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Abstract—Microarray technology is a high-throughput 
experimental technique that can measure expression levels of 
hundreds of thousands of genes simultaneously. To interpret 
massive data from gene-expression microarray experiments, 
biologists encounter computational and analytical challenges. 
This is especially challenging for small research labs that lack 
local computing and bioinformatics expertise. Here, we 
introduce a virtual analysis system for microarray gene 
expression data in computing clouds with flexible and 
configurable GUI workflow engine so that biologists are able to 
analyze the data in many angles without worrying about 
computational and bioinformatics issues. 
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I.  INTRODUCTION 
Recently, biologists and medical scientists can measure 

expression of hundreds of thousands genes simultaneously 
using microarray technology. Analysis of data from high-
throughput microarray technology remains a big challenge 
in the field of bioinformatics for its huge volume of data. In 
addition to its huge data volume, analysis of microarray data 
involves many computational tools for searching genes of 
interest, clustering, component analysis, network analysis, 
to find meaningful interpretations from different angles.  

Due to its huge size of the data, analysis tasks are 
usually computationally-intensive and time-consuming and 
require high-performance computing power. Recently, 
virtual computing clouds are drawing attentions for its 
flexibility since users can create a high-performance cluster 
of any number of virtual computing units in an on-demand 
manner. However, building an efficient computation 
environment and integrating it with various bioinformatics 
applications is a challenging task to normal users even with 
a cloud computing cluster. This is a computing 
infrastructure issue. 

Another issue in microarray data analysis is to execute 
multiple of analysis tasks as a single batch job. A typical 
batch job for analysis involves a series of execution of 
different analysis methods and it is often getting tedious due 
to its repetitive execution with slightly different parameters 
in each run. This is called an exploratory data analysis issue. 

To allow small biology labs to utilize gene expression 
microarray data, both issues should be taken care of. We 
have developed a system for microarray data analysis in 
virtual environment, called BioVLAB Microarray, using a 
graphical workflow composer, XBaya [1], coupled with 
Amazon Elastic Computing Cloud (EC2), Simple Storage 
Service (S3), and Microsoft Application-Based Storage. 
Contribution of our system is three-fold: i) providing a suite 
of microarray analysis applications which can utilize remote 
high-performance computing resources such as computing 
clouds or public Web services, ii) providing an easy-to-use 
and reconfigurable workflow system in which a workflow 
composition requires no system knowledge of working 
environment and users can repeatedly execute the same 
workflow with different parameter settings, and iii) building 
a Web portal where an administrator can manage 
inventories of applications that a user can use for his/her 
workflow composition and also users can manage their data. 

The rest of the paper is organized as follows. We discuss 
about the motivation of our system in Section II and related 
work in Section III. Section IV explains microarray 
experiments and gene expression network analysis tasks. In 
section V, we describe the BioVLAB Microarray system 
architecture. Section VI shows result from an experiment 
using a microarray data using our system. Section VII 
concludes the paper with discussion on future works.  

II. MOTIVATION 
Analysis of microarray data requires various tasks such 

as searching similar patterns of genes with a target gene, 
network analysis, extracting differentially expressed genes, 
clustering, and component analysis (See Fig. 1). Running 



application software to perform an analysis task is often not 
trivial for biologists, especially when it is written for Linux 
or Unix environment which is often the case in 
Bioinformatics.  In addition, to combine multiple analysis 
tasks, an output of a task needs to be an input to another 
analysis, which is even more difficult for many biologists. 
Use of a workflow composer can alleviate this technical 
burden significantly since all application software tools are 
visible and multiple tools can be easily combined by the 
drag-and-drop feature of a workflow composer. A well 
defined and composed workflow can be repetitively used 
with different parameter settings and can also be modified 
easily. Coupling a workflow composer with a computing 
cloud will allow biologists in small research labs to analyze 
microarray data on their desktop or notebook without 
worrying about many computational and bioinformatics 
issues. 

Motivated by this, we built a workflow execution 
environment of microarray gene expression data analysis, 
named BioVLAB Microarray. This system is a reusable, 
reconfigurable, high-level workflow execution workbench 
powered by computing clouds in which a user can do 
various microarray gene expression analyses without deep 
knowledge of computing environment and resources.  

