
Towards a Collective Layer in the Big Data Stack

Thilina Gunarathne

Department of Computer Science

Indiana University, Bloomington

tgunarat@indiana.edu

Judy Qiu

Department of Computer Science

Indiana University, Bloomington

xqiu@indiana.edu

Dennis Gannon

Microsoft Research,

Redmond,WA

dennis.gannon@microsoft.com

Abstract—We generalize MapReduce, Iterative MapReduce

and data intensive MPI run time as a layered Map-Collective

architecture with Map-AllGather, Map-AllReduce, MapRe-

duceMergeBroadcast and Map-ReduceScatter patterns as ini-

tial focus. Map-collectives improve the performance and effi-

ciency of the computations, while at the same time facilitating

ease of use for the users. These collective primitives can be ap-

plied to multiple runtimes and we propose building high per-

formance robust implementations that cross cluster and cloud

systems. Here we present results for two collectives shared be-

tween Hadoop (where we term our extension H-Collectives) on

clusters and the Twister4Azure Iterative MapReduce for the

Azure Cloud. Our prototype implementations of Map-

AllGather and Map-AllReduce primitives achieved up to 33%

performance improvement for KMeans Clustering and up to

50% improvement with Multi-Dimensional Scaling, while im-

proving the user friendliness as well. In some cases, use of Map-

collectives virtually eliminated almost all the overheads of the

computations.

Keywords: MapReduce, Twister, Collectives, Cloud, HPC,

Performance, Kmeans, MDS

I. INTRODUCTION

During the last decade three largely industry-driven dis-
ruptive trends have altered the landscape of scalable parallel
computing, which has long been dominated by the HPC ap-
plications. These disruptions are the emergence of data inten-
sive computing (aka big data), the new emergence of com-
modity cluster-based execution & storage frameworks such
as MapReduce and the utility computing model introduced
by Cloud computing environments. Oftentimes MapReduce
is used to process the “Big Data” in cloud or cluster envi-
ronments. Although these disruptions have advanced remark-
ably, we argue that we can further benefit these technologies
by generalizing MapReduce and integrating it with HPC
technologies. This splits MapReduce into a Map and a Col-
lective communication phase that generalizes the Reduce
concept. We present a set of Map-Collective communications
primitives that improve the efficiency and usability of large-
scale parallel data intensive computations.

When performing distributed computations, data often
needs to be shared and/or consolidated among the different
nodes of the computations. Collective communication primi-
tives effectively facilitate these data communications by
providing operations that involve a group of nodes simulta-
neously [1, 2]. Collective communication primitives are very
popular in the HPC community and used heavily in the MPI
type of HPC applications. There has been much research [1]
to optimize the performance of these collective communica-

tion operations, as they have a significant impact on the per-
formance of HPC applications.

Our work highlights several Map-Collective communica-
tion primitives to support and optimize common computation
and communication patterns in both MapReduce and iterative
MapReduce computations. We present the applicability of
Map-Collective operations to enhance (Iterative) MapReduce
without sacrificing desirable MapReduce properties such as
fault tolerance, scalability, familiar APIs and data model. The
addition of collective communication operations enriches the
MapReduce model by providing many performance and ease
of use advantages. This includes providing efficient data
communication operations optimized for particular execution
environments and use cases, enabling programming models
that fit naturally with application patterns, and allowing users
to avoid overhead by skipping unnecessary steps of the exe-
cution flow.

We present these patterns as high level constructs that can
be adopted by any MapReduce or iterative MapReduce
runtime. We also offer proof-of-concept implementations of
the primitives on Hadoop and Twister4Azure and envision a
future where all the MapReduce and iterative MapReduce
runtimes support a common set of Map-Collective primitives.

This paper focuses on mapping All-to-All communication
type of collective communication operations, AllGather and
AllReduce, to the MapReduce model as Map-AllGather and
Map-AllReduce patterns. Map-AllGather gathers the outputs
from all the map tasks and distributes the gathered data to all
the workers after a combine operation. Map-AllReduce prim-
itive combines the results of the Map Tasks based on a reduc-
tion operation and delivers the result to all the workers. We
also present MapReduceMergeBroadcast as an important
collective in all (iterative) MapReduce frameworks.

II. MAPREDUCE-MERGEBROADCAST (MR-MB)

We introduce MapReduce-MergeBroadcast[3], called
MR-MB from here onwards, as a generic programming mod-
el to represent data-intensive iterative MapReduce applica-
tions. Programming models of most of the current iterative
MapReduce frameworks can be specified as MR-MB.

A. API

The MR-MB programming model extends the map and
reduce functions of traditional MapReduce to include the
loop variant delta values as an input parameter. MR-MB pro-
vides the loop variant data (dynamicData), including broad-
cast data, to the Map and Reduce tasks as a list of key-value
pairs using this additional input parameter.
 Map(<key>, <value>, list_of <key,value> dynamicData)
 Reduce(<key>,list_of<value>,list_of<key,value> dynamicData)

B. Merge Task

Merge[4] was defined as a new step to the MapReduce
programming model to support iterative applications. It is a
single task, or the convergence point, which executes after
the Reduce step that can be used to perform summarization or
aggregation of the results of a single MapReduce iteration.
The Merge step can also serve as the “loop-test” that evalu-
ates the loops condition in the iterative MapReduce pro-
gramming model.

Merge Task receives all the Reduce outputs and the
broadcast data for the current iteration as the inputs. With
merge, the overall flow of the iterative MapReduce computa-
tion and data flow would appear as follows:
 Map →Combine→Shuffle→Sort→Reduce→Merge→Broadcast

Following is the programming API of the Merge task.
Merge(list_of <key,list_of<value>> reduceOutputs,

list_of <key,value> dynamicData)

C. Broadcast

The broadcast operation transmits the loop variant data to
all the tasks in an iteration. In typical data-intensive iterative
computations, the loop-variant data is orders of magnitude
smaller than the loop-invariant data. Broadcast operation
typically broadcasts the output data of the Merge tasks to the
tasks of the next iteration. For MR-MB, this can also be
thought of as executing at the beginning of the iterative
MapReduce computation. This would make the model
Broadcast-MapReduce-Merge, which is essentially similar to
the MapReduce-Merge-Broadcast when iterations are present
(e.g.: …MRn Mergen Broadcastn MRn+1 Merge n+1

...). Broadcast can be implemented efficiently based on the
environment as well as the data sizes. Well-known algorithms
for data broadcasting include flat-tree, minimum spanning
tree (MST), pipeline and chaining[5]. It’s possible to share
broadcast data between multiple Map and/or Reduce tasks
executing on the same node.

