combines an ordinary RGB image with
depth map, which reflects the distance between the surface of items and a given
viewpoint. Although containing more information, RGB-D images can only be
collected by certain devices and acquisition of such RGB-D images might take
a long time, which limits the scale of RGB-D datasets. RGB-D datasets are
orders of magnitude smaller than 2D datasets due to the acquisition cost and
insufficient to train a deep CNN model with considerable quality.

2.3 Transfer Learning on RGB-D Datasets

Now that RGB-D contains 2D images, transfer learning is a good method for
RGB-D data. [16] uses transfer learning on RGB-D dataset to make action recog-
nition. While [10] and [29] make saliency detection and object recognition respec-
tively. Using transfer learning can solve the problems caused by limited datasets,
because there are plenty of 2D datasets which can be used. Using a pre-trained
model can save resources as well.

3 Transfer Learning from RGB to RGB-D

From the perspective of low-level patterns, depth images attend to have smooth
variations, contrasts and borders, but lack texture information and high fre-
quency patterns [31], which is exactly complementary to RGB images. RGB-
D images can provide the model more diverse features, compared to merely
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RGB images. This is the very motivation for us to use RGB-D model instead of
RGB model for face recognition.

As shown in Fig. 1, in addition to changing the last fully connected layer,
we also adjust the uppermost convolution layer of ResNet50 [13] in order to
feed the model with 4-channel RGB-D images. We copy the parameters of the
middle layers of the RGB model and then fine tune the entire RGB-D model on
the target Intellifusion RGB-D dataset.

Fig. 1. Transfer learning from a pretrained RGB model.

4 Experiments

We conduct three experiments to compare the effects of depth images and inter-
modal transfer learning on face recognition accuracy (see Table 2). The first
experiment only uses RGB images and train the model on a pre-trained model.
The second uses RGB-D images to train the RGB-D ResNet model from scratch.
The third trains our RGB-D model on the target 3D dataset based on the 2D
pretrained model.

Preprocessing. The faces and their landmarks in images are detected and
aligned by MTCNN [38]. The images are horizontally flipped with a probability
of 0.5 for data augmentation. Both RGB images and depth images are normalized
to 0–1 range.

Train/test Split. The Intellifusion RGB-D face dataset contains 403,068
images of 1,205 people. We divide the dataset into a training set and a test
set in a ratio of approximately 9:1. Categories with no more than 10 samples are
removed. After discarding images in which no face is detected, there are 361,799
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face images in the training set of 1,200 people and 40,809 images in the test set.
Dataset is split under closed-set settings, which means identities in the testing
set must appear in the training set.

Training Configuration. We train the models with batch size of 16 on 4 Nvidia
Titan Xp GPUs. We use SGD as our optimizer with a momentum of 0.9. The
learning rate is initialized to 0.001 and decayed by a factor of 0.1 every 7 epochs.
Following the last fully connected layer is a softmax layer for classification and
identification.

Evaluation Metric. We report the average recognition precision in test set of
1200 people.

Table 2. Comparisons on intellifusion RGB-D face dataset in accuracy (%).

Method RGB images Depth images CNN models Accuracy (%)

Pretrained on Imagenet ✓ ✗ RGB ResNet50 94.47

Train from scratch ✓ ✓ RGB-D ResNet50 88.36

Pretrained on Imagenet ✓ ✓ RGB-D ResNet50 94.64

As shown in Table 2, the RGB-D model transfered from a 2D network has
the best accuracy, compared to the RGB model taking merely RGB images as
input and the RGB-D model traning from scratch. What’s more, the inference
speed of our RGB-D ResNet50 model is about 262.64 fps. And it shows that
inter-modal transfer learning outperforms RGB models which take merely RGB
images as input and RGB-D models training from scratch.

5 Conclusion

Compared to RGB images, RGB-D images contain more information about the
global layout and enable the images to have stereoscopic effects. From a per-
spective of intuition, our RGB-D model is able to make more use of the informa-
tion provided by depth images. But due to the limitation of the size of RGB-D
datasets, it is difficult to develop a RGB-D model as efficient as RGB models.
Using transfer learning from RGB to RGB-D can solve this problem. In this
paper, we present an RGB-D ResNet50 model transferred from a pretrained
RGB model and achieve an accuracy of 94.64%.
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Abstract. Facial recognition is to identify human faces from an image.
It is becoming more and more important these days as it can be applied in
multiple industries, such as bank, airport, e-business, etc. Because of the
broad application prospects, face recognition is actively developed and
researched by many people, companies and academic organizations. In
this paper, we customize one of the facial recognition models developed
in the recent years – ResNet on the Intellifusion 3D face dataset [1].
And then we evaluate the performance of the algorithm by adjusting the
depth of the network, pre-processing steps of the pictures and also the
learning rate.

Keywords: ResNet · Computer vision · RGB-D · Face recognition

1 Introduction

There has been a long research history in the area of computer vision and facial
recoginition. In 1987, Sirovich and Kirby used Eigenface [2] in facial recogni-
tion for the first time. In 1998, Gary applied Continuously Adaptive Mean Shift
(CAMSHIFT) algorithm for face tracking [5]. In recent years, the improvement
of hardware resulted in a trend of using neural network for facial recognition.
Krizhevsky has come up with convolution neural network to solve the image
classification problem [6]. In 2015, Google published FaceNet [9], a new facial
recognition model, which achieves record high accuracy on Labeled Faces in
the Wild (LFW) dataset. Kaiming developed a new type of deep neural network
with residual block in the same year, which provides a way to resolve some issues
brought by the depth of the network [7]. Besides the development of new models,
there are also researches focusing on bring the facial recognization to more hard-
ware platforms and scenarios. CMU released OpenFace face recognition library
in 2016 [4] providing a new benchmark for mobile platform. Anil discusses the
state-of-art and challenges of facial recognition technology in the area of crime
investigations [8]. In this paper, we implement a CNN network based on ResNet
for face recognition. And then we employ the Intellifusion 3D dataset to evaluate
the performance of our proposed network getting 82%. The influence of learning
c© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 149–155, 2020.
https://doi.org/10.1007/978-3-030-49556-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49556-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-49556-5_15


150 T. Gong and H. Niu

rate and inference time under different devices (CPU and GPU) are explored
in experiments. Our code is implemented and optimized on the AIBench and
its hardware platform [16–20] and this article takes part in the AI System and
Algorithm Challenge organized by Benchcouncil. The source code of AIBench is
publicly available from http:// www. benchcouncil. org/ benchhub/ AIBench/
(Sign up to get access). BenchCouncil AI Challenge includes four tracks: Inter-
national AI System Challenge based on RISC-V Subject [27], International AI
System Challenge based on Cambricon Chip Subject [25,26], International AI
System Challenge based on X86 Platform Subject [21–23], and International 3D
Face Recognition Algorithm Challenge Subject [24].

2 Related Work

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is commonly used in extracting patterns
from images as images can usually be represented in 2D matrix and convolutional
neural network can easily applied on data in the form of 2D matrix. The basic
layers used in forwarding the convolutional neural network are the convolution
layer, down-sampling layer and non-linear activation layer. [12] also explained
how one can implement convolutional layer using fast Fourier transform and
it adopted the cuFFT library. As for other embedded systems, optimized FFT
libraries [13–15] can be used for CPUs, especially for inference. Convolution
layer basically convolves the input feature maps (assume it as a 2D matrix) with
learnable kernels. For a full convolution, the output of the layer is given by:

z(u, v) =
∞∑

i=−∞

∞∑

−∞
xi,jku−i,v−j (1)

Kernel can be considered as a feature pattern that we want to see to what
extend each part of image matches. After convolution layer, feature mapping is
created. However, the data amount is still large as the number of original images
in the training set is usually large. Down-sampling provides a way to decrease the
size of the data while still keeping the invariance extracted by the convolution
layer as much as possible. More formally:

xl
j = f(βl

jdown(xl−1
j ) + blj) (2)

Concretely, there are usually two ways of down sampling: max pooling and
average pooling. For max pooling, the down function is picking the maximum
value of the input matrix as the output; for average pooling, the down func-
tion is calculating the average value of the input matrix as the output. The
down-sampling layer also helps improve the model performance by reducing the
potential of over-fitting. And then there is non-linear activation layer. One of
the most common non-linear activation function is the ReLu function:

f(x) = max(0, x) (3)

http://www.benchcouncil.org/benchhub/AIBench/
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Finally, the output of the layer will abandon the negative values in the input.
The superiority of the convolutional neural network has been demonstrated to
be effective in the computer vision task, thus we use it in this paper to do face
recognition.

2.2 ResNet

With the three basic layers mentioned in the last section, scientists and engineers
can use them multiple times in any combination to their own neural network
fitting into the problem to solve. However, deeper network generates new issues,
overfitting, taking more time to train and the degradation problem: accuracy of
the network decreases rapidly in deeper network. To solve this problem, Kaiming
added residual blocks into the deep neural network [7].

As a result, the stacked nonlinear layers are trained to fit into the mapping of
F (x) := H(x)−x in stead of F (x) := H(x). In other words, the original mapping
is changed to F(x)+x from F (x). This change is based on the assumption that
it is easier to optimize the residual mapping with the identity mapping, serving
as a “shortcut” mechanism [7].

3 Work Description

3.1 Design

Since the ResNet has deeper network structure compared with early work and
has better performance, we use a ResNet-like network in the paper to improve
performance. Figure 1 shows the workflow of the system developed for this work.

Fig. 1. Design of the workflow

3.2 Implementation

The dataset used is the Intellifusion 3D face data set. It contains around 400,000
faces from 1200 people, with the total size of around 36.8 GB. Each face contains
one RGB image and one numpy array (.npy) representing the depth information
of the image (Fig. 2).
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(a) RGB Image (b) Depth Image

Fig. 2. Example images in the data set [1]

The pre-processing of the dataset including: removing the noise data, resiz-
ing the images to 182*182, normalizing the pixels, randomly cropped and com-
bining the RGB image and the depth image into a 4-channel RGB-D image.
Then, we implement a Resnet model for training the data. The model structure
is shown in Fig. 3.

Fig. 3. Structure of the network

To improve the speed of the training, we used GPU to accelerate the training
[10]. The GPU used is Nvidia GeForce RTX 2080. Table 1 shows the different
average time for each iteraction for using GPU or without using GPU.



An Implementation of ResNet on the Classification of RGB-D Images 153

Table 1. Time spent comparison

Using GPU Using CPU

Time (min/iteration) ˜7 ˜102

3.3 Evaluation

Fig. 4. Model accuracy with different settings

Based on the above implementation, we did some experiment on the perfor-
mance/accuracy of the ResNet model by changing some variables. Figure 4 shows
the improvement of the model in different settings.

4 Conclusion

This paper implements a variant of the CNN model with residual blocks and
train the model on the Intellifusion 3D face data set. By experiment, we reach
the best accuracy of 82% with learning rate as 0.001.
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Abstract. Resnet, from its emergence, has always been a state-of-the-
art model for facial recognition problems. The 2019 Bench Council posted
several challenges, including an International 3D Face Recognition Algo-
rithm Challenge, which aims at soliciting new approaches to advance the
state-of-the-art in face recognition. We focus on utilizing a 4-channeled
Resnet on this new problem and achieve 90% validation set accuracy
resulting in second prize on the Bench-19 International Artificial Intelli-
gence System Challenges.
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1 Introduction

1.1 Motivation

International Open Benchmark Council (Bench Council) is a non-profit research
institute, which aims to promote the standardization, benchmarking, evalua-
tion, incubation, and promotion of Chip, AI, and Big Data techniques. In 2019
Bench Council posted several challenges, including the Cambircon track, RISC-V
track, X86 track, and 3D face recognition track. The track we chose was 3D face
recognition, which aims at soliciting new approaches to advance the state-of-the-
art in face recognition. The source code of AIBench is publicly available from
this website http://www.benchcouncil.org/benchhub/AIBench/ (Sign up to get
access). An industry-leading internet service AI Benchmark Suite [1] is used in
this competition. This paper depicts the effort made towards the utilization of
Resnet of this RGB-D facial recognition problem. The problem is a classic face
recognition task given traditional RGB face image plus depth information. The
dataset consists of over 20000 faces of 1212 distinct personnel, many of them
being celebrities, presented with jpeg images and Nd arrays representing depth
information accordingly. The dataset includes faces from various races and also
images from different ages of the same person. We try to approach the prob-
lem with different methods. Initially, we try to start with a 2D face recognition
system which register 2d face landmarks and recognize faces by comparing face
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landmarks with registered face landmarks. This method achieves fairly good per-
formance but lacks utilization of depth data, remaining a space of improvement.
Further experiments show that the depth channel is extremely noisy for use in
the face recognition system. Based on the fact that convolutional neural net-
works outperform other models in many image recognition tasks, we decided to
approach the problem with deep convolutional neural networks.

1.2 Challenge

There are two main challenges that we face in this problem, being the incon-
sistency of data and difficulty in optimization. The first problem exists because
the data provided are all of the different resolutions and sizes. To encounter this
problem, we padded the images by 90 and used a center crop to format the
images to 224*224 for training consistency. The padding was well-considered to
compensate for different size of images. After cropping, the images are of the
same size to feed into the network; this is a very conservative optimization to
the dataset but judging from the results some minor additional noise is added to
the dataset. The other challenge is the noise in data: when inspecting the image
dataset, we find out that there are noise data that not belong to the personnel
identity. Though we try to delete some of those data, the dataset is too large
to be cleaned by hand, and this is very likely to affect the result of the training
process. For efficiency and computing power limits, we only utilized an 18 lay-
ered version of Resnet, and might optimize the model to Resnet-50 for better
performance.

1.3 Contribution

Traditional 2D face recognition method divide face recognition into face regis-
tration, face detection and face verification these three steps. In order to obtain
good performance on such system, each part must function well at the same
time. This is extremely hard since for each new situation encountered, we have
to modify three parts to adapt the new case. Therefore, we merge all three parts
into one deep Resnet and simplify the face recognition problem to a classifica-
tion problem where our model predicts a label for input face image. We also
take inspirations from a paper [2] that focused on transfer learning from a pre-
trained 2D network and [3] another paper that has a different implementation
on a similar Resnet model.

2 Background and Related Work

As the universal approximation theorem implies, a feed-forward network with
a few layers is enough to approximate any functions [5]. However, the network
would become prone to over-fitting issues with the data, hence going for a deeper
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neural network is necessary for a better result in this problem. Since AlexNet,
having only 5 layers, the state-of-the-art CNN has grown deeper, with the VGG
network [6] and GoogleNet (also code-named Inception v1) [7] had 19 and 22
layers respectively. Since the infamous vanishing gradient problem exists in the
back-propagation process due to repeated multiplication making the gradient
negligibly small, merely piling up layers does not work anymore. For the deeper
it goes, the performances would be bottle-necked by this problem, and the results
can even start degrading. Before Resnet came out, various methods are being
carried out by different researchers in vain to solve the problem effectively. To
mitigate this problem. As addressed in [6], they attempted to solve the problem
by adding an auxiliary loss in a middle layer as extra supervision, but still in
vain to solve the problem. Resnet [4] incorporates identity shortcut connections,
which essentially skip the training of one or more layers creating a residual block.
The residual block is a pre-activation variant of residual block [8] in which the
gradients can pass through any shortcuts unimpededly. Because of its compelling
results in various image recognition benchmarks, we chose Resnet as the building
block of the model. As Resnet was implemented for RGB datasets, we optimized
the network to have a fourth input depth information channel feeding into the
network in addition to the 3 RGB channels, fitting the RGB-D problem.

3 Method

We deploy the dataset provided by Bench2019 for training and testing. Input
images are either padded or cropped to 224 × 224 to feed into ResNet-18. There
are 23,140 valid RGB-D images collected from 1212 identities. For the test set,
we sample a subset uniformly over 1212 identities from original data.

Moreover, we employ accuracy as an evaluation metric for this classification
problem setup. Trained by an Nvidia RTX 2080 for 40 epochs in less than an
hour, our model achieves 90% accuracy on the validation set without parameter
fine-tuning. However, the model received no further improvement if we increase
training epochs. In further experiments we swap ResNet-18 for ResNet-50 while
leaving hyper-parameters unchanged and the result is disappointing. The gener-
alization for ResNet-50 in this problem setup is significantly worse than ResNet-
18 that the validation accuracy drops to around 60%.

The network used to solve this problem is a modified version of Resnet-18,
which follows the Resnet model from the 2015 Resnet academic publication,
Deep Residual Learning for Image Recognition by He et al. [4]. The authors of
this paper argue that stacking layers shouldn’t degrade the network performance,
because if we simply stack identity mappings upon the current network, and the
resulting architecture would perform the same. This indicates that the deeper
model should not produce a training error higher than its shallower counterparts.
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Kaiming He’s team hypothesize that letting the stacked layers fit a residual map-
ping is more straightforward than letting them directly fit the desired underlying
mapping. We then modified the network to have 4 input channels as our model
to fit the problem with an additional depth layer. The core idea of Resnet is
introducing a so-called “identity shortcut connection” that skips one or more
layers, as shown in Fig. 1:

Fig. 1. Residual learning: a building block

Fig. 2 shows the whole model:

Fig. 2. General network architecture based on Resnet [1]

The abbreviated ResNet-18 block we implemented is shown in Fig. 3:
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Fig. 3. General architecture of Resnet-18

4 Conclusion

In this paper, we apply the ResNet-18 network for large scale face recognition in
a classification setup. Benefitting from the simplified problem setup, our solution
combines face registration and face recognition module into a simple neural net-
work that can be tuned by simply adjusting hyper-parameters and modifying the
dataset. However, this simplified problem setup comes with severe drawbacks.
First of all, we can improve performance by utilizing multi-node computing plat-
forms and optimize the training process for more efficiency, as mentioned in this
paper [8], which emphasizes methods of scalable and comprehensive data center
AI benchmarking. Moreover, since the face registration step is merged into a
neural network with the recognition part, it is hard for our model to general-
ize to new faces. Excessive training on new faces makes the model in favor of
new faces, while insufficient fine-tune on new data reduces accuracy on new face
class. Moreover, our solution lacks the capability to adjust behavior in the face
registration step due to the big neural network setup. A potential solution to
such problems of intractable face registration can be one-shot learning, which
effectively computes a feature representation for new faces based on existing
data.
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Abstract. In the era of Big Data and AI, it is challenging to know all
technical and business advantages of the emerging technologies. The goal
of DataBench is to design a benchmarking process helping organizations
developing Big Data Technologies (BDT) to reach for excellence and
constantly improve their performance, by measuring their technology
development activity against parameters of high business relevance. This
paper focuses on the internals of the DataBench framework and presents
our methodological workflow and framework architecture.

Keywords: DataBench · Big Data · Benchmarking

1 Introduction

Organisations rely on evidence from the benchmarking domain to provide
answers on how their processes are performing. There is extensive information on
how and why to perform technical benchmarks for the specific management and
analytics processes, but there is a lack of objective, evidence-based methods to
measure the correlation between Big Data Technology (BDT) benchmarks and
an organisation’s business benchmarks and demonstrate return on investment
(ROI). New benchmarking approaches are being developed in particular in the
big data domain, which presents new technological challenges. To address these
challenges new benchmark initiatives focusing on machine learning and artifi-
cial intelligence like MLPerf [9,10,13] and AIBench [4,5] are in development.
Also, there are comprehensive studies [6,7] on the existing Big Data bench-
marks that compare and discuss the different types of benchmarks and assess-
ment metrics. However, to the best of our knowledge, these existing benchmarks
focus on technological aspects and not on business indicators. The DataBench
c© Springer Nature Switzerland AG 2020
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project addresses this significant gap in the current benchmarking community’s
activities, by providing verifiable benchmarks and evaluation schemes of BDT
performance of high business impact and industrial significance.

The approach followed by DataBench starts with performing a comparative
analysis of existing benchmarking initiatives and technologies. In fact, the goal
of DataBench is not to create another benchmark, but to support an approach
for efficient usage, evolution, extensions, and synergy of the available Big Data
benchmarks from the international Big Data benchmarking community related
to industrial requirements. Based on that, the project will proceed to develop a
methodology and an economic and market analysis to assess the European and
industrial significance of the BDT to be benchmarked. Industrial significance will
be assessed through the investigation of the main Big Data use cases, that will
allow the correlation of Big Data technical performance with business processes.
Relying on all these inputs, the project will build the DataBench Toolbox, a
tool which will connect and evaluate external benchmarking initiatives. Using
the DataBench Toolbox and the methodology and metrics previously defined,
evaluation and benchmarking will be carried out considering both business rele-
vance and technical aspects. We foresee at least three different groups of potential
users. The first group are people with a technical background that are interested
in benchmarking a relevant BDT or application in their company. The second
one are business people that would like to assess the usage of BDTs and appli-
cations from a business point of view. And the third one are providers of Big
Data benchmarks that would like to offer their benchmarks to a broader audi-
ence of users. Currently, the Alpha version of the DataBench Toolbox has been
released as a first attempt to showcase the main functions related to the Big
Data technical benchmarking. More details about the project can be found in
our vision paper [8] or on our DataBench website [2]. In another paper [11], we
reported our initial findings on the relationship between business and technical
performance indicators.

This paper focuses on describing the internal DataBench architecture. In
particular, we divided it into three abstract layers: the methodological workflow,
the framework architecture and the components implementation. In this paper,
we look only at the first two. The Methodological Workflow (Sect. 2) describes
the internal main processes and operations, while the Framework Architecture
(Sect. 3) defines the logical components in which DataBench is implemented.

The paper is organized as follows: Sect. 2 presents the internal DataBench
Methodological Workflow. Section 3 looks at the logical DataBench framework
components. Finally, Sect. 4 summarizes our paper.

2 Methodological Workflow

This part describes in detail the internal processes and operations taking place
in the DataBench framework and the logic behind this approach.

Figure 1 shows a schema of processes intended to illustrate different elements
of the tooling support to be provided in DataBench to different set of users. A
single user may have different roles, initially the following:
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Fig. 1. DataBench methodological workflow (Color figure online)

– Benchmarking Providers: Organizations that own a particular bench-
mark. They can be the actual developers of the benchmark or the organi-
zations that maintain them. These users can register and update their bench-
marks.

– Technical Users: Users that would like to search and potentially execute a
technical benchmark. This includes the possibility of searching, downloading,
executing and giving the results of the execution back to the Toolbox.

– Business Users: Users that would like to search and understand the busi-
ness value of specific big data solutions. These users would not need to run
technical benchmarks, but rather search for similar cases, business indicators,
etc.

– DataBench Admin: People in charge of the administration of the Toolbox.

There are several processes depicted in Fig. 1. On the left-hand side of the figure,
the three boxes represent the registration process of two different kinds of bench-
marks:

– The registration of data related to business-oriented big data benchmarks.
The idea of the component located in the upper left corner of the figure
(“New Business Benchmark Samples Registration”) is to capture domain and
industry specific best practices and blueprints associated to concrete business
key performance indicators (KPIs).

– The registration of technical benchmarks. The two remaining components
on the left represent the way the DataBench Toolbox will capture the nec-
essary meta data and features about technical benchmarks to enable the
search and recommendation processes (“New Big Data Benchmark Regis-
tration/Update” component), and to enable the automation of the deploy-
ment and the interpretation of the results of the execution of the benchmarks
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(“Integrating new Big Data Benchmark” component). Note that the registra-
tion of the automation provided by the second component is optional, in the
sense that it requires the provision of deployment recipes and rules of inter-
pretation of the results of the execution of the benchmarks which could prove
a difficult task for some of the benchmarks analyzed so far. However, the aim
in DataBench is to automate as many as possible technical benchmarks, so
the documentation of the process to integrate the automation will be also a
key part for future extensibility to other benchmarks.

The components in the center of the Fig. 1 show the full process from searching
to executing and visualizing the results of benchmarks. This process is divided
into the following steps:

– Search and Recommendation System: The upper central box shows the
steps to define the search criteria a user could pose to the system with the
aim to select a benchmark that suits their needs. Based on those criteria
(technical, business, application or platform features), the system will offer
a set of potential benchmarks that could fulfill the user needs, as well as
associated material (blueprints, best practices in sectors, etc.) that might
facilitate the decision of the selection of the right benchmark.

– The DataBench Toolbox setup: The middle central box (in green in
Fig. 1) represents the process of deploying and enabling the execution either
in cloud or in-premise of the selected benchmark. This could only happen if
the registration of that benchmark provided the necessary recipes to allow
the deployment. After the execution, the results of the benchmark will be
sent back to the Toolbox for post-processing.

– The validation of the metrics: This process will allow in certain cases the
matching of the technical metrics with business insights or key performance
indicators (KPIs). The results of the benchmarks will be then visualized and
compared to others, giving the user a clear added-value in comparison with
the mere technical results that the execution of a technical benchmark may
provide.

– Monitoring and Evaluation: This process gathers multiple metrics and
internal component information with the goal to offer monitoring and evalu-
ation capabilities to the different users of the DataBench framework. All the
gathered information is stored in a central Technical Metrics Database. The
data is prepared, integrated, processed and visualized into a dashboard web
service that can be accessed by the different users. The key functionality of
this process is to enable both DataBench administrators, technical and busi-
ness users to monitor how the DataBench framework evolves in time as well
as perform an evaluation of the current framework state.

At the point of writing this document, partners are in the process of defining
and prototyping the look and feel of the different processes listed in this section.
The initial alpha version of the DataBench Toolbox is currently implemented
and will be described in detail in deliverable D3.2 [3].



Building the DataBench Workflow and Architecture 169

3 Framework Architecture

To realize the processes described in the DataBench methodological workflow it
was necessary to define and implement functional modules presented as part of
the DataBench Framework Architecture in deliverable D3.1 [1]. The proposed
modular framework is based on templates which are complemented with a web
interface from where the user can decide and choose the metrics needed. The
web interface will also act as a dashboard where the results of the executions
will be gathered and shown to the user, as seen in Fig. 2.

Fig. 2. DataBench framework architecture

The proposed modular DataBench Framework Architecture is composed of
the following six interconnected modules described in detail in deliverable D3.1
[1]. The remaining two modules the Metrics DB and Metrics Dashboard are
introduced in deliverable D5.3 [12] covering the functionality necessary for the
DataBench monitoring and evaluation process.

1. Web Interface connects to the backend of the Toolbox and provides the
different users with the functionality to choose which benchmarks they want
to run. It is also in charge of providing a layer of configuration that the users
can fill in to pre-configure the templates and the benchmarks to be run later
on. The web module is also used to show in a dashboard the results of the
executions and the derived metrics and business insights.

2. Benchmark Framework Interface module will be the main point of inter-
action for the administrator with the Benchmarking Framework, since he will
be in charge of handling the integration, addition and deletion of the new,
updated or modified benchmarks.

3. Results Interface enables the transfer of benchmark results to the frame-
work either automatically by the benchmark run or manually by the user.
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4. Results Parser converts the benchmark results into standardized data
model to enable calculation of the business metrics in the next steps.

5. Metrics Spawner connects to the results DB module, so that it can parse
the corresponding results from the technical data model and calculate the
defined KPIs and at the end, write them back to the results DB.

6. Results DB is a place where the Result Parsers can store the data into
and also have a place from where the web interface can read the results to
show them in the dashboard.

7. Metrics DB is very similar to the Results DB module with the difference
that it will store persistently the collected technical metrics. The goal is to
reuse as much of the available functionality as possible, which means that the
Metric Spawner and the Results Parser will be adapted to gather and
prepare the metrics for the dashboards.

8. Metrics Dashboards offer the monitoring and evaluation functionality
of the DataBench framework, represented as Platform, User (Profile) and
Administrator Metrics Dashboards mapped to the different user functional-
ity and privacy criteria.

The Platform metrics describe the key feature parameters of the
DataBench framework that are used for static monitoring and evaluation. Exam-
ples for such metrics are total number of registered platform users, available reg-
istered benchmarks, number of use case scenarios, number of benchmark runs
and others. These metrics will be available to all the different platform users to
perform independent monitoring and evaluation of the platform environment.

The User (Profile) metrics are generated for each specific user and
describe his/her activities when using the platform. Example metrics are the
number of benchmark searchers, number of downloaded benchmarks, number of
submitted benchmark results and history log of all operations performed by the
user in the last 30 days. These metrics will be used by both business and techni-
cal users to monitor their usage of the platform as well as to have a convenient
history of the latest operations.

The Administrator metrics are in a way combination of the above two
categories. The goal of this type of metrics is to enable the full monitoring of
the DataBench framework from the static platform metrics to the user actions
and operations performed in the different profiles. The administrator view will
enable the performance of end-to-end platform analysis on the utilization of the
platform. It will help to discover patterns and trends in the user searches and
most executed operations.

4 Conclusions and Future Work

This paper presents an initial overview of the internal DataBench Toolbox
design. We introduce the DataBench Methodological Workflow followed by the
Framework Architecture components as two abstract layers that describe in
detail the functionalities in terms of internal processes, supported operations
and user interfaces. By defining the technical functionality of each framework
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component, the next implementation step of picking the most suitable software
technologies and frameworks becomes clear and easier to realize. The latest
news about the DataBench development are available on the project webpage [2]
together with extended documentation of the internal architecture and design
presented in this paper.
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Abstract. To determine the best method for solving a numerical prob-
lem modeled by a partial differential equation, one should consider the
discretization of the problem, the computational hardware used and the
implementation of the software solution. In solving a scientific comput-
ing problem, the level of accuracy can also be important, with some
numerical methods being efficient for low accuracy simulations, but oth-
ers more efficient for high accuracy simulations. Very few high perfor-
mance benchmarking efforts allow the computational scientist to easily
measure such tradeoffs in order to obtain an accurate enough numerical
solution at a low computational cost. These tradeoffs are examined in
the numerical solution of the one dimensional Klein Gordon equation
on single cores of an ARM CPU, an AMD x86-64 CPU, two Intel x86-
64 CPUs and a NEC SX-ACE vector processor. The work focuses on
comparing the speed and accuracy of several high order finite difference
spatial discretizations using a conjugate gradient linear solver and a fast
Fourier transform based spatial discretization. In addition implementa-
tions using second and fourth order timestepping are also included in the
comparison. The work uses accuracy-efficiency frontiers to compare the
effectiveness of five hardware platforms

Keywords: Benchmarks · Numerical methods · Computer
architecture

1 Introduction

One use case of high performance computing is for the rapid numerical simula-
tion of partial differential equations. It can be a challenge to determine the best
computer architecture to use for solving a particular type of partial differential
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equation. The choice of numerical method may also depend on the computer archi-
tecture being chosen. Traditional numerical analysts often consider the efficiency
of different computational methods on a single computational platform (see for
example [22,23,28]), but there is less work comparing the effectiveness of differ-
ent numerical methods on different computer architectures. In this work, several
numerical methods for solving the one dimensional Klein Gordon equation,

utt = Δu − u + u3, (1)

on a single core are reviewed and their effectiveness evaluated on five hardware
platforms.

2 Motivation

The solution of linear systems of equations is a time consuming process in numer-
ical simulation of partial differential equations, and has motivated a number
of benchmarks [2,5,8,16]. The solution of many partial differential equations
requires a choice of discretization methods, in space and typically also in time,
each of which presents numerous choices, each of which may have different relative
performance on different computer architectures [1,7,12–15,20,26,27,29,35,37].
Currently, there is great diversity in supercomputer architectures [39], it may
therefore be a good idea to use different full solution algorithms and different
implementations on different computer architectures. The Klein Gordon equation
is chosen as a mini-application because it is relatively simple, can be used to eval-
uate different time stepping methods and spatial discretization methods, and is
representative of seismic wave solvers, and weather codes, all of which use a large
amount of high performance computing time [1,15,31,43]. As a prelude to a three
dimensional study of parallel solvers, a comparison of solvers for the one dimen-
sional Klein Gordon equation on five architectures is presented showing the effects
of discretization method on time to solution for a specified accuracy on a single
core. Such a method of comparison can be informative in choosing where to run
an application to get the most cost efficient numerical results.

3 Time Stepping Algorithms

The equations will be discretized first in time, and then in space. The Klein Gor-
don equation has a conserved energy. Numerical schemes which either conserve
energy may still have phase errors, but have typically been found to be useful
for preserving qualitative properties of the phenomena being simulated over long
time periods [32].

3.1 Semi-implicit Second Order Leap Frog Method

The leap frog method is a common algorithm for wave equations, and can also
be applied to the real cubic Klein Gordon equation

un+1 − 2un + un−1

δt2
= (Δ − 1)

un+1 + 2un + un−1

4
+ u3

n (2)
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The method is second order accurate and is semi implicit. It has the summation
by parts formula:
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which gives a discrete conserved energy. This scheme requires the solution of a
constant coefficient linear system of elliptic equations at each timestep.

3.2 A Semi-implicit Compact Fourth Order Leap Frog Method

To obtain a fourth order algorithm consider,

un+1 − 2un + un−1

δt2
= (Δ − 1) un + u3

n (4)

for which time stepping error comes from approximating utt. As explained in
among other places, [1], it is possible to approximate the leading order error
term,

2(δt)2

4!
un,tttt

≈ 2(δt)2

4!
(

(Δ − 1) un + u3
n

)

tt

≈ 2(δt)2

4!
(

(Δ − 1) un,tt + 3u2
nun,tt + 6unu2

n,t

)

(5)

=
2
4!

((

Δ − 1 + 3u2
n

)

(un+1 − 2un + un−1) + 6un(un+1 − un)(un − un−1)
)

One can subtract the leading error term to obtain a compact fourth order in
time scheme

un+1 − 2un + un−1

δt2

= (Δ − 1) un + u3
n (6)

+
2
4!

[(

Δ − 1 + 3u2
n

)

(un+1 − 2un + un−1)

+ 6un(un+1 − un)(un − un−1)] .

This scheme requires the solution of a non-constant coefficient linear elliptic
system of equations at each timestep.

4 Spatial Discretizations

In all cases, uniform grids are used. In schemes that use the Fast Fourier trans-
form, time stepping is done in Fourier space, and the nonlinear term is calculated
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Table 1. Stencils for high order finite difference schemes for the one dimensional
Laplacian operator [19]

Order Approximation for uxx

2nd 1
(δx)2

(ui−1 − 2ui + ui+1)

4th 1
(δx)2

(
−ui−2

12
+

4ui−1
3

− 5ui
2

+
4ui+1

3
− ui+2

12

)

6th 1
(δx)2

(
ui−3
90

− 3ui−2
20

+
3ui−1

2
− 49ui

20
+

3ui+1
2

− 3ui+2
20

ui+3
90

)

8th 1
(δx)2

(
−ui−4

560
+

8ui−3
315

− ui−2
5

+
8ui−1

5
− 205ui

72
+

8ui+1
5

− ui+2
5

+
8ui+3
315

− ui+4
560

)

in real space, no de-aliasing is done. Derivatives in spectral space are calculated
by multiplying by the wave number. Descriptions of implementations of spectral
methods can be found in [9,11,18,38,40]. For the compact time stepping scheme,
fixed point iteration is used to calculate the nonlinear term.

High order finite difference discretizations for the one dimensional laplacian
operator are described in [19] and given in Table 1. A second iteration is not
required to compute the nonlinear term, since the time discretization requires a
variable coefficient elliptic equation to be solved at each timestep, for which the
iterative conjugate gradient method is well suited, though multigrid methods
can also be used.

5 Numerical Experiments

In cases where iterations are required, both for the conjugate gradient algorithm
and for fixed point iterations using the FFT, the solution at the previous time
step is used as an initial starting guess. For these programs, memory bandwidth is
a limiting factor and to minimize the number of memory accesses, the coefficients
are programmed using a matrix free approach [35]. The example programs are
written in Fortran and can be found at [34]. In all cases, the programs are
written in Fortran 90 with the compiler doing other optimizations – machine
specific optimization such as use of intrinsics and vectorization directives is not
done and is a useful further step. Accuracy of the computed numerical solution
is evaluated by comparing to the exact travelling wave solution

u =
√

2sech
(

x − ct√
1 − c2

)

(7)

for c = 0.5, t ∈ [0, 5] and x ∈ [−9π, 9π) with periodic boundary conditions.
The finite difference programs were compiled and run, without much further

tuning other than the choice of compilation flags. Each scheme is run several
times, with the number of timesteps varied in powers of 2 from 26 upto 215

and the number of grid points also taken in powers of 2 from 26 upto 215.
Following the reproducibility criterea in [6], the programs are open source, with
the exception of two of the fast Fourier transform libraries, but are run on closed
source hardware. Error bounds indicating the reproducibility of the numerical
experiments are not presented and will be considered in further work.
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Fig. 1. Time to solution against accuracy for solution of the one dimensional Klein Gor-
don equation for a single Intel Haswell E5-2680v3 core. S gives the order of the spatial
discretization for finite differences, while S: F indicates a Fourier spatial discretization.
T gives the order of the temporal discretization.

5.1 Hazelhen

Hazelhen [24] is a Cray XC 40 supercomputer with Intel Haswell E5-2680v3 chips
with a nominal speed of 2.5 GHz and 30 MB L3 Cache. Each node has 24 cores
per node (2 chips with 12 cores each) with 136 GB/s bandwidth and 960 Gflops
per node peak performance. FFTW 3 [17] is used to do the Fourier transforms.
In this case, complex to complex Fourier transforms are used.

Results of accuracy against computation time are shown in Fig. 1. All com-
putations have been done in double precision arithmetic. For low accuracy com-
putations, a Fourier spectral discretization with second order time stepping is
most efficient. For moderate accuracy computations, sixth or eighth order finite
difference spatial discretizations with second order time stepping are most effi-
cient. Finally for the highest accuracy, a fourth order time stepping scheme with
Fourier spectral discretization is the most efficient. The computation time of the
Fourier spectral methods can be reduced by almost half by using real to complex
and complex to real Fourier transforms.
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Fig. 2. Time to solution against accuracy for solution of the one dimensional Klein
Gordon equation for a single NEC SX-ACE core. S gives the order of the spatial
discretization for finite differences, while S: F indicates a Fourier spatial discretization.
T gives the order of the temporal discretization.

5.2 Kabuki

Kabuki [25] is a NEC SX Ace supercomputer. Each node has 4 cores with
256 GB/s bandwidth and 256 Gflops peak performance. Each chip has a nominal
speed of 1 GHz and each core has 1 MB vector cache. MathKeisan’s FFT [36]
is used to do the Fourier transform. In this case complex to complex Fourier
transforms are used.

Results of accuracy against computation time are shown in Fig. 2. All calcu-
lations have been done in double precision arithmetic. For low levels of accuracy,
finite difference spatial discretizations are the most efficient. For moderate levels
of accuracy, a second order in time finite diffference method with a Fourier spatial
discretization is most efficient. For the highest level of accuracy, a fourth order
in time finite difference method and an eighth order in space finite difference
method is most efficient. It is surprising that the error of the high order finite
difference method is less than that of a Fourier spectral method and this requires
further investigation. The computation time of the Fourier spectral methods can
be reduced by almost half by using real to complex and complex to real Fourier
transforms.
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Fig. 3. Time to solution against accuracy for solution of the one dimensional Klein
Gordon equation for a single AMD 6376 core. S gives the order of the spatial dis-
cretization for finite differences, while S: F indicates a Fourier spatial discretization. T
gives the order of the temporal discretization.

5.3 Ibex: AMD Partition

Ibex [30] is a heterogeneous cluster and the AMD Abu Dhabi partition contains
AMD 6376 chips with a nominal speed of 2.3 GHz and 16 MB L3 Cache. Each
node has 64 cores per node (2 chips with 32 cores each) with 170 GB/s bandwidth
and 590 Gflops per node peak performance. FFTW 3 [17] is used to do the Fourier
transforms. In this case real to complex and complex to real Fourier transforms
are used which reduce computation by a factor a little less than 2 compared to
complex to complex Fourier transforms.

Results of accuracy against computation time are shown in Fig. 3. In this
case, the Fourier spectral method with a fourth order time stepping is the most
computationally efficient one to use.

