
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

 1

Cloud Technologies for Bioinformatics
Applications

Jaliya Ekanayake, Thilina Gunarathne, and Judy Qiu

Abstract—Executing large number of independent jobs or jobs comprising of large number of tasks that perform minimal inter-

task communication is a common requirement in many domains. Various technologies ranging from classic job schedulers to

latest cloud technologies such as MapReduce can be used to execute these “many-tasks” in parallel. In this paper, we present

our experience in applying two cloud technologies Apache Hadoop and Microsoft DryadLINQ to two bioinformatics applications

with the above characteristics. The applications are a pairwise Alu sequence alignment application and an EST (Expressed

Sequence Tag) sequence assembly program. First we compare the performance of these cloud technologies using the above

case and also compare them with traditional MPI implementation in one application. Next we analyze the effect of

inhomogeneous data on the scheduling mechanisms of the cloud technologies. Finally we present a comparison of performance

of the cloud technologies under virtual and non-virtual hardware platforms.

Index Terms—Distributed Programming, Parallel Systems, Performance, Programming Paradigms.

—————————— ——————————

1 INTRODUCTION

HERE is increasing interest in approaches to data
analysis in scientific computing as essentially every
field is seeing an exponential increase in the size of

the data deluge. The data sizes imply that parallelism is
essential to process the information in a timely fashion.
This is generating justified interest in new runtimes and
programming models that unlike traditional parallel
models such as MPI, directly address the data-specific
issues. Experience has shown that at least the initial (and
often most time consuming) parts of data analysis are
naturally data parallel and the processing can be made
independent with perhaps some collective (reduction)
operation. This structure has motivated the important
MapReduce [1] paradigm and many follow-on exten-
sions. Here we examine three technologies (Microsoft
Dryad/DryadLINQ [2][3], Apache Hadoop [4] and MPI)
on two different bioinformatics applications (EST [5][6]
and Alu clustering [7][8]). Dryad is an implementation of
extended MapReduce from Microsoft. All the applications
are (as is often so in Biology) ―doubly data parallel‖ (or
―all pairs‖ [9]) as the basic computational unit is repli-
cated over all pairs of data items from the same (in our
cases) or different datasets. In the EST example, each pa-
rallel task executes the CAP3 program on an input data
file independently of others and there is no ―reduction‖
or ―aggregation‖ necessary at the end of the computation.
On the otherhand, in the Alu case, a global aggregation is
necessary at the end of the independent computations to
produce the resulting dissimilarity matrix. In this paper
we evaluate the different technologies showing that they

give similar performance despite the different program-
ming models.

In section 2, we give a brief introduction to the two
cloud technologies we used while the applications EST
and Alu sequencing are discussed in section 3. Section 4
presents some performance results. Conclusions are given
in section 7 after a discussion of the different program-
ming models in section 5 and related work in section 6.

2 CLOUD TECHNOLOGIES

2.1 Dryad/DryadLINQ

Dryad is a distributed execution engine for coarse grain
data parallel applications. It combines the MapReduce
programming style with dataflow graphs to solve the
computation tasks. Dryad considers computation tasks as
directed acyclic graph (DAG) where the vertices represent
computation tasks and with the edges acting as communi-
cation channels over which the data flow from one vertex
to another. The data is stored in (or partitioned to) local
disks via the Windows shared directories and meta-data
files and Dryad schedules the execution of vertices de-
pending on the data locality. (Note: The academic release
of Dryad only exposes the DryadLINQ API for program-
mers [3][10]. Therefore, all our implementations are writ-
ten using DryadLINQ although it uses Dryad as the un-
derlying runtime). Dryad also stores the output of vertic-
es in local disks, and the other vertices which depend on
these results, access them via the shared directories. This
enables Dryad to re-execute failed vertices, a step which
improves the fault tolerance of the programming model.

2.2 Apache Hadoop

Apache Hadoop has a similar architecture to Google’s
MapReduce[1] runtime. Hadoop accesses data via HDFS
[4], which maps all the local disks of the compute nodes
to a single file system hierarchy, allowing the data to be

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Jaliya Ekanayake and Thilina Gunarathne are with School of Informatics
and Computing and Pervasive Technology Institute of Indiana University,
Bloomington, IN 47408. E-mail: jekanaya@cs.indiana.edu, tguna-
rat@indiana.edu.

 Judy Qiu is with Pervasive Technology Institute, Indiana University,
Bloomington, IN 47408. E-mail: xqiu@indiana.edu.

Manuscript received (insert date of submission if desired).

T

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

dispersed across all the data/computing nodes. HDFS
also replicates the data on multiple nodes so that failures
of nodes containing a portion of the data will not affect
the computations which use that data. Hadoop schedules
the MapReduce computation tasks depending on the data
locality, improving the overall I/O bandwidth. The out-
puts of the map tasks are first stored in local disks until
later, when the reduce tasks access them (pull) via HTTP
connections. Although this approach simplifies the fault
handling mechanism in Hadoop, it adds a significant
communication overhead to the intermediate data trans-
fers, especially for applications that produce small inter-
mediate results frequently.

3 APPLICATIONS

3.1 Alu Sequence Classification

The Alu clustering problem [8] is one of the most chal-
lenging problems for sequence clustering because Alus
represent the largest repeat families in human genome.
There are about 1 million copies of Alu sequences in hu-
man genome, in which most insertions can be found in
other primates and only a small fraction (~ 7000) is hu-
man-specific. This indicates that the classification of Alu
repeats can be deduced solely from the 1 million human
Alu elements. Alu clustering can be viewed as a classical
case study for the capacity of computational infrastruc-
tures because it is not only of great intrinsic biological
interests, but also a problem of a scale that will remain as
the upper limit of many other clustering problems in bio-
informatics for the next few years, such as the automated
protein family classification for a few millions of proteins
predicted from large metagenomics projects. In our work
we have examined Alu samples of 35339 and 50,000 se-
quences using the pipeline of figure 1.

Fig. 1. Pipeline for analysis of sequence data.

3.1.1 Complete Alu Application

This application uses two highly parallel traditional MPI
applications, i.e. MDS (Multi-Dimensional Scaling) and
Pairwise (PW) Clustering algorithms described in Fox,
Bae et al. [7]. The latter identifies sequence families as
relatively isolated as seen for example in figure 2. MDS
allows visualization by mapping the high dimension se-
quence data to three dimensions for visualization. MDS
finds the best set of 3D vectors x(i) such that a weighted
least squares sum of the difference between the sequence
dissimilarity D(i,j) and the Euclidean distance |x(i) - x(j)|
is minimized. This has a computational complexity of
O(N2) to find 3N unknowns for N sequences.