III. RELATED WORK 
A number of research projects have been conducted to 

build a workflow system in the field of biology and 
bioinformatics. Those efforts can be categorized into two 
main directions: one is to develop efficient and user-friendly 
workflow composers and execution engines and the other is 
to use distributed and heterogeneous computing resources, 
such as a Grid system, combined with a workflow system to 
enhance computing capability. There are many 
bioinformatics workflows and workflow engines. SIBIOS 
[2]  has been developed to address an issue of dynamic 
workflow execution and interoperability between distributed 
and heterogeneous bioinformatics services. BioWBI [3] is a 
Web tool to provide researchers with a virtual workspace for 
sharing data with collaborators and a graphical workflow 
composer. KDE Bioscience [4]  is a Java-based platform 
that integrates more than 60 bioinformatics tools and 
provides a GUI-based workflow composer and its execution 
engine. 

The other research direction to build a workflow system 
is to use a group of distributed and heterogeneous 
computing resources, called Grid system. Among many 
efforts, Taverna [5], Triana [6], Kepler [7], GNARE [8], and 
RENCI-Bioportal [9] are worth mentioning. Taverna [5] has 
been developed as a part of the myGrid project and it is a 
workflow system running bioinformatics Web services and 
existing bioinformatics applications over distributed 
resources. Triana [6] is designed to offer more a general 
approach to integrate with other Grid based systems, such as 
Globus and GridLab, or service oriented system like Web 
services. Kepler [7] is a scientific workflow system based 
on a dataflow-oriented model, so called an actor-oriented 
model. GNARE [8] is a bioinformatics server equipped with 
automated workflows and a Grid-based computational 
backend to perform high throughput analysis of genomes 
with an aid of the workflow engine called GADU which can 
access to Grid resources.  

Our BioVLAB Microarray system is similar to other 
workflow systems such as Taverna [5], Triana [6], Kepler 
[7], and GNARE [8], in  terms of utilizing the workflow 
concept.  However, our BioVLAB Microarray system is 
different from those systems in that we enable a user to use 
on-demand virtual computing powers supplied by a 
computing cloud service and various public resources. 
Using virtual instances, instead of using persistent resources, 
is more flexible and cost-efficient way for a small group of 
users who needs, only sporadically, high performance 
computing infrastructures for running computation-intensive 
bioinformatics applications. Contrast to our previous work 
[10], the BioVLAB Microarray system is integrated with 
bioinformatics applications for microarray analysis and 
more public resources such as Microsoft Application-Based 
Storage. 

IV. GENE EXPRESSION AND EXPRESSION NETOWRK 
At a given time, only a subset of genes in a cell is 

expressed corresponding to environmental changes and its 
own changing needs. To study the dynamics of cell activity, 
experiments encompassing a whole set of genes is required. 
The microarray technology is a recently developed high-
throughput experimental method for the purpose. A single 
microarray experiment can measure expression levels of 
hundreds of thousands of genes within a cell. This high-

Figure 1. Common task of Microarray analysis:  gene expression data obtained from a microarray experiment is analyzed in various ways such as finding a 
set of genes which show similar expression with a target gene, extracting differentially expressed genes, component analysis, clustering, and network 
analysis. Output of subset extraction which is a set of differentially expressed gene, can be input of other analyses such as component analysis, clustering, 
and network analysis.  
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throughput experiment gives an insight of how a cell 
responds to changed conditions [11].  

Microarray is useful in many ways. First, previously 
unknown function(s) of a gene can be characterized by 
finding similar expression patterns of genes with known 
function. Second, co-expression of many genes can used to 
build a gene transcription network, which can reveal how 
genes interact with each other. Third, identifying genes 
related to certain disease and detecting effectiveness of new 
drugs can be also tested in terms of clinical data.  

BioVLAB Microarray can be used to perform integrated 
analysis of microarray data for two research goals: gene 
expression analysis and expression network analysis. In 
section 4.1, searching similar pattern of genes against a 
target gene, subset extraction of expression set, 
unsupervised approach of gene expression analysis, and 
component analysis are discussed. Interaction of gene 
products is another important issue in microarray data 
analysis. In section 4.2, we discuss about constructing gene 
expression networks from a microarray data.  

A. Gene expression analysis 
1) Searching for similar expression patterns: We 

often need to find a set of genes that have similar expression 
patterns to a gene of interest. When the function of a target 
gene is unknown, inspecting function of genes with 
expression patterns similar to the target gene may reveal the 
function of the target gene.  Even when the function of the 
target gene is known, we can have an insight how 
similarly/dissimilarly genes are expressed in given 
conditions.  Note that this type of analysis is not precisely 
defined, but rather exploratory, thus repeated analysis from 
different angles is necessary. 