5.4 Ibex: Intel Partition

Ibex [30] is a heterogeneous cluster and the Intel Skylake partition contains Intel
Gold 6148 chips with a nominal speed of 2.6 GHz and 27.5 MB L3 cache. Each
node has 40 cores with 256 GB/s bandwidth and 3760 Gflops per node peak
performance. FFTW 3 [17] is used to do the Fourier transforms. In this case
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Fig. 4. Time to solution against accuracy for solution of the one dimensional Klein
Gordon equation for a single Intel Gold 6148 core. S gives the order of the spatial
discretization for finite differences, while S: F indicates a Fourier spatial discretization.
T gives the order of the temporal discretization.

real to complex and complex to real Fourier transforms are used which reduce
computation by a factor a little less than 2 compared to complex to complex
Fourier transforms.

Results of accuracy against computation time are shown in Fig. 4. Except at
the lowest accuracy levels, the Fourier spectral method with fourth order time
stepping is the most computationally efficient one to use.

5.5 Isamabard

Isamabard [21,33] is a Cray XC 50 supercomputer with ARM Marvell Thunder
X2 chips with a nominal speed of 2.1 GHz and 32 MB L3 cache. Each node has 64
cores (2 chips with 32 cores each) with 320 GB/s bandwidth and 1130 Gflops per
node peak performance. The FFTW interface to the ARM performance library
[4] is used to do the Fourier transforms. In this case real to complex and complex
to real Fourier transforms are used which reduce computation by a factor a little
less than 2 compared to complex to complex Fourier transforms.

Results of accuracy against computation time are shown in Fig. 5. Numer-
ical experiments with finite difference methods were very sensitive to compiler
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Fig. 5. Time to solution against accuracy for solution of the one dimensional Klein Gor-
don equation for a single ARM Thunder X2 core using a Fourier spatial discretization
and a fourth order compact finite difference time stepping scheme.

optimization settings, and initial experiments with high optimization levels pro-
duced results with poor numerical accuracy and so are not shown. Reasons for
this are under investigation. Only numerical experiments with the Fourier spec-
tral method with fourth order time stepping gave reasonable results.

5.6 Efficiency Frontiers

A plot comparing the efficiency frontiers for all of the tested machines is shown
in Fig. 6. These efficiency frontiers are obtained by calculating the convex hull
of the data points for each tested platform.

Low order finite difference methods have a low computational intensity, thus
high order finite difference methods which reuse data are able to produce much
more accurate results without significant increases in computational time. The
fast Fourier transform requires significant data movement, thus the eighth order
finite difference method can sometimes be more efficient in getting high accuracy
results within a specified time – though only second and fourth order time step-
ping schemes are tested here, results may differ for higher order time stepping
schemes.

The NEC SX-ACE on Kabuki allows for all the bandwidth to be utilized by
a single core, which is not possible on the Intel Haswell E5-2680v3 on Hazelhen.
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Fig. 6. A figure comparing efficiency frontiers for single Intel Haswell E5-2680v3 core
on Hazelhen, a NEC SX-ACE core on Kabuki, a single AMD 6376 core on Ibex, a
single Intel Gold 6148 core on Ibex and a single ARM Thunder X2 core on Isamabard
for time to solution against accuracy for approximation of the one dimensional Klein
Gordon equation.

This largely explains the greater single core performance on Kabuki compared to
Hazelhen. On Ibex and Isamabard, real to complex and complex to real Fourier
transforms are used, these reduce the number of computations that need to
be done and the amount of data that needs to be moved by nearly a factor
of two compared to the complex to complex transforms used on Kabuki and
Hazelhen, giving Ibex and Isamabard significantly better performance compared
to Hazelhen. Surprisingly, single core performance for the AMD 6376 chip on
Ibex is similar to the single core performance of both the Intel Gold 6148 core
on Ibex and the ARM Thunder X2 Core on Isamabard. This seems due to an
innovative memory controller on the much older AMD 6376 chip and not much
improvement in per core memory bandwidth on the newer ARM and Intel chips.

This initial study proposes a methodology for evaluating widely different
computer architectures for their effectiveness in numerically solving partial dif-
ferential equations to a specified accuracy. The current implementations are not
optimal, and there is significant previous work in optimizing finite difference
method implementations for minimizing compute time. In addition, many chips
can use single, double and quadruple precision, with algorithms implemented
in either a one precision, or in mixed precision, all of which can be used to
increase computational efficiency [10]. The efficiency of the implementation can
also be compared to hardware limits using the roofline [42] model and accurate
measurements of bandwidth [41]. Further work will explore these issues.

Other studies have found that on a single multicore node, the performance
advantage of the NEC SX-ACE is much reduced compared to a single core [3].
Performance evaluation for single nodes, and multiple nodes, in particular for
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three dimensional implementations would be good extensions of this work. In
addition, comparisons of energy consumption to solution would also be helpful
as this can be an important consideration for large scale simulation.

6 Conclusions

High order methods can take advantage of multiple floating point units and so,
do not require much more computation time and give smaller error than low
order methods. Their use should be encouraged in the numerical approxima-
tion of partial differential equations, this hold also for spectral element methods
[26]. For benchmarks based on mini-applications, compute resources to solution
at specified accuracy may be a good metric to use in evaluating performance
rather than speed of performing a fixed set of operations. This would allow for
architecture specific flexibility and can minimize cost to solution, though may
require some programming effort.
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Stuttgart (HLRS), the KAUST Supercomputing Laboratory, the University of Tartu
High Performance Computing Center and the GW4 Isamabard project for access to
supercomputing resources used in development and testing.

References

1. Abdulkadir, Y.A.: Comparison of finite difference schemes for the wave equation
based on dispersion. J. Appl. Math. Phys. 3, 1544–1562 (2015). https://doi.org/
10.4236/jamp.2015.311179

2. Adams, M.F., Brown, J., Shalf, J., Van Straalen, B., Strohmaier, E., Williams, S.:
HPGMG 1.0: A Benchmark for Ranking High Performance Computing Systems,
Lawrence Berkely National Laboratory Preprint (2014). https://escholarship.org/
uc/item/00r9w79m. Accessed 16 July 2019

3. Afanasyev, I.V., et al.: Developing efficient implementations of Bellman-Ford and
Forward-Backward Graph Algorithms for NEC SX-ACE. Supercomput. Front.
Innov. 5(3), 65–69 (2018). https://doi.org/10.14529/jsfi180311

4. Arm Performance Library. https://www.arm.com/products/development-tools/
server-and-hpc/allinea-studio/performance-libraries. Accessed 16 Nov 2019

5. Aseeri, S., et al.: Solving the Klein-Gordon equation using Fourier spectral meth-
ods: a benchmark test for computer performance. In: HPC 2015 Proceedings of the
Symposium on High Performance Computing, pp. 182–191. Society for Computer
Simulation International (2015)

6. Aseeri, S., Muite, B.K., Takahashi, D.: Reproducibility in benchmarking parallel
fast Fourier transform based applications. In: Companion of the 2019 ACM/SPEC
International Conference on Performance Engineering - ICPE 2019, pp. 5–8 (2019).
https://doi.org/10.1145/3302541.3313105
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25. Höchstleistungsrechenzentrum Stuttgart (HLRS): Kabuki. https://kb.hlrs.de/

platforms/index.php/NEC SX-ACE. Accessed 15 July 2019

https://doi.org/10.1177/109434209100500306
http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods
http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1007/978-3-540-30726-6
https://doi.org/10.1007/978-3-540-30726-6
https://doi.org/10.14529/jsfi190206
https://doi.org/10.14529/jsfi190206
https://doi.org/10.1109/SAAHPC.2012.24
https://doi.org/10.1002/cpe.4401
https://doi.org/10.1007/978-3-319-32152-3_54
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1017/CBO9780511626357
https://doi.org/10.1090/S0025-5718-1988-0935077-0
https://doi.org/10.1090/S0025-5718-1988-0935077-0
https://doi.org/10.1137/15M1010798
https://doi.org/10.1137/15M1010798
https://gw4.ac.uk/isambard/
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-642-05221-7
https://www.hlrs.de/systems/cray-xc40-hazel-hen/
https://www.hlrs.de/systems/cray-xc40-hazel-hen/
https://kb.hlrs.de/platforms/index.php/NEC_SX-ACE
https://kb.hlrs.de/platforms/index.php/NEC_SX-ACE


184 B. K. Muite and S. Aseeri

26. Hutchinson, M., Heinecke, A., Pabst, H., Henry, G., Parsani, M., Keyes, D.: Effi-
ciency of high order spectral element methods on petascale architectures. In:
Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016. LNCS,
vol. 9697, pp. 449–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41321-1 23

27. Ibeid, H., Olson, L., Gropp, W.: FFT, FMM, and Multigrid on the Road to Exas-
cale: Performance Challenges and Opportunities, arXiv:1810.11883v1 (2018)

28. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs.
SIAM J. Sci. Comput. 26(4), 1214–1233 (2005). https://doi.org/10.1137/
S1064827502410633

29. Ketcheson, D.I., Mortensen, M., Parsani, M., Schilling, N.: More efficient
time integration for Fourier pseudo-spectral DNS of incompressible turbulence.
arXiv:1810.10197v1

30. King Abdullah University of Science and Technology Supercomputing Laboratory:
Ibex. https://www.hpc.kaust.edu.sa/ibex. Accessed 9 Nov 2019

31. Komatitsch, D., et al.: SPECFEM3D Cartesian [software], GITHASH8 (1999).
https://geodynamics.org/cig/software/specfem3d/. Accessed 16 July 2019

32. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Univer-
sity Press (2009). https://doi.org/10.1017/CBO9780511614118

33. McIntosh-Smith, S., Price, J., Poenaru, A., Deakin, T.: Scaling results from the
first generation of ARM-based supercomputers. In: Proceedings of the Cray User
Group 2019. http://uob-hpc.github.io/assets/cug-2019.pdf. Accessed 9 Nov 2019

34. Muite, B.K.: https://github.com/bkmgit/KleinGordon1D [software]. Accessed 16
July 2019

35. Müller, E.H., Scheichl, R., Vainikko, E.: Petascale solvers for anisotropic PDEs
in atmospheric modelling on GPU clusters. Parallel Comput. 50, 53–69 (2015).
https://doi.org/10.1016/j.parco.2015.10.007

36. NEC. http://mathkeisan.com/ [software]. Accessed 16 July 2019
37. Pershin, I.S., Levchenko, V.D., Perepelkina, A.Y.: Performance limits study of sten-

cil codes on modern GPGPUs. Supercomput. Front. Innov. 6(2), 86–101 (2019).
https://doi.org/10.14529/jsfi190207

38. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Appli-
cations. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-540-71041-7

39. Top500. https://www.top500.org/. Accessed 10 Nov 2019
40. Trefethen, L.: Spectral methods in MATLAB. SIAM 10(1137/1) (2000). https://

doi.org/10.1137/1.9780898719598
41. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented

tool suite for x86 multicore environments. In: Proceedings of the First International
Workshop on Parallel Software Tools and Tool Infrastructures. https://doi.org/10.
1109/ICPPW.2010.38

42. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

43. Yang, C., et al.: 10M-core scalable fully-implicit solver for nonhydrostatic atmo-
spheric dynamics. In: SC 2016: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 57–68 (2016).
https://doi.org/10.1109/SC.2016.5

https://doi.org/10.1007/978-3-319-41321-1_23
https://doi.org/10.1007/978-3-319-41321-1_23
http://arxiv.org/abs/1810.11883v1
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1137/S1064827502410633
http://arxiv.org/abs/1810.10197v1
https://www.hpc.kaust.edu.sa/ibex
https://geodynamics.org/cig/software/specfem3d/
https://doi.org/10.1017/CBO9780511614118
http://uob-hpc.github.io/assets/cug-2019.pdf
https://github.com/bkmgit/KleinGordon1D
https://doi.org/10.1016/j.parco.2015.10.007
http://mathkeisan.com/
https://doi.org/10.14529/jsfi190207
https://doi.org/10.1007/978-3-540-71041-7
https://www.top500.org/
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/SC.2016.5


AI



Deep Reinforcement Learning
for Auto-optimization of I/O Accelerator

Parameters

Trong-Ton Pham1(B) and Dennis Mintah Djan2

1 HPC Software R&D Bull – Atos Technologies, Echirolles, France
trong-ton.pham@atos.net

2 Artificial Intelligence and the Web Grenoble INP-Ensimag, Grenoble, France
dennis-mintah.djan@grenoble-inp.org

Abstract. Reinforcement Learning (RL) has made several advances in the
machine learning domain especially Deep Reinforcement Learning. AlphaGo
developed by DeepMind is a good example of how the deep neural network can
train an agent to play and outperform professional Go players. Auto optimiz-
ing parameter is a relatively challenging research area. To automatically tune the
parameters of the system, we formalize the problem into the setting of reinforce-
ment learning model, where the aim is to train an agent whose goal is to find
the optimum parameters by observing the state of the system and taking actions
to maximize a cumulative reward. In this work, we solve this problem with the
matrix version of Q-learning and the neural network version of Q-learning. We
developed a new heuristic of Q-learning algorithm, called Dynamic Action Space
(DAS), to further improve the robustness of the algorithm in finding the optimum
state. The DAS approach significantly improved the convergence and stability of
the algorithm. Then we tested the approach on three deep neural network variants,
namely Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN) and Duel-
ing Networks.We show that the heuristic DASmodel helps the Deep RL networks
to converge better than the baseline Q-Learning model.

Keywords: Optimization · Q-learning · Deep reinforcement learning · I/O ·
HPC · Accelerator

1 Introduction

1.1 State of the Art

Auto optimizing parameter search is a relatively challenging research area. Recent
advances in deep learning [3] have made remarkable progress and shown to be able
to learn concepts directly through raw data such as pixels of images or other sensory
data [11, 12]. Deep neural networks use multiple layers to learn the underlying repre-
sentation between input and output and to obtain an approximate function that maps
the input and output. These successes serve as a motivation for our approach of using
reinforcement learning.
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The following works are closely related to our work, in using deep reinforcement
learning to automatically tune parameters of systems. Yan Li et al. [6] used Double
Deep Q-Networks [10] to design CAPES, which takes periodic measurements of a
target computer system state and trains the network to suggest changes to the systems
current parameter values. Techniques like Prioritized Experience Replay [24] was used
to improve the convergence of the network.

S. Chenyang et al. [8] trained a deep reinforcement learning agent to automatically
adjust parameters for image processing and demonstrated the network on problem of
optimization base iterative CT reconstruction. H. Larson [20] used Deep Reinforcement
learning for cavity filter tuning. Cavity filters are mechanical filters used in radio base
stations, in production there are always physical deviations in the cavities and cross cou-
plings of the filter which requires the filter to be tuned manually to make the magnitude
responses fit some specifications. A deep deterministic policy gradient reinforcement
agent was trained to tune filters with four poles and one transmission zero, or eight
tuneable screws. The trained agent had an 87% success rate of tuning new filters.

R. Liessner et al. [21] shows how to use DQN to learn to control an optimiza-
tion hyperparameter. The DQN was trained to adjust the learning rate of a gradient
descent optimizer. Deep deterministic policy gradient algorithm was used to tune the
hyperparameters of a Vehicle Energy Management system [22].

1.2 Optimization in HPC Context

Exascale supercomputers will require more and more automation [1] to overcome grow-
ing complexity in their administration and usage. Automated solutions are already in use
to predict breakdown events [2] in HPC data centers. However, next generation solutions
will be able to, not just predict events, but also automatically reconfigure the supercom-
puter to maintain operating performance in an optimal state. Such reconfigurations, that
will affect all levels of the supercomputer, require an on-line monitoring of metrics and
a dynamic adjustment of its operating state.

We have developed in our lab such software products concentrating on the optimiza-
tion of the performance of I/O accesses on our HPC clusters. We provide 3 products that
work together and make a continuously improving cycle as described in Fig. 1:

• I/O Instrumentation: an application I/O profiler for HPC applications.
• I/O Pattern Analyzer: a data analytics tool for classification of multiple jobs and
accelerators automation.

• Fast Accelerators: Software and hardware accelerators targeting various I/O patterns
such as pseudo random read and burst writes.

I/O Pattern Analyzer is a data analytics tool that serves two main tasks: classifying
jobs into different application families and automatically setting up the fast accelerator
with the optimal parameters for each job.

First, I/O PatternAnalyzer helps to classify automatically runswith similar behaviors
into a same group, so we can apply the right accelerator and the optimized parameters
for that job family. This task has been addressed in our previous work [4] on using Long
Short-Term Memory (LSTM) model for classifying of HPC applications.
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Fig. 1. Continuous improvement of I/O efficiency in HPC applications with three products:
Instrumentation, Pattern Analyzer and Accelerators.

Second, I/O access can be optimized using accelerators such as data prefetchers or
burst buffers depending on the application behavior. Each accelerator is provided with
a set of configurable parameters that can be optimized for the best performance given
the specific configuration of each cluster. The goal is to automate the setting up of the
optimal I/O environment for an application, based on previous runs analysis. This work
aims to solve this important point on the I/O Pattern Analyzer side.

For our specific case,wewant to optimize the execution timeor the required resources
(CPU, memory, bandwidth, etc.) of the job run on the HPC cluster. Our solution is to
find the optimal parameters iteratively. Each time a job is launched, it is launched with
a combination of parameters. This run is monitored by the I/O Instrumentation and
brings new information to find the best parameters. The next time this job is launched,
new parameters are proposed and so on. After a certain number of runs, the proposed
parametersmust be the best parameters. This number of runsmust be as small as possible
to give the best acceleration performance as fast as possible.

In this work, we solve this problem using the Reinforcement Learning approach and
more specifically with thematrix version of Q-learning andwith the deep neural network
versions. We develop a new heuristic of Q-learning for further improving the robustness
of the algorithm in finding the optimum state. We also tested with 3 different variants
of Deep Neural Network namely: Deep Q- Network (DQN), Double Deep Q- Network
(DDQN) and Dueling Network.

2 Reinforcement Learning

2.1 Q-Learning Model

Reinforcement Learning is a branch of machine learning which deals with training of an
agent to take actions within a defined environment to maximize a reward.More precisely
RL consists of an agent, set of states, sets of actions which can perform in a state. The
agent takes actions in environment allowing it to move from state to state and receive a
reward. The function that indicates the action to take in a certain state is called the policy.
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The goal of the agent is to learn a suitable policy that allows it to obtain the maximum
reward.

Definitions of terms:

• Agent: Takes actions in the environment from a list of allowed actions in the state.
• Actions: List of possible moves the agent can do in that state. For example, in our
context, vary the parameter values.

• Future Rewards:Maximizing the immediate reward is not enough for a good policy.
It needs to consider the future actions to maximize also the future rewards of the
episode. An action can give a very good reward, but if the next state is bad, then
taking this action may be bad.

1) Q-Learning Algorithm
The Q learning was introduced by ChristopherWatkings in 1989 [7]. The Q learning
algorithm is based onQ-values that associates to each couple state/action one value of
the goodness of the action (computed with the reward and discounted future reward).
This value is not only composed of the reward, it also contains the discounted future
reward. Choosing the best action is choosing the action that has the biggest Q-value
in one state.
Q-learning algorithm creates a matrix M with one row per state and one column per
action. Each entry Mi, j of this matrix contains the Q-value of action j in state i. The
training part of the Q learning is to fill this matrix with values that give the optimal
policy. To do it, the below algorithm iteratively tries actions, and depending of the
outcome, updates the matrix.

The start_episode and do_action methods are defined in the environment and do
NOT depend on the Q-learning algorithm. The action to take is decided in the
decide_action method and the update_rule defines how to change the matrix of
Q-values given a new observation.

2) Update Rule
After an observation, the matrix of Q-values needs to be updated. This update using
the Bellman equation:

M [s, a] = (1 − α)M [s, a] + α
(
r + γmaxa′M

[
s′, a′]) (1)
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with:

M: Q-values matrix
s: current state
a: action taken
r: obtained reward after acting a in state s
s′: new state
α (hyper-parameter): learning rate. It represents the importance of a new observation
on the update of the Q-value (0 < a < 1).
γ (hyper-parameter): discount factor. If it is equal to 0, them the update will omit
the next rewards. If it is equal or very close to 1, the Q-value can diverge.

3) Exploration vs Exploitation
The choice of an action during the training of the agent must be a compromise
between exploration (choosing actions that are not the best-known actions) and
exploitation (choosing the best). At the beginning of the training, the agent has no
knowledge on the actions’ outcomes. It needs to explore the environment to start
learning. Because it has no way to select an action, this action is selected randomly
and uniformly over the actions. This process is called exploration. It is also important
for the agent to prioritize the action following the best policy it has learned so far.
This part is called exploitation. It allows to focus the training more on the optimal
policy and then to learn it faster.
To discover the environment, it is important to try new actions. But a too big explo-
ration may take too much time. A limited exploration may not discover the environ-
ment enough to allow the agent to exploit. To handle this exploration/exploitation
dilemma, the decide_action method of Algorithm 1 uses the E-greedy algorithm.
E is the probability to take a random decision, with a probability 1 − E the agent
exploits the recommended action. This E is called exploration rate and can change
during the training. At the beginning, the priority is to explore the environment so
E can be equal to one or very close. But during the training, it can decrease. After a
certain time of training, the priority is to exploit, E can be set at a very small value.

2.2 DAS Q-Learning Model

1) DAS algorithm
This variant proposes to dynamically vary the step size of the action in the parameter
space to allow the agent to explore faster. To achieve this, we specify a maximum
skip (max_skip) or step size and dynamically generate an action space corresponding
to this max_skip parameter. For example, in a 1D environment where the baseline
agent has an action space of [0, −1, 1], if we specify a max_skip of 3, the action
space is then as follows: [0, −1, +1, −2, +2, −3, +3]. This method increases the
action space. The length of the action space can be calculated based on the formula:

length = 2 × max_skip × dim + 1 (2)

where dim is the dimension of the action space.
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The noted change is the inclusion of the augmented action space. The agent can
therefore explore with these actions to determine which action is better. This tech-
nique provides two benefits, it allows the agent to escape local minima and find the
minimum point in smaller number of steps.

2) Evaluation on theoretical data
Evaluation of the models on 2D is done on two datasets: convex dataset and dataset
with local minima and one global minimum. These data are generated with theoret-
ical functions, so we can control the behaviors of each algorithm. Figure 2 shows
the visualization of the generated data. Section 4.4 discusses the evaluation metrics.
We discuss the results for the metric average steps to optimum. Section 4.3 also
discusses into detail the environment model used in all the experiments.

Fig. 2. Visualization of the data set: Convex (left) and Local Minima (right)

Convex
From Fig. 3 the first observation on the 2 models is that, all performed well on this
dataset finding the minimum and remaining in that state. We notice that baseline takes
10 steps to get to the minimum after 100 episodes of training. While the DAS model as
seen is other test, takes 3 steps to find the minimum. We also observe a better stability
of the DAS model in staying at the minimum state.

Fig. 3. Variation of the steps the agent takes to get to the optimum state in Convex dataset
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Local Minima
The evaluation is performed using different starting points in the training to determine
if these models can find the global minimum. The starting points were chosen to be as
far as possible from the global minimum.

• Start close to the global minimum

Fig. 4. Variation of the steps the agent takes to get to the optimum state in Local Minima dataset

From Fig. 4, the two models do find the optimum state and converge. As observed
from the other evaluation, the DASModel takes fewer steps averagely 3 steps to reach
the minimum from episode 200.

• Start close to the local minimum

Fig. 5. Variation of the steps the agent takes to get to the optimum state in Local Minima dataset
(more than 50 steps represent inability to find the optimum)

Figure 5 shows that the baseline model to be stuck at one of the local minima as it
could not find the optimum after 300 episodes. We note that the DAS model has no
difficulty in finding and staying at the optimum point.

These results confirm our intuition that the applied heuristic helped the Q-learning
algorithm converge faster and more stable than the baseline implementation. In the
next section, we will concentrate on applying the 2 method in training our deep neural
networks.
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3 Deep Reinforcement Learning

This section describes the three algorithms that combine deep neural networks and
reinforcement learning to solve our optimization problem. Our goal is to train deep
reinforcement agent to obtain directly the optimum parameters of I/O accelerators for a
specific job by observing and processing training data.

3.1 Deep Q-Networks (DQN)

The Deep Q-Network is a deep neural network proposed by [15]. It is a multi-layered
neural network that accepts as input state s and outputs a vector of action values to
be chosen at the state Q (s, a; θ), where the weights of this network are referred to
as θ. However, deep Q-network is known to be unstable or sometimes diverge when
a nonlinear function approximator is being used [6]. We discuss the two techniques
presented by [15] to solve these challenges.

1. Experience Relay: The transitions states, actions, rewards, next states received from
each step in the training is kept in a memory or database and later sampled uniformly
from this memory to tune and update the network parameters. This is done to break
the temporal correlation introduced by traditional training process that sequentially
samples data, preventing overfitting of the network and hence termed as experience
replay [15].

2. TargetNetwork: This technique also helps theDQNconverge, a target networkwhich
is the same as the model being trained with parameters θ’, except that its parameters
are updated differently. Two ways can be envisaged:

• Getting weights from a previous iteration
• Using a slowly updated Q-Network.

We consider the second way in updating our values for the target Q-network:

θ′ = θ′ × (1−tau) + θ × tau (3)

where tau is the update rate of the target network.
The target used by DQN is

TargetDQN = (r + γQ(s′, argmaxa′Q(s′, a′; θ ′), θ′) (4)

where r is immediate reward from the environment and γ is discount factor. Hence target
network (with parameters θ’) is used to select the best action in the next state by the
argmax operator and estimate the Q-value with the target network.

3.2 Double Deep Q-Networks (DDQN)

The main idea behind this model is to decouple action selection and action evaluation.
We observed from (4) that the same target network is used for to select the best action in
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the next state and used to evaluate the Q-value at the same time. This makes the network
more likely to overestimate values.

To solve this, we utilize the online model to determine the best action in the next
state and use the target network to evaluate the action. The following equation shows
how the loss function is updated [10]

TargetDDQN = (r + γQ(s′, argmaxa′Q(s′, a′; θ), θ′) (5)

We note the difference between TargetDQN and TargetDDQN is that the later using
the model with parameters θ to get the best action using the argmax and calculate the
Q-value using the target network parameters θ’.

Fig. 6. Architecture of DQN and DDQN model

Figure 6 shows the general architecture of the DQN and DDQN networks. The input
is the set of parameters that need to optimize, and the output is the vector containing the
predicted Q values by the neural networks.

3.3 Dueling Networks

The main behind this dueling architecture is that for many states, it is unnecessary to
estimate the value of each action. This network features two streams of computation, the
value and advantage streams, sharing a convolutional encoder, and merged by a special
aggregator [19].

The value V(s) stream in effect gives an estimate how good a state is, and the
advantage stream A(s) gives an estimate of how good an action is in a state

Q(s, a) = V (s) + A(s, a) − 1

|A|
|A|∑

a=1

A(s, a) (6)
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Fig. 7. Architecture of the Dueling network

As we can see in the Fig. 7 above, the final layer of the Dueling network is decoupled
into two separate streams to estimate the state value and the advantage of each action.

4 Experiments and Results

4.1 Datasets

The evaluation of the 3 different models is done in two folds: theoretically generated
data and real data from applications run on the cluster. The aim is to test the robustness
of the algorithms on theoretically difficult patterns and finally test the performance of
real data. We perform test on the theoretical data in 2 dimensions, followed by the test
on 2 different real datasets generated by Job Synthetizer tool.

Job Synthesizer is a tool developed by our lab that allows to generate applications
which make I/O following several predefined patterns such as (i.e. sequential, random
or stride). After an application is generated, we run it with different parameters of I/O
accelerator on our cluster and measure the execution time of each run. We store all the
different parameters and the time of execution in our database for the experiment.

The I/O accelerator chosen for our experiment is the Small Read Optimizer (SRO)
which run on compute nodes to improve the performance of the HPC applications. This
accelerator targetsmultiple and concentrated small I/O (typically< 4 kB). Based on real-
time analysis of the I/O distribution in files space, this module prefetches automatically
blocks of file being frequently accessed, leading to an acceleration of the following I/O
in those areas.

Table 1 describes the various dataset used in the evaluation in detail. Three param-
eters of IO accelerator considered in this experiment are CLUSTER_THRESHOLD,
BIN_SIZE and PREFETCH_SIZE. As observed in Table 2, CLUSTER_THRESHOLD
takes integer values from 2 to 8, with increment steps of 2 and BINSIZE,
PREFETCH_SIZE value range are in bytes.
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Table 1. Description of dataset

Name Size Description of parameters

Dataset1 168 CLUSTER_THRESHOLD: min = 2 max = 8 step = 2
BIN_SIZE: min = 1048576 max = 11534336 step = 2097152
PREFETCH_SIZE: min = 1048576 max = 32505856 step = 5242880

Dataset2 264 CLUSTER_THRESHOLD: min = 2 max = 8 step = 2
BIN_SIZE: min = 1048576 max = 11534336 step = 2097152
PREFETCH_SIZE: min = 1048576 max = 32505856 step = 3145728

4.2 Network Model

The network consist of the input layer which size is equivalent to the dimension of
the state. The hidden layer of the network consists of 2 hidden layers of the same
size. The output layer is a fully connected layer of size equal to the action size. We
chose 2 hidden layers as [6], as shown that adding more layers becomes a problem of
diminishing returns, with each additionally layer adding significantly more computation
while returning lower gains in training success.

The network is trained for several episodes equal to the number of episodes specified.
In each step the model parameters are updated, and the target model parameters are
updated in (3) at the rate tau = 0.01. The optimizer used for the training is the Adam
Optimizer due to its high convergence speed and good at escaping from certain local
minima.

During the training phase, in each step of an episode, we generate the transition
(state, reward, action, next state, done), where done is a boolean which represents the
end of an episode. The transition is stored in a memory of capacity 10,000. At the end
of each step in an episode, a batch of the memory (batch size) is selected and used to
update the model parameters.

4.3 Environment Model

Tobe able to apply a reinforcement learning to any problem theremust be an environment
with states, actions and episodes (start and end of the environment). A reward function
must also be defined. For now, we assume that there is one environment per job. The
environment’s states are the possible combinations of parameters. A transition (action)
between two states is a change of parameters. To reduce the number of actions, an action
is one update of a given step of one parameter. The more actions, the longer the training.
This step can be different for every parameter (step p1 for P1, …). There is also one
action to not perform any modifications, this allows to stay in the optimal state when it
is found. This makes in total 7 actions for 3 parameters. Table 2 shows the action space
of an agent with three parameters.

One episode starts in one state, one combination of parameters. During the episode,
the agent moves inside the space of parameters thanks to actions. Its goal is to find the
optimal combination of parameters and stay on it. Because an episode needs to end, it
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is a succession of 50 actions. This number is an arbitrary value. It allows to start from
any start state, find the optimal state and loop on it few times in one episode.

Table 2. Action space of the agent

Action P1 P2 P3

0 0 0 0

1 −stepp1 0 0

2 +stepp1 0 0

3 0 −stepp2 0

4 0 +stepp2 0

5 0 0 −stepp3

6 0 0 +stepp3

As there exists impossible values for parameters, some actions are not possible to
take. For instance, it is impossible to have a cluster threshold smaller than 1. It may
also be useful to give a maximum value for parameters to avoid unrealistic values. The
agent must learn to not use impossible actions. If it does, the episode ends, and the agent
receives a very low reward.

4.4 Rewards

The agent’s goal is to maximize the sum of rewards in an episode. In our case, the goal
is to minimize the duration of a run. Then, the reward given to the agent depends on the
duration. To transform a minimization problem into a maximization, we use the inverse
function. The duration of the jobs is normalized using the min-max method between 0
and 1. Without this normalization, the reward would have different scale depending on
the job’s duration (i.e. a job longer than another one would always give smaller reward).
As the inverse of 0 is undefined and the limit when the normalized duration tends to 0
is infinity, it cannot be used directly to avoid too huge rewards. A parameter is used to
avoid this:

reward = 1
durationnormalized+φ

1
1+φ

≤ reward ≤ 1
φ

(7)

= 0.2 for all experiments. The maximum reward an agent should get is 50 if it stays
at the optimum.

4.5 Model Validation

During the training, it is mandatory to evaluate the learning phase. The evaluation must
give an overview on the quality of the learning. For this purpose, some indicators are
provided:
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• Sum of reward: As the goal of a reinforcement learning agent is to maximize the
sum of reward obtained per episode, we can monitor it during the training.

• Number of steps to the optimum: The episode starts in one state. By performing
actions, the agent must move to the optimum state. Based on this we have the metric
average steps to optimum. A value greater than 50 represents that the agent couldn’t
converge to the optimum

• Number of stays in the optimum: In the optimum parameter search, once the opti-
mum state is reached, the agent needs to learn that it has to stay in this state. Based on
this we have the metric average steps to optimum. A value greater than 50 represents
that the agent could not converge to the optimum

• Success: represents the percentage of episodes the agent converged at the optimum

4.6 Results and Discussion

1) Dataset1
Table 3 compares the results of the 3 models DQN, DDQN and the Dueling Network
without the heuristic (baseline) andwith the DAS heuristic. Considering the baseline
charts, we observe that only the dueling network stabilizes and converges at the
optimum state from episode 400, as DQN and DDQN take all 50 steps without
converging at the optimum. With the DAS heuristic, all models converge at the
optimum from episode 600. The DAS heuristic has a great impact on especially the
DQN and DDQNmodels, as we move from a non-convergent model to a convergent
one. This is a huge gain from this approach.We observe fromTable 5 the summary of
the evaluation in numerical metrics to observe the gain of the DAS approach on the
threemodels. Any interesting observation is that for eachmodel there is an average of
10 steps decrease to the optimum in the second metric. For the Dueling network, the
baseline model converges to the optimum and performs better than the DQN-DAS
andDDQN-DAS. TheDAS heuristic does bring significant improvement, especially
on the 2 metrics: average steps to the optimum and average steps in the optimum. On
this dataset, we note that the Dueling Network with DAS outperform all the other
models.

2) Dataset2
Table 4 compares the results of the 3 models on dataset2 with and without the DAS
heuristic. For the DQNmodel, we observe that both the baseline model and the DAS
heuristic version are unable to converge at the optimum state. The DDQN model
shows a similar result as DQN, the DAS and baseline model cannot converge at the
optimum. Irrespective of this, DAS version of DQN and DDQN show improvement
performance in Table 5 in all three metrics.

Considering the Dueling Network, the baseline model converges to the optimum
from 800 episodes. The DAS version performs better converging to the optimum state
from 600 episodes.

3) Overall results
Table 5 summaries the overall results on the experiments on the three deep Q-
network models. Generally, we note that DAS heuristic improves the convergence
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of the models. In our two datasets we tried our models on, we start each agent from
one fixed state and observe the trajectory to the optimum. It will be interesting to
observe the agents using different start points and note the improvement of the DAS
heuristics on this case.

We consider the validation metrics: success, average steps to optimum and average
steps in optimum. In parenthesis in the DAS row we note the percentage gain obtained.
As explained earlier for the average steps to optimum, the lower the value the better and
for the average steps in optimum, the higher the value the better.

Table 3. Variation on the number of steps with 3 networks to the optimum on Dataset1

Table 4. Variation on the number of steps 3 networks to the optimum on Dataset2
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Table 5. Summary of results with the respective improvement of DAS heuristic over the baseline
method

Dataset Model Success
(improvement %)

Average steps to
optimum

Average steps in
optimum

Datasetl DQN 22.6 43.45 5.978

DQN-DAS 43.5 (+92.5%) 32.2 (+35%) 16.8 (+181%)

DDQN 23.8 42.13 7.474

DDQN-DAS 47 (+97.5%) 30.2 (+28.3%) 20.12 (+169.2%)

Dueling 71.6 29.28 28.296

Dueling-DAS 74.3 (+3.8%) 16.57 (+43.4%) 31.87 (+11.2%)

Dataset2 DON 1.1 50.9 0.036

DQN-DAS 6.5 (+490%) 49.33 (+1.4%) 0.31 (+761%)

DDQN 0.3 50.9 0.01

DDQN-DAS 6.6 (+2100%) 49.2 (+3.3%) 0.39 (+3800%)

Dueling 40.3 36.6 12.84

Dueling-DAS 59.6 (+47.9) 23.89 (+34.7%) 25.45 (+98.2%)

Overall theDASmodel gives amaximum improvement of 23% inDataset1 and gives
a maximum improvement of 19% in Dataset2 in terms of the success metric. In Table 5
section of dataset2, we note the significant improvement of DAS heuristics, decreasing
the average number of steps to the optimum from 36 to 23 and staying on average twice
as longer in the optimum state.

5 Conclusion and Perspective

In this paper, we presented our Reinforcement Learning approach for optimization of
the I/O accelerator parameters to improve the performance of HPC applications. We
introduced a new Dynamic Action Space (DAS) heuristic to the Q-Leaning algorithm
and applied it to the deep reinforcement learning models: DQN, DDQN and Dueling
network.

Our study demonstrated that the DAS heuristic applied on the Q-Learning algo-
rithm helps to find the optimum faster and with lesser interactions. The implementa-
tion of this methods with three deep neural networks also showed the improvement in
most of the case comparing to the baseline method. We believe that the tuning of the
hyper-parameters for theses network, which sometime is not straightforward, can further
improve the performance of the Deep Q-Networks.

Our objective in this study is to enhance the performance of the application running
on real HPC clusters. One promising direction is to deploy this model on a real data
center to benefit from the massive data collected to train our deep reinforcement models
and test the scalability of the proposed method.
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Future work also includes the combination with the classification model proposed in
our previous work [4] to close the loop from collecting data, classifying jobs into similar
groups and automatically applying the right I/O accelerator parameters for the job. This
will create an autonomous system for monitoring and administrating HPC cluster in the
next decade.
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Abstract. To improve the quality of questions asked in Community-
based questions answering forums, we create a new dataset from the
website, Stack Overflow, which contains three components: (1) context:
the text features of questions, (2) treatment: categories of revision sugges-
tions and (3) outcome: the measure of question quality (e.g., the number
of questions, upvotes or clicks). This dataset helps researchers develop
causal inference models towards solving two problems: (i) estimating the
causal effects of aforementioned treatments on the outcome and (ii) find-
ing the optimal treatment for the questions. Empirically, we performed
experiments with three state-of-the-art causal effect estimation methods
on the contributed dataset. In particular, we evaluated the optimal treat-
ments recommended by the these approaches by comparing them with
the ground truth labels – treatments (suggestions) provided by experts.

1 Introduction

In recent years, community-based question answering (CQA) forums (Stack
Overflow1, Quora2 and Zhihu3) have attracted millions of users all over the
world monthly4. These websites can provide useful answers to askers who post
questions, and provide a platform for more experienced users (e.g., experts) to
share knowledge with askers as well as other users looking for such answers
through search engines [1].

However, the submitted questions can be unclear, lack of background infor-
mation, and the chaos question format. For such questions, the members
and moderators of Stack Overflow community will delete the poor quality
questions[2]. From Fig. 1, the ratio of unanswered questions has been increased
in recent years indicating that more and more low-quality questions have been
posted in the communities. Examples of low-quality questions5 are listed in
Table 1. Although websites like Stack Overflow have explicit, detailed guidance
1 https://stackoverflow.com/.
2 https://www.quora.com/.
3 https://www.zhihu.com.
4 https://stackexchange.com/sites?view=list#questionsperday.
5 https://meta.stackexchange.com/questions/180692/why-do-i-receive-downvotes-

when-i-am-genuinely-trying-to-learn/.
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on how to ask good questions6, the fact is that the experts still have to spend
considerable time on understanding the real need of askers (e.g., via comments).

Fig. 1. The ratio of unanswered questions increased in recent years

Table 1. Example of raw questions and improved questions

Raw Question Revised Question

C# Math Confusion Why does using float instead of int give me different
results when all of my inputs are integers?

[php] session doubt How can I redirect users to different pages based on
session data in PHP?

Android if else problems Why does str == ”value” evaluate to false when str is
set to ”value”?

