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Abstract—We generalize MapReduce, Iterative MapReduce 

and data intensive MPI run time as a layered Map-Collective 

architecture with Map-AllGather, Map-AllReduce, MapRe-

duceMergeBroadcast and Map-ReduceScatter patterns as ini-

tial focus. Map-collectives improve the performance and effi-

ciency of the computations, while at the same time facilitating 

ease of use for the users. These collective primitives can be ap-

plied to multiple runtimes and we propose building high per-

formance robust implementations that cross cluster and cloud 

systems. Here we present results for two collectives shared be-

tween Hadoop (where we term our extension H-Collectives) on 

clusters and the Twister4Azure Iterative MapReduce for the 

Azure Cloud. Our prototype implementations of Map-

AllGather and Map-AllReduce primitives achieved up to 33% 

performance improvement for KMeans Clustering and up to 

50% improvement with Multi-Dimensional Scaling, while im-

proving the user friendliness as well. In some cases, use of Map-

collectives virtually eliminated almost all the overheads of the 

computations.  

Keywords: MapReduce, Twister, Collectives, Cloud, HPC, 

Performance, Kmeans, MDS 

I.  INTRODUCTION 

During the last decade three largely industry-driven dis-
ruptive trends have altered the landscape of scalable parallel 
computing, which has long been dominated by the HPC ap-
plications. These disruptions are the emergence of data inten-
sive computing (aka big data), the new emergence of com-
modity cluster-based execution & storage frameworks such 
as MapReduce and the utility computing model introduced 
by Cloud computing environments. Oftentimes MapReduce 
is used to process the “Big Data” in cloud or cluster envi-
ronments. Although these disruptions have advanced remark-
ably, we argue that we can further benefit these technologies 
by generalizing MapReduce and integrating it with HPC 
technologies. This splits MapReduce into a Map and a Col-
lective communication phase that generalizes the Reduce 
concept. We present a set of Map-Collective communications 
primitives that improve the efficiency and usability of large-
scale parallel data intensive computations. 

When performing distributed computations, data often 
needs to be shared and/or consolidated among the different 
nodes of the computations. Collective communication primi-
tives effectively facilitate these data communications by 
providing operations that involve a group of nodes simulta-
neously [1, 2]. Collective communication primitives are very 
popular in the HPC community and used heavily in the MPI 
type of HPC applications. There has been much research [1] 
to optimize the performance of these collective communica-

tion operations, as they have a significant impact on the per-
formance of HPC applications. 

Our work highlights several Map-Collective communica-
tion primitives to support and optimize common computation 
and communication patterns in both MapReduce and iterative 
MapReduce computations. We present the applicability of 
Map-Collective operations to enhance (Iterative) MapReduce 
without sacrificing desirable MapReduce properties such as 
fault tolerance, scalability, familiar APIs and data model. The 
addition of collective communication operations enriches the 
MapReduce model by providing many performance and ease 
of use advantages. This includes providing efficient data 
communication operations optimized for particular execution 
environments and use cases, enabling programming models 
that fit naturally with application patterns, and allowing users 
to avoid overhead by skipping unnecessary steps of the exe-
cution flow.  

We present these patterns as high level constructs that can 
be adopted by any MapReduce or iterative MapReduce 
runtime. We also offer proof-of-concept implementations of 
the primitives on Hadoop and Twister4Azure and envision a 
future where all the MapReduce and iterative MapReduce 
runtimes support a common set of Map-Collective primitives. 

This paper focuses on mapping All-to-All communication 
type of collective communication operations, AllGather and 
AllReduce, to the MapReduce model as Map-AllGather and 
Map-AllReduce patterns. Map-AllGather gathers the outputs 
from all the map tasks and distributes the gathered data to all 
the workers after a combine operation. Map-AllReduce prim-
itive combines the results of the Map Tasks based on a reduc-
tion operation and delivers the result to all the workers. We 
also present MapReduceMergeBroadcast as an important 
collective in all (iterative) MapReduce frameworks. 

II. MAPREDUCE-MERGEBROADCAST (MR-MB) 

We introduce MapReduce-MergeBroadcast[3], called 
MR-MB from here onwards, as a generic programming mod-
el to represent data-intensive iterative MapReduce applica-
tions. Programming models of most of the current iterative 
MapReduce frameworks can be specified as MR-MB.  