The PWClustering algorithm is an efficient MPI paral-

lelization of a robust EM (Expectation Maximization) me-
thod using annealing (deterministic not Monte Carlo)
originally developed by Ken Rose, Fox [14, 15] and others
[16]. This improves over clustering methods like Kmeans
which are sensitive to false minima. The original cluster-
ing work was based in a vector space (like Kmeans)
where a cluster is defined by a vector as its center. How-
ever in a major advance 10 years ago [16], it was shown
how one could use a vector free approach and operate
with just the distances D(i,j). This method is clearly most
natural for problems like Alu sequences where currently
global sequence alignment (over all N sequences) is prob-
lematic but D(i,j) can be precisely calculated for each pair
of sequenjces. PWClustering also has a time complexity of
O(N2) and in practice we find all three steps (Calculate
D(i,j), MDS and PWClustering) take comparable times (a
few hours for 50,000 sequences on 768 cores) although
searching for a large number of clusters and refining the
MDS can increase their execution time significantly. We
have presented performance results for MDS and
PWClustering elsewhere [7][12] and for large datasets the
efficiencies are high (showing sometimes super linear
speed up). For a node architecture reason, the initial dis-
tance calculation phase reported below has efficiencies of
around 40-50% as the Smith Waterman computations are
memory bandwidth limited. The more complex MDS and
PWClustering algorithms show more computation per
data access and higher efficiency.

Fig. 2. Display of Alu clusters from MDS and clustering calculation
from 35339 sequences using SW-G distances. The clusters corres-
ponding to younger families AluYa, AluYb are particularly tight.

In the rest of the paper, we only discuss the initial dissi-
milarity computation although it is important that this
links to later clustering and MDS stages as these require
the output of the first stage in a format appropriate for the
later MPI-based data mining stages. The MDS and
PWClustering algorithms require a particular parallel
decomposition where each of N processes (MPI processes,

Visualization
PlotvizBlocking

Sequence
alignment

FASTA File
N Sequences

Form
block

Pairings

Internet Read
Alignment

Instruments

MDS

Pairwise
clustering

Dissimilarity
Matrix

N(N-1)/2
values

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 3

threads) has 1/N of sequences and for this subset {i} of
sequences stores in memory D({i},j) for all sequences j
and the subset {i} of sequences for which this node is re-
sponsible. This implies that we need D(i,j) and D(j,i)
(which are equal) stored in different processors/disks.
We design our initial calculation of D(i,j) so that efficient-
ly we only calculated the independent set but the data
was stored so that the later MPI jobs could efficiently
access the data needed. We chose the simplest approach
where the initial phase produced a single file holding the
full set of D(i,j) stored by rows – all j for each successive
value of i.

3.1.2 Smith Waterman Dissimilarities

We identified samples of the human and Chimpanzee
Alu gene sequences using Repeatmasker [13] with Rep-
base Update [14]. We used open source version NAligner
[11] of the Smith Waterman – Gotoh algorithm SW-G
[15][16] modified to ensure low start up effects by each
thread, processing large number (above a few hundred)
of sequence calculations at a time. Memory bandwidth
needed was reduced by storing data items in as few bytes
as possible. In the following two sections, we discuss the
initial phase of calculating distances D(i,j) for each pair of
sequences so we can efficiently use MapReduce, Dryad-
LINQ and MPI.

3.1.3 DryadLINQ Implementation

We developed a DryadLINQ application to perform the
calculation of pairwise SW-G distances for a given set of
genes by adopting a coarse grain task decomposition ap-
proach. This approach performs minimum inter-task
communication and hence ameliorates the higher com-
munication and synchronization costs of the parallel run-
time. To clarify our algorithm, let’s consider an example
where N gene sequences produce a pairwise distance ma-
trix of size NxN. We decompose the computation task by
considering the resultant matrix and group the overall
computation into a block matrix of size DxD where D is a
multiple (>2) of the available computation nodes. Due to
the symmetry of the distances D(i,j) and D(j,i) we only
calculate the distances in the blocks of the upper triangle
of the block matrix as shown in figure 3. (left).

Diagonal blocks are specially handled and calculated
as full sub blocks. As the number of diagonal blocks is D
and total number is D(D+1)/2, there is no significant
compute overhead added. The blocks in the upper trian-
gle are partitioned (assigned) to the available compute
nodes and a DryadLINQ’s ―Apply‖ operation is used to
execute a function to calculate (N/D)x(N/D) distances in
each block, where d is defined as N/D. After computing
the distances in each block, the function calculates the
transpose matrix of the result matrix which corresponds
to a block in the lower triangle, and writes both these ma-
trices into two output files in the local file system. The
names of these files and their block numbers are commu-
nicated back to the main program. The main program
sorts the files based on their block numbers and performs
another ―Apply‖ operation to combine the files corres-

ponding to rows in block matrix as shown in the figure 3
(right). The first step of this computation domintates the
overall running time of the application and with the algo-
rithm explained it clearly resembles the characteristics of
a ―many-task‖ problem.

3.1.4 Hadoop Implementation

We developed an Apache Hadoop version of the pairwise
distance calculation program based on the JAligner[20]
program, the java implementation of the NAligner code
used in Dryad implementation. Similar to the other im-
plementations, the computation is partitioned in to blocks
based on the resultant distance matrix. Each of the blocks
would get computed as a map task. The block size (D)
can be specified via an argument to the program. The
block size needs to be specified in such a way that there
will be much more map tasks than the map task capacity
of the system, so that the Apache Hadoop scheduling will
happen as a pipeline of map tasks resulting in global
load balancing inside the application. The input data is
distributed to the worker nodes through the Hadoop dis-
tributed cache, which makes them available in the local
disk of each compute node.

A load balanced task partitioning strategy according to
the following rules is used to identify the blocks that need
to be computed (dark grey) through map tasks as shown
in the figure 4(left). In addition all the blocks in the di-
agonal (light grey) are computed. Even though the task
partitioning mechanisms are different, both Dryad SW-G
and Hadoop SW-G implementations end up with essen-
tially identical set of computation blocks, if the same
block size argument is given to both the programs.

When β >= α, we calculate D(α,β) only if α+β is even,
 When β < α, we calculate D(α,β) only if α+β is odd.

The figure 4(right) depicts the run time behavior of the
Hadoop SW-G program. In the given example the map
task capacity of the system is ―k‖ and the number of
blocks is ―N‖. The solid black lines represent the starting
state, where ―k‖ map tasks corresponding to ―k‖ compu-
tation blocks will get scheduled in the compute nodes.
The dashed black lines represent the state at time t1 ,
when 2 map tasks, m2 & m6, get completed and two map
tasks from the pipeline get scheduled for the placeholders
emptied by the completed map tasks. The gray dotted
lines represent the future.

Map tasks use custom Hadoop writable objects as the
map task output values to store the calculated pairwise
distance matrices for the respective blocks. In addition,
non-diagonal map tasks output the inverse of the dis-
tances matrix of the block as a separate output value. Ha-
doop uses local files and http transfers to transfer the map
task output key value pairs to the reduce tasks.

The outputs of the map tasks are collected by the re-
duce tasks. Since the reduce tasks start collecting the out-
puts as soon as the first map task finishes and continue to
do so while other map tasks are executing, the data trans-
fers from the map tasks to reduce tasks do not present a
significant performance overhead to the program. The
program currently creates a single reduce task per each

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

row block resulting in total of (no. of sequences/block
size) Reduce tasks. Each reduce task accumulates the out-
put distances for a row block and writes the collected
output to a single file in Hadoop Distributed File System
(HDFS). This results in N number of output files corres-
ponding to each row block, similar to the output we pro-
duce in the Dryad version.