To help users improve the quality of questions, many existing methods[3–
5] build binary classification models for question quality detection, but these
approaches do not give revision suggestions to improve the quality of questions.
The drawback of these approaches is that beginners still cannot learn the tips of
asking good questions from their failures. To overcome this limitation, in [6] a
method is proposed to map low-quality questions to a category of revision sug-
gestions. However, this method does not evaluate the outcome after taking this
revision suggestion. In other words, beginners does not whether this suggestion
is the best or not. In [7] improvements are made by the hand-crafted features.
6 https://stackoverflow.com/help/how-to-ask.

https://stackoverflow.com/help/how-to-ask
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In [8], it further improved the approach with the latent space generated by neu-
ral encoder. These improvements are black-box in the sense that they might not
be fully understandable by real-world CQA users. Even with the recommended
improvements, users may not know why they need to take these revisions.

To address the aforementioned problems, we aim to provide users the revi-
sion suggestions that would likely lead to optimal outcomes in the draft page
before the question is actually posted. Toward this goal, we contribute a new
dataset containing three components: (1) context: the text features of ques-
tions, (2) treatment: the revision suggestions performed by the users and (3)
outcome: the quality of questions measured by metrics such as the number of
answers. This contributed dataset would enable studies of counterfactual infer-
ence in the context of CQA websites. The outcomes of the performed revi-
sions can be observed while we aim to estimate the counterfactual outcomes
– those resulting from the other feasible revisions. Specifically, we aim to learn
an outcome estimation function E[Y |X = xq, T = t] from observation data
denoted by {(xq, t, y)i}ni=1, where xq denotes the text features from the raw
question, t is the type of revision suggestion the asker of question q has actu-
ally taken, and y is the observed outcome after taking the observed suggestions.
In evaluation, we evaluate the improvement of treatment ti over tj , denoted
by E[Y |X = xq, T = ti] − E[Y |X = xq, T = tj ], i �= j, where ti is recom-
mended by the proposed model. In addition, we also compare the aforemen-
tioned improvement with the improvement observed in the data, denoted by
Ê[Y |X = xq, T = ti] − Ê[Y |X = xq, T = tj ], i �= j. In the inference stage, this
model evaluates each suggestion through inferring their potential outcomes, and
choose the one with the optimal inferred outcome. The best out of the models
considered in this work can only reach a 0.16 accuracy score, which leaves a
great space for future improvement.

Our main contributions of this work can be summarized as follows:

– We created the dataset which allows researchers to study the problem of
question improvement in the CQA settings. The dataset contains three main
components: (1) context: text features of questions, (2) treatment: revision
suggestions and (3) outcome: indicators of the quality of the revised question.

– We demonstrate the utility of our dataset in three SOTA counterfactual infer-
ence models. This dataset contains rich information in the revision treatment
and various kinds of outcomes. Researchers can discover the treatment from
the revision text and estimate the causal effect simultaneously.

2 Related Work

Predicting Question Quality via Classification: [3–5] proposed to classify
questions into two classes: high-quality and low-quality. In particular, authors
of [3] leveraged logistic regression for the detection of unclarified questions with
several input features from the askers, the questions, and the answers. [5] employs
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features from similar labeled questions which are retrieved by Elasticsearch, gen-
eral search engine, and users’ comment on clarification to train a logistic regres-
sion model. [4] uses a feed-forward neural network with n-gram text features
to identify the questions that are not well-formed. Only notified questions need
to be improved to attract high-quality answers, these methods cannot give the
revision suggestions for the users. Towards giving the category of revision sug-
gestion, [6] maps the question to a possible revision suggestion. [9] identifies the
revision intentions of revisions in Wikipedia. However, these datasets do not
afford the outcome after revision. So it is hard to evaluate whether the result of
taking such revision.

Direct Improvement Approach: [7] makes improvement on the handcrafted
features like add more n-grams and decrease average token length to improve the
score generated through Gaussian random process. These discrete feature revi-
sions are hard for users to follow in the real world. [10] and [8] make improvement
on the text directly. [10] use a Metropolis-Hastings sampling method to sample
the words until the transition function converges. [8] uses a variational recurrent
autoencoder (VRAE) to encoder the text into hidden space, make improvements
on hidden vectors then decoder the revised vector into a new text. However, these
methods cannot keep the meaning consistency during the revision. For example,
when an input sequence is you are both the same size., output sequence would
be you are both wretched men.

Data for Learning Causal Effects: The standard dataset format for learning
causal effects can be denoted by (X,T, Y ), where X is the feature matrix, T is
the vector of assigned treatment and Y is the vector of observed outcome [11].
For example, with the Infant Health and Development Program (IHDP) [12]
dataset, we aim to estimate the causal effects of home visits of specialists on
children’s cognitive test scores. Another widely adopted dataset for causal effect
estimation is News [13]. This dataset comes with the bag-of-word representa-
tion randomly sampled news as the features, the type of devices used to read
the news (e.g., mobile or desktop) as the treatment and the readers’ opinions
as the outcome. However, the treatment and outcome of this dataset are not
directly related to natural language. In contrast, the features and treatments
of the contributed dataset by this work are both textual. This makes it more
flexible for researchers to create new causal inference tasks by extracting dif-
ferent types of treatments based on their need. Recently, massive observational
datasets with rich auxiliary information (e.g., social networks [14–16], product
networks [17] and language models [18,19]) have also been adopted for the causal
effect estimation. A summary of the related datasets can be found in [20].

Our work is based on [6]. We add real outcomes for each improvement type
and expand the size from 3,631 to 34,303, about 10 times larger than before.
Table 2 shows the difference between our dataset and others.
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Table 2. Comparison of related resources in terms of improvement suggestion and
future outcome

Dataset Name Treatments Outcome Size

Our dataset Available Available 34,303

WIS HT 2014[6] Available Unavailable 3,631

Identify Unclear[5] Unavailable Available 6 million

Wikipedia Revisions[9] Available Unavailable 7,170

3 Problem Statement

In this work, we are interested in answering two questions:

– What is the answer count difference when the question takes a specific revision
suggestion?

– Is a certain revision suggestion the optimal suggestion for their questions?

For the first question, we use serval causal inference models to estimate the
causal effects of each revision suggestion on the outcome motioned in the Intro-
duction part. The model will predict the outcome P (Y |X = xq, T = tk) after
taking specific revision suggestion tk. We consider the text feature of question
xq as the confounders which affect both treatment and outcome, the categories
of revision suggestions, tk ∈ {t1, t2, · · ·, tK}, as the treatment, and the number
of answers question gets Y as the outcome. The causal directed acyclic graphics
(DAG) is shown in Fig. 2. Our goal is to estimate of outcome under each revision
suggestion E(Y |X = xq, T = tk).

To answer the second question, we aim to choose the treatment which causes
the greatest improvement in the outcome. This problem can be formulated as

arg max
tk

E(Y |X = xq, T = tk) − Y0, (1)

where Y0 is the outcome without taking any revision.

4 Dataset

This section describes how the contributed dataset is created in details. First, we
present descriptions of the types of suggestions and the outcome in our dataset.
Then, we discuss the process of data crawling.
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T Y

X

Fig. 2. Causal diagram (DAGs) for the problem of finding optimal intervention. X
denotes the features describing the question before revision(s), T denotes the category
of revision suggestion applied to the text, and Y signifies the outcome which is measured
by the number of answers to the question.

4.1 Dataset Description

– Based on [6], and the categories of suggestions from the Stack Overflow
instruction7, we assign revision suggestions into the following seven categories:

• Clarification: the askers provide additional context and clarify what
they want to achieve.

• Example: the askers added an output or input format or included the
expected results for their problems.

• Attempt: the possible attempts askers have tried in the process of solving
their problems.

• Solution: the askers add content to or comment on the solution found
for the questions. The Stack Overflow community explicitly encourages
contributions where the user asks the question also provides the final
answers. Some askers append their solutions and other users create an
answer in the discussion.

• Code: modification of the source code, only considering code additions;
• Version: inclusion of additional details about the hardware or software

used (program version, processor specification, etc.);
• Error Information: warning message and stack trace information of the

problem;
– We use the answer count within a month as the outcome. We only consider

the answer count between the two neighboring revisions in terms of time.
In other words, for control effects (answer count before the revision), we
only calculate the answer between the current revision and the revision right
before the current one. The time interval can vary from years to days. To
remove the influence of the length of the time intervals, we define the answer
count per month as the outcome. Samples of the dataset can be found in
Table 3.

4.2 Dataset collection

All data of Stack Overflow are available8. Stack Overflow also offers a data
explorer website9 where users can use SQL queries to select interesting subsets.
7 https://stackoverflow.com/help/how-to-ask.
8 https://archive.org/details/stackexchange.
9 https://stackexchange.com/.

https://stackoverflow.com/help/how-to-ask
https://archive.org/details/stackexchange
https://stackexchange.com/
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Fig. 3. The number of revision suggestions in each category.

For convenience, we use the data explorer to select question revision histories
from the PostHistory data table, and the answer count from Post data table.
The revision records contain all pairs of the text of revision comments and ques-
tions. The editors will leave a short comment to summarize the change, like add
introduction about problem and add input template etc. So we can use keywords
in the comments to determine the label (type) of each question revision. For
example, we label add introduction about problem with the type of Clarification
and add input template as Example. Detail information about data collection.
To avoid the data duplication problem, we assume that each question revision
only has one revision label. Therefore, we remove the comments with multiple
keywords. There are many different topics in Stack Overflow, for example, Ask
Ubuntu, English Language Usage, Code Golf and Bitcoin etc. For the domain
consistency, we only extract the text from the main site of Stack Overflow.

5 Experiment

5.1 Methods

To exhibit that this dataset can be used to study causal inference problems
including causal effect estimation, treatment assignment mechanism (policy)
evaluation and optimization, we perform an evaluation of the three SOTA causal
inference models on it. Here, we introduce the three SOTA causal inference mod-
els as below:
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Table 3. Example instances of the contributed dataset: PO stands for previous out-
come, LO stands for later outcome (the outcome after treatment).

Raw Question Revised Question Suggestion PO LO

I have a simple table in SQL
Server 2005, I wish to
convert this to XML (using
the ”FOR XML” clause). ...

Solved: I was hoping for
something elegant and tidy...

Solution 2 0

I have one directory of files
in a folder that I want to
optimize and then output to
a different folder.). ...

I have tried the following
Makefile. This does the
build, but it will rebuild all
the files every time.

Attempt 1 0

I am trying to send a custom
token to an existing API via
WSO2.). ...

Here’s a wire log dump from
the request (without the
actual tokens).

Error Info 1 1

I am calling it in my view
like this ...

The problem seems to be the
data that ‘Pygment.rb‘ is
acting on.

Example 1 0

My first question here, but
stackoverflow has been a
highly valued resource for me
the past year.

... Thread.Abort()
bypasses all the logic and
kills the thread without
cleaning up...

Clarification 0 0

– Bayesian Additive Regression Trees [21] (BART) is an additive error
mean regression model. It is a sum-of-trees model, and each tree’s complexity
is constrained by a regularization prior to be a weak learner.

– Counterfactual Regression Networks [22] (CFRnet): This model learns
a balanced representation of the control and treatment groups.

– Causal Effect Variational Autoencoder [23] (CEVAE): This model esti-
mates the unknown confounders from observation data through Variantional
Autoencoders.

All these models take the input of features and treatment (X,T ) to predict the
outcome E[Y |X,T ]. The input features are listed in Table 4.

5.2 Model Evaluation

We evaluate the SOTA models with this dataset on two tasks and use two groups
of metrics to evaluate the treatment estimation and optimal suggestion accuracy.

Causal Effect Estimation: Given the dataset denoted by {(xq, t, y)i}ni=1, these
metrics quantifies the how the outcome y changed if we select different treatment
t. In our experiment, these metric help us understand how the answer count
changed if we had tried different revision suggestions that are unobserved in
the dataset. We estimate the conditional average treatment effect (CATE) for
each revision suggestion separately. CATE explicitly considers the causal effect
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Table 4. Features used in treat effect estimation models

Feature Groups Description

Num. of words Number of word in the question

Num. of unique words Number of unique tokens in the question

Num. of herfs Number of herf links in the question

Num. of keywords Number of keywords in the question

Avg. len. of words Average length of each word in the question

Avg. of word embedding Average of word embedding vector

conditioned on the features X. This is because CATE aims to consider the
heterogeneity of causal effects among instances with different features.

τ(xq) := E(Y |X = xq, T = tk) − E(Y |X = xq, T = t0)

Our target is to learn the function τ̂ which enables us to approximate the CATE
such that the error metrics: (1) the mean squared error of CATE estimation and
(2) Precision in Estimation of Heterogeneous Effect (PEHE) [21] are minimized:

εATEk
= Ek

[
(τ̂k(X) − τk(X))2

]

PEHEk =
1

|U |
∑
u∈U

(
Y k1
u − Y k0

u − τ̂(Xu)
)2

,

where k denotes the k-th treatment (revision category) and U is the set of all
instances in the test set. Small values of PEHEk and εATEk

indicate accurate
estimation of both observed and counterfactual example.

Exact Match: In this task, we measure the accuracy of the causal inference
models. Here, accuracy is defined as the probability to recognize the optimal
category of revision suggestions from the category of users’ revision.

5.3 Result

Table 5 shows the performance of the state-of-the-art (SOTA) models for causal
effect estimation on the two aforementioned tasks: (1) treatment effects evalu-
ation and (2) optimal revision suggestion prediction on our dataset. We found
that BART achieves the best performance in counterfactual inference. We found
that CFRnet achieves the best prediction accuracy.
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Table 5. Performance for various methods

εATE PEHE Accuracy

BART 0.041 0.661 0.086

CFRnet 0.508 1.030 0.161

CEVAE 0.169 1.522 0.126

6 Conclusion

In this work, we propose a new dataset to provide the revision suggestion for
low-quality question in Stack Overflow. This dataset contains three components:
(1) context: the text features of questions, (2) treatment: categories of revision
suggestions and (3) outcome: the measure of question quality . Based on this
dataset, we test three SOTA causal inference models to estimate the counter-
factual effects of each revision suggestion. BART [21] achieves the best result in
counterfactual inference models, with 0.661 PEHE. CFRnet [22] achieves 0.161
accuracy in the task of detecting the optimal revision suggestions compared to
the experts annotation.

The contributed dataset can facilitate research on evaluating the causal effect
of deploying different categories of text revisions on questions and find the opti-
mal revision in the context of CQA.
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Abstract. With the rapid development of artificial intelligence and cloud comput-
ing technologies, more and more workloads embed AI algorithms are deploying
on cloud systems. For lack of sufficient achievements on generating AI workloads
in recent years, designing and developing an efficient benchmark for AI work-
loads will be significant helpful for optimization of job execution time and cluster
resource utilization. SparkAIBench proposed in this paper is a user customized
benchmark and is able to automatically generate a variety of AI workloads by
transforming user requirements into JSON objects. Besides, cooperated with a
DRL-based job scheduling optimizer, a real scenario is introduced in this paper
to demonstrate how SparkAIBench works.

Keywords: AI workloads · Benchmark · Cloud computing

1 Introduction

Recent years, distributed machine (deep) learning workloads, referred to as AI work-
loads, are rapidly becoming prevalent and potential applications in cloud computing.
Amount of frameworks have been proposed to support executions of such workloads
in a parallel manner, e.g. Spark MLlib [1], BigDL [2], and Tensorflow [3]. Meanwhile,
both increasing scale of training data and rapid development of training models bring a
higher learning accuracy, but sharply extend the training time as well, which is primarily
determined by the provision of cluster resource (a.k.a. the decision of job scheduling).
Such resource-intensive and time-consuming characteristics of AI workloads increase
the interest of benchmarking and understanding them to help system operators make
decisions, resource provisioning and job scheduling optimization.

Existing typical schedulers, for example YARN-like schedulers [4], are commonly
allocating a fix amount of resources to each workload at beginning, thus unable to
take advantage of the extra resources when they turn to available, so recent years has
witnessed a kind of dynamic and self-adaptive job scheduler according to cluster state and
resource availability. The state-of-the-art technology for implementation is leveraging
Deep Reinforcement Leaning (DRL) technology that trains a self-learning agent in a
trial-and-error manner to obtain optimal scheduling decisions. DRL-based scheduler,
today, mostly trains agent through the cluster traces generated by running workloads

© Springer Nature Switzerland AG 2020
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whose characteristics (e.g. the number of executor) are configured manually [5, 6], due
to the lack of frameworks that enable generating diverse and customized user workloads
automatically. As talked in literature [7], which presents a survey of today’s prevalent
techniques for big data system benchmarking, workloads generation is one of the most
important aspect in benchmarking, generating in a manual manner is quite complicated
and may cause to an inaccurate result for agent training. At the same time, the major
efforts on generating workloads today do not focus on AI domain, for instance, some
frameworks provide workloads to represent specific application scenarios [8, 9], and
some other benchmarks support I/O operations when generating workloads [10, 11].
But in one word, those studies are unable to automatically generate user customized AI
workloads.

Tobridge the gap, this paperwepresent a benchmark to generateAIworkloads,which
supports a variety of AI algorithms, changeable input data size, as well as parametric
method for submission. The contributions we make are as follows:

1. A user customized and automatic AI workloads generator, SparkAIBench, is
designed in this paper. It firstly transforms the user requirement into a JSON object,
where user is able to specify which AI algorithms are going to use, at the same
time other characteristics of workloads such as data size setting, submission interval
setting of each algorithm and job queue selection are also available to users.

2. We demonstrate a use case to illustrate how SparkAIBench works in a real job
scheduling optimization scenario. In that scenario, we introduce a DRL-based
scheduling optimizer that leverages running traces of AI workloads to make optimal
decisions according to cluster states.

2 SparkAIBench

2.1 Process of Workload Generation

Figure 1 shows the process of generating AI workloads by combing specific AI
algorithms and training data sets.

At step 1, reading a requirement of AI workloads generation from a JSON file,
SparkAIBench is able to know how many workloads should be generated, as well as the
size of training data set for each workload. The next step, as depicted at Step 2, is to
select specific machine learning algorithms within Spark MLlib or BigDL according to
value of “algorithms”, note that, even though Step 2 and Step 3 are depicted in a parallel
manner, Step 2 is always executed before Step 3, this is because only when the algorithm
is selected can its data size setting be effective. Hence at Step 3, according to selected
algorithms and the value of “data_size”, SparkAIBench chooses corresponding data
generation methods to obtain the training data sets and send them into HDFS. After that,
the final step shown at Step 4 is to package the above algorithms into a assembly jar and
put it into YARN-based Spark platform as an application according to extra parameters
of JSON object. Eventually, the application and generated training data compose the
required AI workloads.
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Fig. 1. The overall generation process in SparkAIBench.

2.2 Available AI Algorithms

In general, AI workloads consist of specific AI algorithms, training data sets and other
workload characteristics such as the number of CPU and size of memory. For the
sake of generating user customized AI workloads, available algorithms supported by
SparkAIBench are respectively listed in the following Table 1. Here the traditional
machine learning algorithms come from Spark MLlib while BigDL is responsible for
deep leaning algorithms.

Table 1. Available algorithms in SparkAIBench.

Framework Algorithm Domain Data generator

Spark MLlib Linear regression Regression analysis SELF

LDA Text mining SELF

Bayes Classification LibSVM

SVM Classification LibSVM

FP-growth Frequent itemset mining BDGS

k-means Clustering BDGS

ALS Recommendation BDGS

BigDL LeNet Image classification MINST

Inception Image classification ImageNet

VGG Image classification CIFAR-10

ResNet Image classification CIFAR-10

RNN Natural language processing Tiny Shakespeare texts
corpus

Auto-encoder Image classification MINST
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On the other hand, to prepare the training data sets for above algorithms, we adopt
several data generation methods and divide them into three categories: (1 BDGS (Big
Data Generate Suit) [12], which is a tool for generating text/graph/table data, is suit
for FP-Growth, k-means and ALS algorithms; (2 PUBLIC is composed of some public
shared training data sets, such as MINST for LeNet, CIFA-10 for VGG, and LibSVM
[13] for SVM; (3 SELF, an application developed by ourselves, is to bridge the gap
of unsupported algorithms in above data generation methods. As different algorithms
utilize different methods to generate their training data, we present the corresponding
method name in the column of “Data Generator” in Table 1.

2.3 Expression of Workload Generation Requirement

In order to flexibly and controllably represent a user requirement of AI workloads gen-
eration, we transform it into a JSON object with several configurable parameters shown
in Table 2 (i.e. keys of such JSON object), and insert the object into a JSON file.

Table 2. Configurable parameters in generating AI workloads.

Name Description

interval Submission interval among different algorithms

algorithms An integer array with a size of 13 represents which algorithms are selected

data_size An integer array with a size of 13 represents the data scale of each selected
algorithm

queue The job queue where the algorithms are submitted to

priority The job priority of each algorithm

Within each JSON object, an integer array, as the value of key “algorithms”, com-
posed of 0 and 1 represents whether algorithms are selected or not. Take the array
[0, 1, 0, 1, 1, 0, 0, …] as an example, it means that the first, third and fourth algorithms
are selected. Similarly, the value of key “data_size” is also represented by a numerical
sequence, but with a detailed data set size to express the expected scale of training data
set. For instance, [0, 1500, 1000, 0,…] is saying that 1500 records would be prepared for
the second algorithm and 1000 records for the third algorithm. Note that there are also
some data generation methods unable to customize data size, for example the method of
LibSVM, which can only specify data size into “small”, “middle” and “large” by setting
the value as 0, 1 or 2.

After setting workloads’ algorithms and their data size, one should configure the job
submission information to deeply vary the types of workloads. In our design, AI work-
loads, generated in the same batch, can be separately submitted with various time slot by
specifying the “interval” parameter. Moreover, different workloads can be assigned into
different job queues and with different scheduling priorities, by adapting the parameters
of “queue” and “priority” to implement this.
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3 Use Case

This section we will demonstrate how SparkAIBench works in cloud job scheduling
optimization. As shown in Fig. 2, a DRL-based job scheduling optimizer, as the role of
agent in DRLmechanism, is introduced, hence the aim of SparkAIBench in this scenario
is to generate various AI workloads for training the job scheduling optimizer (agent).
Considering the reality and targeting a faster convergence for DRL agent, we design a
Reward Estimator to evaluate the effect of scheduling policy. We have implemented and
evaluated the above components on YARN-based Spark.

Fig. 2. Applying SparkAIBench in job scheduling optimization on YARN.

3.1 Reward Estimator

The estimator is regarded as a reward function used in DRL mechanism. If carrying out
a scheduling decision makes a lower average job latency (i.e. average job complement
time), it means the scheduling decision improves cluster’s performance, and vice versa.
Hence, in order to quantify the feedback from cluster to DRL agent, we take scheduling
decision a, AI workloads and current cluster resource state s as inputs, and calculate the
difference of job latency between before and after executing the decision. Each time the
estimator would return a reward value r and the next cluster state s′ after conducting a
decision, these components make up a trace t, in which t = <s, a, r, s′>, for training
agent and store t into Replay Memory module, which is so called Experience Replay in
DRL to get a faster convergence of the loss function.

3.2 Job Scheduling Optimizer (Agent)

Reward Estimator focus on timely rewards from Spark cluster to detailed scheduling
decisions, while the accumulated reward is the actual criterion to measure the perfor-
mance of optimizer. In DRL-based optimizer (agent), two neural networks (NN) are
introduced, which both take expected accumulated reward as output and with the same
model structure. One called MainNet always updates its parameters when receives a
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trace t and is in charge of making a job scheduling decision, the other, namely Tar-
getNet, directly copies parameters from the former after a period of time. With the
increasing generation of AI workloads from SparkAIBench, rewards, as well as traces,
become various and sufficient, leading to a more credible and accurate training result.
Furthermore, each trace t is stored into Replay Memory, hence agent can obtain a better
training effect by sampling a certain number of historical traces randomly from this
module.

3.3 Proposing Requirements of AI Workloads Generation

The following Fig. 3 presents a web page which is responsible for setting a user require-
ment of AI workloads generation. In this case, compared with algorithms in Table 1, we
can find that algorithms including Linear Regression with a data set of 1000 records,
SVM with a level of “large” data set and k-means with a data set of 1500 records are
selected by a user. Meanwhile, observing the left part of Fig. 3, all the selected algo-
rithms are assigned into the same queue named “queueA” and with the same job priority
of 5. Besides, in this batch of AI workloads, their submission times will be 15 s apart.
Through this way, the we implement transforming a user requirement into a JSON object
with changeable parameters we have talked in Sect. 2.3.

Fig. 3. UI of requirement setting for AI workloads generation.

4 Conclusion

To day, deploying AI workloads on cloud platform to offer intelligent services has
been a promising trend among cloud service providers. Due to the complexity and
long training period of AI workloads, there is an urgent need to design a benchmark
to help system operators optimize cluster’s performance. For this target we introduced
a user customized benchmark, SparkAIBench, with the ability of generating various
AI workloads through a configurable user requirement file. In addition, to present its
manner of working, we introduced a DRL-based job scheduling optimizer that possesses
the ability of making optimal scheduling decisions by training traces of AI workloads
generated from SparkAIBench.
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Abstract. Time domain astronomical observation is developing towards
a super large field of view and a very high cadence sampling and this
requires that TB of star tables should be handled in realtime and PB
offline data should be explored efficiently. A large class of typical scientific
applications represented by time domain astronomy poses new challenges
for the management and analysis of large scientific data. A set of widely
representative benchmarks including the corresponding application back-
ground, data generation, test indicators and test process is developed
based on the practical application of large scientific data and the appli-
cation characteristics of large data management system. Finally, experi-
mental results and analysis based on the current mainstream databases,
which include relational database, non-relational databases and memory
database are given. A variety of database selection schemes are employed
to verify the results. Our analyzing results show that the two-tier archi-
tecture can meet the basic needs of the astronomical system, and also
shows the feasibility and validity of the proposed benchmark.

Keywords: Benchmarking · Real-time · Astronomical data · Ingestion

1 Introduction

1.1 Motivation

With the development of astronomical observation and data processing technol-
ogy, time domain astronomical observation is developing towards a large field
of view and a higher time sampling rate. Different from the previous manage-
ment of astronomical data based on file system, the management of time domain
astronomical data needs to integrate short-term online data and long-term offline
data to form a new mode of deep integration and complete data management and
analysis, which requires novel design under the guidance of new concepts and
knowledge. Existing single database read-write performance can not meet the
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requirements. It needs to design a database behind STLF (Short-Timescale and
Large Field-of-view) [1] sky survey to support continuous analysis on streaming
data, real-time analysis on short-term data and complexity analysis on long-term
historical data.

The primary task of designing a database is to build a good benchmark.
Through the analysis of several benchmark hot papers [2–5], we can see that
the core of a good benchmark needs to build a reasonable data set, a reasonable
benchmark methodology, and a clear and definite set of workload. On the basis
of the points above, we need to ensure the fairness of benchmark, the rationality
of data generation and the practicability of measurement.

Fig. 1. Data processing workflow in GWAC [7].

1.2 Background

The application background of this paper is the GWAC (Ground Wide Angle
Camera) astronomical data project [6]. GWAC is built in China, which consists
of 40 wide angle telescopes with 18 cm aperture. Each telescope equips 4k× 4k
charge coupled device CCD(Charge Coupled Device) detector. Cameras cover
5000 degree2. Temporal sampling is 15 s. Cameras detect objects of fixed sky area
lasts for 10 h each observation night. GWAC camera array divides the whole 5000
degree2 observation sky into 40 blocks [7]. As shown in Fig. 1, all CCDs gener-
ate data synchronously every 15 s. The original data collected from astronomical
observations are images, which are transformed into catalogue data recorded in
one row per star through pre-processing. The GWAC catalog data indicators are:

(I) The catalog data has about 1.7 × 105 records per image, and the whole
camera array generates 6.8×106 records in 15 s. There are about 2400×40 =
96000 images per night, which requires about 2 TB of storage overhead.
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(II) If a design cycle is 10 years, GWAC will generate super-large catalogues in
the order of 3PB˜6PB.

At the same time, in such a massive level of data, we also need to achieve real-
time query of short-term scales. Similar application scenarios such as Taobao,
Qunar and other large e-commerce websites. In order to meet such challenges,
the current mainstream solution is to build multilevel cache architecture to form
a new database. Due to the different types of databases at different levels, tra-
ditional benchmarking can not meet such multi-level requirements. Therefore,
for such special scenarios, we need to build new benchmarking to deal with such
problems. In terms of performance requirements and application characteristics,
these applications have the following commonalities:

• Quick response: The system needs to query the current information quickly
and feedback the corresponding results. At the same time, the current infor-
mation needs to be saved quickly and can not be lost.

• Massive storage of data: When the amount of data storage reaches the
PB level or above, the cost of other data storage systems currently used is
too high, or they can not meet the business requirements at all.

• Timeliness of data analysis: Queries need to be completed in a very short
time and data analysis, while the analysis results are fed back to users.

• High cost performance: Users need to reduce the cost as much as possible
when the system meets the above performance indicators, so they need to
minimize the use of memory and the requirements of CPU, network and
other parts.

In terms of data structure, GWAC’s data model is relatively simple. It uses
the Key-Value model of most cloud data management systems to store data, in
which Key is the star ID, that is, the index, and Value is the attribute value of
a specific star. Over time, new attribute values are added to Value. The existing
properties values are as follows Table 1.

For the GWAC Astronomical Big Data Project, its data characteristics are
very distinct, which is different from the traditional data sets such as Wikipedia
[8], the National Center for Biotechnology Information (NCBI) [9] and other data
sets. The characteristics of data are structured, massive and high frequency. The
most typical feature is that the data simulator generates data every 15 s with a
data volume of 170,000 rows, and a total of 20 nodes together to generate data.

2 Benchmark Methodology

After defining the data characteristics, the benchmark of GWAC astronomical
project is constructed according to the data characteristics. The specific methods
are as follows: (I) According to the characteristics of data sets and the corre-
sponding astronomical phenomena, the corresponding workloads are analyzed in
depth, and the frequent basic operating units are extracted; (II) The benchmark
test specifications are determined; (III) The loads based on various software
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Table 1. GWAC catalog data properties.

Num Attribute Type Num Attribute Type

1 redis key string 21 magcalibe double

2 jd str string 22 sigma base double

3 ccdNum string 23 sigma ext double

4 zone string 24 tag valid int

5 starId long 25 magdiff double

6 alpha float 26 lastCMtempname string

7 delta float 27 starBelong string

8 pixx double 28 abSignal string

9 pixy double 29 abVal double

10 mag string 30 abQuality double

11 mage double 31 abRank double

12 thetaimage long 32 sigma ext median double

13 flags float 33 mag interval num int

14 ellipticity float 34 sigmedthreshold double

15 classstar float 35 data11 double

16 background float 36 data12 double

17 fwhm float 37 data13 double

18 vignet float 38 data14 double

19 magnorm double 39 data15 double

20 magcalib double

stacks are provided; (IV) The multi-tenant mixed load versions are provided
according to different evaluation requirements.

After defining the characteristics of the data and the construction method, it
is very important to establish a clear and definite workload. Because the bench-
mark is mainly aimed at GWAC astronomical phenomena, through communica-
tion with astronomers, we have identified the existing main workloads, including
seven query statements, Data Real-time storage and Data persistence. The test
benchmark is sufficient for the manufacturing process as shown in Fig. 2.

3 Test Indicator

Because of the particularity of designing database, we need to use many kinds of
databases. Therefore, the selected test indicators should cover the characteristics
of many databases. For in-memory databases, we need to consider the database
response time, CPU utilization, cache missing rate, data compression rate and
minimum memory space. At the same time, according to the characteristics of
the system, the following indicators need to be considered:

• Storage efficiency: The most important measure of astronomical project,
in order to meet the second scientific goal, which needs 15 s to complete
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Fig. 2. Test benchmark construction method.

the storage. The content of storage completed in 15 s is the amount of data
produced by each GWAC camera taking a picture at a time. One camera
produces about 440 M data at a time. Therefore, the basic storage requirement
is not less than 44 M/s. If the storage speed is lower than this, it will not be
considered.

• Persistence efficiency: The system needs to be persisted in 14 h, that is,
the work of the day in the real scene. The last night’s data must be persisted
during the next day or it will affect the next night’s data entry. Therefore,
the persistence threshold is 14 h.

• Input anomaly rate: Because of the change of cluster environment, the
stability of each database system in the same network environment can be
reflected intuitively by obtaining the inbound anomaly rate.

4 Experiments and Results Analysis

4.1 Experimental Data

In order to simulate the pressure test of GWAC data on the system more truly,
the gwac dbgen simulator is rewritten as gwac dbgen cluster, which can be used
to simulate the synchronous generation of catalogue data streams by multiple
CCDs. Each simulated CCD generates data at the rate of generating about
170,000 planetary data every 15 s (in order to restore the real scene as much as
possible, each time). The number of rows generated in the catalog data is not
necessarily equal, with 39 columns per row.
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4.2 Database Selection

Most of the existing cloud data management systems are open source and widely
used in mass data management systems. For massive data management, the cur-
rent mainstream databases include relational databases, non-relational databases
and memory databases. For these types of databases, we use a variety of database
selection schemes to verify the feasibility and validity of the benchmark through
the analysis of the test results. The test database we selected is as follows:

• Oracle: Oracle is the first open commercial relational database management
system launched in 1983. It uses standard SQL structured query language,
supports multiple data types, and provides object-oriented data storage sup-
port.

• MYSQL: MySQL is an open source relational database management system,
using the most commonly used database management language - Structured
Query Language (SQL) for database management.

• Redis: Redis is an open source (BSD licensed), in-memory data structure
store, used as a database, cache and message broker. It supports data struc-
tures such as strings, hashes, lists, sets, sorted sets with range queries,
bitmaps, hyperloglogs, geospatial indexes with radius queries and streams.

• Hbase: HBase is a distributed column-oriented database based on Hadoop
file system. It’s an open source project, and it extends horizontally. HBase is
a data model, similar to Google’s large table design, which can provide fast
random access to massive structured data. It takes advantage of the fault
tolerance provided by Hadoop’s file system (HDFS).

• Kafka: Kafka, originally developed by Linkedin, is a distributed, partition-
supported, replica-based, zookeeper coordinated distributed messaging sys-
tem. Its greatest feature is that it can process large amounts of data in real
time to meet a variety of demand scenarios: batch processing system based on
hadoop, etc. Low latency real-time systems, storm/Spark streaming engine,
web/nginx logs, access logs, message services, etc.

4.3 Experimental Environment

In the test, the cloud computing cluster platform composed of 20 servers is used.
The cluster consists of one master node and 19 slave nodes. The slave nodes
physical cluster is a homogeneous environment, the nodes are interconnected by
10 Gigabit Ethernet.The configuration of cluster environment is shown in the
Table 2.We design a distributed data generator to simulate the GWAC working
process test data set. The existing properties values are as follows Table 1.

4.4 Experimental Results and Analysis

According to the test design, several tests were carried out, each running time
was 8 h. The size of each file tested is about 1.5 GB, and a total of 1920 files
are generated by the data generator. The total amount of data tested is 2.8 TB.
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Table 2. Experimental server configuration.

Configuration Performance test environment

Hardware Software

Master Memory: 96 GB Ubuntu 14.04.5

Hard disk: 3.5 TB Redis 3.2.5

CPU:E5-2603 v3 @ 1.60 GHz HBase 1.2.4

MySQL 5.6.33

Kafka

Slave Memory: 96 GB Ubuntu 14.04.5

Hard disk: 30 TB Redis 3.2.5

CPU:E5-2603 v3 @ 1.60 GHz HBase 1.2.4

MySQL 5.6.33

Kafka

Table 3. Test results for different databases (Part 1).

DataBase Average storage time

HBase 340 s

MySQLcluster 1700 s

Oracle 50.7 s

Rediscluster 6.4 s

Kafka 20.5 s

Table 4. Test results for different databases (Part 2).

DataBase Persistence time Compression rate Input anomaly rate

Redis+HBase 4.8 h 40% 2.50%

Redis/HBase 6 h 40% 4.60%

Redis+MySQL 201 h 100% 1.00%

Redis/MySQL 202 h 100% 1.00%

Kafka+HBase 10.9 h 100% 2.50%

Table 3 lists the average insertion time of individual file data, where the Oracle
database is deployed on a single machine and the rest are deployed in cluster
mode. The results in Table 4 are the total storage time for each test data.

The test includes data transmission program, data cross authentication pro-
gram, data warehousing script and data persistence script. The CPU usage
rate was maintained between 65% and 85% in many different database storage
experiments, and the abnormal rate in different database storage experiments
was as follows: Redis+HBase-2.5%, Redis/HBase-4.6%, Redis+MySQL-1.0%,
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Redis/MySQL-1.0%, Kafka+HBase-2.5%. The test results show that the basic
requirements of astronomical system can be met only when two-tier architecture
is used, while the storage time and persistence time can be relatively optimal
when Redis and HBase are running simultaneously. For Redis and MySQL, Redis
runs faster because the data in Redis is not compressed. At the same time, the
scheme has the following characteristics: (I) Allowing astronomers to compare
the latest data and offline data in real time; (II) Data compression can greatly
reduce the requirement for memory; (III) Data can be saved to hard disk at the
same time of observation, which improves the security of data.

5 Summary

The development of modern astronomical observation and data processing tech-
nology make it possible for time domain astronomical observation to develop
towards a larger field of view and a higher time sampling rate. It also injects
new vitality into modern time domain astronomical observation, including super-
novae, gamma bursts, and microgravity lenses [10]. The discovery and follow-up
observation of microgravitational lens events have benefited from the develop-
ment of modern time-domain astronomical observation and data processing tech-
nology. With the continuous development of database management system, the
benchmark of database system evaluation also develops. Based on the analy-
sis and summary of several benchmark papers, this paper compares their own
benchmarks, and obtains a set of benchmarks suitable for scenes with data char-
acteristics in large astronomical data projects. However, the existing evaluation
benchmarks still can not cover all aspects completely. Future work will further
improve the evaluation system to enable it to more effectively evaluate the data
management system of similar scenarios.
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Abstract. The recent success in machine learning (ML) has led to
a massive emergence of AI applications and the increases in expecta-
tions for AI systems to achieve human-level intelligence. Nevertheless,
these expectations have met with multi-faceted obstacles. One major
obstacle is ML aims to predict future observations given real-world data
dependencies while human-level intelligence AI is often beyond predic-
tion and seeks the underlying causal mechanism. Another major obsta-
cle is that the availability of large-scale datasets has significantly influ-
enced causal study in various disciplines. It is crucial to leverage effec-
tive ML techniques to advance causal learning with big data. Existing
benchmark datasets for causal inference have limited use as they are
too “ideal”, i.e., small, clean, homogeneous, low-dimensional, to describe
real-world scenarios where data is often large, noisy, heterogeneous and
high-dimensional. It, therefore, severely hinders the successful marriage
of causal inference and ML. In this paper, we formally address this issue
by systematically investigating existing datasets for two fundamental
tasks in causal inference: causal discovery and causal effect estimation.
We also review the datasets for two ML tasks naturally connected to
causal inference. We then provide hindsight regarding the advantages,
disadvantages and the limitations of these datasets. Please refer to our
github repository (https://github.com/rguo12/awesome-causality-data)
for all the discussed datasets in this work.

Keywords: Causal learning · Treatment effect estimation · Causal
discovery · Datasets · Big data · Benchmarking

1 Introduction

The goal of a myriad of scientific research is to understand the causal mechanisms
that reveal outcomes of interventions and counterfactuals [10]. Compared to the
extensive literature on causal inference in statistics, econometrics, biostatistics
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and epidemiology, the interest in discovering causal relations and estimating
causal effects within computer science (data science especially) has been rapidly
growing recently. On one hand, as big data has significantly influenced causal
study in various disciplines, it is important to leverage machine learning (ML)
techniques to enhance our capability of modeling complex and large-scale data;
On the other hand, ML seeks correlations among data to predict future obser-
vations. The discovered patterns have limited use when the goal is, instead, to
understand the underlying causal mechanisms. One needs to go beyond correla-
tions to assay causal structures underlying statistical dependencies.