2) Subset extraction: One important research question 
is to identify genes that are differentially expressed. The 
criterion for differentially expressed genes is often 
subjective. Thus this is typically an exploratory analysis 
task and often combined with statistical evaluation. Since 
many genes are involved, there is higher chance of 
observing difference in gene expression randomly and a 
rigorous statistical testing for dealing with multiple 
experiments is needed. A widely used method for adjusting 
multiple testing correction False Discovery Rate (FDR) 
[12].  

3) Clustering: Many genes in a microarray 
experiment may have no known protein functions 
previously. Also, genes with similar expression patterns 
may need to be studied as a group. Clustering has been 
widely used in analysis of microarray data. Traditional 
unsupervised learning methods, such as k-means clustering 
[13] and hierarchical clustering, have been widely used. 
Quality threshold clustering (QT clustering) [14] determines 
clusters based on maximum diameter instead of a number of 
clusters in k-means clustering. Self-organizing map (SOM) 
[15] has widely used. Recently, biclustering methods [16] 
are getting attention. Clustering methods such as k-means 
clustering, hierarchical clustering, and SOM considers only 
one direction of data either rows (genes) or columns 
(samples/conditions) but not both. On the other hand, 

biclustering methods are two-way clustering methods where 
they train both directions and reach to clusters in both ways.  

4) Component analysis: Hidden structure of 
microarray gene expression data may be revealed by 
component analysis. Principal component analysis (PCA) 
and independent component analysis (ICA) [17] are two 
widely used component analysis.  

B. Expressed protein network analysis 
1) Network analysis: The network analysis approach 

is a powerful analysis tool to understand real-world 
phenomena. From the viewpoint of network theory, a world 
is a network of inter-connected node. Here, nodes represent 
the individual actors and connections represent the 
relationships between actors. Relationship among nodes 
within the network often carries more robust information 
than each node. One of the main interests in network 
analysis is exposing hidden structures from a given network. 
Network structures can be revealed by identifying several 
network properties using graph theory: betweenness, 
closeness, centrality, clustering coefficient, cohesion, 
density, path length, radiality, and structural holes. Three 
models of random network, scale-free network, and 
hierarchical network are used to interpret a given network.  

2) PPI network analysis: Network analysis can be 
applied to several biological systems, especially to protein-
protein interaction (PPI) network. PPI networks are central 
to most biological processes, including metabolic pathway, 
cellular signaling, and gene expression control. The 
systematic identification of PPIs and their network plays a 
key role in understanding how a cellular system works. 
Protein–protein interactions are known to be a scale-free 
network [18]. Many biological networks also show 
outstanding modularity in structure and it is believed that 
these structural modules reflect higher-level functional 
organization of cellular components. Since PPI patterns 
correlate with the protein’s functional properties, PPI maps 
can be utilized to uncover potential biological role of 
proteins with unknown functional classification. Also, by 
adding expression correlation score to network edges, we 
may see inter-protein crosstalk during gene expression 
control. Transcripts of protein-coding genes are matched to 
PPI. 

V. BIOVLAB MICROARRAY SYSTEM 
Microarray data analysis tasks are typically exploratory 

as we discussed in the previous section. Thus no system – 
no matter how well designed it is – can meet users’ diverse 
requirement. BioVLAB Microarray workflow system uses a 
graphical workflow composer (See Fig. 2) to select, 
combine, and execute various analysis tasks, invoking 
application software packages on a computing cloud, 
Amazon Elastic Computing Cloud (EC2) and Simple 
Storage Service (S3) or Microsoft Application-Based 
Storage. Use of a cloud computer allows users to build 
instant and flexible parallelizable clusters. With those 
resources, users can save time and efforts by utilizing more 
powerful external computing resources and reducing the 
burden of power-constraint local systems.  



The purpose of our system is three-fold: i) providing 
user-friendly, graphic-user-interface (GUI) workflow 
composer and execution engine, ii) enabling users to use 
remote computing powers, such as computing clouds, e.g., 
Amazon EC2/S3, and public Web services, such as NCBI 
services and Microsoft Application-Based Storage, with 
ease and flexibility, and iii) providing an easy-to-use Web 
portal in which users can manage the system and data. In the 
following, we discuss more details of our system. 

A. BIOVLAB Microarray system architecture 
Our system consists of the following three main 

components: workflow composer and execution engine, 
application services which can utilize Amazon EC2/S3 and 
Microsoft Application-Based Storage service, and Web 
portal.  