D. Current iterative MapReduce Frameworks and MR-MB

Twister4Azure[4] supports the MR-MB natively. In Twister,
the combine step is part of the driver program and is executed
after the MapReduce computation of every iteration. Twister
is a MapReduce-Combine model, where the Combine step is
similar to the Merge step. Twister[6] MapReduce computa-
tions broadcast the loop variant data products at the begin-
ning of each iteration, effectively making the model Broad-
cast-MapReduce-Combine, which is semantically similar to
the MR-MB. HaLoop[7] performs an additional MapReduce
computation to do the fixed point evaluation for each itera-
tion, effectively making this MapReduce computation equiv-
alent to the Merge task. Data broadcast is achieved through a

MapReduce computation to join the loop variant and loop
invariant data.

III. COLLECTIVE COMMUNICATIONS PRIMITIVES FOR

ITERATIVE MAPREDUCE

While implementing iterative MapReduce applications
using the MR-MB model, we started to notice several com-
mon execution flow patterns across the different applications.
Some of these applications had very trivial Reduce and
Merge tasks while other applications needed extra effort to
map to the MR-MB model owing to the execution patterns
being slightly different than the iterative MapReduce pattern.
In order to solve such issues, we introduce Map-Collective
primitives to the iterative MapReduce programming model,
inspired by the MPI collective communications primitives[2].

Figure 1. Map-Collective primitives

These primitives support higher-level communication pat-
terns that occur frequently in data-intensive iterative applica-
tions by substituting certain steps of the MR-MB computa-
tion. As depicted in Figure 1, these Map-Collective primitives
can be thought of as a Map phase followed by a series of
framework-defined communication and computation opera-
tions leading to the next iteration.

In this paper we propose two collective communication
primitive implementations: Map-AllGather and Map-
AllReduce. You can also identify MR-MB as another collec-
tive communication primitive as well.

A. Requirements

When designing Map-collective primitives for iterative
MapReduce, we should make sure they fit with the MapRe-
duce data model and the MapReduce computational model,
which support multiple Map task waves, large overheads,
significant execution variations and inhomogeneous tasks.
Also the primitives should retain scalability while keeping
the programming model simple and easy to understand.
These primitives should maintain the same type of frame-
work-managed excellent fault tolerance supported by
MapReduce.

Pattern Execution and communication flow Frameworks Sample applications

MapReduce MapCombineShuffleSortReduce Hadoop, Twister, Twister4Azure WordCount, Grep, etc.

MapReduce-
MergeBroadcast

MapCombineShuffleSortReduce
MergeBroadcast

Twister, Haloop, Twister4Azure KMeansClustering, PageRank,

Map-AllGather
MapAllGather Communica-
tionAllGather Combine

H-Collectives, Twister4Azure
MDS-BCCalc (matrix X matrix),
Pagerank (matrix X vector)

Map-AllReduce
MapAllReduce (communication & com-
putation)

H-Collectives, Twister4Azure
KMeansClustering, MDS-
StressCalc

B. Advantages

1) Performance improvement
Introduction of Map-Collective primitives provides 3

types of performance improvements to the iterative MapRe-
duce applications. Map-Collectives can reduce the overheads
of the computations by skipping or overlapping certain steps
(e.g. shuffle, reduce, merge) of the iterative MapReduce
computational flow. Map-Collective patterns also fit more
naturally with the application patterns, avoiding the need for
unnecessary steps.

Another advantage is the ability for the frameworks to op-
timize these operations transparently for the users, even al-
lowing the possibility of different optimizations (poly-
algorithm) for different use cases and environments. For ex-
ample, a communication algorithm that’s best for smaller
data sizes may not be the best for larger ones. In such cases,
the Map-Collective operations can opt to have multiple algo-
rithm implementations to be used for different data sizes.

These primitives also have the capability to make the ap-
plications more efficient by overlapping communication with
computation. Frameworks can start the execution of collec-
tives as soon as the first results are produced from the Map
tasks. For example, in the Map-AllGather primitive, present-
ed in section 4, partial Map results are broadcasted to all the
nodes as soon as they become available. It is also possible to
perform some of the computations in the data transfer layer,
like the hierarchical reduction in Map-AllReduce primitive.

2) Ease of use
Map-Collective operations present patterns and APIs that

fit more naturally with the real world applications. This sim-
plifies the porting of new applications to the iterative
MapReduce model. In addition, the developers can avoid
manually implementing the logic of some of the operations,
such as reduce and merge tasks, and can rely on optimized
operations provided by the framework.

3) Scheduling with iterative primitives
In addition to providing synchronization between the iter-

ations, Map-Collective primitives also give us the ability to
propagate the scheduling information for the next iteration to
the worker nodes along with the collective communication
data. This allows the frameworks to synchronize and sched-
ule the tasks of a new iteration or application with minimal
overheads.

For example, as mentioned in section VI, Twister4Azure
successfully employs this strategy to schedule new iterations
with minimal overhead, while H-Collectives use this strategy
to perform speculative scheduling of tasks.

C. Programming model

Map-Collective primitives can be specified as an outside
configuration option without changing the MapReduce pro-
gramming model. This permits the applications developed
with Map-Collectives to be backward compatible with
frameworks that don’t support them. This also makes it easy
for developers who are already familiar with MapReduce
programming to use Map-Collectives. For an example, a
KMeans Clustering MapReduce implementation with Map,
Reduce and Merge tasks can be used with Map-AllReduce or
vice versa without doing any changes to the Map, Reduce or
Merge function implementations.