A. API 

The MR-MB programming model extends the map and 
reduce functions of traditional MapReduce to include the 
loop variant delta values as an input parameter. MR-MB pro-
vides the loop variant data (dynamicData), including broad-
cast data, to the Map and Reduce tasks as a list of key-value 
pairs using this additional input parameter.  
 Map(<key>, <value>, list_of <key,value> dynamicData) 
 Reduce(<key>,list_of<value>,list_of<key,value> dynamicData) 



B. Merge Task 

Merge[4] was defined as a new step to the MapReduce 
programming model to support iterative applications. It is a 
single task, or the convergence point, which executes after 
the Reduce step that can be used to perform summarization or 
aggregation of the results of a single MapReduce iteration. 
The Merge step can also serve as the “loop-test” that evalu-
ates the loops condition in the iterative MapReduce pro-
gramming model.  

Merge Task receives all the Reduce outputs and the 
broadcast data for the current iteration as the inputs. With 
merge, the overall flow of the iterative MapReduce computa-
tion and data flow would appear as follows: 
 Map →Combine→Shuffle→Sort→Reduce→Merge→Broadcast 

Following is the programming API of the Merge task.  
Merge(list_of <key,list_of<value>> reduceOutputs,  

list_of <key,value> dynamicData) 

C. Broadcast 

The broadcast operation transmits the loop variant data to 
all the tasks in an iteration. In typical data-intensive iterative 
computations, the loop-variant data is orders of magnitude 
smaller than the loop-invariant data. Broadcast operation 
typically broadcasts the output data of the Merge tasks to the 
tasks of the next iteration. For MR-MB, this can also be 
thought of as executing at the beginning of the iterative 
MapReduce computation. This would make the model 
Broadcast-MapReduce-Merge, which is essentially similar to 
the MapReduce-Merge-Broadcast when iterations are present 
(e.g.: …MRn Mergen Broadcastn MRn+1 Merge n+1 

...). Broadcast can be implemented efficiently based on the 
environment as well as the data sizes. Well-known algorithms 
for data broadcasting include flat-tree, minimum spanning 
tree (MST), pipeline and chaining[5]. It’s possible to share 
broadcast data between multiple Map and/or Reduce tasks 
executing on the same node. 

D. Current iterative MapReduce Frameworks and MR-MB 

Twister4Azure[4] supports the MR-MB natively. In Twister, 
the combine step is part of the driver program and is executed 
after the MapReduce computation of every iteration. Twister 
is a MapReduce-Combine model, where the Combine step is 
similar to the Merge step. Twister[6] MapReduce computa-
tions broadcast the loop variant data products at the begin-
ning of each iteration, effectively making the model Broad-
cast-MapReduce-Combine, which is semantically similar to 
the MR-MB. HaLoop[7] performs an additional MapReduce 
computation to do the fixed point evaluation for each itera-
tion, effectively making this MapReduce computation equiv-
alent to the Merge task. Data broadcast is achieved through a 

MapReduce computation to join the loop variant and loop 
invariant data.  

III. COLLECTIVE COMMUNICATIONS PRIMITIVES FOR 

ITERATIVE MAPREDUCE 

While implementing iterative MapReduce applications 
using the MR-MB model, we started to notice several com-
mon execution flow patterns across the different applications. 
Some of these applications had very trivial Reduce and 
Merge tasks while other applications needed extra effort to 
map to the MR-MB model owing to the execution patterns 
being slightly different than the iterative MapReduce pattern. 
In order to solve such issues, we introduce Map-Collective 
primitives to the iterative MapReduce programming model, 
inspired by the MPI collective communications primitives[2]. 

 

Figure 1.  Map-Collective primitives 

These primitives support higher-level communication pat-
terns that occur frequently in data-intensive iterative applica-
tions by substituting certain steps of the MR-MB computa-
tion. As depicted in Figure 1, these Map-Collective primitives 
can be thought of as a Map phase followed by a series of 
framework-defined communication and computation opera-
tions leading to the next iteration. 

In this paper we propose two collective communication 
primitive implementations: Map-AllGather and Map-
AllReduce. You can also identify MR-MB as another collec-
tive communication primitive as well. 

A. Requirements 

When designing Map-collective primitives for iterative 
MapReduce, we should make sure they fit with the MapRe-
duce data model and the MapReduce computational model, 
which support multiple Map task waves, large overheads, 
significant execution variations and inhomogeneous tasks. 
Also the primitives should retain scalability while keeping 
the programming model simple and easy to understand. 
These primitives should maintain the same type of frame-
work-managed excellent fault tolerance supported by 
MapReduce. 

