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Cloud Technologies for Bioinformatics 
Applications 

Jaliya Ekanayake, Thilina Gunarathne, and Judy Qiu 

Abstract—Executing large number of independent jobs or jobs comprising of large number of tasks that perform minimal inter-

task communication is a common requirement in many domains. Various technologies ranging from classic job schedulers to 

latest cloud technologies such as MapReduce can be used to execute these “many-tasks” in parallel. In this paper, we present 

our experience in applying two cloud technologies Apache Hadoop and Microsoft DryadLINQ to two bioinformatics applications 

with the above characteristics. The applications are a pairwise Alu sequence alignment application and an EST (Expressed 

Sequence Tag) sequence assembly program. First we compare the performance of these cloud technologies using the above 

case and also compare them with traditional MPI implementation in one application. Next we analyze the effect of 

inhomogeneous data on the scheduling mechanisms of the cloud technologies. Finally we present a comparison of performance 

of the cloud technologies under virtual and non-virtual hardware platforms. 

Index Terms—Distributed Programming, Parallel Systems, Performance, Programming Paradigms.  

——————————      —————————— 

1 INTRODUCTION 

HERE is increasing interest in approaches to data 
analysis in scientific computing as essentially every 
field is seeing an exponential increase in the size of 

the data deluge. The data sizes imply that parallelism is 
essential to process the information in a timely fashion. 
This is generating justified interest in new runtimes and 
programming models that unlike traditional parallel 
models such as MPI, directly address the data-specific 
issues.  Experience has shown that at least the initial (and 
often most time consuming) parts of data analysis are 
naturally data parallel and the processing can be made 
independent with perhaps some collective (reduction) 
operation. This structure has motivated the important 
MapReduce [1] paradigm and many follow-on exten-
sions. Here we examine three technologies (Microsoft 
Dryad/DryadLINQ [2][3], Apache Hadoop [4] and MPI) 
on two different bioinformatics applications (EST [5][6] 
and Alu clustering [7][8]). Dryad is an implementation of 
extended MapReduce from Microsoft. All the applications 
are (as is often so in Biology) ―doubly data parallel‖ (or 
―all pairs‖ [9]) as the basic computational unit is repli-
cated over all pairs of data items from the same (in our 
cases) or different datasets. In the EST example, each pa-
rallel task executes the CAP3 program on an input data 
file independently of others and there is no ―reduction‖ 
or ―aggregation‖ necessary at the end of the computation. 
On the otherhand, in the Alu case, a global aggregation is 
necessary at the end of the independent computations to 
produce the resulting dissimilarity matrix. In this paper 
we evaluate the different technologies showing that they 

give similar performance despite the different program-
ming models. 

In section 2, we give a brief introduction to the two 
cloud technologies we used while the applications EST 
and Alu sequencing are discussed in section 3. Section 4 
presents some performance results. Conclusions are given 
in section 7 after a discussion of the different program-
ming models in section 5 and related work in section 6. 

2 CLOUD TECHNOLOGIES 

2.1 Dryad/DryadLINQ 

Dryad is a distributed execution engine for coarse grain 
data parallel applications. It combines the MapReduce 
programming style with dataflow graphs to solve the 
computation tasks. Dryad considers computation tasks as 
directed acyclic graph (DAG) where the vertices represent 
computation tasks and with the edges acting as communi-
cation channels over which the data flow from one vertex 
to another.  The data is stored in (or partitioned to) local 
disks via the Windows shared directories and meta-data 
files and Dryad schedules the execution of vertices de-
pending on the data locality.  (Note: The academic release 
of Dryad only exposes the DryadLINQ API for program-
mers [3][10]. Therefore, all our implementations are writ-
ten using DryadLINQ although it uses Dryad as the un-
derlying runtime).  Dryad also stores the output of vertic-
es in local disks, and the other vertices which depend on 
these results, access them via the shared directories. This 
enables Dryad to re-execute failed vertices, a step which 
improves the fault tolerance of the programming model. 

2.2 Apache Hadoop 

Apache Hadoop has a similar architecture to Google’s 
MapReduce[1] runtime. Hadoop accesses data via HDFS 
[4], which maps all the local disks of the compute nodes 
to a single file system hierarchy, allowing the data to be 
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dispersed across all the data/computing nodes. HDFS 
also replicates the data on multiple nodes so that failures 
of nodes containing a portion of the data will not affect 
the computations which use that data. Hadoop schedules 
the MapReduce computation tasks depending on the data 
locality, improving the overall I/O bandwidth. The out-
puts of the map tasks are first stored in local disks until 
later, when the reduce tasks access them (pull) via HTTP 
connections. Although this approach simplifies the fault 
handling mechanism in Hadoop, it adds a significant 
communication overhead to the intermediate data trans-
fers, especially for applications that produce small inter-
mediate results frequently. 

3 APPLICATIONS 

3.1 Alu Sequence Classification 

The Alu clustering problem [8] is one of the most chal-
lenging problems for sequence clustering because Alus 
represent the largest repeat families in human genome. 
There are about 1 million copies of Alu sequences in hu-
man genome, in which most insertions can be found in 
other primates and only a small fraction (~ 7000) is hu-
man-specific. This indicates that the classification of Alu 
repeats can be deduced solely from the 1 million human 
Alu elements. Alu clustering can be viewed as a classical 
case study for the capacity of computational infrastruc-
tures because it is not only of great intrinsic biological 
interests, but also a problem of a scale that will remain as 
the upper limit of many other clustering problems in bio-
informatics for the next few years, such as the automated 
protein family classification for a few millions of proteins 
predicted from large metagenomics projects. In our work 
we have examined Alu samples of 35339 and 50,000 se-
quences using the pipeline of figure 1. 

Fig. 1. Pipeline for analysis of sequence data. 