A major challenge of studying causal inference with big data is the lack of
benchmark datasets. Although growing computer power enables us to easily col-
lect massive amount of data, it is extremely challenging to obtain the groundtruth
from observational data. This is due to the fundamental question in causal infer-
ence that we can not observe the counterfactuals. Most existing benchmark
datasets for learning causality are therefore, synthetic or semi-synthetic. They
are often clean, small-scale, homogeneous and low-dimensional while real-world
data is noisy, large-scale, heterogeneous and high-dimensional. Additionally, as
there is no unified principle to regulate the data simulation processes, it is hard to
evaluate the models and interpret the empirical results. To address these issues,
we first summarize existing datasets for the two fundamental tasks in causal
inference: causal discovery, problem of discovering the underlying causal struc-
ture of data; and causal effect estimation, problem of estimating causal effect of
a certain set of variable on others. We seek to answer two research questions:
i) What are the advantages and disadvantages of these datasets? ii) What are
the limitations in existing datasets? In addition, we investigate datasets for two
ML problems that are naturally connected to causal inference, i.e., off policy
evaluation and debiasing recommender system. The main contributions are:

– We formally address an urgent but almost untouched problem that hinders
the marriage of causal inference and ML. That is, the lack of benchmark
datasets for causal learning with big data.

– We investigate existing datasets for two fundamental causal inference tasks,
i.e., causal discovery and causal effect estimation, as well as two ML tasks
that have been recently studied from the causal inference perspective.

– We answer important research questions regarding the advantages, disadvan-
tages and limitations of these datasets. We aim to offer some crude remarks
that can draw attentions from researchers to together create and share new
benchmark datasets for causal learning with big data.

2 Causal Discovery

Causal discovery from empirical data is a fundamental problem in many scientific
domains. Causal discovery addresses the problem of learning the underlying
causal mechanisms and the causal relationships amongst variables in the data.
Datasets for this task are collected from either pure observational data or with
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both observational data and experimental data in hand. Papers in this area can
be divided into three major categories:

– Learning causal direction (causal or anti causal relations) between two vari-
ables. Specifically, given the observations {(xi, yi)}ni=1 of random variables,
the goal is to infer the causal direction, i.e. whether x → y or y → x.

– Learning the trio-relationships (V-structures) and directions among three
variables.

– Learning the underlying Causal Bayesian Network (CBN) of the data which
is used to show the relationships between all the variables in the data.

2.1 Datasets

Common datasets for learning causal direction between two variables are:

– Tübingen Cause-Effect Pairs (TCEP) [27]: This dataset consists of real-
world cause-effect samples which are collected across various subject areas.
The groundtruths are true causal direction provided by human experts. This
dataset is expected to contain diverse functional dependencies due to the fact
that pairs are collected from diverse origins.

– AntiCD3/CD28 [31]: A dataset with 853 observational data points corre-
sponding to general perturbations without specific interventions. This dataset
is used in protein network problem.

– Note [26]: One innovative way of testing causal/anti-causal learning algo-
rithms is to test the model on causal time series datasets to infer the direction
of the arrow. To achieve this, [26] used a dataset containing quarterly growth
rates of the real gross domestic product (GDP) of the UK, Canada and USA
from 1980 to 2011.

– Pittsburgh Bridges [2]: There are 108 bridges in this dataset. The following
4 cause-effect pairs are known as groundtruth in this dataset. They are 1)
Erected (Crafts, Emerging, Mature, Modern) → Span (Long, Medium, Short),
2) Material (Steel, Iron, Wood) → Span (Long, Medium, Short); 3) Material
(Steel, Iron, Wood) → Lanes (1, 2, 4, 6); 4) Purpose (Walk, Aqueduct, RR,
Highway) → type (Wood, Suspen, Simple-T, Arch, Cantilev, CONT-T).

– Abalone [2]: This dataset contains 4,177 samples and each sample has 4 dif-
ferent properties. Sex, Length, Diameter and Height. The property sex has
three values, male, female and infant. The length, diameter, and height are
measured in mm and treated as discrete values. The groundtruth contains
three cause-effect pairs.

In order to evaluate the performance of a model for distinguishing cause from
effect on the above-mentioned benchmark datasets, the accuracy of the model
on the datasets is calculated and reported. Next we introduce the datasets used
in learning the CBN. As real-world datasets are often not available, we describe
the benchmark synthetic datasets below:
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– Lung Cancer Simple Set (LUCAS) is a synthetic dataset which was made
publicly available through the causality workbench [12]. The true causal DAG
consists of 12 binary variables: 1) Smoking, 2) Yellow Fingers, 3) Anxiety,
4) Peer Pressure, 5) Genetics, 6) Attention Disorder, 7) Born on Even Day,
8) Car Accident, 9) Fatigue, 10) Allergy, 11) Coughing and 12) Lung Cancer.
The true causal graph consists of causal edges between variables.

– A common approach to generate synthetic data in learning CBN is to use a
random generation of chordal graphs approach [18,36].

Moreover, there is a line of research which focuses on causal discovery prob-
lems from both observational and interventional data. In this task, we can
assume that an intervention on every node of the underlying Bayesian Network
is allowed. Below is the dataset designed and used in this task:

Gene Perturbation Data: Usually some yeast genes are selected from the data.
Some observations from this data are as follows: the gene YFL044C reaches 2
genes directly and has an indirect influence on all 11 remaining genes; finally, the
genes YML081W and YNR063W are reached by almost all other genes. One com-
mon way of evaluating Causal Bayesian Networks and in general structural learn-
ing problems on the above-mentioned datasets is to measure structural Hamming
distance (SHD). The SHD is defined as the minimum number of edge insertions,
deletions, and changes required to transform one model into another [40].

2.2 Advantages, Disadvantages, and Limitations

Advantages. There exists a number of real-world datasets for the task of
learning the causal direction between two variables that can be used in future
research. These datasets are collected for real world scenarios and are annotated
by the experts in corresponding fields, which make these desirable and useful for
research in this field.

Disadvantages. There exists no large-scale data for the task of finding the
underlying Bayesian Network of the data, which is one of the most important
tasks in causal inference. Moreover, no real-world data is available for the task
of learning V-structure (i.e. trio-relationships among variables), which makes it
difficult to verify the proposed methods, and therefore, researchers often evalu-
ate their proposed methods on only the datasets available for causal direction
discovery and fail to show the effectiveness of them on finding the relationships
between three variables.

Limitations. Many machine learning algorithms require huge number of sam-
ples to be trained on. However, for the task of causal discovery, the only real-
world dataset available is LUCAS data which contains only 12 variables. There-
fore, it is hard for the researchers to leverage the available dataset in big data
scenarios and train a machine learning model on it. Moreover, collecting datasets
with groundtruth for underlying CBN of all variables available in the data is
a tremendously difficult task due to the lack of availability of human experts
and resources to annotate the data and come up with the groundtruth.
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Another limitation is that there exists no real-world dataset for the problem
of detecting V-Structure from the data, which also requires human resources
and can be costly and time consuming.

3 Causal Effect Estimation

The task of causal effect estimation is to investigate to what extent manipulating
the value of a potential cause would change the value of the outcome variable.
Following the literature [17,24,33,35], the variable that we seek to manipulate
is the treatment and the corresponding variable that we observe from measuring
the effect of that manipulation is outcome. In this task, the treatment can be
a single variable taking binary values, discrete values or continuous values, or
multiple treatment variables that take various values. Potential Outcomes frame-
work is widely used in the literature of causal effect estimation [28,30]. Potential
outcomes are defined as:

Potential Outcome. Given an instance i and the treatment t, the potential
outcome of i under treatment t, denoted by yt

i , is the value that y would have
taken if the treatment of instance i had been set to t. With this definition, the
individual treatment effect (ITE) is:

τi = E[yt
i ] − E[yc

i ], (1)

where yc
i (yt

i) denotes the potential outcome of the i-th instance under control
(treatment). Intuitively, ITE is referred to as the expected difference between the
two potential outcomes. Average treatment effect, or ATE, is then the average
of ITE over the whole population. It is defined as: τ̄ = Ei[τi]. Based on these
definitions, we introduce two widely used evaluation metrics. Given the ground
truth of ATE (τ̄) and the inferred ATE ˆ̄τ , the mean absolute error (MAE) on
ATE is widely adopted. It is defined as:

εMAE ATE = |τ̄ − ˆ̄τ |. (2)

In addition, the inferred ITEs can be evaluated by the precision in estimation
of heterogeneous effect (PEHE). Formally, PEHE is defined as:

εPEHE =
1
n

n∑

i=1

(τi − τ̂(xi))2, (3)

where τi denotes the ground truth ITE of the instance i and τ̂(xi) signifies the
corresponding estimate.

3.1 Datasets with Binary Treatment

– Jobs. The dataset consists of two parts. The first part is from the randomized
trial study by LaLonde [19] (297 treated and 425 control). The second part
is the PSID comparison group (2,490 control) [37]. The features are the same
as those used in [6]. In addition, this dataset has groundtruth of ATT. One
common metric used for evaluation on this dataset is policy risk (PR) [35].
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– IHDP. This is a dataset with simulated treatments and outcomes, which is
initially complied by [14]. The most widely used simulation setting is the
setting “A” in the NPCI package1. This dataset comprises 747 instances (139
treated and 608 control). There are 25 features describing the children and
their mothers from the original IHDP data [8]. We can study the problem of
estimating ITE and ATE from observational data using this dataset.

– ACIC Benchmark. ACIC benchmark is from ACIC data analysis challenge
2017 [13]. The features of ACIC benchmark are also from the original IHDP
data [8]. Various settings have been adopted to synthesize treatments and
outcomes. The ACIC dataset contains 58 features and 4,302 instances.

– Twins. The Twins dataset in [1] is used to study the individual treatment
effect of twins’ weights on their mortality in the first year of lives. In [24],
the authors focused on the twins with weights less than 2 kg to get a more
balanced dataset in terms of the outcome. This results in a dataset consisting
of 11,984 such twins. Each twin-pair is represented by 46 features relating
to the parents, the pregnancy and birth. As both potential outcomes are
considered as available in the dataset, to simulate an observational study,
one of the two treatments need to be sampled for each twin-pair. To generate
confounding bias, Louizos et al. [24] sampled treatments from the inferred
propensity scores.

– News. The News dataset is introduced in [17]. In this dataset, each instance
is a news item. The features are originally word counts. The treatment is
defined as whether the news is consumed on a mobile device or on desktop.
The outcome is the readers’ experience. In addition, we need to assume that
users prefer to read some news items on mobile devices. To model this, a
topic model is trained on a large set of documents and two centroids are
defined in topic space. Then, the treatment is simulated as a function of
the similarity between the topic distribution of the news item and the two
centroids. Finally, the potential outcomes of a news item are defined as a
function of (1) the similarity between the topic distribution of the news item
and the two centroids (2) and the treatment. The dataset consists of 5,000
new items and the topic model is a LDA model with 50 topics trained from
the NY Times corpus2.

3.2 Datasets with Binary Treatment and Network Information

– BlogCatalog is an online social network service where users can post blogs.
Each instance is a blogger. Each edge signifies the friendship between
two bloggers. This dataset comes with 5,196 instances, 173,468 edges and
8,189 observed features. Guo et al. [11] extended the original BlogCatalog
dataset [21] for the task of causal effect estimation. In particular, treatments
and outcomes are synthesized based on the observed features, the social net-
work structure and the Homophily phenomenon [34].

1 https://github.com/vdorie/npci.
2 Downloaded from the UCI repository [7].

https://github.com/vdorie/npci
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– Amazon [29] is an extension of the original dataset [25]. The goal is to estimate
the causal effect of positive (or negative) reviews on the sales of products.
Each instance is a product. Each edge represents the co-purchase relation-
ship. The observed features are bag-of-word representation of the product
description. Two datasets are created, one for positive and one for negative
reviews. For the positive (negative) case, we say a product is under treatment
iff (1) receives more than three reviews and (2) is rated higher (lower) than
three stars. The counterfactual outcome is set as the observed sales of the
most similar product with an opposite treatment status. The positive (neg-
ative) dataset contains 50,000 positive (20,000 negative) instances, 10,000
(5,000) controlled instances and 96,132 (28,136) edges.

3.3 Datasets with Multiple Treatments

– Twins-Mult. Yoon et al. [42] extended the Twins dataset to 4 treatments
by considering the combination of the original treatment and the sex of the
infant. The method to sample treatments are adapted accordingly.

– News-Mult. Schwab et al. [33] adapted the News dataset to multiple treat-
ments. Instead of using two centroids, k + 1 centroids are randomly picked
in the topic space where k is the number of treatments and the rest rep-
resents the control group. Then the treatment is sampled from a Bernoulli
distribution t|x ∼ Bern(softmax(κȳj)) where κ ∈ {10, 7} and the unscaled
outcome is calculated as ȳj = ỹj ∗ [D(z(X), zj) + D(z(X), zc)]. z(X) denotes
the topic distribution of the news item with bag-of-word features X, zj sig-
nifies the centroid of the instances receiving treatment j, zc represents the
centroid for the control, and ỹj ∼ N (μj , σj) + ε where μj ∼ N (0.45, 0.15),
σj ∼ N (0.1, 0.05) and ε ∼ N (0, 0.15). D is the Euclidean distance function.
Then the true outcome of the j-th treatment is yj = Cȳj , where C = 50.

– TCGA. In [33], the authors introduced the TCGA dataset which is a collection
of gene expression data from types of cancers in 9,659 individuals [41]. There
are four possible clinical treatments: medication, chemotherapy, surgery or
both surgery and chemotherapy. The outcome is the risk of recurrence of
cancer. Similar to the News dataset, k +1 points in the original feature space
(gene expression features) are selected as centroids. Treatments and outcomes
are simulated accordingly.

3.4 Datasets with Continuous Treatment

The treatment can also take continuous values. Here, we introduce a dataset for
the study of causal effect estimation with continuous variable.

NMES. The National Medical Expenditures Survey (NMES) dataset is complied
by [9]. We study the problem of estimating the treatment effect of the amount
of smoking on the medical expenditure. Both the treatment and the outcome
variables are continuous. The dataset consists of 10 features describing each of
the 9,708 individuals.
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3.5 Advantages, Disadvantages, and Limitations

Advantages. Most of the existing datasets are collected to solve treatment
effect estimation problems. For example, the Jobs dataset is collected to answer
the causal question: Does job training help people to get employed? Moreover,
studying these datasets can provide insights for decision making in real-world
scenarios. For example, an employer can decide whether it is necessary to par-
ticipate the job training program based on the individual treatment effect.

Disadvantages. It is often impossible to collect data with ground truth for
counterfactual outcomes – outcomes could have been observed iff another treat-
ment had been assigned. Instead, researchers mainly rely on semi-synthetic
datasets, where treatments and outcomes are synthesized based on certain data-
generating process. Therefore, developing high-quality data simulation models
can be a time-consuming and labor-intensive task.

Limitations. Existing benchmark datasets are not suitable in estimating causal
effects in many real-world applications due to the unavailability of counterfactual
outcomes. For example, it is convenient to collect climate data from Google earth
engine and user behavior data from Twitter in order to develop ML models to
predict user behavior from climate statistics. Nevertheless, to understand how
climate changes influence user behavior, we need to collect data from the same
user under exactly the same conditions with different climate. This is often
impossible in real-world scenarios.

In terms of estimating average treatment effects, the challenges arise from
how to design cheap, easy-to-implement, reliable and ethical experiments. In
addition, the importance of reducing the sample size and time in need for a
statistically significant randomized trial is still underestimated in the data min-
ing and machine learning community. Another limitation of current datasets
for causal effect estimation is the missing of the underlying structure between
instances. The potential types of structure include (but are not limited to) net-
works and temporal dependencies.

4 Causal Inference in ML

4.1 Off-Policy Evaluation

Given that an existing policy h0 selects actions based on item features and
observes corresponding rewards (e.g., online Q&A communities [22], recom-
mender systems [32]). This process generates log data with the form (x, y, δ, p)
where x ∈ X is the context (feature vector), y ∈ Y is the selected action. X and
Y are the input space and the output space respectively. p is the probability of
y being selected given x and δ(x, y) : X × Y → R denotes the feedback/reward
received. The goal of off-policy evaluation is to exam the performance of a new
policy h on future observations using the log data generated from h0.

First, we give a formal problem definition. Given the input features x ∈ X , the
output prediction of selected action y ∈ Y and a hypothesis space H of stochastic
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policies [38], which is calculated from the observed data. Additionally, the inputs
are assumed drawn from a fixed but unknown distribution Pr(X ), x i.i.d∼ Pr(X ).
A hypothesis h(Y|x) ∈ H makes predictions by sampling y ∼ h(Y|x). In an inter-
active learning system, we can only observe the feedback δ(x, y) for y sampled
from h(Y|x). For instance, in a recommender system, X are the attributes of
the items, Y is set of items recommended by the system, and δ denotes the user
feedback, e.g., whether a user clicks on the item or not. In precision medicine,
X denotes the patients’ attributes, Y is the set of received treatments. We then
collect the outcomes δ from patients. A large δ indicates high user’s satisfaction
with y for x. The expected rewards of a hypothesis R(h) is defined as [38]

R(h) = Ex∼Pr(X )Ey∼h(Y|x)[δ(x, y)]. (4)

Then, the goal is to maximize the reward with policy h(Y|x) given data D =
{(x1, y1, δ1), (x2, y2, δ2), ..., (xn, yn, δn)} collected from the system using policy
h0(Y|x), i.e., yi ∼ h0(Y|x), δi = δ(xi, yi). Evaluation of the proposed policy is
extremely hard due to sample selection bias and partial information.

Dataset from Real World
Music Streaming Sessions Dataset (MSSD). This dataset from Spotify3 con-
sists of over 160 million listening sessions with user interaction information. It
has metadata for approximately 3.7 million unique tracks referred to in the logs,
making it the largest collection of such track data currently available to the pub-
lic [5]. In particular, it consists of music streaming sessions with corresponding
user interactions, audio features and metadata describing the tracks streamed
during the sessions, and snapshots of the playlists listened to during the sessions
[5]. The log data contains rich information such as session id, timestamp, contex-
tual information about the stream, and the timing and type of user interactions
within the stream. A subset of MSSD is crawled and labelled by a uniformly
random shuffle to satisfy the conditions of RCT.

Semi-simulated Datasets
Bandit Data Generation. Despite log data is ubiquitous in the real world, it
is often hard to gather for researchers in academia. In search of alternatives,
synthetic or semi-synthetic data is often used for off-policy evaluation. Here,
we present a widely used bandit data generating approach proposed in [3].
This approach converts the training partition of a full-information multi-class
classification dataset D∗ = {[xi, y

∗
i ]}i=1,...,n with y∗

i ∈ {0, 1}k into a partial-
information bandit dataset for training off-policy learning methods while the
test dataset remains intact to evaluate the new policy. To this end, the opti-
mal policy is known because δ(xi, y

∗
i ) > δ(xi,⇁ yi) where ⇁ yi is any of the

items/treatments other than y∗
i . Therefore, given xi, the optimal policy selects

action y∗
i . Then we simulate a bandit feedback dataset from a logging policy h0

by sampling yi ∼ h0(Y|xi) and collecting feedback �(y∗
i , yi), which is the loss

between groundtruth and the recommended item. h0 can be logistic regression

3 https://www.spotify.com/.

https://www.spotify.com/
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and is often trained with a small portion (e.g. 5%) of the training set. �(y∗, y) is
then the Hamming loss or Jaccard index between the label y∗ and the sampled
label y for input x. This completes the procedure of generating a bandit dataset
D = {[xi, yi,�(y∗

i , yi), h0(yi|xi)]}i∈{1,...,n}. One thing to note is that the propen-
sity score function h0(yi|xi) is usually estimated from data directly, which may
introduce undesired biases. A large-scale real-world dataset4 containing accu-
rately logged propensities is introduced in [20].

Limitations. While this data generating method has been adopted wildly in
off-policy evaluation in contextual bandits [16,38,39], it has several limitations:

– It might not be clear how it can be used in other applications of off-line
evaluations. Take the medical study for an example, mapping the concept of
binary multi-label ∈ {0, 1} to treatments indicates that several drugs may
be assigned to the same patient simultaneously. This might be detrimental
to the patients’ health due to the interactions between drugs. In addition,
estimation of propensity score function using a small portion of the supervised
training set is not appropriate in medical study as the underlying mechanism
of treatment selection is often not fully understood.

– The predefined hypothesis h0 can largely affect the performance of the new
policy. By using the above mentioned method, we can obtain h0 with nearly
100% accuracy, i.e., y = y∗ for all x in the training set. Nevertheless, it is often
impossible for a real-world system to have an optimal policy. Consequently,
how many training data should be used to estimate h0? What is the desirable
accuracy that h0 should achieve? Answering these questions is critical for the
evaluation.

– The mismatch of synthetic data and the observed data from true environment
is often unavoidable in practice, resulting in policies that do not generalize
to the real environment [15].

4.2 Causal Inference for Recommendation

Causal inference is also particularly useful in learning de-biased recommender
policies. Consider a recommender system that takes as input a user ui ∈ U from
the user population U and outputs the prediction of possible products pj ∈ P.
The recommendation policy decides what products the recommender system
shows to its users. Most existing “de-biased” recommendation systems aim to
find the optimal treatment recommendation policy that maximizes the reward
with respect to the control recommendation policy for each user, i.e., individual
treatment effect. Traditional recommender systems are biased as they use the
click data (or ratings data) to infer the user preferences. These data encode
users’ selection bias, i.e., users do not consider each product independently.

The input data of learning a recommendation policy consists of products each
user decided to look at and those each user liked/clicked. The treatment is the
recommended products and the outcome is whether this user clicks this product.

4 http://www.cs.cornell.edu/∼adith/Criteo/.

http://www.cs.cornell.edu/~adith/Criteo/
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Standard datasets for recommender systems are not applicable in the evalua-
tion of the deconfounded recommender systems due to the lack of outcomes for
counterfactuals. Consequently, simulated or semi-simulated datasets are often
the preferred alternatives. The core idea of generating an eligible dataset to
evaluate a recommendation policy is to ensure the distributions of the training
and test set are different, that is, to exam if the deconfounded recommendation
policy is generalizable. A more generalizable policy indicates a less-biased rec-
ommender system. Next, we introduce several datasets that have been used in
recent publications [4,23,32]. Based on the different data collection/generation
mechanisms, we divide the data into three categories: data collected from RCT,
semi-simulated datasets and simulated datasets.

Randomized Control Trial (RCT)
Yahoo-R3. Music ratings collected from Yahoo! Music services. This dataset
contains ratings for 1,000 songs collected from 15,400 users with two different
sources. One of the sources consist of ratings for randomly selected songs col-
lected using an online survey conducted by Yahoo! Research. The other source
consists of ratings supplied by users during normal interaction with Yahoo! Music
services. The rating data includes at least ten ratings collected for each user
during the normal use of Yahoo! Music services and exactly ten ratings for ran-
domly selected songs for each of the first 5,400 users in the dataset. The dataset
includes approximately 300,000 user-supplied ratings, and exactly 54,000 ratings
for randomly selected songs5.

Semi-synthetic Datasets

– MovieLens10M. User-movie ratings collected from a movie recommendation
service. It has 71,567 unique users and 10,677 unique products. The ratings
are on a 1–5 scale [4]. The treatment is binary indicating if a user has rated
an item, the outcome is if rating is greater or equal to 3.

– Netflix. This dataset includes 480,189 unique users and 17,770 unique prod-
ucts. The treatment is if a user has rated an item, the outcome is if rating is
greater or equal to 3.

– ArXiv. User-paper clicks from the 2012 log-data of the arXiv pre-print server.
The data are binarized: multiple clicks by the same user on the same paper
are considered to be a single click. The treatment in this dataset is if a user
has viewed the abstract of a paper, outcome is if she downloaded the paper.

Now the question is how to generate new datasets from existing datasets to
evaluate de-biased recommender systems. One common approach is to ensure
the different distributions between the training/validation sets and the test set.
Previous work [4,23] has tried to create two test splits from the standard datasets
– regular and skewed. The regular split is generated by randomly selecting the
exposed items for each user into training/validation/test sets with proportions
70/20/10, i.e., the standard method that researchers use to evaluate recommen-
dation models. The skewed split re-balances the splits to better approximate an

5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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intervention. In particular, it first samples a test set with roughly 20% of the total
exposures such that each item has uniform probability. Training and validation
sets are then sampled from the remaining data (as in a regular split) with 70/10
proportions. The test set then has a different exposure distribution from the
training and validation sets. Experimental results have shown that causality-
embedded recommender systems can largely improve the performance on the
skewed split while present similar performance compared to baseline models on
the regular split.

Simulated Datasets
Coat Shopping Dataset [32]. This is a synthetic dataset that simulates customers
shopping for a coat in an online store. The training data was generated by giving
Amazon Mechanical Turkers a simple web-shop interface with facets and paging.
Users were asked to find the coat in the store that they wanted to buy the most.
Afterwards, they had to rate 24 of the coats they explored (self-selected) and 16
randomly picked ones on a five-point scale. The dataset contains ratings from 290
Turkers on an inventory of 300 items. The self-selected ratings are the training
set and the uniformly selected ratings are the test set.

Limitations. RCT for a recommender system is often not an option in real-
world applications. For example, a recommender system that randomly rec-
ommends songs to its users can largely degrade user experience. Leveraging
simulated/semi-simulated datasets to show the generalizability of a de-biased
recommender system is technically sound, but the mismatch of synthetic data
and the observed data from the true environment is often unavoidable.

Humans are biased in nature. A desired recommender systems should be able
to capture idiosyncratic user preferences in order to make personalized recom-
mendations. Therefore, debiasing recommender system may not necessarily make
better recommendations than a biased one. A more intriguing question to ask
may be what causes a recommendation system to make certain suggestions and
how to quantify their causal effects. Such systems are causally interpretable and
can help identify the underlying causal relations between users and items. As a
result, another limitation of current datasets is the lack of formal definitions of
elements for causal studies such as treatments that indicate user’s characteristics,
features of recommendable items, and the corresponding potential outcomes.

5 Conclusions and Future Work

In this paper, we discuss the advantages, disadvantages and limitations of
existing benchmark datasets for the two fundamental tasks in causal inference.
We then present applications of causal inference in two standard ML tasks and
investigate how to leverage existing datasets to evaluate the causality-embedded
ML models. Our goal is to provide easier access to researchers who share similar
research interests in causal learning and more importantly, to draw attentions
and seek contributions from research communities to together create and share
new benchmark datasets for causal learning with big data.
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Abstract. Performance of file systems shift during their life cycles.
Evaluating this performance change over time is not trivial. Complexity
arises in the interplay between external (i.e. application I/O workloads)
and internal (i.e. the filesystem state) factors. Many benchmarks can test
how a filesystem performs at the current snapshot state, but to observe
the change over time necessitates that the filesystem state mutate (age)
between benchmark runs. For a large-scale HPC parallel filesystem, the
sheer scale and amount of interacting components during I/O operations
magnify these challenges.

There have been several approaches that address different aspects of
filesystem aging, from creating statistically realistic filesystem images to
file age distributions. The common drawbacks are the scale to be evalu-
ated and the time needed to converge; none of the methods in literature
targeted network or parallel file systems. Also, none were evaluated with
a filesystem image over 300 GiB, most under 50 GiB, yet almost all took
between a half hour to 7 h to converge. For a large-scale parallel file sys-
tem, these methods are impractical as far as time and resources needed
(a typical large PFS is in the PB range). Additionally, HPC filesystem
I/O workloads are drastically different from local system workloads used
in earlier studies.

This paper presents the design, implementation and evaluation of
LCIO synthetic filesystem aging benchmark, which aims to address the
question of “how will the filesystem perform at different stages of its life
cycle?”. As such, being able to answer that question as realistically as
feasible in a reasonable time is where LCIO contributes.

1 Introduction

Benchmarking a filesystem is a theoretically simple concept that is exacerbated
by the complex interactions of many multifaceted variables: media type, storage
environment, disk caching behavior, etc. In an HPC environment with a parallel
filesystem, additional variables such as the interconnect and filesystem client and
server configurations will also come into play. The various benchmarks created
over time generally fall into three broad categories, Macrobenchmarks, Trace
Replays, and Microbenchmarks [5,11]. In particular, Traeger et al. [11] provides
a thorough survey on filesystem benchmarking.
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Previous studies [1,3,5,10] have shown the importance of accounting for aging
in evaluating filesystem performance. These studies focus on testing how various
filesystems (ext4, btrfs, xfs, zfs) deal with aging. Conway et al. [3] shows how
simple action like a ‘git pull’ can, over time, cause decreases in performance.
This is incredibly useful data but unfortunately these studies were not run on
parallel filesystems, instead focusing on local filesystems.

Additionally, parallel filesystems are quite architecturally different from stan-
dard workstation filesystems, for instance the split of metadata and data I/O
path, as well as the necessity of a storage area network, which now means that
network latencies between clients and filesystem servers must be accounted for
alongside other factors e.g. transfer sizes and filesystem native block size.

Two existing well known parallel filesystem benchmarks are MDtest and
IOR [6,7]. These provide good tests of specific aspects of the filesystem. MDtest
stresses the metadata subsystem of the filesystem, using a create - stat - delete
pattern across multiple clients in parallel. IOR stresses read/write performance
in both an N-1 (multiple client processes doing I/O to a single shared file) pat-
tern and a N-M (multiple client processes doing I/O to multiple individual or
shared files) pattern. However, MDtest and IOR results are highly dependent
on the underlying filesystem state. In effect, these two tests give performance
characteristics of the current snapshot when the benchmarks were ran.

To increase the amount of context these benchmarks can give, we identified
a need to be able to mutate the underlying filesystem image to allow IOR and
MDtest to provide a performance curve for the filesystem as it ages. Without a
synthetic aging system, the only way to obtain such data would be to routinely
benchmark the filesystem while in production over the system’s lifetime. How-
ever, these benchmarks often find use in the acquisitions process for new systems.
Without this synthetic aging process, all that MDtest and IOR will report is the
performance of a freshly formatted, empty, clean system (which will not reflect
the aged filesystem performance). In this paper we present the LCIO synthetic
aging benchmark, which provides this aging process to increase the amount of
information that these existing benchmarks yield, as well as provide additional
points of data that will be useful to system architects and engineers.

2 Problem Definition and Implementation

The aforementioned approaches in filesystem aging start by defining some sta-
tistical parameters, then computing an appropriate distribution(s) to fit those
parameters. This is also the general approach taken by LCIO, but with different
considerations. Both Impressions [1] and Geriatrix [5] need global state manage-
ment. Impressions creates a single filesystem image, adequate for benchmarking
from a single client process, but not suitable for handling split and synchronous
access across several thousand client processes. Geriatrix is also not suitable for
parallel access, since it tries to converge to a time distribution as well. This
would involve a state synchronization at every time step so that each rank has
a constant view of the time distribution for the convergence to succeed.
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To efficiently age a large-scale filesystem, the aging process must not only
respect common HPC practices for preventing bottlenecks and serializations
(such as using POSIX or MPIIO interfaces and using MPI coordinated parallel
execution and access), but also create a realistic filesystem state at the end. To
this end, LCIO makes each process as independent as possible, accepting trade-
offs in realism for efficiently creating many (possibly large) files. Most network
based filesystems store a large amount of files, but HPC parallel filesystems are
somewhat unique in the variance of file sizes being stored [12,13]. Compared to
most workstation filesystems, HPC systems have a ‘fat tail’; multi-terabyte files
are not that uncommon. Additionally, most HPC large-scale filesystems have
periodic purge policies (for capacity management) in place that prevent very
many long lived files. With these considerations in mind, it was decided that
LCIO should focus primarily on the file size distribution, and converge to that
as efficiently as possible. The benefit to this approach is the removal of global
state synchronization, as each process does not need any non-local information
beyond the target size distribution.

By design, each LCIO client process stores a copy of the target distribution,
and can generate file sizes from that distribution without needing to communi-
cate with any other processes. This also gives an easy convergence to the wanted
distribution; having N processes generating file sizes with the same distribution
implies that the global distribution of file sizes is the same as the local one.

Other design considerations include modular support of non-POSIX I/O
interfaces (i.e., MPIIO), which is not uncommon in HPC. As such, LCIO sup-
ports running its aging and I/O testing using the MPIIO interface. The modular
plugin design of LCIO was inspired by the FIO workload generator [2], which
allows for easily swapping the I/O method to accommodate different architec-
tures and systems.

Respecting the minimal synchronization rule, the aging process for LCIO
operates as much as possible on a per-process level. Each process is responsible
for its own working file set. LCIO borrows from Impressions and Geriatrix in
that an initial state is written to the system prior to aging.

To age the system, there are two parameters that control the overall traffic
passed to the filesystem, ‘ops’ and ‘epochs’. An ‘op’ is a combined delete and create
operation. An ‘epoch’ is a collection of ops. Epochs are synchronized, ops are not.

In the configuration file, the field for ‘ops’ is interpreted as ‘ops per epoch’.
As such, the total number of operations is calculated as ops × epochs. This
approach was chosen to provide the most versatility, and to allow the aging to
work even if the underlying filesystem cannot handle a multitude of outstanding
requests. Increasing the epochs and decreasing the ops would still allow for the
same total amount of operations, while decreasing the simultaneous load on the
filesystem. Setting ops = 0 will effectively render a static image to be written to
the system without aging.

Since the aging process consists of writing many files of various sizes and
for large sizes, it is often impractical to allocate a write buffer of that size for
a single write and then free it, the ‘buffer size’ option is provided to streamline
this process. The user can set the buffer size to the size that they wish and that
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same buffer will be reused multiple times to create the required file. This can
act as a tuning parameter or a stress parameter, since all but one write call
will be the buffer size, with the last call being remainder of the file size. Setting
the buffer size to the filesystem’s native (or configured) block size can speed
up the process and give an optimal performance number. In the same manner,
changing the buffer size to smaller or larger values can induce different behaviors
in the underlying filesystem, possibly showing how well the system responds to
non-optimal write sizes.

Various other options are provided to allow for some versatility. As an exam-
ple, the user can specify that fallocate should be used instead of batching up
write calls. Other standard options include the option to fsync after writes, and
the process overlap amount which dictates how many processes can share one
directory.

Fig. 1. File size distribution used

3 Evaluation

LCIO was evaluated on a test and development system using the IBM’s Spectrum
Scale filesystem technology [4] with a capacity of 2.9 PiB (3.2 PB). This test and
development system is a building block for the production parallel file system at
Oak Ridge Leadership Computing Facility (OLCF). For further details on the
hardware and software configuration of OLCF’s HPC environment please refer
to [12].
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Given the potential parameter space to explore, it was determined that pre-
senting results for all possible combinations of parameters was not feasible.
Therefore, our evaluation and testing focused on LCIO’s primary contribution,
i.e., generating a large amount of files on a parallel filesystem. As such, LCIO is
used to generate increasing numbers of files to test the behavior of the filesystem
as it ages and its internal fragmentation and utilization increases.

The distribution of file sizes that LCIO used for generating the synthetic
image is detailed in Fig. 1. This file size distribution was obtained using a par-
allel filesystem profiler (fprof [13]) on a large-scale HPC production filesystem,
formatted with 1.1 billion inodes of which 1 billion of those consumed at peak
in production [8,9]. To determine the performance impacts of aging upon the
filesystem, after each LCIO run, both MDtest and IOR were executed to obtain
performance numbers. Due to time constraints, LCIO runs were only executed
with the POSIX interface; similarly with the IOR benchmark (MDtest doesn’t
have an MPIIO option).

The LCIO runs were done in an exponential type manner from ten thousand
(10k) files, up to one billion files. Unfortunately, both the one hundred million
(100m) and one billion (1b) file runs were not able to complete within the max-
imum job length time that was allowed, which was eight hours. Both of those
runs were interrupted in the ‘write image’ portion, with the 100m run at about
40% completion, and the 1b at about 10% completion. Even though those runs
did not finish completely, IOR and MDtest were still ran afterwards for com-
pleteness, as those runs still generated a substantial amount of traffic. Of the
two benchmarks, IOR gave the most interesting results, and consequently is the
focus of the impact section.

3.1 Performance and Scalability of LCIO

Each run was given 128 MPI ranks that spread evenly over 8 physical client
nodes, with the sole exception of the 1b run, which was given 256 ranks over
8 nodes. The runs were set such that each process would write a minimum of
400 GiB worth of data over the course of a run; this number was chosen as a
middle ground between execution time and traffic load. The smaller the number
of files, more epochs were needed to get the needed amount of data traffic, with
a minimum of 5 epochs. As the number of files increased, the amount of files
per process increased, and with it the probability of writing a larger file. This
can be seen in Table 1, where the size delta went from 10 GiB to 500 GiB. The
only run that exceeded 5 epochs was the 10k run, which needed 50 epochs to
generate the minimum number of write calls.

The time taken to the write the initial file image is trivially parallel, and
as can be seen in Table 2 a perfect scaling is observed as expected. Since the
100m and 1b runs did not complete and thus do not have a time stamp, the
time to completion can be estimated by taking the amount of data written and
comparing it to the probabilistic expected value of the file distribution with
the given number of files; once done, backing out the amount that was written
from the expected size gives the percentage completed in 8 h. This can then
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Table 1. Bytes written per run size

Number of files Average data written per rank Total execution time (s)

10k 442 GiB 3,712.0

100k 453 GiB 3,678.6

500k 480 GiB 4,247.0

1m 530 GiB 4,710.3

10m 1.14 TiB 12,515.9

be extrapolated to yield the estimated time to completion. Table 3 shows this
comparison. Since the smaller runs generated data less than 0.1% of the total
filesystem size (the size resolution for the IOR benchmark), the size at finish
values could not be directly calculated.

Table 2. Time for initial write

Number of files Time for initial image(s) Number of ranks

10k 7.03 128

100k 80.4 128

500k 386.5 128

1m 706.9 128

10m 7,573.2 128

100m [72, 040] 128

1b [288, 160] 256

Table 3. Actual/expected size of image

Number of files Approx. final image size Expected initial image size

10k <1 TiB 82.6 GiB

100k <1 TiB 826.1 GiB

500k 2.9 TiB 4.03 TiB

1m 11.9 TiB 8.06 TiB

10m 95.2 TiB 80.6 TiB

100m 315.4 TiB 806.6 TiB

1b 845.1 TiB 8.06 PiB

Another interesting observation from LCIO was the time taken per epoch.
Figure 2 plots the time to finish of the first 5 epochs for the LCIO runs that
were able to run to completion. This shows a few interesting results. First, the
warm-up/caching behavior is really only apparent on the 10m file run, the rest
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seem to be constant over the epochs. Secondly, we see the large delta between
the 10k and 100k runs, roughly an order of magnitude. Thirdly, and perhaps
most interesting, is the clustering of the 100k, 500k, and 1m runs around the
800 s mark. This suggests an area to where the filesystem’s load balancer has
been calibrated.

This evaluation shows that LCIO is only constrained by the available I/O
resources per node; LCIO scales directly with the problem size.

Fig. 2. Time per epoch

3.2 Filesystem Aging Performance Impact

To observe the performance of a LCIO-aged filesystem, both MDtest and IOR
were ran after each LCIO execution. Between aging executions, but after the
MDtest and IOR runs, the files from the previous LCIO run were deleted to
prevent file size pollution. A checkpoint run of IOR and MDtest, where the two
benchmarks were ran without the LCIO generated files, was conducted about
the halfway mark (between the 100k and 500k runs) to check for changes in the
‘base’ state.

For the purpose of comparison, both MDtest and IOR benchmarks ran three
times with a different topology each time: M processes with N files and unique
directories per process (M-N Unique), M processes with N files in the same
directory (M-N), and M processes accessing one file in the same directory (M-1).
Both benchmarks were given the same resource set, 64 MPI tasks split evenly
across 8 nodes (8 tasks/node).