Pattern Execution and communication flow Frameworks Sample applications 

MapReduce MapCombineShuffleSortReduce Hadoop, Twister, Twister4Azure WordCount, Grep, etc. 

MapReduce-
MergeBroadcast 

MapCombineShuffleSortReduce
MergeBroadcast 

Twister, Haloop, Twister4Azure KMeansClustering, PageRank, 

Map-AllGather 
MapAllGather Communica-
tionAllGather Combine 

H-Collectives, Twister4Azure 
MDS-BCCalc (matrix X matrix), 
Pagerank (matrix X vector) 

Map-AllReduce 
MapAllReduce (communication & com-
putation) 

H-Collectives, Twister4Azure 
KMeansClustering, MDS-
StressCalc 



B. Advantages  

1) Performance improvement 
Introduction of Map-Collective primitives provides 3 

types of performance improvements to the iterative MapRe-
duce applications. Map-Collectives can reduce the overheads 
of the computations by skipping or overlapping certain steps 
(e.g. shuffle, reduce, merge) of the iterative MapReduce 
computational flow. Map-Collective patterns also fit more 
naturally with the application patterns, avoiding the need for 
unnecessary steps.  

Another advantage is the ability for the frameworks to op-
timize these operations transparently for the users, even al-
lowing the possibility of different optimizations (poly-
algorithm) for different use cases and environments. For ex-
ample, a communication algorithm that’s best for smaller 
data sizes may not be the best for larger ones. In such cases, 
the Map-Collective operations can opt to have multiple algo-
rithm implementations to be used for different data sizes.  

These primitives also have the capability to make the ap-
plications more efficient by overlapping communication with 
computation. Frameworks can start the execution of collec-
tives as soon as the first results are produced from the Map 
tasks. For example, in the Map-AllGather primitive, present-
ed in section 4, partial Map results are broadcasted to all the 
nodes as soon as they become available. It is also possible to 
perform some of the computations in the data transfer layer, 
like the hierarchical reduction in Map-AllReduce primitive. 

2) Ease of use 
Map-Collective operations present patterns and APIs that 

fit more naturally with the real world applications. This sim-
plifies the porting of new applications to the iterative 
MapReduce model. In addition, the developers can avoid 
manually implementing the logic of some of the operations, 
such as reduce and merge tasks, and can rely on optimized 
operations provided by the framework. 

3) Scheduling with iterative primitives 
In addition to providing synchronization between the iter-

ations, Map-Collective primitives also give us the ability to 
propagate the scheduling information for the next iteration to 
the worker nodes along with the collective communication 
data. This allows the frameworks to synchronize and sched-
ule the tasks of a new iteration or application with minimal 
overheads.  

For example, as mentioned in section VI, Twister4Azure 
successfully employs this strategy to schedule new iterations 
with minimal overhead, while H-Collectives use this strategy 
to perform speculative scheduling of tasks.  

C. Programming model 

Map-Collective primitives can be specified as an outside 
configuration option without changing the MapReduce pro-
gramming model. This permits the applications developed 
with Map-Collectives to be backward compatible with 
frameworks that don’t support them. This also makes it easy 
for developers who are already familiar with MapReduce 
programming to use Map-Collectives. For an example, a 
KMeans Clustering MapReduce implementation with Map, 
Reduce and Merge tasks can be used with Map-AllReduce or 
vice versa without doing any changes to the Map, Reduce or 
Merge function implementations. 

D. Implementation considerations 

Map-Collectives can be add-on improvements to MapRe-
duce frameworks. The simplest implementation would be 
implementing the primitives using the current MapReduce 
API and communication model on the user level, then provid-
ing the implementation as a library. This will achieve ease of 
use for the users by providing a unified programming model 
that better matches application patterns.  

More optimized implementations can present these primi-
tives as part of the MapReduce framework (or as a separate 
library) with the ability to optimize the data transfers based 
on environment and use case, using optimized group com-
munication algorithms in the background. 