3.1.1 Complete Alu Application  

This application uses two highly parallel traditional MPI 
applications, i.e. MDS (Multi-Dimensional Scaling) and 
Pairwise (PW) Clustering algorithms described in Fox, 
Bae et al. [7]. The latter identifies sequence families as 
relatively isolated as seen for example in figure 2. MDS 
allows visualization by mapping the high dimension se-
quence data to three dimensions for visualization. MDS  
finds the best set of 3D vectors x(i) such that a weighted 
least squares sum of the difference between the sequence 
dissimilarity D(i,j) and the Euclidean distance |x(i) - x(j)| 
is minimized. This has a computational complexity of 
O(N2) to find 3N unknowns for N sequences.  

The PWClustering algorithm is an efficient MPI paral-

lelization of a robust EM (Expectation Maximization) me-
thod using annealing (deterministic not Monte Carlo) 
originally developed by Ken Rose, Fox [14, 15] and others 
[16]. This improves over clustering methods like Kmeans 
which are sensitive to false minima. The original cluster-
ing work was based in a vector space (like Kmeans) 
where a cluster is defined by a vector as its center. How-
ever in a major advance 10 years ago [16], it was shown 
how one could use a vector free approach and operate 
with just the distances D(i,j). This method is clearly most 
natural for problems like Alu sequences where currently 
global sequence alignment (over all N sequences) is prob-
lematic but D(i,j) can be precisely calculated for each pair 
of sequenjces. PWClustering also has a time complexity of 
O(N2) and in practice we find all three steps (Calculate 
D(i,j), MDS and PWClustering) take comparable times (a 
few hours for 50,000 sequences on 768 cores) although 
searching for a large number of clusters and refining the 
MDS can increase their execution time significantly. We 
have presented performance results for MDS and 
PWClustering elsewhere [7][12] and for large datasets the 
efficiencies are high (showing sometimes super linear 
speed up). For a node architecture reason, the initial dis-
tance calculation phase reported below has efficiencies of 
around 40-50% as the Smith Waterman computations are 
memory bandwidth limited. The more complex MDS and 
PWClustering algorithms show more computation per 
data access and higher efficiency. 

Fig. 2. Display of Alu clusters from MDS and clustering calculation 
from 35339 sequences using SW-G distances. The clusters corres-
ponding to younger families AluYa, AluYb are particularly tight. 

In the rest of the paper, we only discuss the initial dissi-
milarity computation although it is important that this 
links to later clustering and MDS stages as these require 
the output of the first stage in a format appropriate for the 
later MPI-based data mining stages. The MDS and 
PWClustering algorithms require a particular parallel 
decomposition where each of N processes (MPI processes, 
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threads) has 1/N of sequences and for this subset {i} of 
sequences stores in memory D({i},j) for all sequences  j 
and the subset {i} of sequences for which this node is re-
sponsible. This implies that we need D(i,j) and D(j,i) 
(which are equal) stored in different processors/disks. 
We design our initial calculation of D(i,j) so that efficient-
ly we only calculated the independent set but the data 
was stored so that the later MPI jobs could efficiently 
access the data needed. We chose the simplest approach 
where the initial phase produced a single file holding the 
full set of D(i,j) stored by rows – all j for each successive 
value of i.  

3.1.2 Smith Waterman Dissimilarities 

We identified samples of the human and Chimpanzee 
Alu gene sequences using Repeatmasker [13] with Rep-
base Update [14]. We used open source version NAligner 
[11] of the Smith Waterman – Gotoh algorithm SW-G 
[15][16] modified to ensure low start up effects by each 
thread, processing large number (above a few hundred) 
of sequence calculations at a time. Memory bandwidth 
needed was reduced by storing data items in as few bytes 
as possible. In the following two sections, we discuss the 
initial phase of calculating distances D(i,j) for each pair of 
sequences so we can efficiently use MapReduce, Dryad-
LINQ and MPI. 

3.1.3 DryadLINQ Implementation 

We developed a DryadLINQ application to perform the 
calculation of pairwise SW-G distances for a given set of 
genes by adopting a coarse grain task decomposition ap-
proach. This approach performs minimum inter-task 
communication and hence ameliorates the higher com-
munication and synchronization costs of the parallel run-
time. To clarify our algorithm, let’s consider an example 
where N gene sequences produce a pairwise distance ma-
trix of size NxN. We decompose the computation task by 
considering the resultant matrix and group the overall 
computation into a block matrix of size DxD where D is a 
multiple (>2) of the available computation nodes. Due to 
the symmetry of the distances D(i,j) and D(j,i) we only 
calculate the distances in the blocks of the upper triangle 
of the block matrix as shown in figure 3. (left).  

Diagonal blocks are specially handled and calculated 
as full sub blocks. As the number of diagonal blocks is D 
and total number is D(D+1)/2, there is no significant 
compute overhead added. The blocks in the upper trian-
gle are partitioned (assigned) to the available compute 
nodes and a DryadLINQ’s ―Apply‖ operation is used to 
execute a function to calculate (N/D)x(N/D) distances in 
each block, where d is defined as N/D. After computing 
the distances in each block, the function calculates the 
transpose matrix of the result matrix which corresponds 
to a block in the lower triangle, and writes both these ma-
trices into two output files in the local file system. The 
names of these files and their block numbers are commu-
nicated back to the main program. The main program 
sorts the files based on their block numbers and performs 
another ―Apply‖ operation to combine the files corres-

ponding to rows in block matrix as shown in the figure 3 
(right). The first step of this computation domintates the 
overall running time of the application and with the algo-
rithm explained it clearly resembles the characteristics of 
a ―many-task‖ problem. 

3.1.4 Hadoop Implementation 

We developed an Apache Hadoop version of the pairwise 
distance calculation program based on the JAligner[20] 
program, the java implementation of the NAligner code 
used in Dryad implementation.  Similar to the other im-
plementations, the computation is partitioned in to blocks 
based on the resultant distance matrix.  Each of the blocks 
would get computed as a map task.  The block size (D) 
can be specified via an argument to the program. The 
block size needs to be specified in such a way that there 
will be much more map tasks than the map task capacity 
of the system, so that the Apache Hadoop scheduling will 
happen as a pipeline of map tasks resulting in  global 
load balancing inside the application.  The input data is 
distributed to the worker nodes through the Hadoop dis-
tributed cache, which makes them available in the local 
disk of each compute node. 