IOR was configured to transfer an aggregate of 256 GiB. MDtest used 220

files in total. Of the two benchmarks, IOR gave the most interesting results
(Table 4).
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Table 4. Filesystem utilization after aging runs

Run size Used filesystem capacity (%) Used inodes (%)

Base 53.3 68.0

10k 53.3 68.0

100k 53.3 68.0

500k 53.4 68.1

1m 53.7 68.3

10m 56.5 70.0

100m 63.9 75.2

1b 81.7 87.3

Plotting the mean throughput IOR values shows what one would expect
to see with a mature parallel filesystem, consistent performance with a slight
downward trend as the system gets more and more laden with files. Both M-N
runs show higher performance than the M-1 run, as expected (Fig. 3).

Fig. 3. Mean read/write throughput (MiB)

What is more interesting is the behavior of the standard deviation of each
test. Figure 4 shows a large outlier on the write test at the 1b (83.7% utilization)
mark. This comes from the first write test only achieving 12,713 MiB/s, whereas
the last 3 averaged 31,000 MiB/s. This was mimicked in the two previous runs to
a lesser extent. The M-N unique test consistently had the first write test slower
than the rest. This seems to be the warm up behavior of the system; once the
filesystem has the requested files in its working cache, the throughput returns
to the previous average value (Fig. 5).
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Fig. 4. M-N unique read/write throughput std. dev.

Fig. 5. M-N read/write throughput std. dev.
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Fig. 6. M-1 read/write throughput std. dev.

The M-N runs show a different set of behaviour. The mean read throughput
has a has a slight downward trend, as would be expected, and the mean write
speed seems to be constant. The standard deviation however shows that the vari-
ance in the write speeds decreases, whereas the read variance increases quickly
as the filesystem ages. The placement of the flagging runs was not consistent;
the first, second, and third read tests were all found to have the most variance
contribution at different capacities.

The M-1 runs, Fig. 6, show a interesting convergence in the deviations as age
increases. This might be since the M-1 topology does not allow for easy distri-
bution of work among the filesystem targets, but investigating why is beyond
the scope of this paper. However, all these tests show that the behavior of a
filesystem changes as it is ages.

4 Conclusion

Benchmarking a parallel filesystem is a complicated task. There are a large
number of variables that can be modified, and each combination thereof yields a
different piece of information. LCIO adds the ability to test the response of the
filesystem as it ages. In particular, LCIO enhances the information generated
by other benchmarks by allowing the tester to modify the underlying filesystem
state to their needs in a scalable, straightforward manner.
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Abstract. For emerging datacenter (in short, DC) workloads, such as
online Internet services or offline data analytics, how to evaluate the
upper bound performance and provide apple-to-apple comparisons are
fundamental problems. To this end, an unified computation-centric met-
ric is an essential requirement. FLOPS (FLoating-point Operations Per
Second) as the most important computation-centric performance met-
ric, has guided computing systems evolutions for many years. However,
our observations demonstrate that the average FLOPS efficiency of the
DC workloads is only 0.1%, which implies that FLOPS is inappropri-
ate for DC computing. To address the above issue, inspired by FLOPS,
we propose BOPS (Basic Operations Per Second), which is the average
number of BOPs (Basic OPerations) completed per second, as a new
computation-centered metric. We conduct the comprehensive analysis
on the characteristics of seventeen typical DC workloads and extract the
minimum representative computation operations set, which is composed
of integer and floating point computation operations of arithmetic, com-
paring and array addressing. Then, we propose the formalized BOPS defi-
nition and the BOPS based upper bound performance model. Finally, the
BOPS measuring tool is also implemented. To validate the BOPS metric,
we perform experiments with seventeen DC workloads on three typical
Intel processors platforms. First, BOPS can reflect the performance gap
of different computing systems, the bias between the peak BOPS per-
formance (obtaining from micro-architecture) gap and the average DC
workloads’ wall clock time gap is no more than 10%. Second, BOPS
can not only perform the apple-to-apple comparison, but also reflect the
upper bound performance of the system. For examples, we analyze the
BOPS efficiency of the Redis (the online service) workload and the Sort
(the offline analytics) workload. And using the BOPS measuring tool–
Sort can achieve 32% BOPS efficiency on the experimental platform.

Keywords: Datacenter · Metric · Computation

1 Introduction

To perform data analysis or provide Internet services, more and more orga-
nizations are building internal datacenters, or renting hosted datacenters.
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As a result, DC (datacenter) computing has become a new paradigm of comput-
ing. The proportion of DC has outweighed HPC (High Performance Computing)
in terms of market share (HPC only takes 20% of total) [2]. How to evaluate the
performance efficiency and provide apple-to-apple comparisons are fundamental
problems. There is an urgent need for a unified metric. For HPC, FLOPS is a
powerful metric and has promoted its rapid evolution and optimization over a
period of decades [13]. However, for DC, there is still no such metric.

Generally, the wall clock time is used as a ground truth metric for the com-
puter system. Based on it, the performance metrics are classified into two cate-
gories. One is the user-perceived metric, which can be intuitively perceived by the
user, such as requests per second [12], sorting number per second [4]. The other
is the computation-centered metrics, which are related to specific computation
operations, such as FLOPS (FLoating-point Operations Per Second).

User-perceived metrics can be intuitively perceived by the user. But, user-
perceived metrics have two limitations. First, user-perceived metrics are hard
to measure the upper bound performance of computer systems, which is the
foundation of the quantitative evaluation. For example, for the matrix multi-
ply workload, the deep optimized version gains 62,000X out performance of the
original Python version on the same Intel multi-core processor platform [16].
So, we wonder the performance efficiency and the upper bound performance of
the matrix multiply workload on this platform. Second, different user-perceived
metrics cannot be used to perform the apple-to-apple comparison. For example,
requests per second and sorting number per second cannot be used for compari-
son. We cannot obtain the performance efficiency for different type of workloads
on the target system.

Computation-centric metrics solve the above limitations. Different work-
loads can perform the apple-to-apple comparisons. Furthermore, the perfor-
mance numbers of the metric can be measured by the micro-architecture of
the system, the specific micro benchmark and the real-world workload. By using
these different numbers, we can build the upper bound model, which allows
us to understand the upper bound performance of the computer system. For
example, FLOPS motivates continuously exploring to achieve upper bound per-
formance. Also, the winner of Gordon Bell prize and TOP500 ranking represents
the best FLOPS performance currently [1]. However, FLOPS is insufficient for
DC anymore. Our experiments show that the average FLOPS efficiency is only
0.1% for DC workloads, so that it cannot represent the actual execution per-
formance for DC. OPS (operations per second) is another computation-centric
metric. OPS [23] is initially proposed for digital processing systems. The defi-
nitions of OPS are extended to the artificial intelligence processor [8,11,19,22].
All of them are defined in terms of one or more fixed operations, such as the
specific matrix addition operation. However, these operations are only a fraction
of diverse operations in DC workloads.

In this paper, inspired by FLOPS [13] and OPS [23], Basic OPerations per
Second (BOPS for short) is proposed to evaluate DC computing systems. The
contributions of the paper are described as follows.
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First, Based on workload characterizations of seventeen typical DC work-
loads, we find that DC workloads are data movement dominated workloads,
which have more integer and branch operations. Then, following the rule of
choosing a representative minimum operation subset, we define BOPs as the
integer and floating point computation operations of arithmetic, comparing and
array addressing (related with data movement). For the quantitative evaluation,
the formalized BOPS definition and the BOPS based upper bound performance
model are also given, Finally, we implement the Sort workload as the first BOPS
measuring tool.

Second, we validate the BOPS metric on three typical Intel processors sys-
tems with seventeen typical DC workloads. Results show that BOPS can reflect
the performance gap of different systems, and the bias between the peak BOPS
performance (obtaining from micro-architecture) gap and the average DC work-
loads’ wall clock time gap is no more than 10%. Furthermore, BOPS can not
only perform the apple-to-apple comparison, but also reflect the upper bound
performance of the system. The Redis (the online service workload) and the
Sort (the offline analytics workload) can perform the BOPS performance com-
parison. The BOPS efficiency of the Sort workload achieves 32% of the peak
performance of the Intel Xeon E5645 platform, and the attained upper bound
performance efficiency (calculating by the BOPS based upper bound model) of
Sort achieves 68%.

The remainder of the paper is organized as follows. Section 2 states back-
ground and motivations. Section 3 defines BOPS, and reports how to use it.
Section 4 is the evaluations of BOPS. Section 5 summarizes the related work.
Section 6 draws a conclusion.

2 Background and Motivations

2.1 Background

The Computation-Centric Metric. The computation-centric metric is effec-
tive for the co-design across different layers. Generally, a computation-centric
metric has performance upper bound on the specific architecture according to
the micro-architecture design. For example, the peak FLOPS is computed as
follows.

FLOPSPeak = NumCPU ∗ NumCore ∗ Frequency ∗ NumFloatingpointOperationsPerCycle

(1)
The measurement tool is used to measure the performance of systems and

architectures in terms of metric values, and report the gap between the real
value and the theoretical peak one. For example, HPL [13] is a widely used
measurement tool in terms of FLOPS. The FLOPS efficiency of a specific system
is the ratio of the HPL’s FLOPS to the peak FLOPS.

FLOPSEfficiency = FLOPSReal/FLOPSPeak (2)

In our experiments, the real FLOPS obtaining from the HPL benchmark is 38.9
GFLOPS, and the FLOPS efficiency of the E5645 platform is 68%.
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The Upper Bound Performance Model. The bound and bottleneck analysis
can be built under the computation-centric metric. For example, the Roofline
model [27] is a famous upper bound model based on FLOPS. There are many
system optimization works [20,26], which are performed based on the Roofline
model in the HPC domain.

FLOPSAttainedPeak = min(OI ∗ MemBandPeak, FLOPSPeak) (3)

The above equation of the Roofline model indicates that the attained workload
performance bound of a specific platform is limited by the computing capacity
of the processor and the bandwidth of the memory.

DCMIX. We Choose the DCMIX [28] as benchmarks for DC computer sys-
tems. DCMIX is designed for modern datacenter computing systems, which has
17 typical datacenter workloads (including online service and data analysis work-
loads). Latencies of DCMIX workloads are ranged from microseconds to minutes.
The applications of DCMIX involve Big Data, artificial intelligence (AI), OLAP,
and OLTP. As shown in Table 1, there are two categories of benchmarks in
the DCMIX, which are Micro-Benchmarks (kernel workloads) and Component
benchmarks (real DC workloads).

Table 1. Workloads of the DCMIX

Name Type Domain Category

Sort Offline analytics Big Data MicroBench

Count Offline analytics Big Data MicroBench

MD5 Offline analytics Big Data MicroBench

MatrixMultiply Offline analytics AI MicroBench

FFT Offline analytics AI MicroBench

Union Offline analytics OLAP MicroBench

Redis Online service OLTP Component

Xapian Online service Big Data Component

Masstree Online service Big Data Component

Bayes Offline analytics Big Data Component

Img-dnn Online service AI Component

Moses Online service AI Component

Sphinx Online service AI Component

Alexnet Offline analytics AI Component

Convolution Offline analytics AI Component

Silo Online service OLTP Component

Shore Online service OLAP Component
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2.2 Motivations

Requirements of the DC Computing Metric. We define the requirements
from the following perspectives. First, the metric should reflect the per-
formance gaps of different DC systems. The wall clock time metric always
reflect the performance gaps of different systems. Also, the computation-centric
metric should preserve this characteristic. We can use the bias between the com-
puting metric gap and the wall clock time gap to evaluate this requirement. Sec-
ond, the metric should reflect the upper bound performance of the DC
system and facilitate measurements. Focusing on different system design,
the metric should be sensitive to design decisions and reflect theoretical perfor-
mance upper bound. Then, the gap between real and theoretical values is useful
to understand the performance bottlenecks and guide the optimizations.

Experimental Platforms and Workloads. We choose DCMIX as DC work-
loads. Three systems equipped with three different Intel processors are chosen
as the experimental platforms, which are Intel Xeon E5310, Intel Xeon E5645
and Intel Atom D510. The two former processors are typical brawny-core pro-
cessors (OoO execution, four-wide instruction issue), while Intel Atom D510 is
a typical wimpy-core processor (in-order execution, two-wide instruction issue).
Each experimental platform is equipped with one node. The detailed settings of
platforms are shown in Table 2.

Table 2. Configurations of hardware platforms.

CPU type CPU Core

Intel ®Xeon E5645 6 cores@2.4 GHZ

L1 DCache L1 ICache L2 Cache L3 Cache

6× 32KB 6× 32KB 6× 256 KB 12MB

CPU type CPU Core

Intel ®Xeon E5310 4 cores@1.6 GHZ

L1 DCache L1 ICache L2 Cache L3 Cache

4× 32KB 4× 32KB 2× 4 MB None

CPU type CPU Core

Intel ®Atom D510 2 cores@1.6 GHZ

L1 DCache L1 ICache L2 Cache L3 Cache

2× 24KB 2× 32KB 2× 512 KB None

The Limitation of FLOPS for DC. Corresponding with requirements of
the DC computing metric, we evaluate the FLOPS from two aspects. One is
reflecting the performance gaps of different DC systems, another is reflecting
the upper bound performance.
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The performance gaps are from three folds. First, the performance gaps
between E5310 and E5645, the peak FLOPS performance gap is 2.3X (25.6
GFLOPS v.s. 57.6 GFLOPS), and the gap of the average wall clock time is
2.1X. The bias is 9%. Second, the performance gaps between D510 and E5645,
the peak FLOPS gap is 12X (4.8 GFLOPS v.s. 57.6 GFLOPS), and the gap of
the average wall clock time is 7.4X. The bias is 62%. Third, for the performance
gaps between D510 and E5310, the peak FLOPS gap is 5.3X, the gap of the
average user-perceived performance metrics is 3.4X. The bias is 60%. The bias
of the peak FLOPS performance gap and the average wall clock time
gap between the two systems equipped with Intel Xeon or Intel Atom
processors is more than 60%. This is because that E5645 & E5310 and D510
are totally different micro-architecture platforms, E5645 & E5310 are designed
for high performance floating point computing, while D510 is a low power micro-
processor for mobile computing. But, DC workloads are data movement intensive
workloads, so the performance gaps between Xeon and Atom become narrowed.

For reflecting the upper bound performance, we use six microbenchmarks of
DCMIX to reveal the limitations of FLOPS for DC. The FLOPS of DC workloads
is only 0.08 GFLOPS on average (only 0.1% of the peak).

The Characteristics of DC Workloads. In order to define the new metric
for the DC computing, we perform a careful workload characterization of DC
workloads firstly. We choose the DCMIX as the DC workloads. For traditional
benchmarks, we choose HPCC, PARSEC, and SPECPU. We have used HPCC
1.4, which is a representative HPC benchmark suite, for the experiment. We run
all of the seven benchmarks in HPCC. PARSEC is a benchmark suite composed
of multi-threaded programs, and we deploy PARSEC 3.0. For SPEC CPU2006,
we run the official floating-point benchmark (SPECFP) applications with the
first reference inputs. The experimental platform is the Intel Xeon E5645.

We choose GIPS (Giga-Instructions per Second) and GFLOPS (Giga-
Floating point Operations Per Second) as the performance metrics. Correspond-
ing to performance metrics, we choose IPC and CPU utilization as the efficiency
metrics. As shown in the Fig. 1 (please note that the Y axis in the figure is in

Fig. 1. GIPS and FLOPS of workloads.
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logarithmic coordinates), the average GFLOPS of DC workloads is two magni-
tude orders lower than that of traditional benchmarks, while the GIPS of DC
workloads is in the same magnitude order as the traditional benchmarks. And
the average FLOPS efficiency is only 0.1% for DC workloads. Further-
more, the average IPC of DC workloads is 1.1 and that of traditional benchmarks
is 1.4, the average CPU utilization of DC workloads is 70% and that of tradi-
tional benchmarks is 80%. These metrics imply that DC workloads can utilize
the system resource as efficiently as traditional benchmarks. The poor FLOPS
efficiency does not lie in the lower execution efficiency. In fact, the floating point
operation intensity of DC workloads (0.05 on average) is much lower, which leads
to the low FLOPS efficiency.

In order to analyze the execution characteristics of DC workloads, we choose
the instruction mixture to perform the further analysis. From the retired instruc-
tions breakdown, we have three observations as follows. First, the load/store
instructions of DC workloads take 42% of total instructions. Furthermore, the
ratio of data movement related instructions is 60%, which include the
load, store, array addressing instructions (we obtaining the array addressing
instructions through analyzing the integer and floating point instructions). So,
DC workloads are data movement dominated workloads. Second, the
integer/FP instructions of DC workloads take 39% of total instructions. Further-
more, for DC workloads, the ratio of integer to floating point instruc-
tions is 38, while the ratios for HPCC, Parsec and SPECFP are 0.3, 0.4, and
0.02, respectively. That is the main reason why FLOPS does not work in DC
computing. Third, DC workloads have more branch (comparing) instruc-
tions, with the ratio of 19%, while the ratios of HPCC, Parsec and SPECFP
are 16%, 11%, and 9%, respectively. So, DC workloads are data movement
dominated workloads, which have more integer and branch operations.

3 BOPS

BOPS (Basic OPerations per Second) is the average number of BOPs (Basic
OPerations) for a specific workload completed per second. In this section, we
present the definition of BOPs and how to measure BOPS with or without the
available source code.

3.1 BOPs Definition

We summarize basic operations of DC from three classes, which are Data Move-
ment, Arithmetic Computation and Comparing.

Data Movement. For the FLOPS metric, it is designed for numerical calcula-
tion, especially for high floating point operation intensity algorithm, such as the
floating point operation intensity (OI) of HPL is O(N), and the data movement
can be ignored (one orders of magnitude lower than the floating point opera-
tions). On the other hand, in order to process the massive data in time, the
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complexity of DC workloads are always low, and the operation intensity (the
total number of floating point and integer operations divided by the total byte
number of memory access) of DC workloads is O(1). So, the data movement can
not be ignored. We choose the array addressing computation operations corre-
sponding to data movement-related operations. So, the first class in BOPs is
array addressing operations, such as loading or storing array values P [i].

Arithmetic Computation. The arithmetic operations is the key operations
for the workload’s algorithm implementations. We take the basic arithmetic com-
putation operations into BOPs. So, the second class is the arithmetic opera-
tions, such as X + Y .

Comparing. DC workloads have more comparing operations. So we take condi-
tional comparing related computation operations into the BOPs, the third class
is the comparing operations, such as X <Y .

The detailed operations of BOPs are shown in Table 3. Each operation in
Table 3 is counted as 1 except for N-dimensional array addressing. Note that
all operations are normalized to 64-bit operation. For arithmetic operations, the
number of BOPs is counted as the number of corresponding arithmetic opera-
tions. For array addressing operations, we take the one-dimensional array P [i]
as the example. Loading the value of P [i] indicates the addition of an i offset to
the address location of P , so the number of BOPs increases by one. And, it can
also be applied to the calculation of the multi-dimensional array. For comparing
operations, we transform them to subtraction operations. We take X <Y as an
example and transform it to X−Y < 0, so the number of BOPs increases by one.

Table 3. Normalization operations of BOPs.

Operations Normalized value

Add 1

Subtract 1

Multiply 1

Divide 1

Bitwise operation 1

Logic operation 1

Compare operation 1

One-dimensional array addressing 1

N-dimensional array addressing 1 * N

Through the definition of BOPs, we can see that in the comparison with
FLOPS, BOPS concerns not only the floating-point operations, but also the
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integer operations. On the other hand, like FLOPs, BOPs normalize all opera-
tions into 64-bit operations, and each operation is counted as 1. The delays of
different operations are not considered in the normalized calculation of BOPs,
because the delays can be extremely different in different micro-architecture plat-
forms. For example, the delay of the division in Intel Xeon E5645 processor is
about 7–12 cycles, while in Intel Atom D510 processor, the delay can reach up to
38 cycles [6]. Hence, the consideration of delays in the normalization calculations
will lead to architecture-related issue.

3.2 How to Measure BOPs

Source-Code Level Measurement. We can calculate BOPs from the source
code of a workload, and this method needs some manual work (inserting the
counting code). However, it is independent with the underlying system imple-
mentation, so it is fair to evaluate and compare different system and architecture
implementations. To measure BOPs in the source code level, we need to insert
the counting code and the debug flag. To count BOPs, we will turn on the debug
flag, and for the performance evaluation, we will turn off the debug flag.

Another thing we need to take into account is the system built-in library
functions. For the calculation of the system-level functions, such as Strcmp()
function, we implement user-level functions manually, and then count the number
of BOPs through inserting the counting code.

Instruction Level Measurement Under X86 64 Architecture. The
source-code measurement need to analyze the source code, which costs a lot
especially for complex system stacks (e.g., Hadoop system stacks). Instruc-
tion level measurement can avoid this high analysis cost and the restriction
of needing the source code, but it is architecture-dependent. We propose an
instruction-level approach to measure BOPs, which uses the hardware perfor-
mance counter to obtain BOPs. Since different types of processors have different
performance counter events, for convenience, we introduce an approximate but
simple instruction level measurement method under X86 64 architecture. That
is, we can obtain the number of related instructions through the hardware perfor-
mance counters. And BOPs can be calculated according to the following equation
(please note that this equation is for Intel E5645, which equipped with 128-bit
SSE FPUs and ALUs).

BOPs = Integer All + FP All (4)

Integer All = Integer Ins + 2 ∗ SSE Integer (5)

FP All = FP Ins + SSE Scalar + 2 ∗ SSE Packed (6)

Please note that our instruction level measurement method includes all of float-
ing point and integer instructions under X86 64 architecture, which does not
exactly conform to the BOPS definition. So, it is a approximate measure-
ment method, and does not suit for the performance evaluation among different
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micro-architectures (such as CISC Vs. RISC). However, on the same Intel X86 64
platforms, the deviation between the instructions level measurement and the
source code level measurement is no more than 0.08, through our experiments
on Intel Xeon E5645.

3.3 How to Measure the System with BOPS

The Peak BOPS of the System. BOPS is the average number of BOPs for
a specific workload completed per second. The peak BOPS can be calculated by
the micro-architecture with the following equation.

BOPSPeak = NumCPU ∗ NumCore ∗ Frequency ∗ NumBOPsPerCycle (7)

For our Intel Xeon E5645 experimental platform, the CPU number is 1, the core
number is 6, the frequency of core is 2.4 GHZ, BOPs per cycle is 6 (The E5645
equips two 128-bit SSE FPUs and three 128-bit SSE ALUs, and according to
the execution port design, it can execute three 128-bit operations per cycle). So
BOPSPeak = 1 ∗ 6 ∗ 2.4G ∗ 6 = 86.4GBOPS.

The BOPS Measuring Tool. We provide a BOPS measuring tool to measure
the performance of DC systems. At present we choose Sort in the DCMIX as
the first BOPS measuring tool. To deal with the diversity of DC workloads, we
will develop a series of representative workloads as the BOPS measuring tools.
We choose Sort as the first BOPS measuring tool for it is the most widely used
workload in the DC [3]. And the Sort workload realizes the sorting of an integer
array of a specific scale, the sorting algorithm uses quick sort algorithm and the
merge algorithm. The program is implemented by C++ and MPI. The scale of
the Sort workload is 10E8 records, and BOPs of that is 529E9. The details of
BOPs can be found in the Table 4, Please note that BOPs value will change as
the data scale changes.

Table 4. BOPs of the sort measuring tool

Operations Counters

Arithmetic operations 106E9

Comparing operations 36E9

Array addressing operations 387E9

Total 529E9

Measuring the System with BOPS. The measuring tool can be used to mea-
sure the real performance of the workload on the specific system. Furthermore,
the BOPS efficiency can be calculated by the following equation.

BOPSEfficiency = BOPSReal/BOPSPeak (8)
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For example, Sort has 529E9 BOPs. We run Sort on the Xeon E5645 platform
and the execution time is 18.7 s. BOPSReal = 529E9/18.7 = 28GBOPS. For
the Xeon E5645 platform, the peak BOPS is 86.4 GBOPS, the real performance
of Sort is 28 GBOPS, so the efficiency is 32%.

The Upper Bound Performance Model. We modify the Roofline model
through changing the metric from FLOPS to BOPS, we call it as BOPS based
upper bound model.

BOPSAttainedPeak = min(OIBOPS ∗ MemBandPeak, BOPSPeak) (9)

BOPSPeak and MemBandPeak are the peak performance of the platform, and
the operation intensity (OIBOPS) is the total number of BOPs divided by the
total byte number of memory access. For example, the OI of the sort benchmark
is 3.0, the peak memory bandwidth is 13.8 GB/s, the peak BOPS is 86.4 GBOPS.
So, the attained peak BOPS of the Sort is 41.4 GBOPS and the attained BOPS
efficiency is 68%.

BOPSAttainedEfficiency = BOPSReal/BOPSAttainedPeak (10)

4 Evaluations

4.1 Experimental Platforms and Workloads

We choose DCMIX as DC workloads, and choose three typical HPC microbench-
marks (HPL, Graph500, and Stream) as the experimental workloads too. Three
systems equipped with three typical Intel processors are chosen as the experi-
mental platforms, which are Intel Xeon E5310, Intel Xeon E5645 and Intel Atom
D510. The detailed settings of platforms are shown in Table 2.

4.2 The BOPS Metrics for DC Systems Evaluations

Figure 2 is the visualized BOPS based upper bound performance model (Eq. 9).
There are six DCMIX microbenchmarks, one typical component benchmarks
(the Redis workload) and three typical HPC microbenchmarks in the Figure.
And three experimental platforms are also in the figure. We see that all of per-
formance metrics are unified to BOPS metric, which include the peak perfor-
mance of the system (such as the ‘Peak of E5645’ is the peak performance of the
E5645 platform), and the performance of the workload (such as performances
of the Sort workload under different platforms). So, we can do the following
evaluations. First, analyzing the performance gaps of different systems. Second,
performing the apple-to-apple comparison for DC systems. Third, analyzing the
upper bound performance of DC systems.
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The Performance Gaps Across Different DC Platforms. Reflecting the
performance gaps of different DC systems is the first requirements for BOPS.
From Fig. 2, we see that:

First, for the performance gaps between E5310 and E5645, the peak BOPS
performance gap is 2.3X (38.4 GBOPS v.s. 86.4 GBOPS), the gap of the average
wall clock time is 2.1X. The bias is only 10%.

Fig. 2. Evaluation of three intel processors platforms with BOPS.

Second, for the performance gaps between D510 and E5645, the peak BOPS
performance gap is 6.7X (12.8 GBOPS v.s. 86.4 GBOPS), the gap of the average
wall clock time is 7.4X. The bias is only 9%.

Third, for the performance gaps between D510 and E5310, the peak BOPS
performance gap is 3X, the gap of the average wall clock time is 3.4X. The bias
is only 10%.

So, the bias between the peak BOPS performance gap and the average wall
clock time gap is no more than 10%.

The Apple-to-Apple Comparison of DC Systems. We take the Redis
workload (the typical online service workload) and the Sort workload (the typical
data analytic workload) as the example to illustrate the apple-to-apple compari-
son. On the E5645 platform, the Redis workload is 2.9 GBOPS, the performance
efficiency of theory peak is 20% and that of the theory upper bound is 34% (Redis
is a single-threaded server and we deploy it on the single specific CPU core). The
Sort workload is 28 GBOPS, the efficiency of the theory peak is 32% and that
of the theory upper bound is 68% (Sort is a multi-threaded workloads). We see
that the Sort workload is more efficiency on the E5645 platform, and we can
also do the optimizations base on the upper bound performance model (more
details are in the next section). On the other hand, the user-perceived metric
of Redis is 122,000 Requests/S and that of Sort is 8.3E6/S (sorting 8.3E6 num-
ber elements per seconds), we can not get any insight from these user-perceived
metrics. So, we can do the apple-to-apple comparisons with BOPS, whatever
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they are different type workloads (online services v.s. offline data analytics) or
different implements (single-threaded Vs. multi-threaded) (Table 5).

Table 5. The apple-to-apple comparison for DC workloads.

Redis Sort

BOPS 2.9 G 28 G

BOPS efficiency 20% 32%

BOPS attained efficiency 34% 68%

The Upper Bound Performance of DC Systems. We use the Sort mea-
suring tool to evaluate the upper bound performance of DC systems. The peak
BOPS is obtained by Eq. 7. The real BOPs values are obtained by the source-
code level measurement, and BOPS efficiency is obtained by Eq. 8. As shown
on the Table 6, BOPS efficiencies of E5645, E5310 and D510 are 32%, 20% and
21%, respectively. Furthermore, using the BOPS based upper bound perfor-
mance model (Eq. 9 and Eq. 10), we get the BOPS attained efficiency of E5645,
E5310 and D510 are 68%, 49% and 51%. So we see that the BOPS value is more
reasonable to reflect the peak performance and the upper bound performance of
real DC systems.

Table 6. The BOPS efficiency of DC platforms.

E5645 D510 E5310

Peak BOPS 86.4 G 12.8 G 38.4 G

Real BOPS 28 G 2.7 G 7.7 G

BOPS efficiency 32% 21% 20%

BOPS attained efficiency 68% 49% 51%

5 Related Work

The performance metrics can be classified into two categories. One is the user-
perceived metric, another is the computation-centric metric.

User-perceived metrics can be further classified into two categories: one is
the metric for the whole system, and the other is the metric for components
of the system. The examples of the former include data sorted in one minute
(MinuteSort), which measures the sorting capability of a system [3], and trans-
actions per minute (TPM) for the online transaction system [7]. The examples
of the latter include the SPECspeed/SPECrate for the CPU component [5], the
input/output operations per second (IOPS) for the storage component [18], and
the data transfer latency for the network component [9].
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There are many computation-centric metrics. FLOPS (FLoating-point Oper-
ations Per Second) is a computation-centric metric to measure the computer
system, especially in field of the scientific computing that makes heavy use of
floating-point calculations [13]. The wide recognition of FLOPS indicates the
maturation of high performance computing. MIPS (Million Instructions Per
Second) [17] is another famous computation-centric metric, which is defined
as the million number of instructions the processor can process in a second.
The main limitation of MIPS is that it is architecture-dependent. There are
many derivatives of the MIPS, including MWIPS and DMIPS [24], which use
synthetic workloads to evaluate the floating point operations and integer oper-
ations, respectively. The WSMeter metric [21], which is defined as the quota-
weighted sum of MIPS of a job, is also a derivative of MIPS, and hence it is also
architecture-dependent. Unfortunately, modern DCs are heterogeneous, which
consist of different types of hardware. OPS (Operations Per Second) is another
computation-centric metric. OPS [23] is initially proposed for digital process-
ing systems, which is defined as the 16-bit addition operations per second. The
definitions of OPS are then extended to Intel Ubiquitous High Performance
Computing [10] and artificial intelligence processors, such as Tensor Process-
ing Unit [8,19] and Cambricon processor [11,22]. All of these definitions are in
terms of one or more fixed operations. For example, Operations are 8-bit matrix
multiplication operations in TPU and 16-bit integer operations in Cambricon
processor, respectively. However, the workloads of modern DCs are comprehen-
sive and complex, and the bias to one or more fixed operations can not ensure
the evaluation fairness.

For each kind of metrics, the corresponding tools or benchmarks [15] are
proposed to calculate the values. For user-perceived metrics—SPECspeed/
SPECrate, SPECCPU is the benchmark suite [5] to measure the CPU com-
ponent. For computation-centric metrics, Whetstone [14] and Dhrystone [25]
are the measurement tools for MWIPS and DMIPS, respectively. HPL [13] is a
widely used measurement tool for FLOPS.

For computation-centric metrics, the Roofline model [27] is the famous per-
formance model. The Roofline model can depict the upper bound performance of
given workloads, when different optimization strategies are adopted to the tar-
get system. The original Roofline model [27] adopts FLOPS as the performance
metric.

6 Conclusion

For the system and architecture community, performing the apple-to-apple com-
parison and obtaining the upper bound performance of the specific system are
very important for the system evolution, design and optimization. This paper
proposes a new computation-centric metric-BOPS that measures the DC com-
puting system. The metric is independent with the underlying systems and hard-
ware implementations, and can be calculated through analyzing the source code.
As an effective metric for DC, BOPS can truly reflect not only the performance
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gaps of different systems, but also the efficiency of DC systems and can be used
to perform the apple-to-apple comparison. All of these characteristics are foun-
dations of quantitative analysis for DC systems.
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opment Plan of China Grant No. 2016YFB1000201.
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Abstract. In warehouse-scale cloud datacenters, co-locating online ser-
vices and offline batch jobs is an efficient approach to improving datacen-
ter utilization. In this paper, we perform a deep analysis on the released
Alibaba workload dataset, from the perspective of anomaly analysis and
diagnosis. we first performed raw data preprocessing, including data sup-
plementing, filtering, correlation and aggregation, and generating the
container-level, batch-level and server-level resource usage data finally.
Then based on the summary data, we illustrate the overall cluster usage
distribution of online container services and batch jobs. Obviously, there
are several abnormal nodes in the co-located cluster, and we explore
the causes of anomalies from three aspects: (1) unbalanced co-located
workloads distribution; (2) skew co-located workload resource utiliza-
tion; (3) system failures or job instance failures. In addition, we also give
some cases of abnormal nodes, which show that frequent system failures
and unbalanced workload distribution have a great impact on abnormal
nodes, the skew co-located workload resource utilization and frequent
instance failures are the causes of abnormalities, too.

Keywords: Alibaba trace · Co-located workloads · Anomaly
analysis · Causes diagnosis

1 Introduction

With the popularity of internet services, cloud datacenter has become the infras-
tructure, which contains thousands of machines. Aiming at improving the overall
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resource utilization, co-locating online services and offline batch jobs is an effi-
cient approach. However, it also results in exponentially increased complexity
for datacenter resource management. Alibaba tried to deploy batch jobs and
latency-critical online services on the same machines. They use Sigma [1] to
schedule online service containers for the production jobs, and Fuxi [2] scheduler
to manage the batch workloads. To better understand the interactions among
the co-located workloads and their real-world operational demands, Alibaba first
released a co-located trace dataset (https://github.com/alibaba/clusterdata) in
Aug 2017.

For Alibaba’s production cluster traces, recent studies [3–5] have analyzed
the characteristics from the perspective of imbalance phenomenon, co-located
workloads (how the co-located workloads interact and impact each other), the
elasticity and plasticity of semi-containerized cloud. However, these works do
not further analyze the abnormal node in the cluster. Actually, discovering the
cluster anomalies quickly is very important, for it helps to locate bottlenecks,
troubleshoot problems, avoid failures and improve utilization.

In this paper, we perform a deep analysis on the released Alibaba co-located
trace dataset [6], from the perspective of anomaly analysis and diagnosis. This
dataset describes the machine information and job scheduling information of a
co-located workload cluster, which contains 1.3k machines that run both online
container services and batch jobs. Based on these data, we first perform raw data
preprocessing, including data supplementing, filtering, correlation and aggrega-
tion, and generating the container-level, batch-level and server-level resource
usage data finally. Then we illustrate the overall cluster usage, heatmaps of the
online container services and batch jobs. Obviously, there are several abnormal
nodes in the co-located workload cluster, and we explore the causes of anomalies
from three aspects: (1) unbalanced co-located workloads distribution; (2) skew
co-located workload resource utilization; (3) system or job instance failures. At
last, we also give some cases of abnormal nodes, which show that frequent system
failures and unbalanced workload distribution have a great impact on abnormal
nodes, the skew co-located workload resource utilization and frequent instance
failures are the causes of anomalies, too.

2 Usage Characteristics of Alibaba Trace

The Alibaba trace data contains cluster information of a production cluster in
12 hours period, and contains about 1.3k machines that run both online ser-
vices and offline batch jobs. And the dataset includes six files: server event.csv,
server usage.csv, batch instance.csv, batch task.csv, container event.csv and con-
tainer usage.csv, which can be classified into two categories: resource data and
workload data.

Raw Data Preprocessing. In order to understand the resource utilization of
online container services, batch job workloads and servers, we first supplement
the missing data and filter abnormal data. Such as, for the missing machine

https://github.com/alibaba/clusterdata
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149, 602 and 930 in file server usage.csv, all resource data is completed with
0. We also find that there are several missing resource usage records on 335
machines, and there missing data are filled up by linear interpolation method.
In addition, we find that some online container instances are duplicated and have
two memory allocation values in file container event.csv, and we remove these
anomalous records that requested memory is greater than 0.91.

Then we aggregate all the container-level, batch-level and server-level
resource usage statistics by the machine id and recording interval, respectively.

(1) Generating container-level resource usage data. Because the file con-
tainer usage.csv samples the resource usage of each container every 300s. So
at every time interval, we aggregate all the container-level resource usage
statistics by machine id based on container → machine Id mapping
recorded in the container event.csv [3]. Here, we calculate Cpu(ci)m,Ix and
Mem(ci)m,Ix , which indicate the total CPU usage and memory usage of all
container instances that running on machine m at every time interval Ix.

(2) Generating batch-level resource usage data. Cheng et al. [4] have calculated
the batch job workload resource usage by subtracting the usage of containers
from the overall usage of the cluster. However, we think their calculation
method is not accurate enough, for there are resources that occupied by the
OS operations on machines, except for the resources used by containers and
batch tasks. So we generate the batch-level resource usage data based on
actual occupation time of batch task instances.

The file batch instance.csv records the start time, end time and location
(machine) of all batch task instances. For each time interval, according to the
positions of batch tasks’ start time and end time, there are four situations that
shown in Fig. 1.

Fig. 1. Four situations for the positions of batch tasks’ start and end time.

So we can calculate the actual occupation time of batch task instances during
every time interval, according to formula (1).

⎧
⎪⎪⎨

⎪⎪⎩

RT (bi)m,Ix = t(bi)end − t(bi)start (t(bi)start ≥ tx & t(bi)end ≤ tx+1)
RT (bi)m,Ix = t(bi)end − tx (t(bi)start ≤ tx & t(bi)end ≤ tx+1)
RT (bi)m,Ix = tx+1 − t(bi)start (t(bi)start ≥ tx & t(bi)end ≥ tx+1)
RT (bi)m,Ix = tx+1 − tx (t(bi)start ≤ tx & t(bi)end ≥ tx+1)

(1)

1 If the requested memory of one container is greater than 0.9, all the requested
memory of containers may be exceed the machine memory, which is obviously
unreasonable.
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Here, RT (bi)m,Ix represents the real occupation runtime of batch task
instance bi that running on machine m and during the time interval Ix (Ix =
[tx, tx+1]); t(bi)start and t(bi)end are the start time and end time of batch task
instance bi. And then, the CPU usage and memory usage that occupied by all
batch tasks during every interval can be derived based on the actual occupation
time. That is, we calculate Cpu(bi)m,Ix and Mem(bi)m,Ix , which indicate the
total CPU usage and memory usage of all batch tasks that running on machine
m at every time interval Ix.

(3) Generating server-level resource usage data. Similarly, based on the file
server usage.csv, we calculate the average resource utilization for each time
interval and each machine, which includes the Cpu usage Cpum,Ix , memory
usage Memm,Ix and disk usage Diskm,Ix .

Distributions of Resource Utilization. Based on the aggregated resource
utilization data of batch tasks and online container services, Fig. 2 gives the box-
and-whisker plot that showing CPU usage and memory usage distributions. We
observe that on the same machine, the aggregated CPU usage of online containers
is lower than that of batch tasks, while the aggregated memory usage of online
containers is higher than that of batch tasks. It implies that most batch jobs are
computational tasks, and the online container services (long-running jobs) are
more memory-demanding.

(a) CPU usage. (b) Memory usage.

Fig. 2. The box-and-whisker plot that showing CPU and memory usage distribution.