3.1.5 MPI Implementation

The MPI version of SW-G calculates pairwise distances
using a set of either single or multi-threaded processes.
For N gene sequences, we need to compute half of the
values (in the lower triangular matrix), which is a total of
M = N x (N-1) /2 distances. At a high level, computation
tasks are evenly divided among P processes and execute
in parallel. Namely, computation workload per process is
M/P. At a low level, each computation task can be fur-
ther divided into subgroups and run in T concurrent
threads. Our implementation is designed for flexible use
of shared memory multicore system and distributed
memory clusters (tight to medium tight coupled commu-
nication technologies such threading and MPI). We pro-

vide options for any combinations of thread vs. process
vs. node but in earlier papers [7][12], we have shown that
threading is much slower than MPI for this class of prob-
lem. We have explored two different algorithms termed
―Space Filling‖ and ―Block Scattered‖. In each case, we
must calculate the independent distances and then build
the full matrix exploiting symmetry of D(i,j).

The ―Space Filling‖ MPI algorithm is shown in figure
5, where the data decomposition strategy runs a "space
filling curve through lower triangular matrix" to produce
equal numbers of pairs for each parallel unit such as
process or thread. It is necessary to map indexes in each
pairs group back to corresponding matrix coordinates (i,
j) for constructing full matrix later on. We implemented a
special function ―PairEnumertator‖ as the convertor. We
tried to limit runtime memory usage for performance
optimization. This is done by writing a triple of i, j, and
distance value of pairwise alignment to a stream writer
and the system flashes accumulated results to a local file
periodically. As the final stage, individual files are
merged to form a full distance matrix. Next we describe
the ―Block Scattered‖ MPI algorithm shown in figure 6.

Fig. 3. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation of SW-G pairwise distance
calculation application.

 1
(1-

100)

2
(101-
200)

3
(201-
300)

4
(301-
400)

 N

1
(1-100)

M1 M2
from
M6

M3 …. M#
Reduce 1

hdfs://.../rowblock_1.out

2
(101-200)

from
M2

M4 M5
from
M9

….
Reduce 2

hdfs://.../rowblock_2.out

3
(201-300)

M6
from
M5

M7 M8 ….
Reduce 3

hdfs://.../rowblock_3.out

4
(301-400)

from
M3

M9
from
M8

M10 ….
Reduce 4

hdfs://.../rowblock_4.out

 .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

….
….
….
….

.

.

.

.

N

From
M#

 M(N*
(N+1)/2)

Reduce N
hdfs://.../rowblock_N.out

Fig. 4. Hadoop Implementation (left) Task (Map) decomposition and the reduce task data collection (right) Aapplication run time.

0

..

..

(0,d-1)
(0,d-1)

Upper triangle

0

1

2

D-1

0 1 2 D-1

NxN matrix broken down to DxD blocks

Blocks in lower triangle
are not calculated directly

0
(0,2d-1)
(0,d-1)

0
D-1

((D-1)d,Dd-1)
(0,d-1)

D
(0,d-1)
(d,2d-1)

D+1
(d,2d-1)
(d,2d-1)

((D-1)d,Dd-1)
((D-1)d,Dd-1)

DD-1

0 1 DD-1

V V V

..
..

V V V

..

DryadLINQ
vertices

File I/O

DryadLINQ
vertices

Each D consecutive blocks are merged to form a set of row blocks
each with NxD elementsprocess has workload of NxD elements

Blocks in upper triangle

0 1 1T 1 2T DD-1

V

2

File I/OFile I/O

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 5

Points are divided into blocks such that each processor is
responsible for all blocks in a simple decomposition illu-
strated in the figure 6 (left). This also illustrates the initial
computation, where to respect symmetry, we calculate
half the D(,) using the same criterion used in Dryad-
LINQ implementation:
If >= , we only calculate D(,) if + is even while in the
lower triangle, < , we only calculate D(,) if + is odd.

This approach can be applied to points or blocks. In
our implementation, we applied it to blocks of points -- of
size (N/P)x(N/P) where we use P MPI processes. Note
we get better load balancing than the ―Space Filling‖ al-
gorithm as each processor samples all values of . This
computation step must be followed by a communication
step illustrated in Figure 6 (Right) which gives full strips
in each process. The latter can be straightforwardly writ-
ten out as properly ordered file(s).

3.2 CAP3 Application EST and Its Software CAP3

3.2.1 EST and Its Software CAP3

An EST (Expressed Sequence Tag) corresponds to mes-
senger RNAs (mRNAs) transcribed from the genes resid-
ing on chromosomes. Each individual EST sequence

represents a fragment of mRNA, and the EST assembly
aims to re-construct full-length mRNA sequences for each
expressed gene. Because ESTs correspond to the gene
regions of a genome, EST sequencing has become a stan-
dard practice for gene discovery, especially for the ge-
nomes of many organisms that may be too complex for
whole-genome sequencing. EST is addressed by the soft-
ware CAP3 which is a DNA sequence assembly program
developed by Huang and Madan [17]. CAP3 performs
several major assembly steps including computation of
overlaps, construction of contigs, construction of multiple
sequence alignments, and generation of consensus se-
quences to a given set of gene sequences. The program
reads a collection of gene sequences from an input file
(FASTA file format) and writes its output to several out-
put files, as well as the standard output.

CAP3 is often required to process large numbers of
FASTA formatted input files, which can be processed in-
dependently, making it an embarrassingly parallel appli-
cation requiring no inter-process communications. We
have implemented a parallel version of CAP3 using Ha-
doop and DryadLINQ. This application resembles a
common parallelization requirement, where an executa-
ble, a script, or a function in a special framework such as

Fig. 5. Space Filling MPI Algorithm: Task decomposition (left) and SW-G implementation calculation (right).

Fig. 6. Blocked MPI Algorithm: Row decomposition (left) and Scattered communication (right) to construct full matrix.

0

21

N(N-1)/2.. ..

(1,0)

(2,0) (2,1)

(N-1,N-2)

Lower triangle

0

1

2

N-1

0 1 2 N-1

Space filling curve

Blocks in upper triangle
are not calculated directly

M = 0 1
Nx(N-1)/2

P0 P1 PP
..
..T0

M/P M/P M/P

T0 T0 T0 T0T0

I/O I/O I/O

..
Merge files

File I/O

MPI

Threading

Each process has workload of M/P elements

Indexing

D blocks

0

1

D-1

2

D blocks

0 D-1

Upper Triangle

Calculate if

 + even

Lower Triangle

Calculate if

 + odd

Process

P0

P1

P2

PP-1

Row Decomposition

D blocks

0

1

D-1

2

D blocks

0 D-1 Process

P0

P1

P2

PP-1

Send
to P2

Send to
P(mod p)

Send
to P0

Send
to P1

Send
to P1

1 2

Not
Calculate

Not
Calculate

Not
Calculate

Scatter Communication

Send to
P(mod p)

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

Matlab or R, needs to be applied on a collection of data
items. We can develop DryadLINQ & Hadoop applica-
tions similar to the CAP3 implementations for all these
use cases.

3.2.2 DryadLINQ Implementation

As discussed in section 3.2.1 CAP3 is a standalone execut-
able that processes a single file containing DNA se-
quences. To implement a parallel application for CAP3
using DryadLINQ we adopted the following approach: (i)
the input files are partitioned among the nodes of the
cluster so that each node of the cluster stores roughly the
same number of input files; (ii) a ―data-partition‖ (A text
file for this application) is created in each node containing
the names of the input files available in that node; (iii) a
DryadLINQ ―partitioned-file‖ (a meta-data file unders-
tood by DryadLINQ) is created to point to the individual
data-partitions located in the nodes of the cluster.