D. Implementation considerations

Map-Collectives can be add-on improvements to MapRe-
duce frameworks. The simplest implementation would be
implementing the primitives using the current MapReduce
API and communication model on the user level, then provid-
ing the implementation as a library. This will achieve ease of
use for the users by providing a unified programming model
that better matches application patterns.

More optimized implementations can present these primi-
tives as part of the MapReduce framework (or as a separate
library) with the ability to optimize the data transfers based
on environment and use case, using optimized group com-
munication algorithms in the background.

IV. MAP-ALLGATHER COLLECTIVE

AllGather is an all-to-all collective communication opera-
tion that gathers data from all the workers and distributes the
gathered data right back to them[1]. AllGather pattern can be
noticed in data-intensive iterative MapReduce applications
where the “reduce” step is a simple aggregation operation
that simply aligns the outputs of the Map Tasks together in
order, followed by “merge” and broadcast steps that transmit
the assembled output to all the workers. An example would
be a Matix-vector multiplication, where each map task out-
puts part of the resultant vector. In this computation we
would use the Reduce and Merge tasks to assemble the vector
together and then broadcast the assembled vector to workers.

Data-intensive iterative applications that have the All-
Gather pattern include MultiDimensionalScaling (matrix-
matrix multiplication) [8] and Pagerank using inlinks matrix
(matrix-vector multiplication).

A. Model

We developed a Map-AllGather iterative MapReduce
primitive similar to the MPI AllGather[1] collective commu-
nication primitive to support applications in a more efficient
manner.

1) Execution model

Figure 2. Map-AllGather Collective

Map-AllGather primitive broadcasts the Map Task out-
puts to all computational nodes (all-to-all communication) of
the computation, and then assembles them together in the
recipient nodes as depicted in Figure 2. Each Map worker
will deliver its result to all other workers of the computation
once the Map task is completed.

The computation and communication pattern of a Map-
AllGather computation is Map phase followed by AllGather
communication (all-to-all) followed by the AllGather com-

bine phase. As shown here, this model substitutes the shuf-
flesortreducemergebroadcast steps of the MR-MB
with all-to-all broadcast and Allgather combine.

2) Data Model
For Map-AllGather, the map output key should be an in-

teger specifying the location of the output value in the result-
ant gathered data product. Map output values can be vectors,
sets of vectors (partial matrix) or single values. Final output
value of the Map-AllGather operation is an assembled array
of Map output values in the order of their corresponding
keys. The result of AllGather-Combine will be provided to
the Map tasks of the next iteration as the loop variant data
using the APIs and mechanisms suggested in Section 2.2.1.

The final assembly of AllGather data can be performed by
implementing a custom combiner or using the default com-
biner of AllGather-combine. Custom combiner allows the
user to specify a custom assembling function. In this case, the
input to the assembling function is a list of Map outputs key-
value pairs, ordered by the key. This assembling function gets
executed in each worker node after all the data is received.

The default combiner should work for most of the use
cases, as the combining of AllGather data is oftentimes a triv-
ial process. The default combiner expect the Map outputs to
be in <int, double[]> format. In a matrix example, the key
would represent the row index of the output matrix and the
value would contain the corresponding row vector. Map out-
puts with duplicate keys (same key for multiple output val-
ues) are not supported and therefore ignored.

Users can deploy their Mapper implementations as is with
Map-AllGather primitive. They need to specify only the col-
lective operation, after which the shuffle and reduce phases
of MapReduce would be substituted by the Map-AllGather
communication and computations.

3) Cost Model
Using an optimized implementation of AllGather, such as

a bi-directional exchange-based implementation[1], we can
estimate the cost of the AllGather component as follows us-
ing the Hockney model[5, 9], where α is the latency and β is
the transmission time per data item (1/bandwidth)), m is the
number of map tasks and nv is the size of AllGather data.

𝑇𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 = log(𝑚) 𝛼 +
𝑚 − 1

𝑚
𝑛𝑣𝛽

It’s also possible to further reduce this cost by performing
local aggregation in the Map worker nodes. The variation of
Map task completion times will also help to avoid network
congestion in these implementations.

Map-Allgather substitutes the Map output processing
(collect, spill, merge), Reduce task (shuffle, merge, execute,
write), Merge task (shuffle, execute) and broadcast overheads
with a less costly AllGather operation.

B. Fault tolerance

All-Gather partial data product transfers from Map to
workers can fail due to communication mishaps and other
breakdowns. When task level fault tolerance (typical MapRe-
duce fault tolerance) is enabled, it’s possible for the workers
to read the missing map output data from the persistent stor-
age (e.g.HDFS) to successfully perform the All-Gather com-
putation.

The fault tolerance and the speculative execution of
MapReduce enable duplicate execution of tasks. Map-Allther
can perform the duplicate data detection before the final as-
sembly of the data at the recipient nodes to handle any dupli-
cate executions.

C. Benefits

Use of the Map-AllGather in an iterative MapReduce
computation eliminates the need for reduce, merge and
broadcasting steps in that particular computation. Also the
smaller-sized multiple broadcasts of Map-AllGather primi-
tive originating from multiple servers of the cluster would be
able to use the network more effectively than a single mono-
lithic broadcast originating from a single server.

Oftentimes the Map task execution times are inhomoge-
neous[10] in typical MapReduce computations. Implementa-
tions of Map-AllGather primitive can start broadcasting the
map task result values as soon as the first map task is com-
pleted. This mechanism ensures that almost all the data is
broadcasted by the time the last map task completes its exe-
cution, resulting in overlap of computations with communica-
tion. This benefit will be even more significant when we have
multiple waves of map tasks.

In addition to improving the performance, this primitive
also enhances usability, as it eliminates the overhead of im-
plementing reduce and/or merge functions. Map-AllGather
can be used to efficiently schedule the next iteration or the
next application of the computational flow as well.