IV. MAP-ALLGATHER COLLECTIVE  

AllGather is an all-to-all collective communication opera-
tion that gathers data from all the workers and distributes the 
gathered data right back to them[1]. AllGather pattern can be 
noticed in data-intensive iterative MapReduce applications 
where the “reduce” step is a simple aggregation operation 
that simply aligns the outputs of the Map Tasks together in 
order, followed by “merge” and broadcast steps that transmit 
the assembled output to all the workers. An example would 
be a Matix-vector multiplication, where each map task out-
puts part of the resultant vector. In this computation we 
would use the Reduce and Merge tasks to assemble the vector 
together and then broadcast the assembled vector to workers.  

Data-intensive iterative applications that have the All-
Gather pattern include MultiDimensionalScaling (matrix-
matrix multiplication) [8] and Pagerank using inlinks matrix 
(matrix-vector multiplication). 

A. Model 

We developed a Map-AllGather iterative MapReduce 
primitive similar to the MPI AllGather[1] collective commu-
nication primitive to support applications in a more efficient 
manner.  

1) Execution model 

 
Figure 2.  Map-AllGather Collective 

Map-AllGather primitive broadcasts the Map Task out-
puts to all computational nodes (all-to-all communication) of 
the computation, and then assembles them together in the 
recipient nodes as depicted in Figure 2. Each Map worker 
will deliver its result to all other workers of the computation 
once the Map task is completed.  

The computation and communication pattern of a Map-
AllGather computation is Map phase followed by AllGather 
communication (all-to-all) followed by the AllGather com-



bine phase. As shown here, this model substitutes the shuf-
flesortreducemergebroadcast steps of the MR-MB 
with all-to-all broadcast and Allgather combine. 

2) Data Model 
For Map-AllGather, the map output key should be an in-

teger specifying the location of the output value in the result-
ant gathered data product. Map output values can be vectors, 
sets of vectors (partial matrix) or single values. Final output 
value of the Map-AllGather operation is an assembled array 
of Map output values in the order of their corresponding 
keys. The result of AllGather-Combine will be provided to 
the Map tasks of the next iteration as the loop variant data 
using the APIs and mechanisms suggested in Section 2.2.1. 

The final assembly of AllGather data can be performed by 
implementing a custom combiner or using the default com-
biner of AllGather-combine. Custom combiner allows the 
user to specify a custom assembling function. In this case, the 
input to the assembling function is a list of Map outputs key-
value pairs, ordered by the key. This assembling function gets 
executed in each worker node after all the data is received.  

The default combiner should work for most of the use 
cases, as the combining of AllGather data is oftentimes a triv-
ial process. The default combiner expect the Map outputs to 
be in <int, double[]> format. In a matrix example, the key 
would represent the row index of the output matrix and the 
value would contain the corresponding row vector. Map out-
puts with duplicate keys (same key for multiple output val-
ues) are not supported and therefore ignored. 

Users can deploy their Mapper implementations as is with 
Map-AllGather primitive. They need to specify only the col-
lective operation, after which the shuffle and reduce phases 
of MapReduce would be substituted by the Map-AllGather 
communication and computations.  

3) Cost Model 
Using an optimized implementation of AllGather, such as 

a bi-directional exchange-based implementation[1], we can 
estimate the cost of the AllGather component as follows us-
ing the Hockney model[5, 9], where α is the latency and β is 
the transmission time per data item (1/bandwidth)), m is the 
number of map tasks and nv is the size of AllGather data. 

𝑇𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 = log(𝑚) 𝛼 +
𝑚 − 1

𝑚
𝑛𝑣𝛽 

It’s also possible to further reduce this cost by performing 
local aggregation in the Map worker nodes. The variation of 
Map task completion times will also help to avoid network 
congestion in these implementations.  

Map-Allgather substitutes the Map output processing 
(collect, spill, merge), Reduce task (shuffle, merge, execute, 
write), Merge task (shuffle, execute) and broadcast overheads 
with a less costly AllGather operation.  

B. Fault tolerance 

All-Gather partial data product transfers from Map to 
workers can fail due to communication mishaps and other 
breakdowns. When task level fault tolerance (typical MapRe-
duce fault tolerance) is enabled, it’s possible for the workers 
to read the missing map output data from the persistent stor-
age (e.g.HDFS) to successfully perform the All-Gather com-
putation.  

The fault tolerance and the speculative execution of 
MapReduce enable duplicate execution of tasks. Map-Allther 
can perform the duplicate data detection before the final as-
sembly of the data at the recipient nodes to handle any dupli-
cate executions. 