Then we used the ―Select‖ operation available in
DryadLINQ to perform a function (developed by us) on
each of these input sequence files. The function calls the
CAP3 executable passing the input file name and other
necessary program parameters as command line argu-
ments. The function also captures the standard output of
the CAP3 program and saves it to a file. Then it moves all
the output files generated by CAP3 to a predefined loca-
tion.

3.2.3 Hadoop Implementation

Parallel CAP3 seqeunce assembly fits as a ―map only‖
application for the MapReduce model. The Hadoop ap-
plication is implemented by writing map tasks which ex-
ecute the CAP3 program as a separate process on a given
input FASTA file. Since the CAP3 application is imple-
mented in C, we do not have the luxury of using the Ha-
doop file system (HDFS) directly. Hence the data needs to
be stored in a shared file system across the nodes. How-
ever we are actively investigating the possibility of using
Hadoop streaming and mountable HDFS for this pur-
pose.

4 PERFORMANCE ANALYSIS

In this section we study the performance of SW-G and
CAP3 applications under increasing homogeneous work-
loads, inhomogeneous workloads with different standard
deviations and the performance in cloud like virtual envi-
ronments. A 32 nodes IBM iDataPlex cluster, with each
node having 2 quad core Intel Xeon processors (total 8
cores per node) and 32 GB of memory per node was used
for the performance analysis under the following operat-
ing conditions, (i) Microsoft Window HPC Server 2008, service

Pack 1 - 64 bit (ii) Red Hat Enterprise Linux Server release 5.3 -64

bit on bare metal (iii) Red Hat Enterprise Linux Server release 5.3 -

64 bit on Xen hypervisor (version 3.0.3).

4.1 Scalability of different implementations

4.1.1 SW-G

In order to compare the scalability of Dryad, Hadoop and
MPI implementations of ALU SW-G distance calculations
with the increase of the data size using data sets of 10000
to 40000 seqeunces. These data sets correspond to 100
million to 1.6 billion total sequence distances. The actual
number distance calculations performed by the applica-
tions are about half the above numbers due to optimisa-
tions mentioned in the implementation section. Data sets
were generated by taking a 10000 sequence random sam-
ple from a real data set and replicating it 2 to 4 times. The
Dryad & MPI results were adjusted to counter the per-
formance difference of the kernel programs for fair com-
parison with the Hadoop implementation. NAligner on
windows performs on average ~.78 times slower than
Jaligner on Linux in the hardware we used for the per-
formance analysis.

The results for this experiment are given in the figure
7. The time per actual calculation is computed by divid-
ing the total time to calculate pairwise distances for a set
of sequences by the actual number of comparisons per-
formed by the application. According to figure 7, all three
implementations perform and scale satisfactorily for this
application with Hadoop implementation showing the
best scaling. As expected, the total running times scaled
proportionally to the square of the number of sequences.
The Hadoop & Dryad applications perform and scale
competitively with the MPI application.

Fig. 7. Scalability of Smith Waterman pairwise distance calculation
applications.

We can notice that the performance of the Hadoop im-
plementation improving with the increase of the data set
size, while Dryad performance degrades a bit. Hadoop
improvements can be attributed to the diminishing of the
framework overheads, while the Dryad degradation can
be attributed to the memory management issues in the
Windows and Dryad environment.

0.000

0.005

0.010

0.015

0.020

0.025

10000 20000 30000 40000

Ti
m

e
 p

er
 A

ct
u

al
 C

al
cu

la
ti

o
n

 (
m

s)

No. of Sequences

Hadoop SW-G

MPI SW-G

DryadLINQ SW-G

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 7

4.1.2 CAP3

We analysed the scalability of DryadLINQ & Hadoop
implementations of the CAP3 application with the in-
crease of the data set using homogeneous data sets. We
prepare the data sets by replicating a single fasta file to
represent a uniform workload across the application. The
selected fasta sequence file contained 458 seqeunces.

The results are shown in the figure 8. The primary ver-
tical axis (left) shows the total time vs the number of files.
Secondary axis shows the time taken per file (total time /
number of files) against the number of files. Bot the
DryadLinq and Hadoop implementations show good
scaling for the CAP3 application, although Dryad scaling
is not as smooth as Hadoop scaling curve. Standalone
CAP3 application used as the kernel for these applica-
tions performs better in the windows environment than
in the Linux environment, which must be contributing to
the reason for Hadoop being slower than Dryad.

Fig. 8. Scalability of Cap3 applications.

4.2 Inhomogeneous Data Analysis

New generation parallel data processing frameworks
such as Hadoop and DryadLINQ are designed to perform
optimally when a given job can be divided in to a set of
equally time consuming sub tasks. On the other hand
most of the data sets we encounter in the real world are
inhomogeneous in nature, making it hard for the data
analyzing programs to efficiently break down the prob-
lems in to equal sub tasks.This motivated us to study the
effects of inhomogeneity in the applications implemented
using these frameworks.

4.2.1 SW-G Pairwise Distance Calculation

The inhomogeneoity of data applies for the gene se-
quence sets too, where individual sequence lengths and
the contents vary among each other. In this section we
study the effect of inhomogeneous gene sequence lengths
for the performance of our pairwise distance calculation
applications.

𝑆𝑊𝐺 𝐴,𝐵 = 𝑂 𝑚𝑛

The time complexity to align and obtain distances for two
genome sequences A, B with lengths m and n respectively
using Smith-Waterman-Gotoh algorithm is approximate-
ly proportional to the product of the lengths of two se-
quences (O(mn)). All the above described distributed im-
plementations of Smith-Waterman similarity calculation
mechanisms rely on block decomposition to break down
the larger problem space in to sub-problems that can be
solved using the distributed components. Each block is
assigned two sub-sets of sequences, where Smith-
Waterman pairwise distance similarity calculation needs
to be performed for all the possible sequence pairs among
the two sub sets. According to the above mentioned time
complexity of the Smith-Waterman kernel used by these
distributed components, the execution time for a particu-
lar execution block depends on the lengths of the se-
quences assigned to the particular block.

Parallel execution frameworks like Dryad and Hadoop
work optimally when the work is equally partitioned
among the tasks. Depending on the scheduling strategy of
the framework, blocks with different execution times can
have an adverse effect on the performance of the applica-
tions, unless proper load balancing measures have been
taken in the task partitioning steps. For an example, in
Dryad vertices are scheduled at the node level, making it
possible for a node to have blocks with varying execution
times. In this case if a single block inside a vertex takes a
larger amount of time than other blocks to execute, then
the whole node have to wait till the large task completes,
which utilizes only a fraction of the node resources.

Since the time taken for the Smith-Waterman pairwise
distance calculation depends mainly on the lengths of the
sequences and not on the actual contents of the se-
quences, we decided to use randomly generated gene
sequence sets for this experiment. The gene sequence sets
were randomly generated for a given mean sequence
length (400) with varying standard deviations following a
normal distribution of the sequence lengths. Each se-
quence set contained 10000 sequences leading to 100 mil-
lion pairwise distance calculations to perform. We per-
formed two studies using such inhomogeneous data sets.
In the first study the sequences with varying lengths were
randomly distributed in the data sets. In the second study
the sequences with varying lengths were distributed us-
ing a skewed distribution, where the sequences in a set
were arranged in the ascending order of sequence length.