1) Workflow composer and execution engine: The 
workflow concept has been introduced in the scientific 
communities to execute a batch of multiple tasks by 
reducing a user’s involvement and enables a user to repeat 
the same task easily. A workflow is a directed acyclic graph 
where each inner node is an application to execute and an 
edge between two nodes represents a flow of data. A 
starting node and an end node in a workflow graph 
correspond to an input and an output data respectively. For 
the workflow composition and execution, our system uses a 
graphical workflow composer, called XBaya [1].  

By using XBaya, a user can easily compose a workflow 
by doing drag-and-drop from the workbench that lists 
software applications available on the system and execute 
the workflow instantly.  During the execution of a workflow, 
XBaya can monitor status of workflow execution. Detailed 
status-messages will be displayed in the monitor panel as 
shown in Fig. 2.  For more information about using XBaya, 
refer to [1].  

2) Application service: Many biological applications 
are developed stand-alone and platform-dependent. Thus 
interoperability among applications is a major problem and 
a user has a great difficulty in executing multiple 
applications in a single environment. To overcome this 

problem, application services have been proposed. An 
application service is a Web service that can invoke 
applications through simple Web messages known as 
Simple Object Access Protocol (SOAP) and 
Representational State Transfer (REST).  In our system, we 
used the Generic Service Toolkit, known as Gfac [19], to 
convert any command-line bioinformatics application into a 
Web service, which is accessible by XBaya.  

Some bioinformatics applications require a powerful 
high performance or parallelizable computation 
environment. Our system is designed to utilize remote high-
performance resources, such as computing cloud of Amazon 
EC2 in which a user can create any number of virtual 
computing instances running in parallel.  Our system can 
also use public remote storage services, such as Amazon S3 
and Microsoft Application-Based Storage, as a storage 
service to store intermediate or final output of workflow 
execution. Thus, a user in our system can choose to use both 
of them without worrying about installation or management 
of computing resources. For easy-to-use access and 
management of data stored in the remote services, we 
provide a Web portal in our system. 

3) Web portal: The management of our system, as an 
administrator, or the access of stored data, as a user, can be 
done though the portal interface in our system, called Web 
portal. We built our Web portal by using the Open Grid 
Computing Environments (OGCE) Portal [20]. 

As an administrator, management of registered 
application that users are allowed to execute can be done 
easily through the Gfac’s registry portlet that is used in our 
system. User management and access control can also be 
done through the portlet interface provided by OGCE.  

In our system, a user can upload and download inputs 
and outputs of bioinformatics applications, which can be 
stored in the remote storage services, such as Amazon EC2 
and Microsoft Application-Based Storage, through our Web 
portal simply by using a Web browser (Fig. 3). 

Figure 2. Composing a workflow by using XBaya: a user can (a) add a node by doing drag-and-drop one of available applications from the workbench panel 
and (b) create an edge by pushing and releasing a mouse pointer between two nodes of a workflow. 
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B. Analysis resources 
R [21] is a widely used language for microarray data 

analysis. Bioconductor [22] that is implemented in R was 
integrated to analyze gene expression data. Many built-in 
functions in R as well as other R packages have been 
integrated into our system. Public databases such as NCBI 
GEO and DIP were directly/indirectly integrated to our 
system.  

1) Data acquisition: Microarray data can be obtained 
from public data repositories. Here, we connect to the NCBI 
GEO database to get microarray data using GEOquery 
package [23].  

2) Gene expression search: Genes having similar 
expression pattern with a target gene are often interested. 
We used similarity metric such as correlation.  

3) Differentially expressed genes: To extract 
differentially expressed gene, we used the limma package 
[24].  

4) Clustering: Built-in R functions kmeans and 
hclust were used for k-means clustering and hierarchical 
clustering, respectively. Additional clustering packages 
were used such as flexclust package [25] for QT clustering, 
biclust [26] for biclustering, and self-organizing map [27] 
for SOM.   

5) Component analysis: Two popular analysis 
methods, principle component analysis (PCA) and 
independent component analysis (ICA), were incorporated. 
PCA were executed by calling R built-in function 
princomp. For ICA, we used fastICA package [28].  

6) Network resources:  Information of protein-protein 
interaction of a genome was retrieved from the Database of 
Interacting Proteins (DIP) database [29]. DIP catalogs 

experimentally determined protein–protein interactions that 
were manually reviewed by experts or were collected 
automatically using computational prediction methods. 
Connected components in a generated network were 
computed using Perl graph package. To visualize a network, 
we used GraphViz package. 