A load balanced task partitioning strategy according to 
the following rules is used to identify the blocks that need 
to be computed (dark grey) through map tasks as shown 
in the figure 4(left). In addition all the blocks in the di-
agonal (light grey) are computed. Even though the task 
partitioning mechanisms are different, both Dryad SW-G 
and Hadoop SW-G implementations end up with essen-
tially identical set of computation blocks, if the same 
block size argument is given to both the programs.  

When  β >= α, we calculate D(α,β) only if α+β is even, 
       When  β < α,   we calculate D(α,β) only if α+β is odd. 

The figure 4(right) depicts the run time behavior of the 
Hadoop SW-G program. In the given example the map 
task capacity of the system is ―k‖ and the number of 
blocks is ―N‖. The solid black lines represent the starting 
state, where ―k‖ map tasks corresponding to ―k‖ compu-
tation blocks will get scheduled in the compute nodes. 
The dashed black lines represent the state at time t1 , 
when 2 map tasks, m2 & m6, get completed and two map 
tasks from the pipeline get scheduled for the placeholders 
emptied by the completed map tasks. The gray dotted 
lines represent the future.  

Map tasks use custom Hadoop writable objects as the 
map task output values to store the calculated pairwise 
distance matrices for the respective blocks. In addition, 
non-diagonal map tasks output the inverse of the dis-
tances matrix of the block as a separate output value. Ha-
doop uses local files and http transfers to transfer the map 
task output key value pairs to the reduce tasks. 

The outputs of the map tasks are collected by the re-
duce tasks. Since the reduce tasks start collecting the out-
puts as soon as the first map task finishes and continue to 
do so while other map tasks are executing, the data trans-
fers from the map tasks to reduce tasks do not present a 
significant performance overhead to the program. The 
program currently creates a single reduce task per each 
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row block resulting in total of (no. of sequences/block 
size) Reduce tasks. Each reduce task accumulates the out-
put distances for a row block and writes the collected 
output to a single file in Hadoop Distributed File System 
(HDFS). This results in N number of output files corres-
ponding to each row block, similar to the output we pro-
duce in the Dryad version. 

3.1.5 MPI Implementation  

The MPI version of SW-G calculates pairwise distances 
using a set of either single or multi-threaded processes. 
For N gene sequences, we need to compute half of the 
values (in the lower triangular matrix), which is a total of 
M = N x (N-1) /2 distances. At a high level, computation 
tasks are evenly divided among P processes and execute 
in parallel. Namely, computation workload per process is 
M/P.  At a low level, each computation task can be fur-
ther divided into subgroups and run in T concurrent 
threads.  Our implementation is designed for flexible use 
of shared memory multicore system and distributed 
memory clusters (tight to medium tight coupled commu-
nication technologies such threading and MPI). We pro-

vide options for any combinations of thread vs. process 
vs. node but in earlier papers [7][12], we have shown that 
threading is much slower than MPI for this class of prob-
lem. We have explored two different algorithms termed 
―Space Filling‖ and ―Block Scattered‖. In each case, we 
must calculate the independent distances and then build 
the full matrix exploiting symmetry of D(i,j). 

The ―Space Filling‖ MPI algorithm is shown in figure 
5, where the data decomposition strategy runs a "space 
filling curve through lower triangular matrix" to produce 
equal numbers of pairs for each parallel unit such as 
process or thread. It is necessary to map indexes in each 
pairs group back to corresponding matrix coordinates (i, 
j) for constructing full matrix later on. We implemented a 
special function ―PairEnumertator‖ as the convertor.  We 
tried to limit runtime memory usage for performance 
optimization. This is done by writing a triple of i, j, and 
distance value of pairwise alignment to a stream writer 
and the system flashes accumulated results to a local file 
periodically. As the final stage, individual files are 
merged to form a full distance matrix. Next we describe 
the ―Block Scattered‖ MPI algorithm shown in figure 6. 

    

Fig. 3. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation of SW-G pairwise distance 
calculation application.  
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Fig. 4. Hadoop Implementation (left) Task (Map) decomposition and the reduce task data collection (right) Aapplication run time. 

0

..

..

(0,d-1)
(0,d-1)

Upper triangle

0

1

2

D-1

0 1 2 D-1

NxN matrix broken down to DxD blocks

Blocks in lower triangle 
are not calculated directly

0
(0,2d-1)
(0,d-1)

0
D-1

((D-1)d,Dd-1)
(0,d-1)

D
(0,d-1)
(d,2d-1)

D+1
(d,2d-1)
(d,2d-1)

((D-1)d,Dd-1)
((D-1)d,Dd-1)

DD-1

0 1 DD-1

V V V

..
..

V V V

..

DryadLINQ
vertices

File I/O

DryadLINQ
vertices

Each D consecutive blocks are merged to form a set of row blocks 
each with NxD elementsprocess has workload of NxD elements

Blocks in upper triangle

0 1 1T 1 2T DD-1

V

2

File I/OFile I/O



EKANAYAKE, ET AL.:  CLOUD TECHNOLOGIES FOR BIOINFORMATICS APPLICATIONS 5 

 

Points are divided into blocks such that each processor is 
responsible for all blocks in a simple decomposition illu-
strated in the figure 6 (left). This also illustrates the initial 
computation, where to respect symmetry, we calculate 
half the D(,) using the same criterion used in Dryad-
LINQ implementation: 
If  >= , we only calculate D(,) if + is even while in the 
lower triangle,  < , we only calculate D(,) if + is odd.  

This approach can be applied to points or blocks. In 
our implementation, we applied it to blocks of points -- of 
size (N/P)x(N/P) where we use P MPI processes. Note 
we get better load balancing than the ―Space Filling‖ al-
gorithm as each processor samples all values of . This 
computation step must be followed by a communication 
step illustrated in Figure 6 (Right) which gives full strips 
in each process. The latter can be straightforwardly writ-
ten out as properly ordered file(s). 