C. Benefits 

Use of the Map-AllGather in an iterative MapReduce 
computation eliminates the need for reduce, merge and 
broadcasting steps in that particular computation. Also the 
smaller-sized multiple broadcasts of Map-AllGather primi-
tive originating from multiple servers of the cluster would be 
able to use the network more effectively than a single mono-
lithic broadcast originating from a single server.  

Oftentimes the Map task execution times are inhomoge-
neous[10] in typical MapReduce computations. Implementa-
tions of Map-AllGather primitive can start broadcasting the 
map task result values as soon as the first map task is com-
pleted. This mechanism ensures that almost all the data is 
broadcasted by the time the last map task completes its exe-
cution, resulting in overlap of computations with communica-
tion. This benefit will be even more significant when we have 
multiple waves of map tasks.  

In addition to improving the performance, this primitive 
also enhances usability, as it eliminates the overhead of im-
plementing reduce and/or merge functions. Map-AllGather 
can be used to efficiently schedule the next iteration or the 
next application of the computational flow as well. 

V. MAP-ALLREDUCE COLLECTIVE 

AllReduce is a collective pattern which combines a set of 
values emitted by all the workers based on a given operation 
and makes the results available to all the workers[1]. This 
pattern can be seen in many iterative data mining and graph 
processing algorithms. Example data-intensive iterative ap-
plications that have the Map-AllReduce pattern include 
KMeansClustering, Multi-dimensional Scaling StressCalc 
computation and PageRank using out links matrix. 

A. Model 

We propose Map-AllReduce iterative MapReduce primi-
tive, similar to the MPI AllReduce[1] collective communica-
tion operation, to efficiently aggregate and reduce the results 
of the Map Tasks. 

 
Figure 3.  Map-AllReduce collective 

1) Execution Model 
The computation and communication pattern of a Map-

AllReduce computation is a Map phase followed by the 
AllReduce communication and computation (reduction), as 
depicted in Figure 3. This model allows us to substitute the 



shufflesortreducemergebroadcast steps of MR-MB 
with AllReduce communication in the communication layer. 
The AllReduce phase can be implemented efficiently using 
algorithms such as bidirectional exchange (BDE) [1] or hier-
archical tree-based reduction. 

Map-AllReduce allows the implementations to perform 
local aggregation on the worker nodes across multiple map 
tasks and to perform hierarchical reduction of the Map Task 
outputs while communicating them to all the workers.  

2) Data Model 

 
Figure 4.  Example Map-AllReduce with Sum operation 

For Map-AllReduce, the map output values should be 
vectors or single values of numbers. The values belonging to 
each distinct map output key are processed as a separate data 
reduction operation. Output of the Map-AllReduce operation 
is a list of key/value pairs where each key corresponds to a 
map output key and the value is the combined value of the 
map output values that were associated with that map output 
key. As shown in Figure 4, the number of records in the Map-
AllReduce output is equal to the number of unique map out-
put keys. For example, 10 distinct Map output keys would 
result in 10 combined vectors or values. Map output value 
type should be a number.  

In addition to the summation, any commutative and asso-
ciative operation can be performed using this primitive. Ex-
ample operations include sum, max, min, count, and product 
operations. Operations such as average can be performed by 
using the Sum operation together with an additional element 
(dimension) to count the number of data products. Due to the 
associative and commutative nature of the operations, Map-
AllReduce has the ability to start combining the values as 
soon as the first map task completion. It also allows the Map-
AllReduce implementations to use reduction trees or bidirec-
tional exchanges to optimize the operation.  

It is also possible to allow users to specify a post process 
function that executes after the AllReduce communication. 
This function can be used to perform a simple operation on 
the Map-AllReduce result or to check for the iteration termi-
nation condition. It would be executed in each worker node 
after all the Map-AllReduce data has been received. 

list<Key, IOpRedValue> postOpRedProcess(  
list<Key, IOpRedValue> opRedResult); 

3) Cost Model 
An optimized implementation of Map-AllReduce, such as 

a bi-directional exchange-based implementation[1], will re-
duce the cost of the AllReduce component to: 

𝑇𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒 =  log (𝑚) (𝛼 + 𝑛𝑣𝛽 + 𝑓(𝑛𝑣)) 
It’s also possible to further reduce this cost by performing 

local aggregation and reduction in the Map worker nodes, as 
the cost of AllReduce computation is small. Map-AllReduce 

substitutes the Map output processing, Reduce task, Merge 
task and broadcast overheads.  