In addition, we also respectively plot the resource usage heatmap of online
containers and batch tasks in Fig. 3 and Fig. 4. Figure 3 shows that, there are no
running online containers from the range of machine 132 to 151, machine 418 to
553. During the tracing interval, the resource utilization (CPU usage and mem-
ory usage) of online containers is relatively stable. Figure 4 shows that, there are
no running batch tasks from 52800 s (14.7 h) in several machine regions, such as
the region of machine 95 to 127, machine 275 to 296, machine 753 to 760, and
machine 830 to 906. Since most batch tasks are short jobs, the resource utiliza-
tion is not as stable as that of long-running jobs, especially the memory usage
is fluctuating. We can conclude that, the resource utilization of online services
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and batch jobs vary on different nodes. We still draw the conclusions that, the
online containers are the long-running jobs with more memory-demanding, so
the memory usage is relatively stable; while the memory usage of batch jobs is
fluctuating, for most batch tasks are short jobs.

(a) CPU usage. (b) Memory usage.

Fig. 3. The resource usage heatmap of online containers.

(a) CPU usage. (b) Memory usage.

Fig. 4. The resource usage heatmap of batch tasks.

3 Anomaly Analysis

Intuitively, by observing the overall cluster usage, we see that there are some
abnormal nodes2 in the cluster. Therefore, we try to find out which nodes are
the abnormal nodes through Isolation Forest (iForest) [7]. In the experiments,
we choose 3 dimensions Cpum,Ix , Memm,Ix and Diskm,Ix to build the machine-
resources matrix. Then we apply the Isolation Forest (iForest) [7] algorithm to
this machine-resources matrix, and output the anomaly scores. If one machine’s
anomaly score is smaller, the probability that it is an abnormal node is higher.
The distribution of machines’ anomaly scores is shown in Fig. 5. In this figure,
there are 81 machines have anomaly scores that are less than 0, which can be
considered as abnormal nodes.

In addition, we analyze the possible causes of anomalies from three aspects:
(1) unbalanced co-located workload distribution3; (2) skew co-located workload
resource utilization; and (3) failures.
2 abnormal nodes are the nodes which are few and different in the cluster.
3 Here, the workload distribution means the number of workloads on nodes.
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Fig. 5. The anomaly score.

3.1 Unbalanced Co-located Workload Distribution

In this section, we analyze the number distribution of the online services and
batch workloads on nodes, and try to discover the association of workload dis-
tribution and the abnormal nodes.

First, we have statistics on the numbers of batch tasks and online container
at each node, and we observe that, most of the batch task numbers are in the
range of 35 to 71, and most of the online container numbers are in the range of
7 to 10.

Based on the number of batch tasks and online containers on machines,
we classify the distribution of the co-located workloads. First, we define
Num(bi)m,Ix and Num(ci)m,Ix as the number of batch task instance bi and
container instance ci that running on machine m. And the non-zero values
of Num(bi)m,Ix and Num(ci)m,Ix are mapped to 1, the zero values remains
unchanged. Second, for each machine, we combine all the mapped batch task
numbers and container numbers to form a (143+143)-dimensional4 vector. That
is, it generates a matrix of 1313 × 286. At last, the Kmeans [8] algorithm is
applied to the generated number matrix and is used for classification.

In our experiments, all machines in the Alibaba cluster can be classified into
8 workload distribution categories, which include:

– Type 1: The online containers and batch tasks are always co-located running
on machines, which is shown in Fig. 6 (a). There are 72.8% of nodes have the
co-located workloads, which belong to Type 1.

– Type 2: No running workloads on machines, which is shown in Fig. 6 (b).
The machine 372, 478, 481, 550, 602, 924, 930, 983, 1075 belong to Type
2, and have low CPU usage (about 1%).

– Type 3: Batch tasks are running only, which is shown in Fig. 6 (c). There
are 170 nodes that belonging to Type 3, which including: 66, 132–151, 237,
265, 390, 418–549, 551–553, 973, 982, 987, 1004, 1008, 1028, 1029, 1043,
1055, 1057, 1058, 1081, 1083.

– Type 4: Online container instances are running only, which is shown in Fig. 6
(d). There are 11 nodes that only have online containers (belonging to Type
4), which including: 161, 171, 556, 763, 791, 800, 851, 943, 949, 1069, 1113.

4 The number of recording interval is 143.
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(a) Type 1 (956). (b) Type 2 (9). (c) Type 3 (170). (d) Type 4 (11).

(e) Type 5 (2). (f) Type 6 (155). (g) Type 7 (9). (h) Type 8 (1).

Fig. 6. Categories of co-located workload distribution. The first 143 abscissas indicate
whether the online containers run on nodes, and the last 143 abscissas indicate whether
the batch tasks run on nodes.

– Type 5: Batch tasks are running only during the first few hours of tracing,
which is shown in Fig. 6 (e). There are just 2 nodes that belonging to Type
5, which including: 401, 689.

– Type 6: The online containers and batch tasks are co-located on machines,
but no batch tasks run during the latter few hours of tracing, which is shown
in Fig. 6 (f). There are 150 nodes that belonging to Type 6, which including:
88–127, 275–296, 683, 723, 753–760, 830–850, 852–906, 965, 986, 993, 1079,
1096.

– Type 7: The online containers and batch tasks are co-located on machines,
but no batch tasks run during a short time of tracing, which is shown in
Fig. 6 (g). There are 9 nodes that belonging to Type 7, which including:
619–626, 794.

– Type 8: The online containers and batch tasks are co-located on machines,
but no batch tasks run during the first few hours of tracing, which is shown
in Fig. 6 (h). There is only one machine 618 that belonging to Type 8.

From the 8 workload distribution categories, we see that the co-located work-
load distribution is unbalance. And the co-located workload distribution is dif-
ferent, which leads to the difference in resource utilization on nodes.

On the other hand, we calculate the average cosine similarity of all nodes
for each type. In the experiment, we also choose the 3 dimensions Cpum,Ix ,
Memm,Ix and Diskm,Ix to build the machine-resources matrix, which is used
to calculate cosine similarity. Table 1 lists the average cosine similarities of all
nodes for each workload distribution category, which shows that the resource
utilization in the same workload distribution category is very similar.
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Table 1. Average cosine similarity of all nodes for each workload distribution category.

m Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

similarity 99.17% 99.19% 98.05% 98.23% 99.64% 98.98% 99.17%

3.2 Skew of Co-located Workload Resource Utilization

In the Alibaba cluster, online container services and batch jobs are deployed
on most nodes. During different time periods, the resource requirement and
utilization of online services and batch jobs vary. On these co-location nodes, we
explore the impact of resource utilization distribution on abnormal nodes.

In order to describe the skew condition for the resource utilization of
both workloads, we define resource utilization ratio according to Formula (2):
Cpu ratio is the ratio between the CPU usage of batch jobs and online contain-
ers, and Mem ratio is ratio between the memory usage of batch jobs and online
containers. That means, the larger the ratio is, the higher the resource utilization
of batch jobs is; the lower the ratio is, the higher the resource utilization of the
online containers is.

Cpu ratiom,Ix =
Cpu(bi)m,Ix

Cpu(ci)m,Ix

Mem ratiom,Ix =
Mem(bi)m,Ix

Mem(ci)m,Ix

(2)

We perform a statistical analysis of the Cpu ratio and Mem ratio ranges,
and then plot the Fig. 7 that illustrates the histogram and cumulative distri-
bution function (CDF) curve of different ratio ranges. In Fig. 7(a), 74.4% of
Cpu ratio is greater than 1, which means the batch tasks are CPU-intensive
workloads with higher cpu utilization. And the Cpu ratio in the range of (1,
2.8) accounts for 60.85%. In Fig. 7(b), 76.59% of Mem ratio is less than 1, which
means the memory occupied by the batch tasks is not high, and the online con-
tainers have higher memory requirements and utilization. And the Mem ratio
in the range of (0.1, 1.4] accounts for 89.88%. In addition, there are spikes on
the range of (0,0.1] and (10,20], whose percentage is 10.38% and 0.64%.

Fig. 7. The histogram and cumulative distribution function (CDF) curve of different
ratio ranges.
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Furthermore, we define a skew threshold of resource utilization ratio, which
is used to find the nodes with skew utilization. For instance, supposing we set the
skew thresholds of resource utilization ratio as 0.3 and 3. Then for each machine,
we count the number of resource utilization ratios Num skew that are less than
0.3 and lager than 3. If a machine has more skew resource utilization ratios, the
machine can be considered as an utilization-slanted node, which can be further
concerned.

3.3 Failures

System Failures. Obviously, the system errors or failures is an obvious cause
of an abnormal node. In the Alibaba trace, there are 7 machines have recorded
‘softerror’, which are shown in Table 2.

Table 2. The number of softerrors in machines.

m 372 401 618 689 731 930 1075

Num(softerror)a 5 4 2 3 1 12 12
a Num(softerror) indicates the number of softerrors in
machines.

And the timeline of softerrors on different machines is illustrated in Fig. 8.
In computing systems, a softerror is a type of error where a signal or datum
is wrong. The errors may be caused by a defect, usually understood either to
be a mistake in design or construction, or a broken component. After observing
a soft error, there is no implication that the system is any less reliable than
before. However, frequent softerrors generally indicate some faults in systems.
For instance, there are frequent softerrors on the machine 930, 1075 and 372,
which have no running workloads. And a few machines has occurred the softer-
rors at a certain time, such as the machine 689 has softerror at the timestamp
of 50623 s, 52005 s and 52219 s, and so on.

Fig. 8. The softerror machine.
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Failed Instances. The file batch instance.csv record the status of each batch
instance, which includes Failed, Interrupted, Ready, Running, Terminated, and
Waiting. And the status of Failed indicates an instance does not run successfully.
We illustrate the failed instances number of nodes in Fig. 9, and we see that there
are several spikes on the curve, which means several nodes have more failed
instances.

Fig. 9. The failed instance number of machines.

We also give the top 10 nodes that have the most failed instances in Table 3.
In the co-located cluster, we find that the machine 679 has the most failed batch
instances, and the average value of failed instances number is about 161. That
is, the batch instance failed on a node is common, and the Fuxi JobMaster can
process these failures based on its fault tolerance mechanism [2]. However, if
there are a lot of failed batch instances on a node, which means some states
of this node may be not suitable for batch tasks. Meanwhile, these nodes with
large number of failed instances are likely to be abnormal nodes, which needs
to be concerned. Actually, in the job level, JobMaster will estimate the machine
health based on the worker statuses as well as the failure information collected
by FuxiAgent. In particular, if one instance is reported failed on a machine, the
machine will be added into the instance’s blacklist. If a machine is marked as
bad machine by a certain number of instances, this machine will be added into
task’s blacklist and no longer be used by this tasks.

Table 3. The top 10 machines that have the most failed instances.

m 679 680 673 341 823 664 232 1006 536 1040

Num(FIns)a 823 471 444 433 392 347 307 306 299 297
a Num(FIns) indicates the number of failed batch instances in
machines.

3.4 Abnormal Cases Study

We have calculate the anomaly scores of all machines by utilizing iForest algo-
rithm. By sorting all anomaly scores in descending order, we selected the top 25
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abnormal nodes in Table 4, and analyze the possible anomalies causes of these
nodes. And we can conclude that:

(1) Unbalanced co-located workload distribution has a great impact on the
resource utilization of cluster nodes, which leads to abnormal nodes. Among
the top 25 abnormal nodes, except for three nodes that belonging to Type 1,
other nodes have imbalance in co-located workload distribution. And the
top 8 nodes and the 10th node belong to Type 2, which have no run-
ning workloads. So in order to maintain the stability and balance of cluster

Table 4. The top 25 abnormal nodes.

Top m Anomaly score Categories Unbalanced

workload

distribution

Skew co-

workload

utilization

Softerrors Failed

instances

1 930 −0.1709 Type 2 No workloads Frequent softerrors 0

2 602 −0.1709 Type 2 No workloads 0

3 1075 −0.1527 Type 2 No workloads Frequent softerrors 0

4 550 −0.1525 Type 2 No workloads 0

5 372 −0.1524 Type 2 No workloads Frequent softerrors 0

6 478 −0.1522 Type 2 No workloads 0

7 983 −0.1508 Type 2 No workloads 0

8 924 −0.1506 Type 2 No workloads 0

9 676 −0.1451 Type 1 Heavier

online

services

289

10 481 −0.1428 Type 2 No workload 0

11 679 −0.1395 Type 1 Heavier

online

services

823

12 851 −0.1223 Type 4 No batch jobs 0

13 673 −0.1198 Type 1 Heavier

online

services

444

14 993 −0.1105 Type 6 Unbalanced

batch tasks

101

15 618 −0.0928 Type 8 Unbalanced

batch tasks

Softerrors 166

16 556 −0.0833 Type 4 No batch jobs 0

17 689 −0.0827 Type 5 Unbalanced

workloads

Softerrors 155

18 401 −0.0826 Type 5 Unbalanced

workloads

Softerrors 140

19 275 −0.07879 Type 6 Unbalanced

batch tasks

115

20 763 −0.0774 Type 4 No batch jobs 0

21 149 −0.0724 Type 3 No online

services

177

22 1039 −0.0720 Type 1 Lighter

online

services

117

23 800 −0.0662 Type 4 No batch jobs 0

24 1069 −0.0646 Type 4 No batch jobs 0

25 949 −0.0629 Type 4 No batch jobs 0
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resource utilization, different workloads should be distributed more evenly
to each node.

(2) Skew co-located workload resource utilization also results in several abnor-
mal nodes. For instance, there are four nodes that are belonging to Type
1. And the machine 673, 676 and 679 have heavier online services (high
memory usage), for the number of online container instances are 17, 19 and
18, respectively; the machine 1039 has a skew on the batch tasks and online
container number, for the average number of batch tasks is 71, while the
number of online container is 1.

(3) Frequent system failures have a large impact on system status. By check-
ing the top 25 anomaly nodes, there are 6 nodes have occurred softerrors.
Frequent softerrors result in machines becoming unavailable, such as the
machine 930, 1075 and 372, with no running jobs. Due to the softerror
at a certain time, the machines may have exceptions, which can affect the
scheduling and execution of jobs. For example, there are no online services
running on the machine 689 and 401, and the batch tasks are running only
during the first few hours of tracing. By checking the machine status, the
machine 689 has softerror at the timestamp of 50623 s, 52005 s and 52219 s,
and there is no running batch tasks from 50400 s; the machine 401 has soft-
error at the timestamp of 49854 s, 50018 s, 51325 s and 51515 s, and there
is no running batch tasks from 49800 s, too. The reason may be that, clus-
ter management system is unable to continue scheduling and executing new
jobs on these machines due to system failures.

Summary. In Alibaba’s co-located workload cluster, unreasonable scheduling
and workload imbalance are the main causes of anomalies, which should be
focused on.

4 Related Work

In 2011, Google open-sourced the publicly available cluster trace data [9], which
is a 29-day trace of over 25 million tasks across 12,500 heterogeneous machines.
And there are several works on analyzing Google trace from different perspec-
tives [10–13]. Different from the Google trace, the Alibaba trace that was released
in 2017, which contains information about the co-located container and batch
workloads. Lu et al. [3] performed characterization of the Alibaba trace to reveal
the imbalance phenomena in clouds, such as spatial imbalance, temporal imbal-
ance, imbalanced resource demands and utilization. Cheng et al. [4] focused on
providing a unique and microscopic view about how the co-located workloads
interact and impact each other. Liu et al. [5] revealed that the resource allocation
of the Alibaba semi-containerized co-location cluster achieves high elasticity and
plasticity. Our study focuses on a unique view about anomalies and causes in
co-located workloads cluster.
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5 Conclusion

Based on the preprocessed Alibaba co-located workloads dataset, we conducted
in-depth analysis from the aspects of workload characteristics and anoma-
lies. Our analysis reveals several insights that the performance discrepancy of
machines in Alibaba’s production cluster is relatively large, for the distribution
and resource utilization of co-located workloads are not balanced. For example,
the resource utilization (especially memory utilization) of batch jobs is fluctu-
ating and not as stable as that of online containers, and the reason is that the
online containers are long-running jobs with more memory-demanding and most
batch jobs are short jobs. Meanwhile, based on the distribution of co-located
workload instance numbers, the machines can be classified into 8 workload dis-
tribution categories. And most patterns of machine resource utilization curves
are similar in the same workload distribution category. We also use the iForest
algorithm to detect abnormal nodes, and find that the there are three causes
that lead to anomalies: (1) unbalanced co-located workload distribution4; (2)
skew co-located workload resource utilization; (3) failures. And in the Alibaba’s
co-located workload clusters, the collaboration between online service scheduler
(Sigma) and batch jobs scheduler (Fuxi) should be focused on.
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Abstract. We establish that SSH is a viable transport mechanism for
API access to HPC resources. In this paper, we study the performance
and scalability properties of SSH using various SSH libraries (Python,
Java, Linux command line client). We consider SSH daemon configura-
tion changes that improve the API scalability significantly. We observe
that, for the memory and CPU resources available on the test machines,
our SSH-based API performs sufficiently well until a certain threshold
of requests per second (RPS). At 90 RPS, 99% of the requests finish
in less than two seconds. At 50 RPS, almost 90% of the requests finish
in one second, which shows that the API is responsive enough under
these loads. However, as the number of concurrent requests increases
past 100, we see a gradual increase in time to complete requests. We
perform load tests for the SSH API by sending bursts of concurrent con-
nections and continued sustained connections over time and observe an
acceptable responsiveness from the remote systems in both cases. With
this study we conclude that SSH performance is sufficient for API access
to computational HPC resources.

Keywords: Application Programming Interface (API) · High
Performance Computing (HPC) · High Throughput Computing
(HTC) · J2SSH Maverick · Paramiko · ssh2-python · Locust ·
Jetstream

1 Introduction

HPC computing and storage resources are increasingly being accessed via web
interfaces and HTTP APIs as opposed to direct command-line interface. All
cloud providers, including: Amazon AWS [1], Google Cloud Platform [2], and
Microsoft Azure [3], provide such services. At the Texas Advanced Computing
Center (TACC), Tapis Cloud APIs [4,5] currently enable 14 different official
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projects (a total of nearly 20,000 total registered client applications) to man-
age data, run jobs on the HPC and HTC systems, and track provenance and
metadata for computational experiments. When jobs are run on HPC machines,
hundreds of files are needed to be transferred between storage and execution
systems for staging input data and archiving output data. The underlying APIs
that perform these asynchronous file transfers through SFTP are expected to
securely transfer files without significant delays. In order to understand and
potentially improve performance and scalability of the Tapis Files management
APIs, we study performance of SSH as a protocol.

SSH (also referred to as Secure Shell) is well-known as the most secure
method of authenticating and encrypting access to remote Linux systems via
command line. It is a secure alternative to insecure file transfers with FTP. In
this paper, we investigate whether SSH is also viable as a transport layer for
simultaneous API requests to similar systems. We discuss two methods used to
evaluate the API performance. First, we identify the bottlenecks with respect to
memory, CPU, and I/O when a burst of simultaneous SSH connection requests
are initiated by the clients. We study how tuning the SSH daemon configura-
tion parameters can improve successful concurrent connections to the remote
system. Secondly, we seek to understand the performance of our existing files
management APIs and ways to optimize it for remote access to HPC resources.

In this study, we also compare the performance of various available SSHv2
implementations in Python and Java, such as Paramiko [6] and ssh2-python [7],
J2SSH Maverick [8] and the Linux command line client. We then select the most
suitable implementation for our SSH API design. To evaluate the performance,
we calculate the total time to connect to the HPC system and execute different
commands (I/O and non-I/O based), for example, “ls” command, which is pri-
marily used for listing files with the Tapis files management API. We perform
load test for our APIs by simulating realistic work loads using Locust [9], a load
testing tool. Locust can simulate a multi-user API access scenario with thou-
sands of active users, which is similar to existing Tapis files management API
usage.

The rest of this paper is organized as follows. In Sect. 2 we discuss the related
work and motivation behind this case study. In Sect. 3 we provide background
details on the general API performance expectations, introduction to Tapis Files
Management API, and survey on available SSHv2 libraries. In Sect. 4, we describe
the SSH backed APIs case study design. We discuss the proposed design and
experimental setup such as the VM (Virtual Machine) configurations, compari-
son of different SSH libraries, SSH API framework, and load test setup. Finally,
we conclude this paper with our research findings and discuss the scope of extend-
ing this study.

2 Related Work

In the realm of high speed bulk data transfers and file management, solu-
tions such as GridFTP from Globus [10], glogin [11], BBCP [12], LFTP [13],



SSH-Backed API Performance Case Study 297

Cyberduck [14], scp [15], rsync [16] and Kerberos kFTP [18], exist. The choice
of data transfer tools highly depends on the frequency of transfers and transfer
time. For example, manual scp and rsync are more suitable for 1-time trans-
fers [17], whereas with tools like GridFTP and BBCP, faster data transfers are
achievable by doing multi-stream transfers [17]. Most of these transfer tools how-
ever have some limitations in terms of their cost and configuration complexity.
Our study, on the other hand, leverages SSH directly, to securely login to remote
host and leverages SFTP to transfer files, which involves minimal installation,
and is easy to maintain. To the best of our knowledge, none of the prior studies
evaluate the performance and scalability of SSH for multiple concurrent connec-
tions to the HPC resources, which makes this study one of a kind and important.
With this case study we intend to build our next generation File Management
APIs, which can provide high performance and scalability for accessing the HPC
resources.

3 Background

3.1 General API Performance Expectations

Domain scientists and researchers work with distributed HPC systems to run
their high performance computing jobs. They need to access data, which might
be distributed across several systems present at different geographical locations.
These users mostly use command-line utilities and APIs, and expect them to be
responsive enough to view the job output and transfer files without significant
delays. Interactive command line users are accustomed to system responsiveness
fluctuating due to load on a shared system. It is not uncommon to have hundreds
of individual users interactively logged in to a login node of a HPC system for
accessing their resources.

With API access, it can be less obvious that one is using a shared system,
so users may have an elevated expectation of responsiveness. In general, aver-
age responsive times for APIs vary substantially, but our anecdotal experience
suggests that average response times exceeding one or two seconds can lead to
a perception that the API is “slow”. Leading cloud providers, such as Amazon
and Google have described a similar phenomenon for web page load times, where
above one or two seconds, the user experience is significantly impacted [19].

API quality can be determined from a combination of critical factors such as
performance/responsiveness, availability/uptime and correctness. An API con-
tract explicitly covers all the related implementation details and what to expect
when the caller calls a function. However, the performance and correctness con-
tract are always implicit and success of any software that uses the API largely
depends on whether these expectations are met. Since remote calls over SSH
are combined with other usage on the system, responsiveness is also affected by
system load. SSH overhead usually represents a fractional amount of this delay.
Often, API users benefit from being behind some sort of asynchronous queuing
system (e.g. RabbitMQ [20]) that returns a response to the user before actually
finishing the command. This can mitigate the responsiveness issue for end users.
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3.2 Tapis Files Management APIs

Tapis [4] is an open source, NSF funded Application Programming Interface
for hybrid cloud computing, data management, and reproducible science. Tapis
leverages standards-compliant, open source technologies and community pro-
moted best practices to enable users to manage data, execute research software,
and share results with collaborators and colleagues. Tapis has been in production
as the middleware that currently supports a number of community science gate-
ways. It is a multi-tenant, cloud-native distributed system. All services within
the platform run as Docker containers, orchestrated as a set of microservices.
The Tapis files management APIs, which is one of the core services, allows man-
agement of data across multiple types of storage systems such as Linux, cloud
(a bucket on S3), and iRODS. It supports traditional file operations such as
directory listing, renaming, copying, deleting, and upload/download that are
traditional to most file services. It also supports importing files from arbitrary
locations, metadata assignment, and a full access control layer allowing to keep
the data private, shared, or made publicly available. To fulfill the above opera-
tions, the current Tapis Files management API uses the J2SSH Maverick library’s
SSHv2 implementation.

3.3 SSH Libraries

Th choice of SSH library during API design can have a significant impact on the
overall API performance, specifically for handling burst of concurrent requests.
For these reasons, we evaluate different SSH implementations in this study and
choose the most suitable library for SSH API development. Some of the available
SSHv2 implementations in Java and Python are listed below:

– J2SSH Maverick is a complete Java implementation of the SSH2 client. We
conduct performance benchmark studies using this library as it is an integral
part of existing Tapis files management service.

– Paramiko is a Python implementation of SSHv2 protocol. It has been widely
used in automation applications such as Ansible [23].

– ssh2-python is a new SSH library written in Python which is based on the
libssh2 C library. Based on prior research, ssh2-python shows improved per-
formance in session authentication and initialization. It is almost 17 times
faster than Paramiko in performing heavy SFTP reads [24].

4 SSH API Case Study

With the distributed nature of HPC computing, there is a pressing demand for
developing highly responsive file management APIs, with performance expecta-
tions that can efficiently support several concurrent users. The aim of this case
study is to investigate how to develop such APIs by answering research questions
below:
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4.1 Research Questions

– RQ1: Is SSH a viable transport mechanism for API access to HPC resources?
– RQ2: Can we improve the performance and scalability of APIs to support

multiple concurrent users by studying SSH as a protocol?

4.2 Research Design

It is not uncommon to have several concurrent users accessing the HPC resources
with the Tapis files management APIs. Several web portals and CLI users access
the shared HPC resources concurrently and expect the APIs to be responsive. In
order to determine whether we can design a SSH backed API that meets the per-
formance and responsiveness expectations, we need to demonstrate the feasibility
of using SSH as a transport mechanism. In this study, we propose to evaluate
the performance of parallel SSH connections to remote systems using bursts
of simultaneous connections and continuous sustained connections over time.
Benchmarking the SSH API performance by simulating multi-user request loads
is a critical part of this case study. In order to demonstrate the improvements in
handling concurrent SSH requests at the server, we conduct tests by modifying
the default values of MaxStartUps and MaxSessions in the sshd config file on
the server. We measure the number of successful SSH connections established
when a burst of concurrent requests are made by the clients during each test
run. This data best describes the number of concurrent user requests that can
be handled successfully at a given time for a given load. Similarly, by measuring
the performance metrics “time to connect” and “time to execute commands”,
for commands such as “ls” and “uptime”, on the remote system during a burst
of simultaneous connections and continuous sustained connections over time, we
can determine if SSH APIs are responsive. In the following sections, we describe
the experimental setup and proof of concept SSH API framework and summarize
our findings for the research questions above.

4.3 Experimental Setup

For the proposed experiments we set up three virtual machines and evaluate
SSH API performance under different loads.

VM Configurations. Tests are launched from a single client VMWare virtual
machine–referred to as SSHClient–with 2 CPU cores and 8GB of memory run-
ning CentOS 7.6 Linux. Each test then connects to one of two different server
virtual machines; one of them is a VMWare virtual machine–referred to as Taco
here–which has 2 CPU cores and 2 GB of memory, running CentOS 7.6 Linux.
The other one is a Jetstream [21] Openstack virtual machine–referred to as
Jetstream here–which has 2 CPU cores and 4 GB memory, running CentOS 7.5
Linux operating system. We selected these VMs because they are relatively small
in size and represent what a developer might readily have access to. We used
VMWare because it is TACC’s standard VM deployment system, and Jetstream
because it has a different network, IO, and hardware configuration.
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Load Test Setup. In order to conduct load tests on our API, Locust, an open
source load testing tool, is used to “swarm” the API and simulate concurrent
multi-user requests. To set up Locust, we create a configuration file that defines
the task of a simulated user, and what information to POST to the API. Other
configurations includes setting wait times and sending information. Along with
this, Locust provides a graphical interface where we could launch and see differ-
ent request/response information such as minimum/maximum/average/median
response times to connect to the server and run the commands.

Selecting SSH Library Implementation. As discussed, the choice of SSH
library implementation for the API design affects API performance. We run
benchmark tests to evaluate the API performance using two SSHv2 implemen-
tations: J2SSH and ssh2-python. We measure the total time to connect and
run commands on both the VMs–“Taco” and “Jetstream”–from “SSHClient”.
On a successful connection, either “uptime” or “ls” (directory listing containing
10,000 files) is run and total response time is measured. The total time mea-
sured for 10, 100, and 500 concurrent requests provides a baseline for selecting
SSH library implementation. From multiple test runs, almost seven times faster
response times are seen with ssh2-python library on both Taco and Jetstream,
executing the “uptime” command as compared to J2SSH implementation. Sim-
ilarly, a ten to twelve times faster response is seen on both VMs, executing “ls”
command on a successful connection with ssh2-python. Based on these evalua-
tions, ssh2-python seems to be an appropriate choice for our prototype SSH API
design.

4.4 SSH API Framework

We developed an SSH API using Python’s Flask library. This study serves as a
proof of concept to evaluate if SSH can be used as a viable transport mechanism
for file management APIs to access HPC resources. With this API, users can
securely connect to remote HPC resources and execute commands on the server.
To make use of the API, a user first makes a one-time API call to save their sever
connection credentials, including credential name, host name, user name, and an
encrypted private key. These data get stored in a MySQL database for later use.
Once credentials have been saved, the user can use the other API endpoints
to execute different commands on the server. Table 1 describes the various SSH
API endpoints and methods allowed. We note that the API in its current form
is unathenticated; as a part of future development, we are working on adding
authentication via JSON Web Tokens (JWT) [25]. The API would use a JWT
included in the request to verify that the API call is coming from an authorized
user.

This API provides an abstraction for accessing the remote HPC resources
without having to use the command line interface. Most importantly, the SSH
API is vital in testing the reliability of the SSH daemon server’s ability to handle
multiple requests at once. Using the load testing tool Locust [9], we simulate
realistic multi-user requests.
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Table 1. SSH API endpoints

Name GET POST Endpoint Description

Home Page X - sshapi/v2/ App Welcome Page

Credentials X X sshapi/v2 Manage Credentials

Commands - X sshapi/v2/[cred name] Run command via credential

Load test - X sshapi/v2/load Load test

4.5 Findings

In this section we present our findings for RQ1 and RQ2 and discuss how answer-
ing these questions helps us in developing a prototype for SSH-backed files man-
agement APIs, using ssh2-python library.

RQ1: With Locust, which is a distributed load testing tool, we test how many
concurrent users, the SSH API is capable of handling. We simulate a multi-
user API access scenario, where burst of SSH connection requests are made to
each of the remote servers: “Taco” and “Jetstream” with the SSH API. The
user behavior and task sets are defined in the locustfile.py. Locust spawns one
instance of the Locust class for each simulated user. The user task calls the
commands API enpoint, which connects to the remote host with the credential
name defined in the POST request. Once a successful connection is established
the command specified in the same POST request is executed. The min and max
wait attribute values defined in the locustfile.py determine how much time the
user will wait between each API call. In our test setup we have defined a single
user task of calling the SSH API. Figure 1 shows the load test results obtained.
The X axis shows the percentile of successful connections, whereas the Y axis
shows the response time measured in milliseconds.

We observe that, for the memory and CPU resources available on the test
machines, our SSH-based API performs sufficiently well until a certain threshold
of requests per second (RPS). In fact, we expect that available server memory,
not SSH, is the first limiting factor up to a certain threshold of requests per
second (RPS). At 90 RPS, 99% of the requests finish in less than two seconds.
At 50 RPS, almost 90% of the requests finish in one second, which shows that the
API is responsive enough under these loads. For the most part, as the number
of requests per second increased from 10 to 90, we saw a gradual increase in
response time. The 60 RPS trial was the outlier, where performance was in fact
worse than in the 90 RPS trial. Understanding this outlier will be part of a
future study. Considering the existing loads that our current file management
system API handles, we believe that being able to handle 90 RPS in less than
two seconds is more than acceptable.

Figure 2 shows the average response times in seconds for both VMs, Taco
and Jetstream, using the ssh2-python implementation. For each trial, total time
to connect and run one of the commands, “uptime” or “ls”, for directory size
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of 10,000 files, is computed. Performing a directory listing is one the most com-
mon use cases of the Tapis files management API and is therefore necessary to
benchmark its performance. For these tests, we have created a nested directory
structure, which includes 10,000 files to simulate the files listing call with heavy
load. The average response time is computed for a set of 10 trials for each 10,
100 and 500 RPS. Similar average response times are observed on both Taco and
Jetstream, when “uptime’ and “ls” commands are executed at 10 RPS. At 100
and 500 RPS, a gradual increase in the average response time is seen for both
the VMs, running either of the commands. However, the average response time
does not vary much, when compared on both systems for 100RPS or less. We
propose to study the variability of measurements (as defined, for example, in
[26]), which can further explain the overall API stability as a part of our future
study. With this study, we can conclude that SSH is viable transport mechanism
for API access to HPC resources and can be integral part of our next generation
Files management API design.

Fig. 1. Load test results for SSH API

RQ2: In order to answer our second research question, we study whether mod-
ifications to SSH daemon configuration at the server improves the scalability of
the API, thereby allowing larger numbers of simultaneous connections. We made
the following settings changes in the sshd config file at both the servers:
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Fig. 2. SSH average response times with SSH2-Python

– MaxStartups: Specifies the maximum number of concurrent unauthenti-
cated connections to the SSH daemon. Default is 10:30:100, we used
3000:30:3000, where:
• 3000 is the number of unauthenticated connections before we start

dropping
• 30 is the percentage chance of dropping once we reach 3000 (increases

linearly for more than 3000)
• 3000 is the maximum number of connections at which we start dropping

everything
and

– MaxSessions: Specifies the maximum number of open shell, login, or subsys-
tem (e.g. SFTP) sessions permitted per network connection. Default is 10;
we used 3000.

With these settings, we were able to successfully connect to the server with even
higher concurrent request rates. Therefore, by making these changes we were
able to improve the overall scalability of the SSH APIs.

5 Conclusions

In this case study, we proposed to design a SSH-backed API towards answer-
ing two research questions: can SSH be used as a viable transport mechanism
for API access to HPC resources, and can SSH performance and scalability
be improved tweaking the SSH daemon parameters at the server. We tested
SSH load performance in two ways: using bursts of simultaneous connections,
and continuous sustained connections over time. In both cases, we observed an
acceptable responsiveness from different Linux systems. This demonstrates that,
in addition to its other advantages, SSH performance is sufficient for API access
to HPC resources. With this study, we conclude that ssh2-python can potentially
be used for our next generation Files Management API implementation.
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6 Future Work

In the near future, we plan to expand the number of destination hosts to test
against more diverse system configurations. We also plan to evaluate the possi-
bility of modifying client behavior so that the server does not require sshd config
modifications. This could be done by pooling connections or taking advantage
of other optimizations. We also plan to study the variability of measurements
which will determine the overall performance of the SSH API for various HPC
systems.
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Abstract. Performance of end-to-end neural networks on a given hard-
ware platform is a function of its compute and memory signature, which
in-turn, is governed by a wide range of parameters such as topology
size, primitives used, framework used, batching strategy, latency require-
ments, precision etc. Current benchmarking tools suffer from limitations
such as a) being either too granular like DeepBench [1] (or) b) mandate
a working implementation that is either framework specific or hardware-
architecture specific or both (or) c) provide only high level benchmark
metrics. In this paper, we present NTP (Neural Net Topology Profiler),
a sophisticated benchmarking framework, to effectively identify memory
and compute signature of an end-to-end topology on multiple hardware
architectures, without the need for an actual implementation. NTP is
tightly integrated with hardware specific benchmarking tools to enable
exhaustive data collection and analysis. Using NTP, a deep learning
researcher can quickly establish baselines needed to understand perfor-
mance of an end-to-end neural network topology and make high level
architectural decisions. Further, integration of NTP with frameworks like
Tensorflow allows for performance comparison along several vectors like
a) Comparison of different frameworks on a given hardware b) Compari-
son of different hardware using a given framework c) Comparison across
different heterogeneous hardware configurations for given framework etc.
These capabilities empower a researcher to effortlessly make architectural
decisions needed for achieving optimized performance on any hardware
platform. The paper documents the architectural approach of NTP and
demonstrates the capabilities of the tool by benchmarking Mozilla Deep-
Speech, a popular Speech Recognition topology.

Keywords: Neural networks · Topology · Benchmark tools ·
openVINO

1 Introduction

Deep Neural Networks are ubiquitous in their deployment to address challenges
in Vision and Speech. Neural networks are an area of increased research and
development investment with novel end-to-end architectures being developed
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and deployed across several industry domains. Recently, several organizations
are beginning to adapt a ’continuous modeling methodology’ where the models
are continuously tuned for performance in production environment through an
automated-modeling infrastructure. Though there are several frameworks avail-
able to build neural net topologies, sophisticated tools to benchmark end-to-end
topologies and offer insights for tuning are not available. NTP is an end-to-end
benchmarking tool which addresses this gap by enabling detailed benchmarking
to understand the compute and memory signature of complete neural network
topology. NTP can be used to understand compute requirements for a topology
as well as to identify compute hotspots, memory bottlenecks etc through run
time data flow analysis.

Neural network deployments typically have two phases a) Training and b)
Inference. A model is developed in training phase and is deployed for use in
inference phase. The usual approach to benchmarking is to select a framework,
implement a topology, optimize for accuracy and finally benchmark for perfor-
mance. Topology optimizations and benchmarking is performed multiple times
to arrive at an acceptable architecture. Inference is performed after an accept-
able model is developed. Inference stage optimizations like pruning, quantization
etc. normally requires additional retraining. Overall, a time consuming effort.

Training is typically done in compute farms with access to high performance
compute hardware. Inference however is mostly done on platforms which can
promise real-time performance, at low cost and power, which often requires infer-
ence specific benchmarking and optimizations. NTP addresses these challenges
by enabling a researcher to quickly check the performance impact with different
configurations like layer sizing, quantization, pruning etc. NTP is currently tar-
geted to address the benchmarking requirements in Inference phase. However,
there is no conceptual limitation in the tool preventing its usage in training
phase. In addition to compute and memory benchmarking, the tool also allows
its users to determine performance metrics like latency, queries per second etc.

Several frameworks exists for building neural networks like TensorFlow [2],
Caffe [3], MXNet [4], PyTorch [5], and OpenVINO [6], to name a few. Cur-
rently NTP supports TensorFlow, PyTorch, and Intel OpenVINO as underlying
framework and allows workloads to run across different hardware platforms like
Intel x86 CPU, NVidia GPU, Intel Movidius, Intel GPU and Intel FPGA. NTP
however does not support integration with hardware simulation platforms.

NTP allows users to easily construct complex neural-networks as workloads
and interface with compatible benchmarking tools for metrics collection. Com-
pute, memory and network bottlenecks are easily analyzed to enable effective
decision making towards optimizing a topology for best performance.

2 Survey of Current Profiling Tools

A survey of current profiling tools is presented in this section. Compared to NTP,
all these tools lack in more than one area like: a) Lack of ease of model creation
b) Limited support for end-to-end profiling c) High effort pre-requisites like
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availability of framework/hardware specific implementations d) Lack of support
for collecting detailed benchmark metrics e) Lack of support for performance
comparison across different target hardware f) Lack of support for performance
comparison across different frameworks for a given neural network etc.

Certain frameworks like TensorFlow [2] provide native support for layer-wise
execution-time profiling, but lacks support for extracting detailed benchmark
metrics and performance insights. DeepBench [1] is targeted to benchmark neural
network libraries (kernels) across different hardware. DeepBench profiles com-
mon operations for throughput and latency at kernel-level. While kernel-level
benchmarks help determine which hardware gives best performance for a chosen
kernel, they cannot fully comprehend topology level bottlenecks especially the
data movement cost and hence lack capability to help facilitate topology tun-
ing. Tools like DAWNBench [7] and its successor MLPerf [8] support end-to-end
topology benchmarking for actual implementations of selected ML problems and
provides metrics like training and inference cost. Tools like DLInfBench [9] allows
benchmarking of speed and peak memory across frameworks. Again, support is
limited to a set of pre-selected topologies as with earlier tools (Table 1).

Table 1. Comparison of benchmark tools.

Tools Hierarchy Topology creation Metrics

DeepBench Kernel No Execution time

MLPerf Topology No Training/Inference cost

DLInfBench Topology No Execution Time/Memory

NTProfiler Topology Yes Refer to Table 2

Several of these surveyed tools provide a high-level score for a topology with-
respect-to training and/or inference. Though high level scoring enables one to
compare different topologies and rank them, it does not provide insights into
critical bottlenecks that led to observed performance. Also, to initiate bench-
mark for a new topology in these tools, the topology needs to be first created in
the selected framework and supplied to the benchmark tool which is a resource
intensive task. NTP has the advantage of accepting topology definition in a
simple, framework-and-hardware agnostic, format and use it across all frame-
works and hardware platforms. The focus of NTP is to provide an exhaustive
set of benchmark metrics to help with analysis, identification and resolution of
topology and hardware bottlenecks.