V. MAP-ALLREDUCE COLLECTIVE

AllReduce is a collective pattern which combines a set of
values emitted by all the workers based on a given operation
and makes the results available to all the workers[1]. This
pattern can be seen in many iterative data mining and graph
processing algorithms. Example data-intensive iterative ap-
plications that have the Map-AllReduce pattern include
KMeansClustering, Multi-dimensional Scaling StressCalc
computation and PageRank using out links matrix.

A. Model

We propose Map-AllReduce iterative MapReduce primi-
tive, similar to the MPI AllReduce[1] collective communica-
tion operation, to efficiently aggregate and reduce the results
of the Map Tasks.

Figure 3. Map-AllReduce collective

1) Execution Model
The computation and communication pattern of a Map-

AllReduce computation is a Map phase followed by the
AllReduce communication and computation (reduction), as
depicted in Figure 3. This model allows us to substitute the

shufflesortreducemergebroadcast steps of MR-MB
with AllReduce communication in the communication layer.
The AllReduce phase can be implemented efficiently using
algorithms such as bidirectional exchange (BDE) [1] or hier-
archical tree-based reduction.

Map-AllReduce allows the implementations to perform
local aggregation on the worker nodes across multiple map
tasks and to perform hierarchical reduction of the Map Task
outputs while communicating them to all the workers.

2) Data Model

Figure 4. Example Map-AllReduce with Sum operation

For Map-AllReduce, the map output values should be
vectors or single values of numbers. The values belonging to
each distinct map output key are processed as a separate data
reduction operation. Output of the Map-AllReduce operation
is a list of key/value pairs where each key corresponds to a
map output key and the value is the combined value of the
map output values that were associated with that map output
key. As shown in Figure 4, the number of records in the Map-
AllReduce output is equal to the number of unique map out-
put keys. For example, 10 distinct Map output keys would
result in 10 combined vectors or values. Map output value
type should be a number.

In addition to the summation, any commutative and asso-
ciative operation can be performed using this primitive. Ex-
ample operations include sum, max, min, count, and product
operations. Operations such as average can be performed by
using the Sum operation together with an additional element
(dimension) to count the number of data products. Due to the
associative and commutative nature of the operations, Map-
AllReduce has the ability to start combining the values as
soon as the first map task completion. It also allows the Map-
AllReduce implementations to use reduction trees or bidirec-
tional exchanges to optimize the operation.

It is also possible to allow users to specify a post process
function that executes after the AllReduce communication.
This function can be used to perform a simple operation on
the Map-AllReduce result or to check for the iteration termi-
nation condition. It would be executed in each worker node
after all the Map-AllReduce data has been received.

list<Key, IOpRedValue> postOpRedProcess(
list<Key, IOpRedValue> opRedResult);

3) Cost Model
An optimized implementation of Map-AllReduce, such as

a bi-directional exchange-based implementation[1], will re-
duce the cost of the AllReduce component to:

𝑇𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒 = log (𝑚) (𝛼 + 𝑛𝑣𝛽 + 𝑓(𝑛𝑣))
It’s also possible to further reduce this cost by performing

local aggregation and reduction in the Map worker nodes, as
the cost of AllReduce computation is small. Map-AllReduce

substitutes the Map output processing, Reduce task, Merge
task and broadcast overheads.

Other efficient algorithms to implement AllReduce com-
munication include flat-tree/linear, pipeline, binomial tree,
binary tree, and k-chain trees[5].

B. Fault Tolerance

If the AllReduce communication step fails for some rea-
son, it’s possible for the workers to read the map output data
from the persistent storage to perform the All-Reduce compu-
tation.

The fault tolerance model and the speculative execution
model of MapReduce make it possible to have duplicate exe-
cution of tasks. Duplicate executions can result in incorrect
Map-AllReduce results due to the possibility of aggregating
the output of the same task twice. The most trivial fault toler-
ance model for Map-AllReduce would be a best-effort mech-
anism, where Map-AllReduce would fall back to using the
Map output results from the persistent storage (e.g. HDFS) in
case duplicate results are detected. Duplicate detection can be
done by maintaining a set of map IDs with each combined
data product. It’s possible for the frameworks to implement
richer fault tolerance mechanisms, such as identifying the
duplicated values in localized areas of the reduction tree.

C. Benefits

Map-AllReduce reduces the work each user has to per-
form in implementing Reduce and Merge tasks. It also re-
moves the overhead of Reduce and Merge tasks from the
computations and allows the framework to perform the com-
bine operation in the communication layer itself.

Map-AllReduce semantics allow the implementations to
optimize the computation by performing hierarchical reduc-
tions, reducing the number and the size of intermediate data
communications. Hierarchical reduction can be performed in
as many levels as needed based on the size of the computa-
tion and the scale of the environment. For example, first level
in mappers, second level in the node and n

th
 level in rack lev-

el, etc. The mapper level would be similar to the “combine”
operation of vanilla MapReduce. The local node aggregation
can combine the values emitted by multiple mappers running
in a single physical node. All-Reduce combine processing
can be performed in real time when the data is received.

VI. IMPLEMENTATIONS

In this section we present two implementations of Map-
Collectives on Hadoop MapReduce and Twister4Azure itera-
tive MapReduce.

These implementations are proofs of concept presenting
sufficiently optimal implementations for each of the primi-
tives and the environments to show the performance efficien-
cies that can be gained through using even a modest imple-
mentation of these operations. It’s possible to further opti-
mize these implementation using more advanced communi-
cation algorithms based on the environment they will be exe-
cuting, the scale of the computations, and the data sizes as
shown in MPI collective communications literature[1]. One
of the main advantages of these primitives is the flexibility to
improve primitive implementations without the need to

change the user application, making it possible to optimize
these implementations in the future as future work.

It is not our objective to find the most optimal implemen-
tations for each of the environments, especially for clouds
where the most optimal implementation might end up being a
moving target due to the rapidly evolving nature and the
black box nature of cloud environments. This presents an
interesting opportunity for cloud providers to develop opti-
mized implementations of these primitives as cloud infra-
structure services that can be utilized by the framework de-
velopers.