Figure 9 presents the execution time taken for the ran-
domly distributed inhomogeneous data sets with the
same mean length, by the two different implementations,
while figure 10 presents the executing time taken for the
skewed distributed inhomogeneous data sets. The Dryad
results depict the Dryad performance adjusted for the
performance difference of the NAligner and JAligner ker-
nel programs. As we notice from the figure 9, both im-
plementations perform satisfactorily for the randomly
distributed inhomogeneous data, without showing signif-
icant performance degradations with the increase of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

500

1000

1500

2000

2500

0 1024 2048 3072 4096 5120

Ti
m

e
p

er
 f

ile
 (

s)

To
ta

l T
im

e
(s

)

No. of files

DryadLINQ - Total time
Hadoop - Total time
DryadLINQ - Time per file
Hadoop -Time per file

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

standard deviation. This behavior can be attributed to the
fact that the sequences with varying lengths are randomly
distributed across a data set, effectively providing a natu-
ral load balancing to the execution times of the sequence
blocks.

Fig. 9. Performance of SW-G pairwise distance calculation applica-
tion for randomly distibuted inhomogeneous data with „400‟ mean
sequence length.

Fig. 10. Performance of SW-G pairwise distance calculation applica-
tion for skewed distibuted inhomogeneous data with „400‟ mean
sequence length.

For the skewed distributed inhomogeneous data, we no-
tice clear performance degradation in the Dryad imple-
mentation. Once again the Hadoop implementation per-
forms consistently without showing significant perfor-
mance degradation, even though it does not perform as
well as its randomly distributed counterpart. The Hadoop
implementations’ consistent performance can be attri-
buted to the global pipeline scheduling of the map tasks.
In the Hadoop Smith-Waterman implementation, each
block decomposition gets assigned to a single map task.
Hadoop framework allows the administrator to specify
the number of map tasks that can be run on a particular
compute node. The Hadoop global scheduler schedules

the map tasks directly on to those placeholders in a much
finer granularity than in Dryad, as and when the individ-
ual map tasks finish. This allows the Hadoop implemen-
tation to perform natural global level load balancing. In
this case it might even be advantageous to have varying
task execution times to iron out the effect of any trailing
map tasks towards the end of the computation. Dryad
implementation pre allocates all the tasks to the compute
nodes and does not perform any dynamic scheduling
across the nodes. This makes a node which gets a larger
work chunk to take considerable longer time than a node
which gets a smaller work chunk, making the node with a
smaller work chuck to idle while the other nodes finish.

4.2.2 CAP3

Unlike in Smith-Waterman Gotoh (SW-G) implementa-
tions, CAP3 program execution time does not directly
depend on the file size or the size of the sequences, as it
depend mainly on the content of the sequences. This
made is hard for us to artificially generate inhomogene-
ous data sets for the CAP3 program, forcing us to use real
data. When generating the data sets, first we calculated
the standalone CAP3 execution time for each of the files
in our data set. Then based on those timings, we created
data sets that have approximately similar mean times
while the standard deviation of the standalone running
times is different in each data set. We performed the per-
formance testing for randomly distributed as well as
skewed distributed (sorted according to individual file
running time) data sets similar to the SWG inhomogene-
ous study. The speedup is taken by dividing the sum of
sequential running times of the files in the data set by the
parallel implementation running time.

Fig. 11. Performance of Cap3 application for random distributed
inhomogeneous data.

Figures 11 & 12 depict the CAP3 inhomogeneous perfor-
mance results for Hadoop & Dryad implementations.
Hadoop implementation shows satisfactory scaling for
both randomly distributed as well as skewed distributed
data sets, while the Dryad implementation shows satis-
factory scaling in the randomly distributed data set. Once
again we notice that the Dryad implementation does not

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 50 100 150 200 250 300

Ti
m

e
(s

)

Standard Deviation

Hadoop SW-G

DryadLINQ SW-G

0

50

100

150

200

250

300

0 20000 40000 60000 80000

Sp
ee

d
u

p

Standard Deviation

DryadLinq Cap3

Hadoop Cap3

0

1,000

2,000

3,000

4,000

5,000

6,000

0 50 100 150 200 250 300

To
ta

l T
im

e
(s

)

Standard Deviation

DryadLINQ SW-G

Hadoop SW-G

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 9

perform well for the skewed distributed inhomogeneous
data due to its’ static non-global scheduling.

Fig. 12. Performance of Cap3 Applications for skewed distributed
inhomogeneous data

4.3 Performance in the Cloud

With the popularity of the computing clouds, we can no-
tice the data processing frameworks like Hadoop Map
Reduce and DryadLINQ are becoming popular as cloudy
parallel frameworks. We measured the performance and
virtualization overhead of several MPI applications on
the virtual environments in an earlier study [24]. Here we
present extended performance results of using Apache
Hadoop implementation of SW-G and Cap3 in a cloud
environment by comparing Hadoop on Linux with Ha-
doop on Linux on Xen [26] para-virtualised environment.

While the Youseff, Wolski, et al. [27] suggests that the
VM’s impose very little overheads on MPI application,
our previous study indicated that the VM overheads de-
pend mainly on the communications patterns of the ap-
plications. Specifically the set of applications that is sensi-
tive to latencies (lower communication to computation
ration, large number of smaller messages) experienced
higher overheads in virtual environments. Walker [28]
presents benchmark results of the HPC application per-
formance on Amazon EC2, compared with a similar bare
metal local cluster, where he noticed 40% to 1000% per-
formance degradations on EC2. But since one can not
have complete control and knowledge over EC2 infra-
structure, there exists too many unknowns to directly
compare these results with the above mentioned results.

Above studies further motivated us to study the VM
overhead for applications written using frameworks like
Hadoop & Dryad. We set up a dynamic cluster to auto-
matically switch the operating environment between ha-
doop on Linux, Hadoop on Linux on Xen and Dyrad on
Windows HPCS. We used IBM’s xCAT to enable switch-
ing controlled by messages managed by a publish-
subscribe infrastructure. As described in [29], switching
environments cost about 5 minutes ─ a modest cost to
pay for reliable performance measurements on identical
hardware. In our study we used the same cluster as bare

metal and the virtual environment, so that we have full
control over the infrastructure for a better comparison.
All the tests used one VM per node to best match the bare
metal environment. In all the nodes we setup the HDFS
file system in a direct local disk partition. We used per-
formance degradation computed using the ((Tvm - Tbm) /
Tbm) equation as our measure of VM overhead where Tvm
stands for the running time in the virtual environment
and Tbm stands for the running time in the bare metal en-
vironment.

4.3.1 SW-G Pairwise Distance Calculation

Figure 13 presents the virtualization overhead of the Ha-
doop SW-G application comparing the performance of
the appication on linux on bare metal and on linux on xen
virtual machines. The data sets used is the same 10000
real sequence replicated data set used for the scalability
study in the section 4.1.1. The number of blocks is kept
contant across the test, resulting in larger blocks for larger
data sets. According to the results, the performance de-
gradation for the Hadoop SWG application on virtual
environment ranges from 25% to 15%. We can notice the
performanace degradation gets reduced with the increase
of the problem size.

Fig. 13. Virtualization overhead of Hadoop SW-G on Xen virtual
machines.