NTP addresses the listed deficiencies by: a) Providing a simple markup lan-
guage based interface for defining neural network topologies. b) Allowing frame-
work selection through simple command line argument. c) Simulating the topol-
ogy on selected hardware platform including hetero-hardware platforms and d)
Generating detailed benchmark reports for analysis. The implementation details
of NTP is presented in the following section.
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3 NTP Overview

NTP is an Intel proprietary tool that takes definition of an end-to-end neural
network as input, optionally builds the topology corresponding to the defini-
tion on the chosen framework and executes the topology by passing data in
configured precision through the entire topology. During the execution, NTP
collects information on hardware specific performance counters using configured
benchmarking tools. NTP leverages the collection capabilities of supported bench
tools to observe and summarize performance metrics. Also additional metrics like
throughput is collected to provide detailed insights into parameters that deteri-
orate performance (Fig. 1).

Fig. 1. Overview of Neural Net Topology Profiler

A brief description of NTP flow is provided in this section. Overview of NTP
architecture is shown in Fig. 2. To support a wide range of topologies, NTP
supports

1. Topologies defined in open formats like ONNX or framework-native formats
like TensorFlow pb.

2. Topologies defined using Markup language definition in proprietary XML
format.

When pre-trained model is provided, the Model Loader directly reads it and
passes it to relevant framework. When XML format is used, NTP automatically
builds framework specific model and passes the same to the chosen framework.
The XML parser handles the XML processing and generates a neural network
graph corresponding to the topology description. The Parser module extracts
each tag in the input XML file to obtain attributes of different layers and to
identify benchmarking markers. A framework independent internal graph is built
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by NTP which is then converted to a framework specific model. The execution
is done in the context of chosen framework and NTP relies on capabilities of the
chosen framework for execution.

The parser for TensorFlow models, for instance, supports 40 commonly used
TensorFlow layers and additional layers can be easily added to handle new
topologies containing such layers. Parser stage results in a framework specific
model, irrespective of whether the architecture was specified in XML format or
provided as pre-trained model.

3.1 Topology Definition

Practical neural networks will have several neural network layers combined
together to address a specific problem. Networks will also contain non-neural
network functions like MFCC calculation for pre-processing, beam decoders for
post-processing, memcopy, format conversions etc. NTP allows these functions
also be included as inlays for a realistic end-to-end performance benchmark.
Example of a simple topology is shown in Fig. 2. Each layer contains one or more
primitives (Ex: Prim1) like CNN, LSTM etc and inlay functions. NTP provides
flexibility to benchmark the entire topology or specify layers-of-interest. For tar-
geted benchmarking, layers-of-interest can be set using start and end ’markers’.
A snippet of the xml corresponding to DeepSpeech is provided in Fig. 3B under
Sect. 4.

Fig. 2. Graphical description of sample neural net topology. Non-neural network layers
are included as Inlays along with NN primitives to allow end-to-end benchmarking.

3.2 Benchmark Tools and Metrics

NTP is integrated with a set of benchmarking tools and appropriate tool is cho-
sen based on hardware on which profiling is done. Choice of benchmark tool
is also made through marker update in the XML. Currently, tools like VTune,
Amplifier etc. offered as part of Intel Parallel Studio, NVidia NSight and com-
mand line tools like PCM, EMON etc. are supported. Users can configure and
select a specific benchmark tool to be used to determine memory and compute
signature of the workload. NTP relies on the ability of selected benchmarking
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tool to support features like Start, Stop, Pause and Resume for targeted met-
rics collection. For instance, if VTune Amplifier is used, the tool issues interrupt
requests at specific intervals and collects Interrupt Service Routine (ISR) records
like process ID, thread ID, instruction pointer, memory resources allocated and
released etc. Later, information is summarized and mapped to neural network
operations in a post-processing step. Markers allow for easy collection of bench-
mark metrics for individual layer or layer groups, independent of capabilities of
the framework. The lowest hierarchy level that can be chosen for analysis is ker-
nel level or higher. For instance, in case of topologies with fused kernels, the tool
will not be able to provide a breakdown of operations inside the fused-kernel.

The list of metrics supported by Intel Benchmark tool for CPU hardware is
listed in Table 2. NTP automates all the tasks related to benchmarking and gen-
erates analysis reports to facilitate quantification of topologies across applicable
vectors like layers, topology, frameworks and hardware etc.

Table 2. Benchmark Metrics supported by NTP

Options Description

CPU CPU Utilization

DRAM DRAM Bound, Latency

Cache L1/L2/L3 Bound

Interface Bandwidth Utilization

Roofline Analysis CPU/Memory Utilization

Hotspots Routines with high CPU usages

Vectorization Advisory on vectorization

3.3 Framework and Hardware Support

NTP facilitates topology benchmarking on popular frameworks running on a
wide range of hardware platforms without the need for framework/hardware
specific implementation. For instance, when framework chosen is TensorFlow,
it leverages TensorFlow’s native hardware support for executing a topology on
CPU and NVidia GPU.

It is also integrated with Intel OpenVINO framework and can fully leverage
heterogeneous compute capability of the framework by accepting pre-trained
models from frameworks like TensorFlow. OpenVINO currently supports Intel
CPU, GPU, GNA, Intel Movidius, FPGA etc. For hardware like Movidius, the
support is extended to use a resource-pool of movidius sticks for further accel-
eration. OpenVINO accepts pre-trained models from popular frameworks like
TensorFlow R©, Caffe R© etc. and can perform additional optimization like con-
stants folding, quantization, layer fusion etc to improve overall performance. In
hetero-mode, a workload will allow users to leverage multiple hardware accel-
erators to meet performance/cost/latency targets. Based on user intent and
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hardware-support for the constituent kernels, the workload will be automati-
cally partitioned into different subgraphs and each subgraph will be run on its
chosen hardware. In addition to eliminating the effort needed to implement a
workload for different hardware platforms, OpenVINO also enables NTP to sup-
port optimal utilization of available hardware resources.

Ease of model creation, control over benchmark layers, support for inlays,
access to a wealth of benchmark metrics, and support for multiple hardware
platforms etc. facilitate users to build, analyze, compare and in-turn optimize
neural net topologies in a quick and efficient manner. The capabilities described
so far will be demonstrated using a case-study in the following section.

4 UseCase: Mozilla DeepSpeech

This section demonstrates NTP capabilities as applied to an Automated Speech
Recognition workload: Mozilla Deep Speech [10]. As a general disclaimer, the
comparison plots presented in this paper are illustrative to demonstrate NTP
tool capabilities. This should not be taken as absolute numbers for respective
comparisons. DeepSpeech is a character level speech-to-text model that takes
Mel Frequency Cepstral Coefficients (MFCC’s) extracted from speech utterance
as input and generates textual transcription. The topology (Fig. 3A) has few
fully connected layers (FC), bi-directional LSTM (BI-LSTM) and a final CTC
beam search decoder for removing duplicate characters.

Fig. 3. A. Mozilla DeepSpeech topology B. NTP-XML snippet depicting syntax for
initial set of layers

A snippet of input XML for initial few layers of DeepSpeech is presented
in Fig. 3B. Layer name is used to uniquely identify layer and connect different
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layers to create the topology graph. Topology optimization would simply need
updates to the XML. As discussed earlier, the choice of XML is primarily to
allow users to quickly define a neural network topology and simulate it without
the need for framework/hardware specific implementations. The ease of model
creation allows for fast iteration over multiple configurations to compare and
contrast the hardware implications

From Fig. 3B, it can be seen that several topology parameters like layer type,
number of nodes for a given layer etc. are all easily specified and updated through
the xml. In addition, batching information, data precision, hardware engine,
benchmark tool are also accepted as user arguments. Since NTP is a topology
exploration and optimization tool, it also supports a topology to executed for
performance benchmarking even before actual training. This is done by building
a topology model and supplying random weights and biases to the constituent
layers. For inputs, synthetic dataset in required format (dimension, batch size,
precision, range) is generated and fed to the model. Empirical tests have been
run on all topologies discussed in this paper to validate that the performance
reported by NTP is well aligned with the performance observed from framework-
specific implementations of the topology. For cases where pre-trained model is
available, layer weights and biases from the model is directly used.

Fig. 4. DeepSpeech metrics summary

Due to tight integration with Intel benchmarking tool-suite for CPU pro-
filing, NTP can provide both high level summary as well as facilitate deep
dive into details-of-interest. High level summary of different benchmark met-
rics for DeepSpeech topology is plotted in Fig. 4. Depending on kernel-type,
kernel-dimensions, input dimensions, memory requirements, cache status etc.,
each layer runs with a unique execution signature. This is captured and summa-
rized by the tool while data flows through the architecture. Using this informa-
tion, a tool user can easily a) Optimize the topology to better run the available
hardware and/or b) Understand the hardware requirements for a topology and
make effective decisions to configure the same.

A set of benchmark metrics for different batch sizes is shown in Fig. 4. The
co-relation between various metrics and their combined impact on performance
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can be deduced from such a view. For instance, CPU utilization drops when
DRAM bottleneck increases around batch size of 16 which is where the hardware
stops offering real-time performance. DRAM utilization increases due to memory
hungry nature of BI-LSTM layer as will be described in following sections. As a
consequence of this observation, optimization of the BI-LSTM was done leading
to a performance boost of close to 6X.

4.1 Layer Comparison

Execution times of individual layers of the topology can be summarized and
compared using layer-wise comparison feature of NTP as shown in Fig. 5A.

Fig. 5. A. Mozilla DeepSpeech benchmark B. Layerwise benchmark metrics

From above figure, BI-LSTM layer contributes to majority of the runtime and
as well as memory consumption. FC layers of this topology do not heavily depend
on cache or external memory. However BI-LSTM pulls most of its data/weights
from external memory and significantly slows down overall execution.

In-depth analysis of layers can be done using NTP’s targeted benchmark-
ing capabilities. To demonstrate this, the topology was bench-marked as three
segments. (Segment1: FC1-3 = FC1 + FC2 + FC3, Segment2: BI-LSTM, Seg-
ment3: FC4-5 = FC4 + FC5). From the benchmark data in Fig. 5B, it can
be seen that the FC-Layers are Front-End/Core bound while the BI-LSTM is
Backend/Memory bound translating to large runtimes.

4.2 Topology Comparison

To quantify the performance impact of parameters like layer sizing, precision
etc, relevant parameters can be easily updated in the XML and resultant topolo-
gies compared across critical performance metrics. For illustration, DeepSpeech
topology [10] was used as reference and two other variants of the topology were
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generated by changing node counts as shown in Table 3. As described in earlier
sections, changes are required only in the input XML, which enables topology
modification and hence analysis at an accelerated pace.

Table 3. Topology comparison: Three variants of DeepSpeech topology is shown to
demonstrate topology comparisons during hyper-parameter tuning.

Layer Topology1 Topology2 Topology3

FC1 256 256 2048

FC2 256 256 2048

FC3 256 256 4096

BILSTM 256 4096 4096

FC4 256 256 2048

FC5 29 29 29

Fig. 6. Topology comparison using NTP A. Runtime comparison B. Benchmark metrics
comparison

Percentage run-time contribution from different layers for execution on CPU
is shown in Fig. 6A. For topology-1, majority of the time (81.9 %) is spent in
execution of the BI-LSTM layer. The percentage tends to increase further to
97% if the number of LSTM nodes increases (Topology2, Topology3). Several
benchmark metrics can be used to compare topology designs as illustrated in
Fig. 6B. It can be seen that the topologies are all Memory/Backend bound. In
addition to being memory intensive, BI-LSTM layer cannot be parallelized to
the same level as other primitives like CNN. Utilization drops with increase in
threads for BI-LSTM layer due to even higher memory contention leading to
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further reduction in CPU utilization. As a result, topology would not benefit
significantly from multi-threading either. This memory hungry nature of BI-
LSTM seems to be the key performance bottleneck for this topology. And the
topology will yield better performance on hardware with better memory capacity
and bandwidth.

4.3 Hardware Comparison

Comparison of a topology across different hardware is demonstrated in this
section. FPGA’s are massively parallel and have lot of on-chip memory and
bandwidth when compared across several hardware classes and can be a hard-
ware choice for this topology. To offload execution to a supported accelerator,
the choice of hardware alone needs to be updated in NTP run. A comparison
of deepspeech runtime signatures on CPU vs FPGA is shown in Fig. 7A below,
In addition to significant speedup, LSTM contribution to the total runtime also
shows some reduction signifying efficiency. In Heterogeneous hardware mode
(HETERO), the BI-LSTM layer is executed on FPGA and remaining layers on
CPU. Data at interface of LSTM layer is much larger in size compared to pri-
mary input/output of the topology and this results in slightly lower performance
compared to pure FPGA run.

Fig. 7. A. Hardware runtime comparison B. Framework runtime comparison

4.4 Framework Comparison

Comparison of performance across frameworks is also commonly performed by
hardware platform providers, as well as, framework developers to ensure that
the framework chosen is well optimized for given hardware. NTP allows users to
seamlessly switch between supported frameworks. A comparison between exe-
cution times for DeepSpeech topology on TensorFlow vs OpenVINO is shown
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in Fig. 7B. Deployment teams can also benefit from any potential improvements
that are framework specific. OpenVINO is Inference-only framework and hence is
significantly light-weight compared to TensorFlow. Further it performs inference
specific optimizations on topologies like layer-fusion leading to improvement in
observed performance.

5 Other Observations

Several other topologies have been tested using NTP to demonstrate the scalabil-
ity of NTP to a broad set of topologies. Current list of topologies tested include
a) DeepSpeech b) Resnet50 c) GNMT etc. Several kernels were exercised across
these topologies including, Fully Connected layer, LSTM, Convolution Layer,
Activation Layer (Sigmoid, Tanh, Relu) in addition to basic operations (Add,
Multiply, Slice, Concatenate) etc.

In Resnet50, for example, OpenVINO’s model optimizations resulted in 30%
reduction of layers as batch-normalization layers were fused with convolution
layers which translated to significant performance improvement compared to
native execution on Tensorflow. CPUs and GPUs have been observed to perform
poorly compared to FPGA’s for bandwidth dominated topologies. However as
NTP depends on underlying benchmarking tools to provide detailed metrics, lack
of support for some metrics in certain hardware will result in insufficient cov-
erage for hardware like FPGA. As described in earlier sections, current deploy-
ments have different training and inference environment due to difference in
performance, memory, power, bandwidth, latency requirements of the hardware
used for these tasks. Topology level analysis helps with identification of opti-
mal configuration for inference hardware, in-addition to architectural insights
for topology optimization. By enabling fast diagnosis of performance/memory
bottlenecks with least efforts, NTP aims to help researchers arrive at right set
of model parameters and/or hardware configurations at faster pace compared to
traditional methods.

6 Conclusion

We have presented a topology profiling tool in this paper to help holistically
address challenges associated with neural net model development, profiling and
tuning. The tool allows for accurate estimation of performance bottlenecks and
facilitates quick iterations to optimize the network. We believe this would signif-
icantly accelerate the model development, optimization and deployment process
for neural network inference. In future, this analysis data can be fed directly into
an ‘continuous modeling’ environment for targeted tuning. Also the tool can be
plugged to a Design of Experiments (DoE) setup to automatically determine
best configuration for running heterogeneous-compute workloads.
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Abstract. The network load generators are widely used by network
researchers to analyze link bandwidth, evaluate network performance
and test device capabilities. Data center and IoT networks are quickly
evolving and we desire to get a load generator that can precisely gener-
ate flow-level workload with high-throughput. Often researchers choose
software-based generators because of their flexibility and open-source
nature. However, despite the emerging of different solutions, existing
software-based flow-level generators have difficulty in generating millions
of concurrent TCP connections or achieving one-microsecond precision
of packet inter departure time (IDT) which can undermine the correct-
ness of experiments.

In this paper, we present a new network load generator, called Massive
Client Connections (MCC). MCC is a client load generator which means
it performs flow-level load simulation. We separate the control plane from
the data plane and design a two-stage timer mechanism to get higher
precision. To take full advantage of multicore processors, we utilize the
shared-nothing multi-threaded model. Our evaluation demonstrates that
MCC generates network load conforming to expected distribution with
one-microsecond precision. Moreover, MCC shows definite scalability of
throughput in multicore systems. And it is capable of generating more
than three million concurrent TCP connections with ten CPU cores.

Keywords: Network load generator · Predictability · Scalability

1 Introduction

During the process of testing and developing new network elements, such as
equipment, protocols, applications regarding both the production and research
area, researchers and practitioners rely on the load generator to inject a vast
number of packets into a network in a controlled way [15]. It is vital to predict
the behavior of the computer network and how it will run in realistic scenarios.
In this paper, we concentrate on simulating the network load in data center and
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IoT network. This means we need a synthetic load generator that is capable of
generating millions of concurrent network load with high precision [12].

When referring to a load generator, our first concern is the level of load sim-
ulation. Because of the reliability of TCP, interactions above layer 4 require a
state machine maintained in the system. Hence a load generator is stateful if it
acts as one or more TCP clients and evaluates the performance of the system
under test. Otherwise, a load generator is stateless which can only evaluate lim-
ited metrics, such as bandwidth and packet loss. According to the classification
model in [17], load generators can be classified into the following three types
according to the abstraction level.

– Packet-level load generators. They do not maintain TCP state machine but
typically forge packets starting from layer 2 to upper layers. Generators such
as MoonGen [14], pktgen [1], Pktgen-DPDK [4] fall into this category.

– Flow-level load generators. Generators of this category generate packets orga-
nized as flows. They are capable of simulating the client-server interaction
that is closer to realistic TCP traffic.

– Application-level load generators. They simulate the behavior of a specific
application layer network such as HTTP protocol. Siege [9], Surge and wrk
[5] fall into this category.

Table 1. Existing load generators

Category Generators Stateful Advantages Limitations

Hardware-based Sprient [7] No Precise, High speed Expensive (>$100,000)

OSNT [16] No Precise, High speed Expensive (>$2,000)

BRUNO [10] No High throughput Limited usage scenarios

Software-based MoonGen No High throughput Only layer 2 support

Iperf [8] Yes Cross-platform No concurrency support

D-ITG [11] No Scalable Millisecond precision

Surge Yes Layer 7 support Low throughput

wrk Yes Flexible, scriptable Poor Scalability

To simulate workload in data center and IoT scenarios, we need a stateful
network load generator. Both flow-level load generators and some TCP-based
application-level load generators are stateful according to the explanation above.
Table 1 summarizes the advantages and limitations of the state-of-the-art load
generators. Hardware-based load generators require commodity hardware to run.
Usually, this category of generators brings better performance. And they are
typically more precise. However, they are expensive because of FPGA design
and associated hardware. And few of them achieve stateful load generation. Most
of the time, researchers prefer software-based generators, not only for economic
reasons but mainly for their flexibility. For example, they can be easily modified
and extended for specific research purposes [17]. MCC is also a software-based
solution. It is developed for three explicit goals:
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– Generating million-scale concurrent TCP connections.
– Sending packets with one-microsecond precision.
– Scaling in multicore systems.

In this paper, we make three key contributions. Firstly, we separate the con-
trol plane from the data plane in the load generation process. Secondly, we
propose a two-stage timer mechanism to obtain a higher precision of IDT. Com-
pared to the traditional application layer timing method, the error of the two-
stage timer mechanism has dropped below 1µs and the K-L divergence decreases
by more than 90%. Thirdly, we design a shared-nothing multi-threaded model,
making it possible for MCC to scale in multicore systems. According to experi-
ments in Sect. 4, MCC provides about 3 times higher throughput than previous
stateful solutions and shows almost linear scalability in multicore systems before
reaching the line rate.

The remaining part of this paper is organized as follows. Section 2 introduces
the background and motivation of our work. Section 3 describes the design and
implementation details. Section 4 presents the evaluation results. Finally, Sect. 5
concludes this paper.

2 Background and Motivation

We first review the major limitations of existing generator implementations and
proposed solutions. We then discuss our motivation towards a predictable and
scalable network load generator.

2.1 Imprecise Packet Inter Departure Time

Existing flow-level load generators have difficulty in generating network load with
microsecond precision. For it involves the correctness of the test system itself
[17], the generator is supposed to bring load as expected by users. However,
previous software-based solutions fail to simulate the flow-level network load
precisely. To transmit packets, the conventional generators naturally apply the
BSD socket API and timing functions provided by the Linux kernel. Which
meets the convenience and portability, but also brings imprecision problems. In
[18], Paredes et al. quantitatively point out that running applications with strict
real-time requirements like load generator in Linux, which is designed for general
purpose, will introduce large deviations.

According to related works, the problem results mainly for three reasons.
First, the scheduling policies in the operating system will aggravate the pre-
cision of timing functions [18]. For example, commonly used sleep() does not
provide a one-microsecond precision guarantee, especially when the operating
system performs the frequent process or thread scheduling. Then POSIX block-
ing I/O interfaces are not suitable for time-sensitive occasions [19]. For instance,
select() introduces at most 20µs error when dealing with timed I/O events. The
third reason is that the stack in Linux kernel imposes non-negligible processing
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overhead [17]. Which poisons the precision of timing operations running in the
application layer.

The essence of the imprecision problem is that the operating system itself
tightly couples the packet generation in the control plane with the packet trans-
mission in the data plane, while the flow control in Linux TCP only involves the
transmission process in the data plane [14]. Thus, load generators based on Linux
socket API inevitably introduces the overhead of performing control plane oper-
ation. This leads to the inconsistency between the actual packet transmission
time and the expected time [20].

2.2 Ossified Load Generation Path

Performance is another challenge faced by software-based load generators. As
mentioned before, most of the stateful load generators depend on the stack in
the Linux kernel. Yet the heavy stack not only flaws the precision of IDT but
results in the inefficiency of load generation process. Firstly, generators imple-
mented with BSD socket API suffer the overhead of system call, that is, the
program undergoes frequent user/kernel mode switching [22] when forging high-
concurrent network load. Furthermore, the efficiency of load generators built
with kernel’s stack can be weakened by memory copy. In addition, the heavy
stack is hard to modify and apply the new features. As a result, it is laborious
to optimize the load generation path.

The use of a high-speed I/O framework such as the DPDK [6] helps to deal
with the inefficiency problem. This model has inspired many new software-based
load generator implementations. They obtain extremely high transmission rate
and low latency at the expense of the ability to use the kernel’s stack. For
example, the Pktgen-DPDK which is the re-implementation of pktgen gets great
improvement of throughput. However, due to the lack of stack, DPDK-based
generators only support stateless load generation or simulation of simple TCP
connections. Fortunately, there is a trend on moving the network stack up to the
user level and bypassing the kernel recently. So we could make use of user-level
TCP stack to generate stateful network load.

2.3 Poor Utilization of Multicore CPUs

Existing software-based load generators show poor utilization of multicore archi-
tecture [21]. It limits the performance increase of generators. multicore CPUs
have been ubiquitous in data centers and even in mobile devices. Nevertheless,
previous solutions have difficulty in gaining definite performance improvement in
multicore systems. The experiment in [22] proves that ab [3] gets limited perfor-
mance gains with the increase of CPU cores. Additionally, the network has kept
up growing in size, complexity, and number of its users [15]. Massive network
load is needed when researchers evaluate and optimize the performance of net-
work products with the rapid development of the Internet. Good scalability in
multicore systems will not only lead to the capability of massive load generation
but also help to meet needs in different scenarios.
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Fig. 1. Load generation model of MCC

Now, the motivation of our work is clear. Can we design a stateful load
generator capable of generating connections with extremely high concurrency?
How much of a performance improvement can we get if we build such a system?
Can we get good scalability in multicore systems? Can we get a traffic model
consistent with the input pattern? To answer these questions, we implement
MCC, a predictable and scalable massive client load generator.

3 Design and Implementation

In this section, we first present the design of MCC’s core components of load
generation model. Next, we introduce MCC’s user-space load generation path.
Then we describe the two-stage timer mechanism. Finally, we explain how MCC
scales in multicore systems by introducing our shared-nothing multi-threaded
model.

Figure 1 shows the architecture of MCC’s load generation model. The whole
model consists of two parts indicated by arrows with different fillings. One is the
data path. The other is the control logic. Load Modeling plays a role in modeling
the distribution of traffic. The Controller consisting of three sub-modules con-
trols the behavior of concurrent TCP connections. Data Modeling is the process
of determining the payload of packets according to the result of Load modeling.
For example, the data module fills the payload with HTTP header fields when
carrying out HTTP benchmarking. The Connection Manager is responsible for
managing TCP connections. To manage high-concurrent connections efficiently,
we adopt Reactor non-blocking pattern here. Which is based on the epoll-like
event framework provided by user-level stack. During the generation process,
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Fig. 2. Comparison of kernel-based solution and MCC

data is delivered to the TCP stack via the Reactor model. Then stack encap-
sulates data into a packet and submits it to the I/O layer. For the purpose of
achieving one-microsecond IDT, we design a two-stage time mechanism to reach
one-microsecond precision.

3.1 User-Space Load Generation Path

MCC runs completely in userspace so that we are able to optimize the full path of
load generation expediently. Figure 2 presents the difference between MCC and
kernel-based solutions. Stateless generators directly send Ethernet packets with
the I/O library in layer 2. While stateful load generators rely on network stack
to maintain the TCP state machine. Rather than using socket API provided by
Linux kernel, MCC is built on top of user-level TCP stack powered by DPDK.
As a result, all of the MCC’s core components run in user space, including load
generation, stack processing, and packet I/O. Which makes it possible for us
to improve the efficiency of the whole load generation path. For example, to
eliminate timing error caused by packet processing in TCP stack, we create a
dedicated I/O thread at the end of the data path, which brings precise control
of transmission operation.

3.2 Two-Stage Timer Mechanism

MCC achieves predictable network load generation with our proposed two-stage
timer mechanism. As explained before, conventional stateful generators fail to
transmit packet precisely with the single application layer timer offered by the
operating system. MCC can achieve precise control of I/O operation. To do
this, we layout two timers with different granularity in application and I/O
layers respectively. Because of this, MCC is able to separate the control plane
from the data plane and move the time-sensitive control logic to the end of
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Fig. 3. Architecture of two-stage timer mechanism

the data path. As is shown in Fig. 3, the APP Timer controls the statistical
properties of network load and the transmission behavior of flows on a one-
second scale, such as the average bandwidth of the traffic within 10 seconds,
or which TCP connections send data in the next second. The I/O Timer is a
packet-level controller that adjusts the packet inter departure time (IDT) on a
one-microsecond scale.

Application Layer Timer. To eliminate the overhead caused by CPU’s
scheduling strategy, we adopt an approach of polling to implement the appli-
cation layer timer. As is shown in Fig. 4, the user adds events by calling user
API (e.g. sched(time, func), where a 2-tuple (timestamp, function) represents
a timed task). The Task Set is maintained with multi map in C++ STL. The
underlying implementation of multi map is a red-black tree, which helps to
reduce the overhead of inserting and deleting operations. The event loop checks
if any events have timed out by comparing the timestamp of RB-tree’s root with
the current clock. The corresponding callback function will be executed if the
timestamp of any task expires. In the actual experiment, the application layer
timer supports I/O operations with a maximum precision of 10µs and non-I/O
operations with 1µs.

I/O Layer Timer. In order to eliminate timing error introduced by network
stack, we add a novel I/O timer under the stack. As is shown in Fig. 3, we add
an intermediate queue, called Register between stack’s Ready Queue and NIC’s
Output Queue for the purpose of sending packets at the specified time. It is
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Fig. 4. Polling model of application layer timer

implemented with a lock-free queue for the sake of avoiding overhead caused by
synchronization operations. When encapsulated, the pointer of the packet will
be inserted into Register, then the I/O layer timer will send the packet to NIC
according to the information such as IDT of given load pattern. To do this, we
make a few changes to the code of user-level stack’s I/O module. We create a
dedicated thread under the TCP stack. The I/O thread itself runs in polling
mode and continuously checks the clock in the system. If the preset timer has
expired, a packet is taken from Register and sent out. In this controllable I/O
model, the processing delay of the network stack is completely eliminated. The
experiment in Sect. 4 showcases that this approach can bring the timing precision
of up to 1µs, which is quite close to the limit that software can achieve.

3.3 Shared-Nothing Multi-threaded Model

We design a shared-nothing multi-threaded model to take full advantage of the
multicore processor. We apply quite many optimization technologies to maximize
the scalability of MCC. As is shown in Fig. 5, Worker threads carry out basic
load generation logic described before. Thanks to user-level stack, we are able to
utilize shared-nothing data structures such as per-core listening queue and per-
core file descriptors. To reduce context switching between threads, we bind each
load generation thread and corresponding stack thread to a specific CPU core.
To better manage Worker threads, we create a Distributor thread responsible for
distributing tasks and gathering state information and statistics. We also make
use of the advanced features of the hardware platform. For example, we turn to
RSS [2] of modern network adapters, so that packets of the same flow will be
directed to the same receive queue in NIC. And each queue is bound to a specific
CPU core to cut down operations across different cores. These optimizations help
to mitigate the overhead caused by context switching and avoid Cache pollution.
Thus, MCC is capable of extending in multicore platforms without sacrificing
precision.

Message Passing Model. We use the message passing model for the com-
munication between the Distributor and Workers. The overhead introduced by
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Fig. 5. Shared-nothing multi-threaded model

inter-thread communication is likely to aggravate the efficiency of load genera-
tors and even becomes a performance bottleneck, so it is necessary to minimize
the cost of inter-thread communication. We choose the message passing model
upon consideration. Compare with the method like shared-memory, the message
passing model discards the assumption that threads have a global memory view.
It views communication between threads from the perspective of distributed
systems. Therefore, synchronization primitives, such as lock, atomic operation,
and memory barrier are not needed. In addition, it is also easy to scale in the
multi-threaded model. Actually, two queues are set between the Distributor and
each Worker. One for distributing load generation tasks, see Task Queue in the
Fig. 6, the other for feeding back statistics and state information is called Result
queue. The operations in relation to the queues are encapsulated into “push”
and “pull” in MCC.

This section introduces the load generation model and the multi-threaded
design of MCC. Particularly, the two-stage timer mechanism is one of the most
important features. Which provides packet-level timing precision. The multi-
threaded model further expands the performance of MCC, thereby achieving
the goal of generating ultrahigh throughput network load.
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Fig. 6. Message passing model between Distributor and Workers

4 Evaluation

The goal of MCC is to generate massive network load obeying expected distri-
bution and achieve performance scalability in multicore systems. In this section,
we evaluate how well MCC meets these goals. We use a machine with one 12-
core CPU (Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz), 48G RAM, and an Intel
82599ES 10GbE NIC to run load generator as a client, and a same type of
machine as a server.

4.1 Scaling in Multicore Architecture

As mentioned above, MCC is able to simulate the stateful network load. In this
part, We compare MCC with wrk when acting as an HTTP benchmark tool.
Considering wrk also supports multi-threaded model, we compare the through-
put of MCC and wrk under the different number of CPU cores when they request
a 64B HTML file. Two more CPU cores are used for I/O thread and Distribu-
tor in each experiment. The server side is an HTTP server built with user-level
stack’s BSD-like socket API. Figure 7 presents the result of requests per second
(RPS). The performance of MCC scales almost linearly with the increase of the
number of CPU cores before reaching the line rate. Furthermore, MCC provides
about 3 times throughput that of wrk with the same number of cores in the
actual experiment.

4.2 Precision of Different Timers

To verify the precision of MCC, we evaluate the influence of different timers
when load generators simulate constant bit rate (CBR) traffic. We compare the
effect of each timer by enabling different timers in each experiment. In fact,
we measure the average packet inter departure time and calculate the standard
deviation. The results are shown in Table 2, within which the “Linux” signifies
that the load generation application is built on top of the Linux kernel stack.
Naturally, Linux only provides application layer timers. Statistics in the table
indicate that stack processing in Linux kernel introduces 20µs timing error. It
is about 3µs for the user-level stack. According to the results, MCC is able to
generate network load with one-microsecond precision thanks to the two-stage
timer mechanism.
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Fig. 7. Performance of generators as a function of CPU cores

Table 2. Precision of generators when simulating CBR traffic

Timers Set IDT Average IDT Standard deviation

Linux sleep() 100µs 201.93µs 6.53

App timer 100µs 99.74µs 0.63

App timer 10µs 33.83µs 1.98

MCC App timer 10µs 9.52µs 0.67

App timer 1µs 3.37µs 0.24

App timer+I/O timer 1µs 1.03µs 0.04

4.3 Predictable Load Generation

With the help of controllable network I/O, MCC is able to generate load corre-
sponding to specific distributions. Some work on Internet load models declares
that traffic distributions in both data center and wide area network (WAN)
have self-similar characteristics [13]. The Poisson process can simulate this self-
similarity in a shorter time scale. Therefore, our concern is how well MCC gen-
erates the Poisson distribution load in this part. We replicate an average packet
rate of 100,000 packets per second, which is the Poisson process flow with an
average IDT of 10µs. Figure 8 shows that MCC can generate traffic quite close
to the analytical Poisson distribution when enabling both App timer and IO
timer.
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Fig. 8. Poisson load generation with timers in different layers

5 Conclusion

MCC is a predictable and scalable massive load generator designed for multi-
core architecture. We highlight the imprecision of software-based stateful load
generators which may influence the reliability of the test system. By introducing
a two-stage timer mechanism, MCC is able to separate the control plane from
the data plane and generate network load with one-microsecond precision. To
generate network load with ultrahigh rate, MCC is built on top of the user-level
stack and shows about 3 times throughput that of the kernel-based wrk. Finally,
the shared-nothing multi-threaded model makes it possible for MCC to win good
scalability in multicore systems.

MCC is open-source and can be found at https://github.com/acs-dcn/MCC.
In the future, we will expand MCC to distributed systems to generate much more
network load. In addition, we plan to perfect MCC to support more application
layer protocols to meet more needs.
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Abstract. Many scientific computing applications generate streams
where message sizes exceed one megabyte, in contrast with smaller mes-
sage sizes in enterprise contexts (order kilobytes, often XML or JSON).
Furthermore, the processing cost of messages in scientific computing
applications are usually an order of magnitude higher than in typical
enterprise applications. Frameworks such as Apache Spark offer high
throughput processing of streams with such ‘enterprise’ characteristics,
as well as scalability, with high resilience and many other desirable fea-
tures. Motivated by the development of near real-time image process-
ing pipelines for roboticized microscopy, we evaluate the suitability of
Apache Spark for streams more typical of scientific computing appli-
cations, those with large message sizes (up to 10 MB), and heavy per-
message CPU load, under typical stream integrations. For comparison,
we benchmark a P2P stream processing framework, HarmonicIO, devel-
oped in-house. Our study reveals a complex interplay of performance
trade-offs, revealing the boundaries of good performance for each frame-
work and integration over a wide domain of application loads. Based
on these results, we suggest which are likely to offer good performance
for a given load. Broadly, the advantages of Spark’s rich features makes
its performance sensitive to message size in particular, whereas the sim-
plicity of HarmonicIO offers more robust performance, and better CPU
utilization.
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1 Introduction

Several stream processing frameworks have gained wide adoption over the last
decade or so. Apache Flume is designed for the analysis of server application
logs. Apache Spark improves upon the Apache Hadoop framework [1] for dis-
tributed computing, and was later extended with streaming support [18]. Apache
Flink [5] was later developed primarily for stream processing. These frameworks
boast excellent performance, scalability, data security, processing guarantees,
and efficient, parallelized computation; together with high-level stream process-
ing APIs (augmenting familiar map/reduce with stream-specific functionality
such as windowing). These features are attractive for scientific computing –
including imaging applications and simulations in the life-sciences.

Previous studies have shown that these frameworks are capable of processing
message streams on the order of 1 million or more messages per second, but focus
on enterprise use cases with textual rather than binary content, and of message
size perhaps a few KB. Additionally, the computational cost of processing an
individual message may be relatively small (e.g. parsing JSON, and applying
some business logic). By contrast, in scientific computing domains messages can
be much larger (order of several MB, in medical imaging and systems biology
applications [4]). In other scientific computing applications, message sizes can
be smaller [10].

Due to the different design priorities for streaming frameworks, a single
benchmark will not be adequate to cover various features. However, an alter-
native approach is to use a standard use case to compare different frameworks.
The presented study highlights the needs of scientific communities, importance of
streaming frameworks for scientific workloads and the difference in the inherent
nature of the scientific datasets as compared to the enterprise context.

We selected Apache Spark for this study because of its popularity, and to
allow comparison to earlier studies. Its core RDD API [17] allows for determin-
istic re-computation in cases of error and node failure, various high-level APIs
which make such details transparent to the application developer. Apache Spark
can scale successfully to 1000 s of nodes [16]. Spark Streaming was a later addi-
tion, leveraging the batch functionality for a streaming context by creating a new
batch every few seconds (the batch interval). As with batch operations, data is
further subdivided into partitions for distribution and scheduling.

Our motivating use case is the development of a cloud pipeline for the pro-
cessing of streams of microscopy images. Existing systems for working with such
datasets have largely focused on offline processing: our online processing (pro-
cessing the ‘live’ stream), is relatively novel in microscopy. Electron microscopes
generate high-frequency streams of large, high-resolution image files (message
sizes 1–10 MB), and feature extraction is computationally intensive. This is typ-
ical of many scientific computing use cases: where files have binary content, with
execution time dominated by the per-message ‘map’ stage. Our pipeline consists
of a single ‘map’ operator. Thereby, we investigate how well the performance of
enterprise stream processing frameworks (such as Apache Spark) translates to
loads more characteristic of scientific computing, for example, microscopy image
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stream processing, by benchmarking under a spectrum of conditions representa-
tive of both. We do this by varying both the processing cost of the map stage, and
the message size to, expand on previous studies. For comparison, we measured
the performance of HarmonicIO [14] – a research prototype with a which has a
P2P-based architecture, under the same conditions. This paper contributes:

– A performance comparison of an enterprise grade framework (Apache Spark)
for stream processing to a streaming framework tailored for scientific use cases
(HarmonicIO).

– An analysis of these results, and comparison with theoretical bounds – relat-
ing the findings to the architectures of the framework when integrated with
various streaming sources. We quantify performance under different applica-
tion loads.

– Benchmarking tools for Apache Spark Streaming, with tunable message size
and CPU load per message – to explore this domain as a continuum.

– Recommendations for choosing frameworks and their integration with stream
sources, especially for atypical stream processing applications, highlighting
some limitations of both frameworks especially for scientific computing use
cases.

2 Background: Stream Processing of Images
in the HASTE Project

High-throughput [15], and high-content imaging (HCI) experiments are highly
automated experimental setups which are used to screen molecular libraries and
assess the effects of compounds on cells using microscopy imaging. Work on
smart cloud systems for prioritizing and organizing data from these experiments
is our motivation for considering streaming applications where messages are rel-
atively large binary objects (BLOBs) and where each processing task can be
quite CPU intensive. In the HASTE project1 – a collaboration between Uppsala
University, Stockholm University, Vironova AB and AstraZeneca, we are inves-
tigating methodology for near real-time filtering and control of image streams
from such HCI platforms.

Online analysis of the microscopy image stream allows both the quality of the
images to analyzed (highlighting any issues with the equipment, sample prepa-
ration, etc.) as well as detection of characteristics (and changes) in the sample
itself during the experiment. Industry setups for high-content imaging can pro-
duce 38 frames/second with image sizes on the order of 10 MB [8]. These image
streams, like other scientific use cases, have different characteristics than many
enterprise stream analytics applications: (a) messages are binary (not textual,
JSON, XML, etc.), (b) messages are larger (order MBs, not bytes or KBs), and
(c) the initial map phase can be computationally expensive, perhaps dominating
execution time.