A. H-Collectives : Map-Collectives for Apache Hadoop

H-Collectives is a Map-Collectives implementation for
Apache Hadoop that can be used as a drop in library with the
Hadoop distributions. H-Collectives uses the Netty NIO li-
brary, node-level data aggregations and caching to efficiently
implement the collective communications and computations.
Existing Hadoop Mapper implementations can be used with
these primitives with only very minimal changes. These
primitives work seamlessly with Hadoop dynamic scheduling
of tasks, support for multiple map task waves and other de-
sirable features of Hadoop, while supporting the typical Ha-
doop fault tolerance and speculative executions as well.

A single Hadoop node may run several Map workers and
many more map tasks belonging to a single computation. The
H-Collectives implementation maintains a single node-level
cache to store and serve the collective results to all the tasks
executing in a worker node.

H-Collectives speculatively schedules the tasks for the
next iteration and the tasks are waiting to start as soon as all
the AllGather data is received, getting rid of most of the Ha-
doop job startup/cleanup and task scheduling overheads.
Speculative scheduling cannot be used easily with pure Ha-
doop MapReduce as we need to add the loop variant data
(only available after the previous iteration is finished) to the
Hadoop DistributedCache before scheduling the job.

1) H-Collectives Map-AllGather
This implementation performs simple TCP-based best ef-

fort broadcasts for each Map task output. Task output data are
transmitted as soon as a task is completed, taking advantage
of the inhomogeneous Map task completion times. Final ag-
gregation of these data products are done at the destination
nodes only once per node. If an AllGather data product is not
received through the TCP broadcasts, then it will be fetched
from the HDFS.

2) H-Collectives Map-AllReduce
H-Collectives Map-AllReduce use n'ary tree-based hier-

archical reductions, where Map task level and node level
reductions would be followed by broadcasting of the locally
aggregated values to the other worker nodes. The final reduce
combine operation is performed in each of the worker nodes
and is done after all the Map tasks are completed and the data
is transferred.

B. Map-Collectives for Twister4Azure iterative mapreduce

Twister4Azure Map-Collectives are implemented using
the Windows Communication Foundation (WCF)-based Az-
ure TCP inter-role communication mechanism, while using
the Azure table storage as a persistent backup.

Twister4Azure primitive implementations maintain a
worker node-level cache to store and serve the primitive re-
sult values to multiple Map workers and map tasks running
on a single server. Twister4Azure utilizes the collectives to
perform synchronization at the end of each iteration and also
to aid in the decentralize scheduling of the tasks of the next
iteration by using the collective operations to communicate
the new iteration information to the workers.

1) Map-AllGather
Map-AllGather performs simple TCP-based broadcasts

for each Map task output, which is an all-to-all linear imple-
mentation. Workers start transmitting the data as soon as a
task is completed. The final aggregation of the data is per-
formed in the destination nodes and is done only once per
node.

2) Map-AllReduce
Map-AllReduce uses a hierarchical processing approach

where the results are first aggregated in the local node and
then final assembly is performed in the destination nodes.
The iteration check happens in the destination nodes and can
be specified as a custom function or as a limit on the number
of iterations.

VII. EVALUATION

In this section we evaluate and compare the performance
of Map-Collectives with plain MapReduce using two real
world applications, Multi-Dimensional-Scaling and K-means
clustering. The performance results are presented by breaking
down the total execution time in to the different phases of the
MapReduce or the Map-Collectives computations. This pro-
vides an idea of the performance model and provides a better
view of various overheads of MapReduce and the optimiza-
tions provided by Map-Collectives to reduce some of those
overheads.

In the following figures, ‘Scheduling’ is the per iteration
(per MapReduce job) startup and task scheduling time.
‘Cleanup’ is the per iteration overhead from reduce task exe-
cution completion to the iteration end. ‘Map overhead’ is the
start and cleanup overhead for each map task. ‘Map variation’
is the overhead due to variation of data load, compute and
map overhead times. ‘Comm+Red+Merge is the time for map
to reduce data shuffle, reduce execution, merge and broad-
cast. ‘Compute’ and ‘Data load’ times are calculated using the
average compute only and data load times across all the tasks
of the computation. The common components (data load,
compute) are plotted at the bottom of the graphs to highlight
variable components.

Hadoop and H-Collectives experiments were conducted
in the FutureGrid Alamo cluster, which has Dual Intel Xeon
X5550 (8 total cores) per node, 12 GB RAM per node and a
1Gbps network. Twister4Azure tests were performed in Win-
dows Azure cloud, using Azure extra-large instances. Azure
extra-large instances provide 8 compute cores and 14 GB
RAM per instance.

A. Multi-Dimensional Scaling (MDS) using Map-AllGather

The objective of MDS is to map a dataset in high-
dimensional space to a lower dimensional space, with respect
to the pairwise proximity of the data points[8]. In this paper,
we use parallel SMACOF[11, 12] MDS, which is an iterative

majorization algorithm. The input for MDS is an N*N matrix
of pairwise proximity values. The resultant lower dimension-
al mapping in D dimensions, called the X values, is an N*D
matrix.

Unweighted MDS results in two MapReduce jobs per it-
eration, BCCalc and StressCalc. Each BCCalc Map task gen-
erates a portion of the total X matrix. The reduce step of
MDS BCCalc computation is an aggregation operation,
which simply assembles the outputs of the Map tasks togeth-
er in order. This X value matrix is then broadcasted to be
used by the StressCalc step of the current iterations, as well
as by the BCCalc step of the next iteration. MDS performs
relatively smaller amount of computations for a unit of input
data. Hence MDS has larger data loading and memory over-
head.Usage of the Map-AllGather primitive in MDS BCCalc
computation eliminates the need for reduce, merge and
broadcasting steps in that particular computation.