3.2 CAP3 Application EST and Its Software CAP3 

3.2.1 EST and Its Software CAP3 

An EST (Expressed Sequence Tag) corresponds to mes-
senger RNAs (mRNAs) transcribed from the genes resid-
ing on chromosomes. Each individual EST sequence 

represents a fragment of mRNA, and the EST assembly 
aims to re-construct full-length mRNA sequences for each 
expressed gene. Because ESTs correspond to the gene 
regions of a genome, EST sequencing has become a stan-
dard practice for gene discovery, especially for the ge-
nomes of many organisms that may be too complex for 
whole-genome sequencing. EST is addressed by the soft-
ware CAP3 which is a DNA sequence assembly program 
developed by Huang and Madan [17]. CAP3 performs 
several major assembly steps including computation of 
overlaps, construction of contigs, construction of multiple 
sequence alignments, and generation of consensus se-
quences to a given set of gene sequences. The program 
reads a collection of gene sequences from an input file 
(FASTA file format) and writes its output to several out-
put files, as well as the standard output. 

CAP3 is often required to process large numbers of 
FASTA formatted input files, which can be processed in-
dependently, making it an embarrassingly parallel appli-
cation requiring no inter-process communications. We 
have implemented a parallel version of CAP3 using Ha-
doop and DryadLINQ. This application resembles a 
common parallelization requirement, where an executa-
ble, a script, or a function in a special framework such as 

    

Fig. 5. Space Filling MPI Algorithm: Task decomposition (left) and SW-G implementation calculation (right). 

   

Fig. 6. Blocked MPI Algorithm: Row decomposition (left) and Scattered communication (right) to construct full matrix.  
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Matlab or R, needs to be applied on a collection of data 
items. We can develop DryadLINQ & Hadoop applica-
tions similar to the CAP3 implementations for all these 
use cases. 

3.2.2 DryadLINQ Implementation 

As discussed in section 3.2.1 CAP3 is a standalone execut-
able that processes a single file containing DNA se-
quences. To implement a parallel application for CAP3 
using DryadLINQ we adopted the following approach: (i) 
the input files are partitioned among the nodes of the 
cluster so that each node of the cluster stores roughly the 
same number of input files; (ii) a ―data-partition‖ (A text 
file for this application) is created in each node containing 
the names of the input files available in that node; (iii) a 
DryadLINQ ―partitioned-file‖ (a meta-data file unders-
tood by DryadLINQ) is created to point to the individual 
data-partitions located in the nodes of the cluster.  

Then we used the ―Select‖ operation available in 
DryadLINQ to perform a function (developed by us) on 
each of these input sequence files. The function calls the 
CAP3 executable passing the input file name and other 
necessary program parameters as command line argu-
ments. The function also captures the standard output of 
the CAP3 program and saves it to a file. Then it moves all 
the output files generated by CAP3 to a predefined loca-
tion. 

3.2.3 Hadoop Implementation 

Parallel CAP3 seqeunce assembly fits as a ―map only‖ 
application for the MapReduce model. The Hadoop ap-
plication is implemented by writing map tasks which ex-
ecute the CAP3 program as a separate process on a given 
input FASTA file. Since the CAP3 application is imple-
mented in C, we do not have the luxury of using the Ha-
doop file system (HDFS) directly. Hence the data needs to 
be stored in a shared file system across the nodes. How-
ever we are actively investigating the possibility of using 
Hadoop streaming and mountable HDFS for this pur-
pose. 

4 PERFORMANCE ANALYSIS 

In this section we study the performance of SW-G and 
CAP3 applications under increasing homogeneous work-
loads, inhomogeneous workloads with different standard 
deviations and the performance in cloud like virtual envi-
ronments. A 32 nodes IBM iDataPlex cluster, with each 
node having 2 quad core Intel Xeon processors (total 8 
cores per node) and 32 GB of memory per node was used 
for the performance analysis under the following operat-
ing conditions, (i) Microsoft Window HPC Server 2008, service 

Pack 1 - 64 bit (ii) Red Hat Enterprise Linux Server release 5.3 -64 

bit on bare metal (iii) Red Hat Enterprise Linux Server release 5.3 -

64 bit on Xen hypervisor (version 3.0.3).  

4.1 Scalability of different implementations 

4.1.1 SW-G 

In order to compare the scalability of Dryad, Hadoop and 
MPI implementations of ALU SW-G distance calculations 
with the increase of the data size using data sets of 10000 
to 40000 seqeunces. These data sets correspond to 100 
million to 1.6 billion total sequence distances. The actual 
number distance calculations performed by the applica-
tions are about half the above numbers due to optimisa-
tions mentioned in the implementation section. Data sets 
were generated by taking a 10000 sequence random sam-
ple from a real data set and replicating it 2 to 4 times. The 
Dryad & MPI results were adjusted to counter the per-
formance difference of the kernel programs for fair com-
parison with the Hadoop implementation. NAligner on 
windows performs on average ~.78 times slower than 
Jaligner on Linux in the hardware we used for the per-
formance analysis. 

The results for this experiment are given in the figure 
7. The time per actual calculation is computed by divid-
ing the total time to calculate pairwise distances for a set 
of sequences by the actual number of comparisons per-
formed by the application. According to figure 7, all three 
implementations perform and scale satisfactorily for this 
application with Hadoop implementation showing the 
best scaling. As expected, the total running times scaled 
proportionally to the square of the number of sequences. 
The Hadoop & Dryad applications perform and scale 
competitively with the MPI application.  

Fig. 7. Scalability of Smith Waterman pairwise distance calculation 
applications.  

We can notice that the performance of the Hadoop im-
plementation improving with the increase of the data set 
size, while Dryad performance degrades a bit. Hadoop 
improvements can be attributed to the diminishing of the 
framework overheads, while the Dryad degradation can 
be attributed to the memory management issues in the 
Windows and Dryad environment. 
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4.1.2 CAP3 

We analysed the scalability of DryadLINQ & Hadoop 
implementations of the CAP3 application with the in-
crease of the data set using homogeneous data sets. We 
prepare the data sets by replicating a single fasta file to 
represent a uniform workload across the application. The 
selected fasta sequence file contained 458 seqeunces.  