In the xen para-virtualization architecture, each guest OS
(running in domU) perform their I/O transfers through
Xen (dom0). This process adds startup costs to I/O as it
involves startup overheads such as communication with
dom0 and scheduling of I/O operations in dom0. Xen
architecture uses shared memory buffers to transfer data
between domU’s and dom0, thus reducing the operation-
al overheads when performing the actual I/O. We can
notice the same behavior in the Xen memory manage-
ment, where page table operations needs to go through
Xen, while simple memory accesses can be performed by
the guest Oss without Xen involvement. Accoring to the
above points, we can notice that doing few coarser
grained I/O and memory operations would incur rela-
tively low overheads than doing the same work using
many finer finer grained operations. We can conclude this
as the possible reason behind the decrease of performance

0.00

0.01

0.01

0.02

0.02

0.03

10000 20000 30000 40000 50000

0%

10%

20%

30%

40%

50%

60%

Ti
m

e
p

er
 A

ct
u

al
 C

al
cu

la
ti

o
n

 (
m

s)

No. of Sequences

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
 o

n
 V

M
 Perf. Degradation On VM (Hadoop)

Hadoop SWG on VM

Hadoop SWG on Bare Metal

0

50

100

150

200

250

300

0 20000 40000 60000 80000

Sp
ee

d
u

p

Standard Deviation

DryadLinq Cap3

Hadoop Cap3

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

degradation with the increase of data size, as large data
sizes increase the granularity of the computational blocks.

4.3.2 CAP3

Figure 14 presents the virtualization overhead of the Ha-
doop CAP3 application. We used the same scalability
data set we used in section 4.1.2 for this analisys too. The
performance degradation in this application remains con-
stant near 20% for all the data sets. CAP3 application does
not show the decrease of VM overhead with the increase
of problem size as we noticed in the SWG application.
Unlike in SWG, the I/O and memory behavior of the
CAP3 program does not change based on the data set
size, as irrespective of the data set size the granularity of
the processing (single file) remains same. Hance the VM
overheads does not get changed even with the increase of
workload.

Fig. 14. Virtualization overhead of Hadoop Cap3 on Xen virtual ma-
chines

5. COMPARISON OF PROGRAMMING MODELS

The category of ―many-task computing‖ also belongs to
the pleasingly parallel applications in which the parallel
tasks in a computation perform minimum inter-task
communications. From our perspective independent jobs
or jobs with collection of almost independent tasks
represents the ―many-tasks‖ domain. Apart from the EST
and pairwise distance computations we have described,
applications such as parametric sweeps, converting doc-
uments to different formats and brute force searches in
cryptography are all examples in this category of applica-
tions.

One can adopt a wide range of parallelization tech-
niques to perform most of the many-task computations in
parallel. Thread libraries in multi-core CPUs, MPI, classic
job schedulers in cloud/cluster/Grid systems, indepen-
dent ―maps‖ in MapReduce, and independent ―vertices‖
in DryadLINQ are all such techniques. However, factors
such as the granularity of the independent tasks, the
amount of data/compute intensiveness of tasks deter-
mine the applicability of these technologies to the prob-
lem at hand. For example, in CAP3 each task performs
highly compute intensive operation on a single input file
and typically the input files are quite small in size (com-

pared to highly data intensive applications), which makes
all the aforementioned techniques applicable to CAP3. On
the other hand the pairwise distance calculation applica-
tion that requires a reduction (or combine) operation can
easily be implemented using MapReduce programming
model.

To clarify the benefits of the cloud technologies let’s
consider the following pseudo code segments
representing Hadoop, DryadLINQ and MPI implementa-
tions of the pairwise distance (Smith Waterman dissimi-
larities) calculation application (discussed in section
3.1.2).

Fig. 15. Code segment showing the MapReduce implementation of
pairwise distance calculation using Hadoop.

In Hadoop implementation the map task calculates the
Smith Waterman distances for a given block of sequences
while the reduce task combine these blocks to produce
row blocks of the final matrix. The MapReduce pro-
gramming model executes map and reduce tasks in paral
lel (in two separate stages) and handles the intermediate
data transfers between them without any user interven-
tion. The input data, intermediate data, and output data
are all stored and accessed from the Hadoop’s distributed
file system (HDFS) making the entire application highly
robust.

0%

10%

20%

30%

40%

50%

60%

0.3

0.35

0.4

0.45

0.5

0.55

0 2000 4000 6000

V
M

 O
ve

rh
ea

d

A
vg

. T
im

e
P

er
 F

ile
 (

s)

No. of Files

Hadoop Bare Metal

Hadoop VM

VM Overhead

main{
blockFiles[]=PartitionDataToRowBlocks(seqFile);
paths[] = UploadToHDFS(blockFiles)
addToDistributedCache (paths);
//write a metadata file (row index & column

 // index) in HDFS for each block to compute
IdentifyBlocksToCompute&WriteMetadata();

}

//value is a string containing row block index &
//column block index (contents of the metadata file)
map (key, value){

rowSequences[] = Parse(row-block-file);
columnSeqeunces[] = Parse(column-block-file);
distances[][] = calculateDistances (

rowSequences, columnSeqeunces);
context.write(row-block-index , distances);
context.write(column-block-index,

inverse(distances);
}

// key is a row-block-index, values are all the blocks
//belonging to a row block
reduce (key, blocks){

Foreach(block in blocks){
RowBlock +=block;

}
}

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 11

Fig. 16. Code segment showing the DryadLINQ implementation of
pairwise distance calculation.

The DryadLINQ implementation resembles a more query
style implementation in which the parallelism is com-
pletely abstracted by the LINQ operations which are per-
formed in parallel by the underlying Dryad runtime. The
―PerformAlignments‖ function has a similar capability to
a map task and the ―PerformMerge‖ function has a simi-
lar capability to the reduce task in MapReduce. Dryad-
LINQ produces a directed acyclic graph (DAG) for this
program in which both ―SelectMany‖ and the ―Apply‖
operations are performed as a collection of parallel vertic-
es (tasks). The DAG is then executed by the underlying
Dryad runtime. DryadLINQ implementation uses Win-
dows shared directories to read input data, store and
transfer intermediate results, and store the final outputs.
With replicated data partitions, DryadLINQ can also
support fault tolerance for the computation.

Input parameters of the MPI application include a
FASTA file, thread, process per node, and node count. In
the data decomposition phase, subsets of sequences are
identified as described in section 3.1.5. Corresponding to
MPI runtime architecture in Figure 6(right), we use
MPI.net [18] API to assign parallel tasks to processes (de

Fig. 17. Code segment showing the MPI implementation of pairwise
distance calculation.

fault is one per core). One can use fewer processes per
node and multi-threading in each MPI process (and this is
most efficient way to implement parallelism for MDS and
PWClustering) but we will not present these results here.
Each compute node has a copy of the input file and out
put results written directly to a local disk. In this MPI
example, there is a Barrier call followed by the scatter
communication at the end of computing each block. This
is not the most efficient algorithm if the compute times

Main(){
//Calculate the block assignments
 assignBlocksToTasks();

//Perform allignment calculation for each block
//Group them according to their row numbers
//Combine rows to form row blocks
 outputInfo = assignedBlocks
 .SelectMany(block =>
 PerformAlignments(block))
 .GroupBy(x => x.RowIndex);
 .Apply(group=>PerformMerge(group));