Other efficient algorithms to implement AllReduce com-
munication include flat-tree/linear, pipeline, binomial tree, 
binary tree, and k-chain trees[5]. 

B. Fault Tolerance 

If the AllReduce communication step fails for some rea-
son, it’s possible for the workers to read the map output data 
from the persistent storage to perform the All-Reduce compu-
tation.  

The fault tolerance model and the speculative execution 
model of MapReduce make it possible to have duplicate exe-
cution of tasks. Duplicate executions can result in incorrect 
Map-AllReduce results due to the possibility of aggregating 
the output of the same task twice. The most trivial fault toler-
ance model for Map-AllReduce would be a best-effort mech-
anism, where Map-AllReduce would fall back to using the 
Map output results from the persistent storage (e.g. HDFS) in 
case duplicate results are detected. Duplicate detection can be 
done by maintaining a set of map IDs with each combined 
data product. It’s possible for the frameworks to implement 
richer fault tolerance mechanisms, such as identifying the 
duplicated values in localized areas of the reduction tree. 

C. Benefits 

Map-AllReduce reduces the work each user has to per-
form in implementing Reduce and Merge tasks. It also re-
moves the overhead of Reduce and Merge tasks from the 
computations and allows the framework to perform the com-
bine operation in the communication layer itself.  

Map-AllReduce semantics allow the implementations to 
optimize the computation by performing hierarchical reduc-
tions, reducing the number and the size of intermediate data 
communications. Hierarchical reduction can be performed in 
as many levels as needed based on the size of the computa-
tion and the scale of the environment. For example, first level 
in mappers, second level in the node and n

th
 level in rack lev-

el, etc. The mapper level would be similar to the “combine” 
operation of vanilla MapReduce. The local node aggregation 
can combine the values emitted by multiple mappers running 
in a single physical node. All-Reduce combine processing 
can be performed in real time when the data is received. 

VI. IMPLEMENTATIONS 

In this section we present two implementations of Map-
Collectives on Hadoop MapReduce and Twister4Azure itera-
tive MapReduce.  

These implementations are proofs of concept presenting 
sufficiently optimal implementations for each of the primi-
tives and the environments to show the performance efficien-
cies that can be gained through using even a modest imple-
mentation of these operations. It’s possible to further opti-
mize these implementation using more advanced communi-
cation algorithms based on the environment they will be exe-
cuting, the scale of the computations, and the data sizes as 
shown in MPI collective communications literature[1]. One 
of the main advantages of these primitives is the flexibility to 
improve primitive implementations without the need to 



change the user application, making it possible to optimize 
these implementations in the future as future work. 

It is not our objective to find the most optimal implemen-
tations for each of the environments, especially for clouds 
where the most optimal implementation might end up being a 
moving target due to the rapidly evolving nature and the 
black box nature of cloud environments. This presents an 
interesting opportunity for cloud providers to develop opti-
mized implementations of these primitives as cloud infra-
structure services that can be utilized by the framework de-
velopers.  

A. H-Collectives : Map-Collectives for Apache Hadoop 

H-Collectives is a Map-Collectives implementation for 
Apache Hadoop that can be used as a drop in library with the 
Hadoop distributions. H-Collectives uses the Netty NIO li-
brary, node-level data aggregations and caching to efficiently 
implement the collective communications and computations. 
Existing Hadoop Mapper implementations can be used with 
these primitives with only very minimal changes. These 
primitives work seamlessly with Hadoop dynamic scheduling 
of tasks, support for multiple map task waves and other de-
sirable features of Hadoop, while supporting the typical Ha-
doop fault tolerance and speculative executions as well. 

A single Hadoop node may run several Map workers and 
many more map tasks belonging to a single computation. The 
H-Collectives implementation maintains a single node-level 
cache to store and serve the collective results to all the tasks 
executing in a worker node. 

H-Collectives speculatively schedules the tasks for the 
next iteration and the tasks are waiting to start as soon as all 
the AllGather data is received, getting rid of most of the Ha-
doop job startup/cleanup and task scheduling overheads. 
Speculative scheduling cannot be used easily with pure Ha-
doop MapReduce as we need to add the loop variant data 
(only available after the previous iteration is finished) to the 
Hadoop DistributedCache before scheduling the job. 