The results are shown in the figure 8. The primary ver-
tical axis (left) shows the total time vs the number of files. 
Secondary axis shows the time taken per file (total time / 
number of files) against the number of files. Bot the 
DryadLinq and Hadoop implementations show good 
scaling for the CAP3 application, although Dryad scaling 
is not as smooth as Hadoop scaling curve. Standalone 
CAP3 application used as the kernel for these applica-
tions performs better in the windows environment than 
in the Linux environment, which must be contributing to 
the reason for Hadoop being slower than Dryad.  

Fig. 8. Scalability of Cap3 applications. 

4.2 Inhomogeneous Data Analysis 

New generation parallel data processing frameworks 
such as Hadoop and DryadLINQ are designed to perform 
optimally when a given job can be divided in to a set of 
equally time consuming sub tasks. On the other hand 
most of the data sets we encounter in the real world are 
inhomogeneous in nature, making it hard for the data 
analyzing programs to efficiently break down the prob-
lems in to equal sub tasks.This motivated us to study the 
effects of inhomogeneity in the applications implemented 
using these frameworks. 

4.2.1 SW-G Pairwise Distance Calculation 

The inhomogeneoity of data applies for the gene se-
quence sets too, where individual sequence lengths and 
the contents vary among each other. In this section we 
study the effect of inhomogeneous gene sequence lengths 
for the performance of our pairwise distance calculation 
applications. 

𝑆𝑊𝐺 𝐴,𝐵 = 𝑂 𝑚𝑛  

 
The time complexity to align and obtain distances for two 
genome sequences A, B with lengths m and n respectively 
using Smith-Waterman-Gotoh algorithm is approximate-
ly proportional to the product of the lengths of two se-
quences (O(mn)). All the above described distributed im-
plementations of Smith-Waterman similarity calculation 
mechanisms rely on block decomposition to break down 
the larger problem space in to sub-problems that can be 
solved using the distributed components. Each block is 
assigned two sub-sets of sequences, where Smith-
Waterman pairwise distance similarity calculation needs 
to be performed for all the possible sequence pairs among 
the two sub sets.  According to the above mentioned time 
complexity of the Smith-Waterman kernel used by these 
distributed components, the execution time for a particu-
lar execution block depends on the lengths of the se-
quences assigned to the particular block.  

Parallel execution frameworks like Dryad and Hadoop 
work optimally when the work is equally partitioned 
among the tasks. Depending on the scheduling strategy of 
the framework, blocks with different execution times can 
have an adverse effect on the performance of the applica-
tions, unless proper load balancing measures have been 
taken in the task partitioning steps. For an example, in 
Dryad vertices are scheduled at the node level, making it 
possible for a node to have blocks with varying execution 
times. In this case if a single block inside a vertex takes a 
larger amount of time than other blocks to execute, then 
the whole node have to wait till the large task completes, 
which utilizes only a fraction of the node resources.  

Since the time taken for the Smith-Waterman pairwise 
distance calculation depends mainly on the lengths of the 
sequences and not on the actual contents of the se-
quences, we decided to use randomly generated gene 
sequence sets for this experiment. The gene sequence sets 
were randomly generated for a given mean sequence 
length (400) with varying standard deviations following a 
normal distribution of the sequence lengths. Each se-
quence set contained 10000 sequences leading to 100 mil-
lion pairwise distance calculations to perform. We per-
formed two studies using such inhomogeneous data sets.  
In the first study the sequences with varying lengths were 
randomly distributed in the data sets. In the second study 
the sequences with varying lengths were distributed us-
ing a skewed distribution, where the sequences in a set 
were arranged in the ascending order of sequence length. 

Figure 9 presents the execution time taken for the ran-
domly distributed inhomogeneous data sets with the 
same mean length, by the two different implementations, 
while figure 10 presents the executing time taken for the 
skewed distributed inhomogeneous data sets. The Dryad 
results depict the Dryad performance adjusted for the 
performance difference of the NAligner and JAligner ker-
nel programs. As we notice from the figure 9, both im-
plementations perform satisfactorily for the randomly 
distributed inhomogeneous data, without showing signif-
icant performance degradations with the increase of the 
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standard deviation. This behavior can be attributed to the 
fact that the sequences with varying lengths are randomly 
distributed across a data set, effectively providing a natu-
ral load balancing to the execution times of the sequence 
blocks.  

Fig. 9. Performance of SW-G pairwise distance calculation applica-
tion for randomly distibuted inhomogeneous data with „400‟ mean 
sequence length.  

Fig. 10. Performance of SW-G pairwise distance calculation applica-
tion for skewed distibuted inhomogeneous data with „400‟ mean 
sequence length. 

For the skewed distributed inhomogeneous data, we no-
tice clear performance degradation in the Dryad imple-
mentation. Once again the Hadoop implementation per-
forms consistently without showing significant perfor-
mance degradation, even though it does not perform as 
well as its randomly distributed counterpart. The Hadoop 
implementations’ consistent performance can be attri-
buted to the global pipeline scheduling of the map tasks. 
In the Hadoop Smith-Waterman implementation, each 
block decomposition gets assigned to a single map task. 
Hadoop framework allows the administrator to specify 
the number of map tasks that can be run on a particular 
compute node. The Hadoop global scheduler schedules 

the map tasks directly on to those placeholders in a much 
finer granularity than in Dryad, as and when the individ-
ual map tasks finish. This allows the Hadoop implemen-
tation to perform natural global level load     balancing. In 
this case it might even be advantageous to have varying 
task execution times to iron out the effect of any trailing 
map tasks towards the end of the computation. Dryad 
implementation pre allocates all the tasks to the compute 
nodes and does not perform any dynamic scheduling 
across the nodes. This makes a node which gets a larger 
work chunk to take considerable longer time than a node 
which gets a smaller work chunk, making the node with a 
smaller work chuck to idle while the other nodes finish. 