 //Write all related meta data about row blocks
and
 // the corresponding output files.

writeMetaData();
}

//Homomorphic property informs the compiler
//that each block can be processed separately.
[Homomorphic]
PerformAlignments(block){

 distances[]=calculateDistances(block);
 writeDistancesToFiles();

 }

[Homomorphic]
PerformMerge(group){
 mergeBlocksInTheGroup(group);
 writeOutputFile();
}

using (MPI.Environment env = new
MPI.Environment(ref args)){

sequences = parser.Parse(fastaFile);
size = MPI.Intracommunicator.world.Size;
 rank = MPI.Intracommunicator.world.Rank;
partialDistanceMatrix[][][] = new short

 [size][blockHeight][blockWidth];

//Compute the distances for the row block
for (i =0; i< noOfMPIProcesses; i++){
 if (isComputeBlock(rank,i)){
 partialDistanceMatrix[i] =
 computeBlock(sequences, i,rank);
 }
}
MPI_Barrier();

// prepare the distance blocks to send
toSend[] =transposeBlocks(partialDistanceMatrix);

//use scatter to send & receive distance blocks
//that are computed & not-computed respectively
for (receivedRank = 0; receivedRank < size;

 receivedRank++){
 receivedBlock[][] =
 MPI_Scatter<T[][]>(toSend, receivedRank);
 if (isMissingBlock(rank,receivedRank)){
 partialMatrix[receivedRank] = receivedBlock;
 }
}
MPI_Barrier();

//Collect all distances to root process.
if (rank == MPI_root){
 partialMatrix.copyTo(fullMatrix);
 for(i=0;i<size;i++){
 if (rank != MPI_root){

 receivedPartMat=MPI_Receive<T[][]>(i, 1);
 receivedPartMat.copyTo(fullMatrix);
 }
 }
 fullMatrix.saveToFile();
}else{
 MPI_Send<t[][]>(partialMatrix, MPI_root, 1);
}

}

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

per block are unequal but was adopted to synchronize the
communication step.

The code segments show clealy how the higher level
parallel runtimes such as Hadoop and DryadLINQ have
abstracted the parallel programming aspects from the
users. Although the MPI algorithm we used for SW-G
computation only uses one MPI communication construct
(MPI_Scatter), in typical MPI applications the program-
mer needs to explicitly use various communication con-
structs to build the MPI communication patterns. The low
level communication contructs in MPI supports parallel
algorithms with variety of communication topologies.
However, developing these applications require great
amount of programming skills as well.

On the other hand high level runtimes provide limited
communication topologies such as map-only or map fol-
lowed by reduce in MapReduce and DAG base execution
flows in DryadLINQ making them easier to program.
Added support for handling data and quality of services
such as fault tolerance make them more favorable to de-
velop parallel applications with simple communication
topologies. Many-task computing is an ideal match for
these parallel runtimes.

There are some important differences such as MPI be-
ing oriented towards memory to memory operations
whereas Hadoop and DryadLINQ are file oriented. This
difference makes these new technologies far more robust
and flexible. On the other the file orientation implies that
there is much greater overhead in the new technologies.
This is a not a problem for initial stages of data analysis
where file I/O is separated by a long processing phase.
However as discussed in [12], this feature means that one
cannot execute efficiently on MapReduce, traditional MPI
programs that iteratively switch between ―map‖ and
―communication‖ activities. We have shown that an ex-
tended MapReduce programming model named i-
MapReduce[19][7] can support both classic MPI and Ma-
pReduce operations. i-MapReduce has a larger overhead
than good MPI implementations but this overhead does
decrease to zero as one runs larger and larger problems.

6. RELATED WORK

There have been several papers discussing data analysis
using a variety of cloud and more traditional clus-
ter/Grid technologies with the Chicago paper [20] in-
fluential in posing the broad importance of this type of
problem. The Notre Dame all pairs system [21] clearly
identified the ―doubly data parallel‖ structure seen in all
of our applications. We discuss in the Alu case the linking
of an initial doubly data parallel to more traditional
―singly data parallel‖ MPI applications. BLAST is a well
known doubly data parallel problem and has been dis-
cussed in several papers [22][23]. The Swarm project [6]
successfully uses traditional distributed clustering sche-
duling to address the EST and CAP3 problem. Note ap-
proaches like Condor have significant startup time domi-
nating performance. For basic operations [24], we find
Hadoop and Dryad get similar performance on bioinfor-

matics, particle physics and the well known kernels.
Wilde [25] has emphasized the value of scripting to con-
trol these (task parallel) problems and here DryadLINQ
offers some capabilities that we exploited. We note that
most previous work has used Linux based systems and
technologies. Our work shows that Windows HPC server
based systems can also be very effective.

7. CONCLUSIONS

We have studied two data analysis problems with three

different technologies. They have been looked on ma-

chines with up to 768 cores with results presented here

run on 256 core clusters. The applications each start with

a ―doubly data-parallel‖ (all pairs) phase that can be im-

plemented in MapReduce, MPI or using cloud resources

on demand. The flexibility of clouds and MapReduce

suggest they will become the preferred approaches. We

showed how one can support an application (Alu) requir-

ing a detailed output structure to allow follow-on itera-

tive MPI computations. The applications differed in the

heterogeneity of the initial data sets but in each case good

performance is observed with the new cloud MapReduce

technologies competitive with MPI performance. The

simple structure of the data/compute flow and the mini-

mum inter-task communicational requirements of these

―pleasingly parallel‖ applications enabled them to be im-

plemented using a wide variety of technologies. The sup-

port for handling large data sets, the concept of moving

computation to data, and the better quality of services

provided by the cloud technologies, simplify the imple-

mentation of some problems over traditional systems. We

find that different programming constructs available in

MapReduce such as independent ―maps‖ in MapReduce,

and ―homomorphic Apply‖ in DryadLINQ are suitable

for implementing applications of the type we examine. In

the Alu case, we show that DryadLINQ and Hadoop can

be programmed to prepare data for use in later parallel

MPI/threaded applications used for further analysis. We

performed tests using identical hardware for Hadoop on

Linux, Hadoop on Linux on Virtual Machines and

DryadLINQ on HPCS on Windows. These show that

DryadLINQ and Hadoop get similar performance and

that virtual machines give overheads of around 20%. We

also noted that support of inhomogeneous data is impor-

tant and that Hadoop currently performs better than

DryadLINQ unless one takes steps to load balance the

data before the static scheduling used by DryadLINQ. We

compare the ease of programming for MPI, DryadLINQ

and Hadoop. The MapReduce cases offer higher level

interface and the user needs less explicit control of the

parallelism. The DryadLINQ framework offers significant

support of database access but our examples do not ex-

ploit this.

EKANAYAKE, ET AL.: CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 13

ACKNOWLEDGMENT

The authors wish to thank our collaborators from Biology
whose help was essential. In particular Alu work is with
Haixu Tang and Mina Rho from Bioinformatics at Indiana
University and the EST work is with Qunfeng Dong from
Center for Genomics and Bioinformatics at Indiana Uni-
versity. We appreciate all SALSA group members, espe-
cially Dr. Geoffrey Fox, Scott Beason, and Stephen Tak-
Lon Wu for their contributions. We would like to thank
Microsoft for their collaboration and support. Tony Hey,
Roger Barga, Dennis Gannon and Christophe Poulain
played key roles in providing technical support.