1) H-Collectives MDS Map-AllGather

Figure 5. MDS Hadoop using only the BC Calculation MapReduce job per

iteration to highlight the overhead. 20 iterations, 51200 data points

We implemented the MDS for Hadoop using vanilla
MapReduce and H-Collectives Map-AllGather primitive.
Vanilla MapReduce implementation uses the Hadoop Dis-
tributedCache to broadcast loop variant data to the Map tasks.
Figure 5 shows the MDS strong scaling performance results
highlighting the overhead of different phases on the computa-
tion. We used only the BC Calculation step of the MDS in
each iteration and skipped the stress calculation step to fur-
ther highlight the AllGather component. This test case scales
a 51200*51200 matrix into a 51200*3 matrix.

As we can notice in the figure 5, the H-Collectives im-
plementation gets rid of the communication, reduce, merge,
task scheduling and job cleanup overhead of the vanilla
MapReduce computation. However, we notice a slight in-
crease of Map task overhead and Map variation in the case
H-Collectives Map-AllReduce-based implementation. We
believe these increases are due to the rapid scheduling of
Map tasks across successive iterations in H-Collectives,
whereas in the case of vanilla MapReduce the map tasks of
successive iterations have few seconds between the schedul-
ing do perform housekeeping tasks.

2) Twister4Azure MDS Map-AllGather
We implemented MDS for Twister4Azure using Map-

AllGather primitive and MR-MB with optimized broadcast-
ing. Twister4Azure optimized broadcast is an improvement
over simple MR-MB as it uses an optimized tree-based algo-
rithm to perform TCP broadcasts of in-memory data. Figure 6

shows the MDS (with both BCCalc and StressCalc steps)
strong scaling performance results comparing the Map-
AllGather based implementation with the MR-MB imple-
mentation. The number of map tasks per computation is equal
to the number of total cores of the computation. The Map-
AllGather-based implementation improves the performance
of Twister4Azure MDS by 13%-42% over MapReduce with
optimized broadcast in the current test cases.

Figure 6. MDS application implemented using Twister4Azure. 20

iterations. 51200 data points (~5GB).

3) Detailed analysis of overhead
This section presents a detailed analysis of overheads in

the Hadoop MDS computation. Only the BCCalc MapRe-
duce job is used. MDS computations use 51200 *51200 data
points, 6 Iterations on 64 cores using 64 Map tasks per itera-
tion. The total AllGather data size of this computation is
51200*3 data points. Average data load time is 10.61 seconds
per map task. Average actual MDS BCCalc compute time is
1.5 seconds per map task.

Figure 7. Hadoop MapReduce MDS-BCCalc histogram

Figure 8. H-Collectives AllGather MDS-BCCalc histogram

Figure 7 presents the MDS using Hadoop MapReduce.
Figure 8 presents MDS using H-Collectives AllGather im-
plementation. These plot the total number of executing Map
tasks at a given moment of the computation, which approxi-
mately represents the amount of useful work done in the clus-
ter at that given moment. Each blue bar represents an itera-
tion of the computation. The width of each blue bar indicates
the time spent by Map tasks in that particular iteration. This
includes input data loading, calculation and output data stor-
age. The space between the blue bars represents the other
overheads of the computation.

In Figure 8, the striped section on each blue bar repre-
sents the data loading time. As can be seen, the overheads
between the iterations virtually disappear with the use of the
Map-AllGather primitive.

4) Performance difference of Twister4Azure vs Hadoop
Twister4Azure is already optimized for iterative MapRe-

duce[4] and contains very low scheduling, data loading and
data communication overheads compared to Hadoop. Hence
the overhead reduction we achieve by using Map-collectives
is comparatively. A major component of Hadoop MDS is due
to the data loading, which Twister4Azure avoids by using
data caching and cache aware scheduling.

B. K-means Clustering using Map-AllReduce

K-means Clustering[13] is often implemented using an it-
erative refinement technique, where each iteration performs
two main steps: the cluster assignment step and the centroids
update step. In a typical MapReduce implementation, the
assignment step is performed in the Map task and the update
step in the Reduce task, while centroid data is broadcasted at
the beginning or end of each iteration.

K-means Clustering centroid update step is an AllReduce
computation. In this step all the values (data points assigned
to a certain centroid) belonging to each key (centroid) are
combined independently and the resultant key-value pairs
(new centroids) are distributed to all the Map tasks of the
next iteration. K-means Clustering has relatively smaller data
loading and memory overhead vs. the number of computa-
tions compared to the MDS application discussed above.

1) H-Collectives KMeansClustering-AllReduce

Figure 9. Hadoop K-means Clustering comparison with H-Collectives

Map-AllReduce Weak scaling. 500 Centroids,20 Dimensions. 10 iterations.

Figure 10. Hadoop MapReduce K-means Clustering & H-Collectives Map-

AllReduce Strong scaling. 500 Centroids, 20 Dimensions,10 iterations.

We implemented the K-means Clustering application for
Hadoop using the Map-AllReduce and plain MapReduce.

The MapReduce implementation uses in-map combiners to
perform aggregation of the values to minimize the size of
map-to-reduce intermediate data transfers.

Figure 9 illustrates the K-means Clustering weak scaling
performance where we scaled the computation while keeping
the workload per core constant. Figure 10 presents the K-
means Clustering strong scaling performance where we
scaled the computation while keeping the data size constant.
Strong scaling test cases with smaller number of nodes use
more map task waves optimizing the intermediate data com-
munication, resulting in relatively smaller overhead for the
computation

As we can see, the H-Collectives implementation gets rid
of the communication, reduce, merge, task scheduling and
job cleanup overhead of the vanilla MapReduce computation.
A slight increase of Map task overhead and Map variation
can be noticed in the case of Map-AllReduce based imple-
mentation, similar to the behavior observed and explained in
MDS section 7.a.1.

2) Twister4Azure KmeansClustering-AllReduce

Figure 11. Twister4Azure K-means weak scaling with Map-AllReduce. 500

Centroids, 20 Dimensions. 10 iterations. 32 to 256 Million data points.

Figure 12. Twister4Azure K-means Clustering strong scaling. 500

Centroids, 20 Dimensions, 10 iterations. 128Million data points.