VI. EXPERIMENTS 
GDS38 gene expression data set [30] was chosen for an 

input gene expression data. It was remotely retrieved from 
the NCBI GEO database by an application in XBaya and 
used throughout experiments. It is time-series gene 
expression data to observe cell cycle in Saccharomyces 
cerevisiae yeast genome. There are 7680 spots in each 16 
samples where each sample was taken every 7 minutes as 
cells went through cell cycle.  

Fig. 4 shows a graphical experiment summary of 
component analysis, clustering, and network analysis. For 
component analysis and clustering, only subset of genes that 
are differentially expressed was used.  Differentially 
expressed genes were extracted using the limma package 
with an adjusted P-value less than 0.05.  

Outputs of two component analyses, PCA and ICA, 
were summarized graphically in Fig. 4.a and 4.b. For PCA 
in Fig. 4.a, screeplot, biplot, and pair plot with top 3 
dimensions were shown. Fig. 4.b shows the result of ICA as 
a scatter plot and a pairwise scatterplot with top 3 
dimensions.   

Clustering analysis results are shown in Fig. 4.c through 
Fig. 4.g. For k-means clustering in Fig. 4.c, a scatter plot 
and a heat map visualize the clustering result. A cluster size 
k was set to 3. QT clustering result is shown in Fig. 4.d with 
a scatter plot and a heat map. The radius threshold of 
clustering quality was set to 1. Fig. 4.e shows two 
hierarchical plots, one-way hierarchical clustering and two-
way hierarchical clustering shown as a heat map. The bi-
clustering summary is shown in Fig. 4.f. Cheng and Church 
method [31] was used for bi-clustering in which a cluster 
size was set to 3. Graphical summary of a self-organizing 
map was shown in Fig. 4.g. For SOM, x dimension and y 
dimension were set to 4.  

Fig. 4.f shows the graphical summary of a PPI network. 
Given positive/negative correlation cutoff values, a gene 
network was generated from a correlation matrix by 
referring to DIP. Since our approach combined gene 
expression correlation between genes and their protein-
protein interaction information, the resulting network 
representation visualized sub-networks of genes that might 
participate in positive/negative feedback control of 
interesting cellular processes. These networks were 
represented as undirected graph. Sub-networks were 
identified by detecting connected component and visualized 
using the GraphViz package. Nodes represent genes (or 
their protein products). Red and blue colors were used for 
edges to represent positive correlation and blue for negative 
correlation respectively. Each correlation score was labeled 
over edge line. 

Figure 3. A Web interface for browsing files in Amazon S3 and Microsoft 
Application-Based Storage: a user can simply use a Web browser to 
explore files stored in those services. 
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VII. CONCLUSION 
In this paper, we introduced a system for microarray 

gene expression data analysis in a virtual environment, 
BioVLAB Microarray. Coupling computing clouds and a 
user-friendly GUI workflow execution engine, we 
constructed a workflow system that can be used by 
biologists without worrying about computer infrastructure 
and bioinformatics issues. Our approach is an effective 
system design principle that allows biologists, especially 
those in small research labs, to utilize massive high 
throughput biological data. We believe that the approach 
introduced in this paper can be applied to many biological 
applications that need to deal with massive data.  

The system introduced in this paper is useful but needs 
further development.  First of all, there are a lot more 
software packages used for gene expression microarray data 
and there will be new application packages that need to be 
included in BioVLAB Microarray. In addition, biology and 
medical sciences are under-going a revolution to study 
biological system-level study, a.k.a systems biology, by 
utilizing data from high throughput instruments such as 
various types of microarray data (including gene expression 
data), sequence data from massively parallel sequencing 
methods, mass spectronomy, etc. Thus what biologists need 
is a system of great flexibility to integrate heterogeneous 
computing resources such as clouds, grid, and even multi-
core desktop, altogether. Also, since there have been many 
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Figure 4. Graphical experiment summary: see detail in text 



public databases and applications available, the system 
would be able to integrate those valuable resources such as 
NCBI, KEGG, PDB, netblast, etc. A system architecture to 
deal with this situation is a new research problem that needs 
to be further studied. 

We have begun to explore a 5-tier approach: a gateway, 
clouds, grid, desktop, and public resources. Since 
collaboration is also crucial issue in biological experiments, 
our system is being developed towards a collaborative 
workbench backed up by metadata catalog and search.  
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