REFERENCES

[1] J. Dean, and S. Ghemawat, ―MapReduce: simplified data

processing on large clusters,‖ Commun. ACM vol. 51, no. 1, pp.

107-113, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, ―Dryad: Dis-

tributed data-parallel programs from sequential building

blocks,‖ European Conference on Computer Systems, March 2007.

[3] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda,

J. Currey, ―DryadLINQ: A System for General-Purpose Distri-

buted Data-Parallel Computing Using a High-Level Language,‖

Symposium on Operating System Design and Implementation (OS-

DI), 2008.

[4] Apache Hadoop, http://hadoop.apache.org/core/

[5] X. Huang, A. Madan, ―CAP3: A DNA Sequence Assembly Pro-

gram,‖ Genome Research, vol. 9, no. 9, pp. 868-877, 1999.

[6] S.L. Pallickara, M. Pierce, Q. Dong, and C. Kong, ―Enabling

Large Scale Scientific Computations for Expressed Sequence

Tag Sequencing over Grid and Cloud Computing Clusters,‖

PPAM 2009 - Eighth International Conference on Parallel

Processing and Applied Mathematics, 2009.

[7] G. Fox, S.H. Bae, J. Ekanayake, X. Qiu, H. Yuan. ―Parallel Data

Mining from Multicore to Cloudy Grids,‖ High Performance

Computing and Grids workshop (HPC 2008, Italy,2008,

http://grids.ucs.indiana.edu/ptliupages/publications/Cetraro

WriteupJan09_v12.pdf

[8] M.A. Batzer, P.L. Deininger, ―Alu Repeats And Human Ge-

nomic Diversity,‖ Nature Reviews Genetics vol. 3, no. 5, pp. 370-

379. 2002.

[9] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D.

Thain, ―All-Pairs: An Abstraction for Data Intensive Computing

on Campus Grids,‖ IEEE Transactions on Parallel and Distributed

Systems, 2009, DOI 10.1109/TPDS.2009.49

[10] J. Ekanayake, A.S. Balkir, T. Gunarathne, G. Fox, C. Poulain, N.

Araujo, R. Barga. ―DryadLINQ for Scientific Analyses,‖ 5th

IEEE International Conference on e-Science, 2009.

[11] Source Code. Smith Waterman Software.

http://jaligner.sourceforge.net/

[12] G. Fox, X. Qiu, S. Beason, J.Y. Choi, M. Rho, H. Tang, N. Deva-

dasan, G. Liu, ―Biomedical Case Studies in Data Intensive

Computing,‖ Keynote talk at The 1st International Conference on

Cloud Computing (CloudCom 2009) at Beijing Jiaotong University,

China, 2009.

[13] A.F.A. Smit, R. Hubley, P. Green, 2004. Repeatmasker.

http://www.repeatmasker.org

[14] J. Jurka, ―Repbase Update: a database and an electronic journal

of repetitive elements,‖ Trends Genet. 9, pp.418-420, 2000.

[15] O. Gotoh, ―An improved algorithm for matching biological

sequences,‖ Journal of Molecular Biology, 162, pp.705-708, 1982.

[16] T.F. Smith, M.S. Waterman, ―Identification of common molecu-

lar subsequences,‖ Journal of Molecular Biology, 147, pp.195-

197, 1981.

[17] X. Huang, A. Madan, ―CAP3: A DNA Sequence Assembly Pro-

gram,‖ Genome Research, vol. 9, no. 9, pp. 868-877, 1999.

[18] MPI.Net: High-Performance C# Library for Message Passing

http://www.osl.iu.edu/research/mpi.net/

[19] J. Ekanayake, S. Pallickara, ―MapReduce for Data Intensive

Scientific Analysis,‖ Fourth IEEE International Conference on eS-

cience, pp.277-284, 2008.

[20] I. Raicu, I.T. Foster, Y. Zhao, ―Many-Task Computing for Grids

and Supercomputers,‖ Workshop on Many-Task Computing on Gr-

ids and Supercomputers MTAGS, IEEE pages 1-11, 2008.

[21] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D.

Thain, "All-Pairs: An Abstraction for Data Intensive Computing

on Campus Grids," IEEE Transactions on Parallel and Distributed

Systems, DOI 10.1109/TPDS.2009.49, 2009.

[22] M.C. Schatz, ―CloudBurst: highly sensitive read mapping with

MapReduce,‖ Bioinformatics 25(11), pp. 1363-1369, 2009,

doi:10.1093/bioinformatics/btp236

[23] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, M. Tsugawa,

―Science clouds: Early experiences in Cloud computing for

scientific applications,‖ In Cloud Computing and Applications,

(CCA08), 2008.

[24] Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne, Scott

Beason, Geoffrey Fox, ―High Performance Parallel Computing

with Clouds and Cloud Technologies‖, to appear as a book

chapter of Cloud Computing and Software Services: Theory

and Techniques, CRC Press (Taylor and Francis), ISBN-10:

1439803153.

http://grids.ucs.indiana.edu/ptliupages/publications/cloud_

handbook_final-with-diagrams.pdf

[25] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang1, B. Clifford, M. Ha-

tegan, S. Kenny, K. Iskra, P. Beckman, I. Foster, ―Extreme-scale

scripting: Opportunities for large task parallel applications on

petascale computers,‖ SCIDAC, Journal of Physics: Conference Se-

ries 180. DOI: 10.1088/1742-6596/180/1/012046, 2009.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, ―Xen and the Art of Vir-

tualization,‖ ACM Symposium on Operating System Principles,

2003.

[27] Youseff, L., R. Wolski, et al. 2006. Evaluating the Performance

Impact of Xen on MPI and Process Execution For HPC Systems.

Proc of First International Workshop on Virtualization Tech-

nology in Distributed Computing, 2006.

[28] Walker, E. 2008. Benchmarking Amazon EC2 for high-

performance scientific computing.

http://www.usenix.org/publications/login/2008-

10/openpdfs/walker.pdf.

[29] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl

Choi, Seung-Hee Bae, Yang Ruan, Saliya Ekanayake, Stephen

Wu, Scott Beason, Geoffrey Fox, Mina Rho, Haixu Tang, ―Data

Intensive Computing for Bioinformatics‖, to appear as a book

chapter of Data Intensive Distributed Computing, IGI Publishers,

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDSSI-2010-01-0021

http://grids.ucs.indiana.edu/ptliupages/publications/DataInt

ensiveComputing_BookChapter.pdf.,2010.

Jaliya Ekanayake is a Ph.D. candidate at the School of Informatics
and Computing of Indiana University, Bloomington. His research
advisor is Prof. Geoffrey Fox. Jaliya works in the Community Grids
Lab as a research assistant and his Ph.D. research focuses on ar-
chitecture and performance of runtime environments for data inten-
sive scalable computing.

Thilina Gunarathne is a Ph.D. candidate at the School of Informat-
ics and Computing of Indiana University, Bloomington advised by
Prof. Geoffrey Fox. Thilina works in the Community Grids Lab as a
research assistant. His research interests include parallel program-
ming architectures and their composition.

Judy Qiu obtained her PhD from Syracuse University and is current-
ly an assistant director in the Pervasive Technology Institute at Indi-
ana University. Here she leads the SALSA group in data-intensive
and multicore systems.