1 http://haste.reserach.it.uu.se.

http://haste.reserach.it.uu.se
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Our goal is to create a general pipeline able to process streams with these
characteristics (and image streams in particular). Apache Spark Streaming
(ASS) has many of the features needed to build such a platform, with rich APIs
suitable for scientific applications, and proven performance for small messages
with computationally light map tasks. However, it is not clear how well this per-
formance translates to the regimes of interest to the HASTE project. This paper
explores the performance of ASS for a wide range of application characteristics,
and compares it to a research prototype streaming framework HarmonicIO.

3 Existing Benchmarking Studies

Several studies have investigated the performance of Spark, Flink and related
platforms. However, these studies tend use small messages, with a focus on sort-
ing, joining and other stream operations. Under an experimental setup modeling
a typical enterprise stream processing pipeline [6], Flink and Storm were found
to have considerably lower latencies than Spark (owing to its micro-batching
implementation), whilst Spark’s throughput was significantly higher. The input
was small JSON documents for which the initial map – i.e. parsing – is cheap,
and integrated the stream processing frameworks under test with Kafka [7] and
Redis [12] making it difficult to get a sense of maximum performance of the
streaming frameworks in isolation. In their study the data is preloaded into
Kafka. In our study, we investigate ingress bottlenecks by writing and reading
data through Kafka during the benchmarking, to get a full measurement of sus-
tained throughput.

Other studies follow a similar vein: [11] used small messages (60 bytes, 200
bytes), and lightweight pre-processing (i.e. ‘map’) operations: e.g. grepping and
tokenizing strings, with an emphasis on common stream operations such as sort-
ing. Indeed, sorting is seen as something of a canonical benchmark for distributed
stream processing. For example, Spark previously won the GraySort contest [16],
where the frameworks ability to shuffledata between worker nodes is exercised.
Marcu et. al. (2016) offer a comparison of Flink and Spark on familiar BigData
benchmarks (grepping, wordcount), and give a good overview of performance
optimizations in both frameworks.

HarmonicIO, a research prototype streaming framework with a peer-to-peer
architecture, developed specifically for scientific computing workloads, has pre-
viously shown good performance messages in the 1–10 MB range [14]. To the
authors’ knowledge there is no existing work benchmarking stream processing
with Apache Spark, or related frameworks, with messages larger than a few KB,
and with map stages which are computationally expensive.

4 HarmonicIO

HarmonicIO [14] is a peer-to-peer distributed processing framework, intended
for high throughput of medium and large messages. HarmonicIO’s smart archi-
tecture will favor P2P message transfer, but fall back to a queue buffer when
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necessary to absorb fluctuations in input or processing rate. Messages are pro-
cessed in a simple loop: pop a message from the master queue (if any exists)
otherwise wait to receive a message directly from the streaming source over
TCP; process it; and repeat. Per-node daemons aggregate availability informa-
tion at the master, from where clients query the status of available processing
engines. The master node manages the message queue.

We chose HarmonicIO for its simple P2P architecture. Its APIs are a simple
abstraction around TCP sockets (in contrast to Apache Spark). Its container-
based architecture provides a convenient way for scientists to encapsulate com-
plex (and often fragile) software with a variety of dependent libraries, models and
datasets. Docker containers are a useful ‘unit’ of scientific computing code. Being
a research prototype, it lacks many features of more mature frameworks error
handling and guaranteed delivery. The simplicity of the implementation makes it
easily adoptable and extensible; and configuration is much simpler than Apache
Spark.

5 Theoretical Bounds on Performance

For a range of message sizes and CPU costs of the map function, we consider
the theoretical performance of an ‘ideal’ stream processing framework which
exhibits performance equal to the tightest bound, either network or CPU, with
zero overhead; across this domain. In this article we investigate how close the
frameworks under study can approach these bounds over our domain (Fig. 1).

Fig. 1. Schematic of parameter space for this study, showing the processing cost of the
map function, and the message size.

A - Small message size, large processing cost - CPU Bound: For suffi-
ciently large processing cost in relation to message size, performance will be CPU
bound. Relative performance of the frameworks in this region will be determined
by their ability to utilize CPU, and minimizing processing overheads. This regime
would be typical of scientific computing applications involving e.g. a simulation
step as part of the map stage.
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B - Large message size, small processing cost - Network Bound: For suf-
ficiently large message size, performance will be network bound. In this region,
relative performance between frameworks will be determined by the network
topology and overheads. This regime would be typical for scientific comput-
ing applications involving relatively simple filtering operations on binary large
objects (BLOBs), such as filtering of massive genomics datasets [3].

C - Small messages, small processing cost: In this regime processing fre-
quency should be high. This region will expose any limitations on the absolute
maximum message frequency for the particular integration and thus may be
‘framework bound’. Well-performing frameworks may be able to approach the
network bounds; with very high frequencies. This regime would be typical for
the type of enterprise applications studied in previous benchmarks.

A-B Boundary Region - Large messages, large processing costs: Near
this boundary (indicated by the dotted line), processing frequency will be low.
The large message size means that network speed will bound the overall fre-
quency, whilst high processing costs means that CPU load will also bound the
message frequency. Theoretically, the exists a boundary where these two bounds
are equal. Overheads in network communication and CPU load will influence
exactly where this lies.

6 Methodology

Varying message size (100 bytes – 10 MB), and CPU cost for processing each
message (0–1 s per message) allowed us to sample the performance of the stud-
ied streaming frameworks over a parameter space with settings ranging from
highly CPU-intensive workloads to highly data-movement intensive workloads -
capturing use cases typical of both enterprise and scientific computing.

The microscopy use case is a particular focus: message (image) sizes 1–10 MB,
with a CPU cost profiled at around 100mS for very simple analysis (consistent
with [14]) – CPU cost would depend on the specific features being extracted,
and could be significantly higher. We measure maximum sustained frequency
(i.e throughput, messages per second) at each point (message size, CPU), for
HarmonicIO, and each of the Spark stream source integrations explained below:

Spark + TCP Socket: TCP sockets are a simple, universal mechanism, easy
to integrate into source applications, with minimal configuration.

Spark + Kakfa: Kafka is a stream processing framework in its own right:
Kafka producers write messages onto one end of message queues, which are
processed by Kafka consumers. Kafka is commonly used in conjunction with
Spark Streaming in enterprise contexts, to provide a resilient and durable buffer,
allowing Spark applications to be restarted without interrupting the streaming
source. We deploy a single Kafka server as this most resembles the HarmonicIO
deployment. The newer Direct DStream integration approach with Kafka is used
in this study. Under this integration, messages are transferred directly from the
Kafka server to Spark workers.
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Spark + File Streaming: Under this approach, Spark will process new files in
each batch interval. We configure an NFS share on the streaming source node.
This allows direct transfer of file contents from the streaming source node, to the
processing machines – similar to the TCP socket approach used in HarmonicIO.
We do not use HDFS, a distributed filesystem intended replicated storage of
very large (append-only) files – many GBs; TBs, this makes it inappropriate for
the files used in this study, which are at most 10 MB. Indeed, other distributed
filesystems wouldn’t offer us the P2P message transfer. Nor did we not use
Cassandra, a distributed wide-column store, as we exceed the “single digits of
MB” being suggested as a sensible limit [2].

7 Experimental Setup and Benchmarking Tools

Fig. 2. Architecture / Network Topology Comparison between the frameworks and
streaming source intregrations – focusing on major network traffic flows. Note that with
Spark and a TCP streaming source, one of the worker nodes is selected as ‘receiver’ and
manages the TCP connection to the streaming source. Note the adaptive queue- and
P2P-based message processing in HarmonicIO. Neither the monitoring and throttling
tool (which communicates with all components) are shown, nor is additional metadata
traffic between nodes (for scheduling, etc.).

To explore the (message size, CPU cost per message) parameter space we devel-
oped benchmarking tools2 for Spark and HarmonicIO, able to process synthetic
messages, and generate synthetic CPU load. Figure 2 shows the various pipelines
showing of HarmonicIO, and Apache Spark Streaming with file, Kakfa and TCP
based integrations. The arrows show the busy network communication. For each
setup, 6 stream Processing VMs were used, each with 8 VCPUs and 16 GB RAM
(1 master, 5 workers). For the streaming source VM we used a 1 VCPU, 2 GB
RAM instance. These resources are similar to the experimental setup of [16],
where 40 cores were used. The maximum network bandwidth monitored using
2 Available at: https://github.com/HASTE-project/benchmarking-tools.

https://github.com/HASTE-project/benchmarking-tools
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iperf was 1.4Gbit/s. Ansible scripts used to deploy the cluster are at: https://
github.com/HASTE-project/ansible-benchmarking.

Below, we describe the details of the experimental setup for each frame-
work, and the approach used for determining the maximum frequency message
throughput.

7.1 Apache Spark

Messages are generated by a streaming source application, consisting of the CPU
pause (as a string), padded up to the specified message size, so that both parame-
ters (CPU load and message size) can be controlled by the throttling application,
via a REST API. Inside the Spark application, we used the getThreadCpuTime()
method of the ThreadMXBean3 from JavaSE, which returns the total time spent
executing by the thread in both user and system mode (excluding blocked and
waiting times), polling this until the ‘CPU load’ parameter from the message has
elapsed. Hence, we simulate a CPU-intensive message processing step, revealing
the CPU overhead of the different frameworks.

To determine the maximum throughput for each (fixed (message size, CPU
cost) pair, we adopt the approach of gradually increasing the message frequency
until a bottleneck is detected somewhere in the pipeline, then a binary search
to find the maximum. A monitoring and throttling tool, monitors our streaming
source application and the spark application, through a combination of queries
to Spark’s REST APIs and real-time log file analysis. A simplified version of this
algorithm is as follows:

1. Streaming begins at a pre-defined low initial frequency.
2. After 13 batch intervals, the fractional of maximum load is estimated from

various metrics.
3. The frequency is scaled up (always increasing by at least 1 Hz), based on the

estimated load.
4. This continues until the metrics indicate that the maximum frequency has

been exceeded.
5. A binary search to find the maximum message frequency, i.e. the greatest

integer frequency where processing remains stable.

The scaling factors used for the initial geometric progression are chosen based
on the load, to avoid completely overloading the framework (and crashing it),
whilst increasing towards maximum frequencies in a timely fashion. This process
is repeated for the (message size, CPU cost) parameter sweep. We used a batch
interval of 5 s, and a micro-batch interval of 150 mS. Experimenting with other
values had little impact on throughput. For the Spark File Streaming investiga-
tion, files are shared on the streaming server with NFS. Maximum throughput
is reached when a bottleneck occurs somewhere in the system, as detected by
the throttling tool: (a) ASS taking too long to process messages, (b) a network

3 https://docs.oracle.com/javase/7/docs/api/java/lang/management/ThreadMXBea
n.html.

https://github.com/HASTE-project/ansible-benchmarking
https://github.com/HASTE-project/ansible-benchmarking
https://docs.oracle.com/javase/7/docs/api/java/lang/management/ThreadMXBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/ThreadMXBean.html
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bottleneck at the stream source, (c) for file streaming, ASS is taking too long to
perform a directory listing.

7.2 HarmonicIO

For HarmonicIO, the maximum throughput is determined by measuring the time
to stream and process a predefined number of messages for the given parameters.
We created a separate benchmarking application for HarmonicIO, which reads
messages in our format. As with Spark, metadata describing the amount of CPU
load is embedded in each message.

8 Results

Table 1. Maximum Message Processing Frequencies (Hz) of Apache Spark (under
TCP, File streaming, and Kafka integrations), and HarmonicIO; in that order. These
results are visualized in Fig. 3. There is no data for Spark + TCP for message sizes
of 1 MB or more, as it did not perform reliably in this domain. The highest message
frequency in each case is shown in bold. † 0.0 denotes nil CPU load.

CPU Cost Message Size (bytes)

1.0 secs 14, 43 11, 44 12, 41 13, 38 15, 40 -, 41 -, 17 -, 11

7, 39 7, 40 7, 39 8, 40 8, 39 7, 37 6, 29 4, 16

0.5 secs 30, 39 31, 43 32, 39 30, 42 31, 39 -, 35 -, 18 -, 12

23, 79 24, 78 26, 73 24, 76 21, 78 20, 54 11, 30 6, 17

0.2 secs 85, 41 83, 44 81, 39 82, 43 88, 37 -, 40 -, 18 -, 12

88, 185 92, 172 92, 192 90, 185 72, 166 49, 121 12, 28 7, 15

0.1 secs 182, 41 180, 41 164, 40 162, 38 156, 36 -, 35 -, 15 -, 13

201, 277 208, 238 210, 263 207, 312 163, 227 63, 128 12, 32 7, 16

0.05 secs 336, 39 326, 42 327, 40 351, 38 306, 43 -, 33 -, 16 -, 12

466, 454 463, 416 471, 357 438, 454 277, 333 55, 128 12, 34 6, 15

0.02 secs 884, 42 859, 35 904, 37 838, 37 402, 42 -, 37 -, 20 -, 12

1K, 555 1K, 500 1K, 454 1K, 500 587, 500 61, 125 10, 32 6, 16

0.0 secs † 0.32M, 32 86K, 40 22K, 40 5K, 38 504, 42 -, 34 -, 15 -, 12

49K, 625 63K, 625 35K, 625 6K, 555 598, 500 54, 125 12, 33 7, 16

The maximum frequencies achieved by each framework (and stream integration
setup), according to message size and per-message CPU load, are show in Fig. 3
and Table 1. A subset of these results is presented again in Fig. 4 and Fig. 5, where
results for particular CPU loads are shown in relation to CPU and network-
theoretical bounds. The results in summary:

Apache Spark Streaming with TCP: This integration achieves very high
frequency when message size and CPU load are small, consistent with previous
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Fig. 3. Performance of the frameworks and stream integrations over the domain under
study. The shading shows the message frequency as a fraction of the best performing
framework at that position – lighter areas indicate lower message frequency. Compare
with Fig. 1. There is no data for Spark + TCP for message sizes of 1 MB or more, as
it did not perform reliably in this domain.

Fig. 4. Maximum stream processing frequencies for Spark (with TCP, File Streaming,
Kafka) and HarmonicIO by message size; for a selection of CPU cost/message.

studies. For 100 byte messages without CPU load; the pipeline was able to
process messages at frequencies approaching 320KHz, meaning around 1.6M
messages were processed by Spark in a 5 s batch. This can seen in the extreme
lower-left of Fig. 3, and the results shown in Fig. 4A. But performance degraded
rapidly for larger message sizes, and under our benchmarks, it couldn’t reliably
handle messages larger than 105 bytes at any frequency.

Apache Spark Streaming with Kafka: This streaming pipeline performed
well for messages less than 1 MB, and CPU loads less than 0.1 s/message, at the
bottom-left of Fig. 3. Away from this region, relative performance degrades.

Apache Spark Streaming with File Streaming: This integration performed
efficiently at low frequencies – in regions tightly constrained by network and
CPU-theoretic bounds (the top and right of Figs. 1 and 3, and the results for
higher message sizes in Fig. 4).

HarmonicIO: Fig. 3 shows this was the best performing framework for the
broad intermediate region of our study domain, for medium-sized messages
(larger than 1.0 MB), and/or CPU loads higher than 0.05 s/message. It matched
the performance of file-based streaming with Apache Spark for larger messages
and higher CPU loads.
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Fig. 5. Maximum frequency by message size, for Spark (with TCP, File Streaming,
Kafka) and HarmonicIO, for nil CPU load; normalized as a fraction of the best per-
forming framework for the particular parameter values.

9 Discussion

Maximum message throughput is bound by network and CPU bounds, which
are inversely proportional to message size and CPU cost respectively (assuming
constant network speed, and number of CPU cores; respectively). The relative
performance of different frameworks (and stream integrations) depend on these
same parameters. Figure 3 shows that all frameworks also have specific, well-
defined regions where they each perform the best. We discuss these regions in
turn, moving outwards from the origin of Fig. 3.

Close to the origin, theoretical maximum message throughput is high,
Fig. 4A, Spark with TCP streaming is able to outperform Kafka for at very high
frequencies. Both configurations involve some form of message forwarding (as
shown in Fig. 2.), so throughput is bound at half the network link speed (half for
incoming messages, half for outgoing). Consequently, Fig. 4A shows that Spark
with neither Kafka nor direct TCP can approach the theoretical network bound.

Moving further from the origin, into the region with CPU cost of 0.2–0.5
s/message and/or medium size (1–10 MB) – HarmonicIO performs better than
the Spark integrations under this study. It exhibits good performance – trans-
ferring messages P2P transfer yields good use of bandwidth (when the messages
are larger than 1 MB or so). Similarly, when there is considerable CPU load,
its simplicity obviates spending CPU time on serialization, and other overheads
(under the Kafka integration, some of the 48 cores are used by the Kafka server).

HarmonicIO achieved a maximum message transfer rate of 625 Hz, hence per-
forming poorly for the smallest, lightest messages (see Fig. 3). Figure 4A clearly
shows this frequency bound – making it unsuitable for enterprise use cases with
high message frequencies. For large messages, and heavy CPU loads, this inte-
gration is able to approach closely to the network and CPU bounds – its able to
make cost-effective use of the hardware. For the very largest messages, and the
highest per-message CPU loads, the network and CPU bounds are very tight,
and overall frequencies are very low (double digits). In these regions HarmonicIO
performs similarly to Spark with File Streaming. Both approaches are able to
tightly approach the network and CPU theoretic bounds – as shown in Fig. 4.
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Where the message frequency is theoretically bounded to double-digit fre-
quencies, Spark’s File Streaming integration is very efficient, and is the best
performing framework at very high CPU loads (the top of Fig. 3). Each worker
directly fetches the files it needs from the streaming source machine, making
good use of network bandwidth. The implementation polls the filesystem for new
files, which no doubt works well for quasi-batch jobs at low polling frequencies –
order of minutes, with a small number of large files (order GBs, TBs, intended
use cases for HDFS). However, for large numbers of much smaller files (MBs,
KBs), this mechanism performs poorly. For these smaller messages, network-
bound throughput corresponds to message frequencies of, say, several KHz (see
Fig. 4). There frequencies are outside the intended use case of this integration,
and the filesystem polling-based implementation is cumbersome for low-latency
applications. At the time of this study, the FileInputDStream was not intended
to handle the deletion of files during streaming4.

10 Conclusions

In summary, for very small messages (and lightweight processing), Spark with
Kafka performs well (as does Spark with TCP streaming). For quasi-batch pro-
cessing of very large files (at large polling intervals), Spark with file streaming
integration performs well. These are the two typical enterprise stream analytics
contexts: low-latency, high-frequency processing of small messages, and high-
latency quasi-batch file-based processing of large message batches such as log
files. In the middle region – messages 1–10 MB, and CPU intensive processing of
small messages (>0.1 s/message) HarmonicIO is able to outperform the Spark
streaming approaches benchmarked in this study.

This study has confirmed Spark’s excellent performance, consistent with ear-
lier studies, albeit for use cases with small message size, and low message pro-
cessing cost – and quasi-batch loads at low frequencies. But, we find that these
‘islands’ of excellent performance do not generalize across the wider domain of
use cases we studied. It was difficult for Spark to achieve good performance
in the 1–10 MB message size range (typical of microscopy image analysis, for
example), with the integrations chosen for this study. By contrast, HarmonicIO
performs well in this region, with good hardware utilization at low frequencies –
whilst not matching Spark for maximum frequency for the small message/cheap
map function use case. Its simplicity (and comparative lack of features) makes
its performance less sensitive the parameters of the application load.

This paper has quantified the performance of Spark integrations, in compar-
ison to HarmonicIO; and theoretical bounds. Our results show the importance
of choosing a stream source integration appropriate for the message size and
required frequency. We hope our findings prove useful to designers of stream
processing applications, especially atypical workloads – including microscopy
image processing.

4 Now implemented, see: https://issues.apache.org/jira/browse/SPARK-20568.

https://issues.apache.org/jira/browse/SPARK-20568
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Abstract. This paper discusses some problems the benchmark researches should
pay attention to from the perspective ofMetrology. Metrology is about the science
of measurement, and it is considered as the foundation of industry development,
for you have to measure it before you know what level it reaches. Metrology
has a series of mechanisms to ensure the attributes of the measurement results,
including Accuracy, Traceability, consistency and legality. Benchmark is widely
used to evaluate the information technology products and helps the users to choose
the products they need, and if absorbing the ideas ofMetrology research during the
designing, developing and application procedures of the benchmark, the quality
of the measurement result of the benchmark will be improved greatly and become
more authoritative.
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1 Introduction

As is said by the chairman of Tencent Company that the future is dealing with big data
on the cloudy computing platform by AI technology. The booming development of Big
data, Cloud computing, and AI technology promote the social development and make
people’s lives much easier and smarter. In order to meet the tremendous application
requirements in above areas, A lot of tools or products in above areas are provided for
the users, for example, some big data open source projects as Hadoop, MapReduce,
Hive, ClouderaImpala, NoSQL database, Spark and GraphLab, and different AI frames
as TensorFlow, Caffe and PyThorch. While faced with so many choices, the users often
feel confused to make a proper decision if there is no an appropriate benchmark to
evaluate those tools or products. And the tools developers and products manufacturers
also need a benchmark to learn their tools or products so as to improve their products or
introduce them to their users. This situation gives rise to great pressure on benchmark
corresponding specific areas.

Benchmark is critical to the development of related industries for the following two
reasons:
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1) To the users: it provides an approach to help the users to understand a specific tool
or product and make it possible to compare it with others, which can help the users
to make a better choice according to their requirement indeed.

2) To the manufacturers: benchmark helps them to find out the advantages and dis-
advantages of their products, and finally they can optimize their performance by
tuning with a clear target.
Many researchers devote themselves to develop benchmarks that can evaluate prod-
ucts objectively and fairly in specific area, and some principles are generalized on
how to develop a good benchmark. Some of features that a good benchmark should
own are put forward by [1] based on the point of view of [2] as following:

1) Representative:Big data, Cloudy Computing and AI are widely used in many field,
it is prohibitively costly and time consuming to create a comprehensive benchmark
suitable for all those fields. So it is a great challenge to improve the field coverage
of the benchmark while keeping it easy enough. The representative of a benchmark
should be reflected by the workload, the testing data and the software stack of it.

2) Portability: Benchmarks are used not only to evaluate the portraits of a specific
product, but also to compare different products. So the benchmark chosen should
be able to run on different platform with the same algorithm, so as to yield the same
output to the same input.

3) Scalability: The benchmarks for Big data, Cloudy Computing and AI need huge
amount of data, while it is impossible to obtain real data sets for they are treated
as important trade secrets. So the benchmarks should provide scalable data sets and
workloads according to the portraits of the product to be measured.

4) Comprehensibility: A good benchmark should be easy to understand, deploy and
evaluate, and the result of evaluation can used to direct the evaluation, improvement
and optimization of the measured product.

These basic principles mentioned above are followed by a lot of benchmark
researchers when designing and develop a benchmark applied in a specific field. Are
those principles enough for a good benchmark? This paper provide a new perspective
to review the creation of a good benchmark, and puts forward some principles it should
followed from the perspective of the perspective of Metrology which focuses on the
quality of the measurement result.

2 Related Work

For the importance of promoting industrial development, many benchmarks are provided
in Big Data, Cloud Computing and AI fields. They are illustrated as following:

BigBench [3] is an offline and End-to-End Big Data benchmark to be used for
DBMS and MapReduce systems, which is based on TPC-DC and adds some data types
of semi-structure and non-structure.

CloudSuite [4] is a suite of benchmarks used for Scale-out workloads, which can
be used for machine learning task running on Hadoop frame and data services based on
Yahoo Cloud service standards.
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HiBench [5] is a suite of benchmarks put forwarded by Intel for MapReduce appli-
cations, which mainly includes some micro benchmarking programs, workload related
machine learning or Cloud services, and HDFS benchmark.

CALDA [6] is a benchmark for Hadoop and RDBMS system. It provides a series of
workloads for data analysis and its evaluation targets include index creating time, search
time and system loading time.

YCSB [7] is a benchmark for NoSQL which focuses on the performance and scala-
bility of Cloud service system. It is mainly used to test pressure, such as the throughput
when the database under testing is reading, or writing or updating concurrently.

AMP [8] Benchmarks is a Big Data benchmark being used for real-time analysis
applications which is put forwarded by UC Berkeley AMP Lab. It is mainly used to test
the system response time of a series of relation queries under different data size.

LinkBench [9] is a customizable and scalable benchmark for social graph database,
which is developed based on real social network Facebook. Its evaluation targets mainly
include the delay and throughput when querying and updating the system in real time.

CloudBM [10] is a benchmark for Cloud data management system which is put
forward by Renmin University of China. It provides a set of performance evaluation
indicators by taking Telecom business as background.

A series of AI benchmarks are proposed as follows. Fathom [11] provides eight deep
learning workloads implement with TensorFlow. DeepBench [12] consists of four oper-
ations involved in training deep neural networks. BenchNN [13] develops and evaluates
software neural network implementations of5 high-performance applications from the
PARSEC Benchmark Suite. DNN-Mark [14] is a GPU benchmark suite that consists of
a collection of deep neural network primitives. Tonic Suite [15] presents seven neural
network workloads that use the DjiNN service. DAWNBench [16] is a benchmark and
competition focusing on end-to-end training time to achieve a state-of-the-art accuracy
level, as well as inference time with that accuracy.

Most benchmarks above either are designed for specific application fields or software
stack or lack reasonable grounds for choosing workload. Aiming to overcome the limits
mentioned above, [17] proposes a scalable benchmarking methodology that uses the
combination of one or more classes of units of computation performed on different
initial or intermediate data inputs to represent diversity of big data and AI workloads.
And following this methodology, [17] presents a unified big data and AI bench–+3.mark
suite—BigDataBench 4.0, which is publicly available from http://prof.ict.ac.cn/BigDat
aBench.

Currently, most benchmark researches focus on the implementation at the methodol-
ogy level and application level, while pay little attention to the quality of the evaluation
results. Are these results accurate and stable enough?What factors affect the results, and
how to evaluate them so as to reflect them in the results? Comprehensive and objective
evaluation results have more authoritative to be used in some serious situations such as
arbitration or trading, are easier to be trusted by users, and can help understanding the
object under evaluation deeply. How to obtain comprehensive and objective benchmark
evaluation results? Some methods and opinions are suggested from the perspective of
Metrology in the following sections and some examples in our researching work are also
provided along to illustrate the methods and opinions mentioned here.

http://prof.ict.ac.cn/BigDataBench
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3 The Perspective of the Metrology

Maybe “Metrology” is unfamiliar to many people, and should be introduced and
explained first.

What is Metrology: Metrology is about the science of measurement, and it is consid-
ered as the foundation of industry development, for you have to measure it before you
know what level it reaches. It focuses on the preserving and reproducing of the measure-
ment units, the technologies of accurate measurement and the uncertainty assessment
of the measurement result. Its final goal is ensuring the units to be unified and the mea-
surement result to be accurate and reliable. There are some features the measurement
results should have from the perspective ofMetrology, including Accuracy, Traceability,
consistency and legality. AndMetrology has a series of mechanisms to ensure these fea-
tures. Besides the features mentioned above, Metrology also requires the measurement
results to be stable and repeatable. The features mentioned here will be illustrated as
follows in order to help understanding them.

A. Accuracy
As a basic feature of Metrology, accuracy is used to characterize the proximity of the
measured value to the true value. Strictly speaking, Accuracy means that not only the
measurement value but also the uncertainty of that value are need to be provided when
giving a measurement result. Measurement uncertainty is a parameter associated with
measurement result, being used to characterize the dispersion of themeasurement results.
Usually, it is expressed as standard deviation σ (or kσ) or half width of a given confidence
interval.

B. Consistency
The consistency means the consistency of the measurement units and measurement
results. There are a series of units defined in SI international unit system, which is
widely used in worldwide, such as Meter, Kilogram, Ampere, Kelvin, Lumen, Second
and Moore. SI units and derived units related with them should be prior choice during
measuring. Measurement results consistency means as long as the relevant measurement
requirements are met, the Measurement results should be consistent with the given
uncertainty no matter they are carried out by anyone, at anytime, at anywhere, by using
any method or any instrument.

C. Traceability
The measurement value must come from a single source, otherwise, it is bound to cause
technical and application confusion and result in serious consequence. Each unit in
SI system has a unified and clear definition, based on real object before and based on
physical constants recently. There is ameasurement basic standard saving or reproducing
a specific unit in one country, and all measurement value related to that unit can be traced
to that measurement basic standard so as to make the measurement technology and
people’s understanding unified relatively and guarantee the accuracy and consistency of
the measurement result.
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D. Legality
Metrology aims to ensure the units to be unified and the measurement result to be
accurate and reliable, which should be guaranteed by not only technical means but also
law and regulations, especially for those measurement activities being important for
national welfare and people’s livelihood, such as those in society safety, medical health
care, environmental protection and trade settlement fields. Some law and regulations are
enacted to regulate the measuring processes, the choice of methods or instruments and
the processing methods of the measurement results, so as to guarantee the measurement
results rigorous and reliable.
In the following section, some of our researches and practices about benchmark will

be introduced from the Metrology perspective.

4 Our Research and Practice

Cloud Computing is charged by usage amount, that means its measurements involve
trade settlement, so it is urgent to create a reliable, stable and scalable benchmark for
it from the perspective of the Metrology. We develop a suit of Metrology test tools for
calculation performance of Cloud Computing unit, which include 30 sets of workloads
and corresponding test data set. These workloads selected and developed based on the
principle of stable, repeatable and representative. The details of the test tool suit are
listed in the following Table 1:

Table 1. Workload list.

SN Type Description SN Type Description

1 Integer Script execution 16 Floats International chess

2 Integer Unzip 17 Floats Gomoku chess

3 Integer Encryption & decryption 18 Floats Matrix conversation operation

4 Integer Program compilation 19 Floats Fourier transform

5 Integer Optimized logic 20 Floats Polynomial optimization

6 Integer XML handling 21 Floats Fluid collision

7 Integer PDF generation 22 Floats Quantum mechanics

8 Integer Image processing 23 Floats Fluid mechanics

9 Integer Document processing 24 Floats Bio/molecular mechanics

10 Integer Video processing 25 Floats Structural mechanics

11 Integer Gene sequence search 26 Floats Computational electromagnetic

12 Integer Physical quantum mechanics 27 Floats Quantum chemistry

13 Integer Discrete event simulation 28 Floats Weather forecast

14 Integer Path finding algorithm 29 Floats Ray tracing

15 Floats Go chess 30 Floats Feature recognition
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As illustrated in Table 1, 14 of the 30 workloads are for integer calculation perfor-
mance of CPU and the left 16 workloads are for floating point performance. Except for
these workloads and corresponding test data set, a tool system that controls the testing
procedure is also developed. It includes two parts, one runs on client side mainly used
to control the workloads, return result records and report the result, the other runs on
server side mainly used to interact with the software and hardware on the server under
test. There are two versions for the server side, one is for single core and another is for
multi-core.

The final evaluation result is obtained by synthesizing all the evaluation result of
each workload above. It is meaningless of the result of each workload and impossible to
compare with each other, so a baseline server is set up, and the evaluation result of each
workload for this baseline server is recorded, and the ratio of the evaluation result of one
workload for a server under test and that for the baseline server is treated as evaluation
result of the workload for the server under test. Then 30 evaluation result will obtained
by the 30 workload mentioned above. And the final evaluation result will be obtained as
follows:

S = (X1 × X2 × . . .× Xn)
1
n (1)

In (1), n equals 30 and xi means the evaluation result of each workload according to
the method introduced above.

We aim to evaluate the calculation performance of cloud computing units, while as
known to all, there aremany factors affect the evaluation result, such as the configuration,
the network station, the environment and so on. In order to find out the stability and
repeatability of our benchmark in a relatively stable and controllable environment, we
use it to evaluate a local server from Tide Company. The evaluation result is illustrated
in Table 2 as follows:

Table 2. Test result of the local server.

SN Repeat-ability for
single core

Repeat-ability for
multi-core

Uncertainty for
single core

Uncertainty for
multi-core

1 0.12% 1.28% 0.030 0.182

2 0.34% 0.57% 0.704 0.405

3 0.01% 0.21% 0.004 0.033

4 0.08% 0.25% 0.030 0.045

5 0.06% 0.35% 0.156 0.291

6 0.04% 0.66% 0.013 0.104

7 0.17% 0.35% 0.067 0.072

8 0.02% 0.26% 0.014 0.083

9 0.06% 0.28% 0.017 0.043

10 0.13% 0.27% 0.033 0.036

(continued)
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Table 2. (continued)

SN Repeat-ability for
single core

Repeat-ability for
multi-core

Uncertainty for
single core

Uncertainty for
multi-core

11 0.02% 0.24% 0.021 0.118

12 0.17% 0.27% 0.088 0.070

13 0.07% 0.23% 0.019 0.033

14 0.03% 0.23% 0.008 0.029

15 0.08% 0.24% 0.046 0.068

16 0.27% 0.28% 0.422 0.161

17 0.01% 0.22% 0.006 0.071

18 0.09% 0.23% 0.025 0.037

19 0.02% 0.20% 0.013 0.053

20 0.03% 0.28% 0.012 0.062

21 0.03% 0.27% 0.024 0.105

22 0.07% 0.26% 0.043 0.074

23 0.01% 0.28% 0.003 0.059

24 0.04% 0.30% 0.021 0.075

25 0.05% 0.28% 0.027 0.077

26 0.01% 0.24% 0.006 0.086

27 0.01% 0.26% 0.007 0.102

28 0.02% 0.22% 0.020 0.083

29 0.10% 0.24% 0.040 0.047

30 0.09% 0.34% 0.109 0.172

Final 0.04% 0.18% 1.190 1.806

Each result listed in Table 2 above for each workload is based on 25 times tests. It
costs 3 h for each time, and the server under test is rebooted and to be ensured in normal
working station, which guarantees the reliability of the evaluation result. From the result
in Table 2, the Repeatability for single core and multi-core are both less than 1%, and
the conclusion that our benchmark is stable and reliable.

We can find out by further analysis that the result of single core is much stable
than that of multi-core. The processing capability of single core is weaker than that
of multi-core, while multi-core has much more complex programs about linkages and
threads to control, which affects its stability greatly, so its repeatability result is worse.
The repeatability of the results is evaluated by (2) and the uncertainty of the results is
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evaluated by (3) as follows:

s
(
qk

) =

√√√
√√

n∑

k−1

(
qk − q̄

)2

n− 1
(2)

s
(
qk

) =
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n∑

k−1

(
qk − q̄

)2

n
(3)

Where s(qk) is the repeatability value, qk is evaluation value of current time, q̄ is the
average of n times, and n is the times of measurement.

After ensuring the reliable and stability of our benchmark,we further use it to evaluate
the cloud computing units. Ali cloud and Tencent cloud are chosen as our testing objects
for they are very popular and representative in industry. There aremany factors affect our
evaluation result including equipment inherent factors, environmental factors, memory
factors and network factors. All the affects that these factors bring to the result should
be evaluated, and Due to the space limitation, we only introduce part of our work.

For the calculation performance of shared cloud server is not guaranteed and the
repeatability result is not so good, so we choose exclusive cloud server, and the result of
exclusive Tencent cloud server is illustrated as following Table 3.

Table 3. Test result of exclusive tencent cloud serve.

SN Repeat-ability for
2-core 4 GB

Repeat-ability for
4-core 8 GB

Uncertainty for
2-core 4 GB

Uncertainty for
4core 8 GB

1 1.34% 3.52% 0.55 1.39

2 1.91% 5.63% 5.13 13.96

3 1.33% 3.38% 0.6 1.48

4 1.30% 3.40% 0.72 1.82

5 2.41% 5.61% 8.07 17.28

6 1.43% 2.86% 0.66 1.28

7 2.09% 3.25% 1.27 1.92

8 1.38% 3.07% 1.38 2.96

9 1.51% 3.24% 0.68 1.42

10 1.57% 2.71% 0.62 1.04

11 2.04% 3.76% 3.41 5.93

12 1.89% 3.43% 1.48 2.58

13 1.10% 2.79% 0.46 1.15

14 1.17% 2.43% 0.42 0.85

(continued)
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Table 3. (continued)

SN Repeat-ability for
2-core 4 GB

Repeat-ability for
4-core 8 GB

Uncertainty for
2-core 4 GB

Uncertainty for
4core 8 GB

15 1.36% 2.50% 1.22 2.11

16 0.97% 4.79% 2.05 9.25

17 1.29% 2.92% 1.3 2.77

18 0.68% 1.78% 0.31 0.78

19 1.57% 2.44% 1.31 1.9

20 1.00% 2.13% 0.67 1.36

21 1.86% 3.95% 2.37 4.67

22 1.81% 3.26% 1.63 2.73

23 0.96% 3.15% 0.63 1.95

24 1.20% 2.41% 0.94 1.76

25 1.53% 2.68% 1.33 2.22

26 1.16% 2.36% 1.33 2.53

27 1.76% 2.28% 2.27 2.75

28 0.93% 2.01% 1.14 2.3

29 0.92% 2.72% 0.54 1.52

30 1.42% 2.36% 2.48 3.8

From the result in Table 3, a conclusion can be made that with more cores, the
repeatability is worse.

In order to evaluate the difference between shared and exclusive cloud server with
the same number of cores and the same size of memory, we carry out 5 times tests on
shared and exclusive Ali cloud server of 2-core 4 GB and of 16-core 32 GB respectively,
and the evaluation result for each server is the average of the 5 times. The final result is
illustrated in the following Table 4.

Table 4. Difference evaluation result for share and exclusive cloud server of Alibaba.

SN Difference evaluation value for share and
exclusive cloud server of 2-core 4 GB

Difference evaluation value for share and
exclusive cloud server of 16-core 32 GB

1 7.38% 9.06%

2 12.01% 17.40%

3 7.74% 7.61%

4 7.10% 7.89%

(continued)
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Table 4. (continued)

SN Difference evaluation value for share and
exclusive cloud server of 2-core 4 GB

Difference evaluation value for share and
exclusive cloud server of 16-core 32 GB

5 13.86% 32.71%

6 7.39% 7.85%

7 8.61% 6.78%

8 7.70% 11.39%

9 7.25% 9.30%

10 7.21% 7.57%

11 9.03% 17.50%

12 8.13% 15.46%

13 7.75% 8.49%

14 6.95% 10.32%

15 7.39% 5.61%

16 13.70% 6.92%

17 5.09% 3.58%

18 4.38% 4.63%

19 9.55% 5.10%

20 6.85% 3.67%

21 9.65% 6.36%

22 4.32% 2.53%

23 5.93% 1.12%

24 9.61% 1.70%

25 7.79% 1.59%

26 10.39% 0.97%

27 7.59% 0.29%

28 8.67% 5.18%

29 6.42% 3.97%

30 11.61% 0.29%

The Difference evaluation values illustrated in Table 4 is calculated as follows:

R =

∣∣∣∣
A

B
− 1

∣∣∣∣ × 100% (4)

In (4) above, R is the result listed in the table, A and B are evaluation result of our
benchmark for specific share and exclusive cloud server respectively. From the results
in Table 4, the repeatability for the cloud server of the same configuration is bad, which
means there is a huge difference between the calculation performance of share cloud
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servers and that of the exclusive servers. This proves the instability of the shared CPU
assigned by the network server.

5 Conclusion

From the examples above, Metrology provides a suit of ideas and technical means to
evaluate the measurement result, it focuses on all the factors that affect the measure-
ment result and attempts to qualify those affects, at the same time it provide a way to
evaluate the reliability and stability of a benchmark, after all, in an environment where
the influencing factors are controllable, the only factor affecting them is the benchmark
itself.

With the development of the technology, the measurement results of benchmark
maybe are adopted in more formal and serious occasions. It is not enough only consid-
ering the benchmarks at the technical realization level, and some thoughts and methods
should learn from the Metrology to assess and improve the benchmark used. By absorb-
ing the ideas of Metrology research during the designing and developing procedures of
the benchmark, the quality of the measurement result of the benchmark will be improved
greatly and become more authoritative.
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