We implemented the K-means Clustering application for
Twister4Azure using the Map-AllReduce primitive and
MapReduce-MergeBroadcast. MR-MB implementation uses
in-map combiners to perform local aggregation of the output
values to minimize the size of map-to-reduce data transfers.
Figure 11 shows the K-means Clustering weak scaling per-
formance results, where we scale the computations while
keeping the workload per core constant. Figure 12 presents
the K-means Clustering strong scaling performance, where
we scaled the number of cores while keeping the data size
constant. As can be seen in these figures, the Map-AllReduce

implementation gets rid of the communication, reduce and
merge overheads of the MR-MB computation.

VIII. BACKGROUND AND RELATED WORKS

A. Collective Communication Primitives

Collective communication operations[2] facilitate opti-
mized communication and coordination between groups of
nodes of a distributed computation and are used heavily in
the MPI type of HPC applications. These powerful operations
make it much easier and efficient to perform complex data
communications and coordination inside the distributed par-
allel applications. Collective communication also implicitly
provides some form of synchronization across the participat-
ing tasks. There exist many different implementations of
HPC collective communication primitives supporting numer-
ous algorithms and topologies suited to different environ-
ments and use cases. The best implementation for a given
scenario depends on many factors, including message size,
number of workers, topology of the system, the computation-
al capabilities/capacity of the nodes, etc. Oftentimes collec-
tive communication implementations follow a poly-algorithm
approach to automatically select the best algorithm and to-
pology for the given scenario.

Data redistribution communication primitives can be used
to distribute and share data across the worker processors.
Examples of these include broadcast, scatter, gather, and all-
gather operations. Data consolidation communication primi-
tives can be used to collect and consolidate data contributions
from different workers. Examples of these include reduce,
reduce-scatter and allreduce. We can further categorize col-
lective communication primitives based on the communica-
tion patterns as well, such as All-to-One (gather, reduce),
One-to-All (broadcast, scatter), All-to-All (allgather, allre-
duce, reduce-scatter) and Synchronization (barrier).

The MapReduce model supports the All-to-One opera-
tions through the Reduce step. The broadcast operation of
MR-MB model (section II) serves as an alternative to the
One-to-All type operations. The MapReduce model contains
a barrier between the Map and Reduce phases and the itera-
tive MapReduce has a barrier between the iterations. The
solutions presented in this paper focus on introducing All-to-
All type collective communication operations to the MapRe-
duce model.

We can implement All-to-All communications using pairs
of existing All-to-One and One-to-All type operations present
in the MR-MB model. For example, the AllGather operation
can be implemented as Reduce-Merge followed by Broad-
cast. However, these types of implementations would be inef-
ficient and harder to use compared to dedicated optimized
implementations of All-to-All operations.

B. MapReduce and Apache Hadoop

MapReduce, introduced by Google[14], consists of a pro-
gramming model, storage architecture and an associated exe-
cution framework for distributed processing of very large
datasets. MapReduce frameworks take care of data partition-
ing, task parallelization, task scheduling, fault tolerance, in-
termediate data communication, and many other aspects of
these computations for the users. MapReduce provides an
easy to use programming model allowing users to utilize the

distributed infrastructures to easily process large volumes of
data.

MapReduce frameworks are typically not optimized for
the best performance or parallel efficiency of small scale ap-
plications. The main goals of MapReduce frameworks in-
clude framework managed fault tolerance, ability to run on
commodity hardware, ability to process very large amounts
of data, and horizontal scalability of compute resources.

Apache Hadoop[15], together with Hadoop distributed
parallel file system(HDFS) [16], provides a widely used
open-source implementation of MapReduce. Hadoop sup-
ports data locality-based scheduling and reduces the data
transfer overheads by overlapping intermediate data commu-
nication with computation. Hadoop performs duplicate exe-
cutions of slower tasks and handles failures by rerunning the
failed tasks using different workers. MapReduce frameworks
like Hadoop trade off costs such as large startup overheads,
task scheduling overhead and intermediate data persistence
overhead for better scalability and reliability

C. Iterative MapReduce and Twister4Azure

Data-intensive iterative MapReduce computations are a
subset of iterative computation, where individual iterations
can be specified as MapReduce computations. Examples of
applications that can be implemented using iterative MapRe-
duce include PageRank, Multi-Dimensional Scaling[3, 17],
K-means Clustering, Descendent query[7], LDA, and Col-
laborative Filtering with ALS-WR.

These data-intensive iterative computations can be per-
formed using traditional MapReduce frameworks like Ha-
doop by manually scheduling the iterations from the job cli-
ent driver, albeit in an un-optimized manner. However, there
exist many possible optimizations and programming model
improvements to improve the performance and usability of
the iterative MapReduce programs. Such optimization oppor-
tunities are highlighted by the development of many iterative
MapReduce frameworks such as Twister[6], HaLoop[7],
Twister4Azure[3], Daytona[18] and spark[19]. Optimizations
exploited by these frameworks include caching of loop-
invariant data, cache aware scheduling of tasks, iterative
aware programming models, direct memory streaming of
intermediate data, iteration-aware fault tolerance, caching of
intermediate data (HaLoop reducer input cache), dynamic
modifications to cached data (e.g. genetic algorithm), and
caching of output data (in HaLoop).

Twister4Azure is a distributed decentralized iterative
MapReduce runtime for Windows Azure Cloud that was de-
veloped utilizing Azure cloud infrastructure services. Twist-
er4Azure optimizes the iterative MapReduce computations
by multi-level caching of loop invariant data, performing
cache aware scheduling, optimizing intermediate data trans-
fers, optimizing data broadcasts and many other optimiza-
tions described in Gunarathne et al[3].

IX. FUTURE WORKS – MAP-REDUCESCATTER

There are iterative MapReduce applications where only a
small subset of loop invariant data product is needed to pro-
cess the subset of input data in a Map task. In such cases, it’s
inefficient to make all the loop invariant data available to
such computations. In some of these applications, the size of

loop variant data are too large to fit in to the memory and
introduce communication and scalability bottlenecks as well.
Example of such a computation is PageRank. The Map-
ReduceScatter primitive, modeled after MPI ReduceScatter,
is aimed to support such use cases in an optimize manner.