4.2.2 CAP3 

Unlike in Smith-Waterman Gotoh (SW-G) implementa-
tions, CAP3 program execution time does not directly 
depend on the file size or the size of the sequences, as it 
depend mainly on the content of the sequences. This 
made is hard for us to artificially generate inhomogene-
ous data sets for the CAP3 program, forcing us to use real 
data. When generating the data sets, first we calculated 
the standalone CAP3 execution time for each of the files 
in our data set. Then based on those timings, we created 
data sets that have approximately similar mean times 
while the standard deviation of the standalone running 
times is different in each data set. We performed the per-
formance testing for randomly distributed as well as 
skewed distributed (sorted according to individual file 
running time) data sets similar to the SWG inhomogene-
ous study. The speedup is taken by dividing the sum of 
sequential running times of the files in the data set by the 
parallel implementation running time. 

Fig. 11. Performance of Cap3 application for random distributed 
inhomogeneous data. 

Figures 11 & 12 depict the CAP3 inhomogeneous perfor-
mance results for Hadoop & Dryad implementations. 
Hadoop implementation shows satisfactory scaling for 
both randomly distributed as well as skewed distributed 
data sets, while the Dryad implementation shows satis-
factory scaling in the randomly distributed data set. Once 
again we notice that the Dryad implementation does not 
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perform well for the skewed distributed inhomogeneous 
data due to its’ static non-global scheduling. 

 
Fig. 12. Performance of Cap3 Applications for skewed distributed 
inhomogeneous data 

4.3 Performance in the Cloud 

With the popularity of the computing clouds, we can no-
tice the data processing frameworks like Hadoop Map 
Reduce and DryadLINQ are becoming popular as cloudy 
parallel frameworks. We measured the performance and 
virtualization overhead of several MPI applications on 
the virtual environments in an earlier study [24]. Here we 
present extended performance results of using Apache 
Hadoop implementation of SW-G and Cap3 in a cloud 
environment by comparing Hadoop on Linux with Ha-
doop on Linux on Xen [26] para-virtualised environment. 

While the Youseff, Wolski, et al. [27] suggests that the 
VM’s impose very little overheads on MPI application, 
our previous study indicated that the VM overheads de-
pend mainly on the communications patterns of the ap-
plications. Specifically the set of applications that is sensi-
tive to latencies (lower communication to computation 
ration, large number of smaller messages) experienced 
higher overheads in virtual environments. Walker [28]  
presents benchmark results of the HPC application per-
formance on Amazon EC2, compared with a similar bare 
metal local cluster, where he noticed 40% to 1000% per-
formance degradations on EC2. But since one can not 
have complete control and knowledge over EC2 infra-
structure, there exists too many unknowns to directly 
compare these results with the above mentioned results. 

Above studies further motivated us to study the VM 
overhead for applications written using frameworks like 
Hadoop & Dryad. We set up a dynamic cluster to auto-
matically switch the operating environment between ha-
doop on Linux, Hadoop on Linux on Xen and Dyrad on 
Windows HPCS. We used IBM’s xCAT to enable switch-
ing controlled by messages managed by a publish-
subscribe infrastructure. As described in [29], switching 
environments cost about 5 minutes ─ a modest cost to 
pay for reliable performance measurements on identical 
hardware. In our study we used the same cluster as bare 

metal and the virtual environment, so that we have full 
control over the infrastructure for a better comparison. 
All the tests used one VM per node to best match the bare 
metal environment. In all the nodes we setup the HDFS 
file system in a direct local disk partition. We used per-
formance degradation computed using the ((Tvm -  Tbm) / 
Tbm) equation as our measure of VM overhead where Tvm 
stands for the running time in the virtual environment 
and Tbm stands for the running time in the bare metal en-
vironment. 

4.3.1 SW-G Pairwise Distance Calculation 

Figure 13 presents the virtualization overhead of the Ha-
doop SW-G application comparing the performance of 
the appication on linux on bare metal and on linux on xen 
virtual machines. The data sets used is the same 10000 
real sequence replicated data set used for the scalability 
study in the section 4.1.1. The number of blocks is kept 
contant across the test, resulting in larger blocks for larger 
data sets. According to the results, the performance de-
gradation for the Hadoop SWG application on virtual 
environment ranges from 25% to 15%. We can notice the 
performanace degradation gets reduced with the increase 
of the problem size.   

Fig. 13. Virtualization overhead of Hadoop SW-G on Xen virtual 
machines. 

In the xen para-virtualization architecture, each guest OS 
(running in domU) perform their I/O transfers through 
Xen (dom0). This process adds startup costs to I/O as it 
involves startup overheads such as communication with 
dom0 and scheduling of I/O operations in dom0. Xen 
architecture uses shared memory buffers to transfer data 
between domU’s and dom0, thus reducing the operation-
al overheads when performing the actual I/O. We can 
notice the same behavior in the Xen memory manage-
ment, where page table operations needs to go through 
Xen, while simple memory accesses can be performed by 
the guest Oss without Xen involvement. Accoring to the 
above points, we can notice that doing few coarser 
grained I/O and memory operations would incur rela-
tively low overheads than doing the same work using 
many finer finer grained operations. We can conclude this 
as the possible reason behind the decrease of performance 
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degradation with the increase of data size, as large data 
sizes increase the granularity of the computational blocks.   

4.3.2 CAP3 

Figure 14 presents the virtualization overhead of the Ha-
doop CAP3 application. We used the same scalability 
data set we used in section 4.1.2 for this analisys too. The 
performance degradation in this application remains con-
stant near 20% for all the data sets. CAP3 application does 
not show the decrease of VM overhead with the increase 
of problem size as we noticed in the SWG application. 
Unlike in SWG, the I/O and memory behavior of the 
CAP3 program does not change based on the data set 
size, as irrespective of the data set size the granularity of 
the processing (single file) remains same. Hance the VM 
overheads does not get changed even with the increase of 
workload. 

Fig. 14. Virtualization overhead of Hadoop Cap3 on Xen virtual ma-
chines 

5. COMPARISON OF PROGRAMMING MODELS 

The category of ―many-task computing‖ also belongs to 
the pleasingly parallel applications in which the parallel 
tasks in a computation perform minimum inter-task 
communications. From our perspective independent jobs 
or jobs with collection of almost independent tasks 
represents the ―many-tasks‖ domain. Apart from the EST 
and pairwise distance computations we have described, 
applications such as parametric sweeps, converting doc-
uments to different formats and brute force searches in 
cryptography are all examples in this category of applica-
tions. 