Map-ReduceScatter gets rid of the inefficiency of simple
broadcast of all the data to all the workers. Another alterna-
tive approach is to perform a join of loop invariant input data
and loop variant data using an additional MapReduce step.
However, this requires all the data to be transported over the
network from Map tasks to Reduce tasks, making the compu-
tation highly inefficient.

Map-ReduceScatter primitive is still a work in progress
and we are planning on including more information about the
Map-ReduceScatter in our future publications.

X. CONCLUSIONS

We introduced Map-Collectives, collective communica-
tion operations for MapReduce inspired by MPI collectives,
as a set of high level primitives that encapsulate some of the
common iterative MapReduce application patterns. Map-
Collectives improve the communication and computation
performance of the applications by enabling highly optimized
group communication across the workers, by getting rid of
unnecessary/redundant steps and by enabling the frameworks
to use poly-algorithm approach based on the use case. Map-
Collectives also improve the usability of the Mapreduce
frameworks by providing abstractions that closely resembles
the natural application patterns and reduces implementation
burden of the developers by providing optimized substitu-
tions to certain steps of MapReduce model. We envision a
future where many MapReduce and iterative MapReduce
frameworks support a common set of portable Map-
Collectives and consider this work as a step towards that.

In this paper, we defined Map-AllGather and Map-
AllReduce Map-Collectives and implemented Multi-
Dimensional Scaling and K-means Clustering applications
using these operations. We also presented the H-Collectives
library for Hadoop, which is a drop-in Map-Collectives li-
brary that can be used with existing MapReduce applications
with only minimal modification. We also presented a Map-
Collectives implementations for Twister4Azure iterative
MapReduce framework as well. MDS and K-means applica-
tions were used to evaluate the performance of Map-
Collectives on Hadoop and on Twister4Azure depicting up to
33% and 50% speedups over the non-collectives implementa-
tions by getting rid of the communication and coordination
overheads.

ACKNOWLEDGMENT

We would like to thank colleagues and members of the Digi-

tal Science Center at Indiana University for helpful discus-

sions and contributions to the Twister4Azure and the present

work. We gratefully acknowledge support from Microsoft for

Azure Cloud Academic Resources Allocation, which were

critical for our experiments. Thilina Gunarathne was support-

ed by a fellowship sponsored by Persistent Systems.

REFERENCES

[1] E. Chan, M. Heimlich, A. Purkayastha et al., “Collective communication:

theory, practice, and experience,” Concurrency and Computation: Practice

and Experience, vol. 19, no. 13, pp. 1749-1783, 2007.

[2] "MPI Collective Communications," http://www.ncsa.illinois.edu/

UserInfo/Resources/Hardware/CommonDoc/MessPass/MPIColl.html.

Retrieved Nov 2013.

[3] T. Gunarathne, B. Zhang, T.-L. Wu et al., “Portable Parallel

Programming on Cloud and HPC: Scientific Applications of Twister4Azure,”

Fourth IEEE International Conference on Utility and Cloud Computing

(UCC), Melbourne, Australia, 2011.

[4] T. Gunarathne, B. Zhang, T.-L. Wu et al., “Scalable parallel computing

on clouds using Twister4Azure iterative MapReduce,” Future Generation

Computer Systems, vol. 29, no. 4, pp. 1035-1048, 6//, 2013.

[5] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca et al., "Performance

analysis of MPI collective operations." 19th IEEE International Parallel and

Distributed Processing Symposium, April 2005.

[6] J.Ekanayake, H.Li, B.Zhang et al., “Twister: A Runtime for iterative

MapReduce,” First International Workshop on MapReduce and its

Applications of ACM HPDC 2010, Chicago, Illinois, June 2010.

[7] Y. Bu, B. Howe, M. Balazinska et al., “HaLoop: Efficient Iterative Data

Processing on Large Clusters,”, 36th International Conference on Very Large

Data Bases, Singapore, 2010.

[8] J. B. Kruskal, and M. Wish, Multidimensional Scaling: Sage

Publications Inc., 1978.

[9] R. W. Hockney, “The communication challenge for MPP: Intel Paragon

and Meiko CS-2,” Parallel Computing, vol. 20, no. 3, pp. 389-398, 3, 1994.

[10] J. Ekanayake, T. Gunarathne, and J. Qiu, “Cloud Technologies for

Bioinformatics Applications,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 22, no. 6, pp. 998-1011, 2011.

[11] S.-H. Bae, J. Y. Choi, J. Qiu et al., “Dimension reduction and

visualization of large high-dimensional data via interpolation,”, 19th ACM

International Symposium on High Performance Distributed Computing,

Chicago, Illinois, 2010, .

[12] J. de Leeuw, “Convergence of the majorization method for

multidimensional scaling,” Journal of Classification, vol. 5, pp. 163-180,

1988.

[13] S. Lloyd, “Least squares quantization in PCM,” Information Theory,

IEEE Transactions on, vol. 28, no. 2, pp. 129-137, 1982.

[14] J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[15] Apache Hadoop, http://hadoop.apache.org/core/. Retrieved Nov.2013

[16] "Hadoop Distributed File System HDFS,"

http://hadoop.apache.org/hdfs/, Retrieved Nov 2013.

[17] Z. Bingjing, R. Yang, W. Tak-Lon et al., "Applying Twister to Scientific

Applications." IEEE Second International Conference on Cloud Computing

Technology and Science (CloudCom), Indianapolis, Dec. 2010

[18] Microsoft Daytona, http://research.microsoft.com/en-

us/projects/daytona/. Retrieved Feb 2012.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin et al., “Spark: Cluster

Computing with Working Sets,” in 2nd USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud '10), Boston, 2010.

http://hadoop.apache.org/hdfs/
http://research.microsoft.com/en-us/projects/daytona/
http://research.microsoft.com/en-us/projects/daytona/