One can adopt a wide range of parallelization tech-
niques to perform most of the many-task computations in 
parallel. Thread libraries in multi-core CPUs, MPI, classic 
job schedulers in cloud/cluster/Grid systems, indepen-
dent ―maps‖ in MapReduce, and independent ―vertices‖ 
in DryadLINQ are all such techniques. However, factors 
such as the granularity of the independent tasks, the 
amount of data/compute intensiveness of tasks deter-
mine the applicability of these technologies to the prob-
lem at hand. For example, in CAP3 each task performs 
highly compute intensive operation on a single input file 
and typically the input files are quite small in size (com-

pared to highly data intensive applications), which makes 
all the aforementioned techniques applicable to CAP3. On 
the other hand the pairwise distance calculation applica-
tion that requires a reduction (or combine) operation can 
easily be implemented using MapReduce programming 
model.  

To clarify the benefits of the cloud technologies let’s 
consider the following pseudo code segments 
representing Hadoop, DryadLINQ and MPI implementa-
tions of the pairwise distance (Smith Waterman dissimi-
larities) calculation application (discussed in section 
3.1.2). 

Fig. 15. Code segment showing the MapReduce implementation of 
pairwise distance calculation using Hadoop. 

In Hadoop implementation the map task calculates the 
Smith Waterman distances for a given block of sequences 
while the reduce task combine these blocks to produce 
row blocks of the final matrix. The MapReduce pro-
gramming model executes map and reduce tasks in paral 
lel (in two separate stages) and handles the intermediate 
data transfers between them without any user interven-
tion. The input data, intermediate data, and output data 
are all stored and accessed from the Hadoop’s distributed 
file system (HDFS) making the entire application highly 
robust.  
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main{ 
blockFiles[]=PartitionDataToRowBlocks(seqFile); 
paths[] = UploadToHDFS(blockFiles) 
addToDistributedCache (paths); 
//write a metadata file (row index & column  

     // index) in HDFS for each block to compute  
IdentifyBlocksToCompute&WriteMetadata(); 

} 
 
//value is a string containing row block index &  
//column block index (contents of the metadata file) 
map (key, value){ 

rowSequences[] = Parse(row-block-file); 
columnSeqeunces[] = Parse(column-block-file); 
distances[][] = calculateDistances ( 

rowSequences, columnSeqeunces); 
context.write(row-block-index , distances); 
context.write(column-block-index, 

inverse(distances); 
} 
 
// key is a row-block-index, values are all the blocks 
//belonging to a row block 
reduce (key, blocks){ 

Foreach(block in blocks){ 
RowBlock +=block; 

} 
} 
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Fig. 16. Code segment showing the DryadLINQ implementation of 
pairwise distance calculation. 

The DryadLINQ implementation resembles a more query 
style implementation in which the parallelism is com-
pletely abstracted by the LINQ operations which are per-
formed in parallel by the underlying Dryad runtime. The 
―PerformAlignments‖ function has a similar capability to 
a map task and the ―PerformMerge‖ function has a simi-
lar capability to the reduce task in MapReduce.  Dryad-
LINQ produces a directed acyclic graph (DAG) for this 
program in which both ―SelectMany‖ and the ―Apply‖ 
operations are performed as a collection of parallel vertic-
es (tasks). The DAG is then executed by the underlying 
Dryad runtime. DryadLINQ implementation uses Win-
dows shared directories to read input data, store and 
transfer intermediate results, and store the final outputs. 
With replicated data partitions, DryadLINQ can also 
support fault tolerance for the computation. 

Input parameters of the MPI application include a 
FASTA file, thread, process per node, and node count. In 
the data decomposition phase, subsets of sequences are 
identified as described in section 3.1.5. Corresponding to 
MPI runtime architecture in Figure 6(right), we use 
MPI.net [18] API to assign parallel tasks to processes (de 
 

Fig. 17. Code segment showing the MPI implementation of pairwise 
distance calculation. 

fault is one per core). One can use fewer processes per 
node and multi-threading in each MPI process (and this is 
most efficient way to implement parallelism for MDS and 
PWClustering) but we will not present these results here. 
Each compute node has a copy of the input file and out 
put results written directly to a local disk. In this MPI 
example, there is a Barrier call followed by the scatter 
communication at the end of computing each block. This 
is not the most efficient algorithm if the compute times 

Main(){  
//Calculate the block assignments  
 assignBlocksToTasks(); 
    
//Perform allignment calculation for each block 
//Group them according to their row numbers 
//Combine rows to form row blocks 
 outputInfo  =  assignedBlocks 
         .SelectMany(block =>    
                         PerformAlignments(block)) 
         .GroupBy(x => x.RowIndex); 
         .Apply(group=>PerformMerge(group)); 
 
     //Write all related meta data about row blocks 
and 
     // the corresponding output files. 

writeMetaData(); 
} 
 
//Homomorphic property informs the compiler 
//that each block can be processed separately. 
[Homomorphic] 
PerformAlignments(block){ 

 distances[]=calculateDistances(block); 
 writeDistancesToFiles(); 

 } 
 

[Homomorphic] 
PerformMerge(group){ 
    mergeBlocksInTheGroup(group); 
    writeOutputFile(); 
} 

using (MPI.Environment env = new 
MPI.Environment(ref args)){ 

sequences = parser.Parse(fastaFile); 
size = MPI.Intracommunicator.world.Size; 
 rank = MPI.Intracommunicator.world.Rank;  
partialDistanceMatrix[][][] = new short   

                                  [size][blockHeight][blockWidth]; 
 
//Compute the distances for the row block 
for (i =0; i< noOfMPIProcesses; i++){ 
     if (isComputeBlock(rank,i)){ 
           partialDistanceMatrix[i] =      
                             computeBlock(sequences, i,rank); 
      } 
} 
MPI_Barrier(); 
 
// prepare the distance blocks to send 
toSend[] =transposeBlocks(partialDistanceMatrix); 
 
//use scatter to send  & receive distance blocks 
//that are computed & not-computed respectively 
for (receivedRank = 0; receivedRank < size;  

                                                       receivedRank++){ 
     receivedBlock[][] =   
              MPI_Scatter<T[][]>(toSend, receivedRank); 
     if (isMissingBlock(rank,receivedRank)){ 
         partialMatrix[receivedRank] = receivedBlock; 
     } 
} 
MPI_Barrier(); 
 
//Collect all distances to root process. 
if (rank == MPI_root){ 
     partialMatrix.copyTo(fullMatrix); 
     for(i=0;i<size;i++){ 
         if (rank != MPI_root){ 

   receivedPartMat=MPI_Receive<T[][]>(i, 1); 
             receivedPartMat.copyTo(fullMatrix); 
         } 
     } 
     fullMatrix.saveToFile(); 
}else{ 
     MPI_Send<t[][]>(partialMatrix, MPI_root, 1); 
} 

} 
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per block are unequal but was adopted to synchronize the 
communication step. 

The code segments show clealy how the higher level 
parallel runtimes such as Hadoop and DryadLINQ have 
abstracted the parallel programming aspects from the 
users. Although the MPI algorithm we used for SW-G 
computation only uses one MPI communication construct 
(MPI_Scatter), in typical MPI applications the program-
mer needs to explicitly use various communication con-
structs to build the MPI communication patterns. The low 
level communication contructs in MPI supports parallel 
algorithms with variety of communication topologies. 
However, developing these applications require great 
amount of programming skills as well. 

On the other hand high level runtimes provide limited 
communication topologies such as map-only or map fol-
lowed by reduce in MapReduce and DAG base execution 
flows in DryadLINQ making them easier to program. 
Added support for handling data and quality of services 
such as fault tolerance make them more favorable to de-
velop parallel applications with simple communication 
topologies. Many-task computing is an ideal match for 
these parallel runtimes. 

There are some important differences such as MPI be-
ing oriented towards memory to memory operations 
whereas Hadoop and DryadLINQ are file oriented. This 
difference makes these new technologies far more robust 
and flexible. On the other the file orientation implies that 
there is much greater overhead in the new technologies. 
This is a not a problem for initial stages of data analysis 
where file I/O is separated by a long processing phase. 
However as discussed in [12], this feature means that one 
cannot execute efficiently on MapReduce, traditional MPI 
programs that iteratively switch between ―map‖ and 
―communication‖ activities. We have shown that an ex-
tended MapReduce programming model named i-
MapReduce[19][7]  can support both classic MPI and Ma-
pReduce operations. i-MapReduce has a larger overhead 
than good MPI implementations but this overhead does 
decrease to zero as one runs larger and larger problems.  

6. RELATED WORK 

There have been several papers discussing data analysis 
using a variety of cloud and more traditional clus-
ter/Grid technologies with the Chicago paper [20] in-
fluential in posing the broad importance of this type of 
problem. The Notre Dame all pairs system [21]  clearly 
identified the ―doubly data parallel‖ structure seen in all 
of our applications. We discuss in the Alu case the linking 
of an initial doubly data parallel to more traditional 
―singly data parallel‖ MPI applications. BLAST is a well 
known doubly data parallel problem and has been dis-
cussed in several papers [22][23]. The Swarm project [6] 
successfully uses traditional distributed clustering sche-
duling to address the EST and CAP3 problem. Note ap-
proaches like Condor have significant startup time domi-
nating performance. For basic operations [24], we find 
Hadoop and Dryad get similar performance on bioinfor-

matics, particle physics and the well known kernels. 
Wilde [25] has emphasized the value of scripting to con-
trol these (task parallel) problems and here DryadLINQ 
offers some capabilities that we exploited. We note that 
most previous work has used Linux based systems and 
technologies. Our work shows that Windows HPC server 
based systems can also be very effective. 

7. CONCLUSIONS 

We have studied two data analysis problems with three 

different technologies. They have been looked on ma-

chines with up to 768 cores with results presented here 

run on 256 core clusters. The applications each start with 

a ―doubly data-parallel‖ (all pairs) phase that can be im-

plemented in MapReduce, MPI or using cloud resources 

on demand. The flexibility of clouds and MapReduce 

suggest they will become the preferred approaches. We 

showed how one can support an application (Alu) requir-

ing a detailed output structure to allow follow-on itera-

tive MPI computations. The applications differed in the 

heterogeneity of the initial data sets but in each case good 

performance is observed with the new cloud MapReduce 

technologies competitive with MPI performance. The 

simple structure of the data/compute flow and the mini-

mum inter-task communicational requirements of these 

―pleasingly parallel‖ applications enabled them to be im-

plemented using a wide variety of technologies. The sup-

port for handling large data sets, the concept of moving 

computation to data, and the better quality of services 

provided by the cloud technologies, simplify the imple-

mentation of some problems over traditional systems. We 

find that different programming constructs available in 

MapReduce such as independent ―maps‖ in MapReduce, 

and ―homomorphic Apply‖ in DryadLINQ are suitable 

for implementing applications of the type we examine. In 

the Alu case, we show that DryadLINQ and Hadoop can 

be programmed to prepare data for use in later parallel 

MPI/threaded applications used for further analysis. We 

performed tests using identical hardware for Hadoop on 

Linux, Hadoop on Linux on Virtual Machines and 

DryadLINQ on HPCS on Windows. These show that 

DryadLINQ and Hadoop get similar performance and 

that virtual machines give overheads of around 20%. We 

also noted that support of inhomogeneous data is impor-

tant and that Hadoop currently performs better than 

DryadLINQ unless one takes steps to load balance the 

data before the static scheduling used by DryadLINQ. We 

compare the ease of programming for MPI, DryadLINQ 

and Hadoop. The MapReduce cases offer higher level 

interface and the user needs less explicit control of the 

parallelism. The DryadLINQ framework offers significant 

support of database access but our examples do not ex-

ploit this. 
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