1) H-Collectives Map-AllGather 
This implementation performs simple TCP-based best ef-

fort broadcasts for each Map task output. Task output data are 
transmitted as soon as a task is completed, taking advantage 
of the inhomogeneous Map task completion times. Final ag-
gregation of these data products are done at the destination 
nodes only once per node. If an AllGather data product is not 
received through the TCP broadcasts, then it will be fetched 
from the HDFS.  

2) H-Collectives Map-AllReduce 
H-Collectives Map-AllReduce use n'ary tree-based hier-

archical reductions, where Map task level and node level 
reductions would be followed by broadcasting of the locally 
aggregated values to the other worker nodes. The final reduce 
combine operation is performed in each of the worker nodes 
and is done after all the Map tasks are completed and the data 
is transferred.  

B. Map-Collectives for Twister4Azure iterative mapreduce 

Twister4Azure Map-Collectives are implemented using 
the Windows Communication Foundation (WCF)-based Az-
ure TCP inter-role communication mechanism, while using 
the Azure table storage as a persistent backup. 

Twister4Azure primitive implementations maintain a 
worker node-level cache to store and serve the primitive re-
sult values to multiple Map workers and map tasks running 
on a single server. Twister4Azure utilizes the collectives to 
perform synchronization at the end of each iteration and also 
to aid in the decentralize scheduling of the tasks of the next 
iteration by using the collective operations to communicate 
the new iteration information to the workers.  

1) Map-AllGather 
Map-AllGather performs simple TCP-based broadcasts 

for each Map task output, which is an all-to-all linear imple-
mentation. Workers start transmitting the data as soon as a 
task is completed. The final aggregation of the data is per-
formed in the destination nodes and is done only once per 
node. 

2) Map-AllReduce 
Map-AllReduce uses a hierarchical processing approach 

where the results are first aggregated in the local node and 
then final assembly is performed in the destination nodes. 
The iteration check happens in the destination nodes and can 
be specified as a custom function or as a limit on the number 
of iterations. 

VII. EVALUATION 

In this section we evaluate and compare the performance 
of Map-Collectives with plain MapReduce using two real 
world applications, Multi-Dimensional-Scaling and K-means 
clustering. The performance results are presented by breaking 
down the total execution time in to the different phases of the 
MapReduce or the Map-Collectives computations. This pro-
vides an idea of the performance model and provides a better 
view of various overheads of MapReduce and the optimiza-
tions provided by Map-Collectives to reduce some of those 
overheads.  

In the following figures, ‘Scheduling’ is the per iteration 
(per MapReduce job) startup and task scheduling time. 
‘Cleanup’ is the per iteration overhead from reduce task exe-
cution completion to the iteration end. ‘Map overhead’ is the 
start and cleanup overhead for each map task. ‘Map variation’ 
is the overhead due to variation of data load, compute and 
map overhead times. ‘Comm+Red+Merge is the time for map 
to reduce data shuffle, reduce execution, merge and broad-
cast. ‘Compute’ and ‘Data load’ times are calculated using the 
average compute only and data load times across all the tasks 
of the computation. The common components (data load, 
compute) are plotted at the bottom of the graphs to highlight 
variable components. 

Hadoop and H-Collectives experiments were conducted 
in the FutureGrid Alamo cluster, which has Dual Intel Xeon 
X5550 (8 total cores) per node, 12 GB RAM per node and a 
1Gbps network. Twister4Azure tests were performed in Win-
dows Azure cloud, using Azure extra-large instances. Azure 
extra-large instances provide 8 compute cores and 14 GB 
RAM per instance. 

A. Multi-Dimensional Scaling (MDS) using Map-AllGather 

The objective of MDS is to map a dataset in high-
dimensional space to a lower dimensional space, with respect 
to the pairwise proximity of the data points[8]. In this paper, 
we use parallel SMACOF[11, 12] MDS, which is an iterative 



majorization algorithm. The input for MDS is an N*N matrix 
of pairwise proximity values. The resultant lower dimension-
al mapping in D dimensions, called the X values, is an N*D 
matrix.  

Unweighted MDS results in two MapReduce jobs per it-
eration, BCCalc and StressCalc. Each BCCalc Map task gen-
erates a portion of the total X matrix. The reduce step of 
MDS BCCalc computation is an aggregation operation, 
which simply assembles the outputs of the Map tasks togeth-
er in order. This X value matrix is then broadcasted to be 
used by the StressCalc step of the current iterations, as well 
as by the BCCalc step of the next iteration. MDS performs 
relatively smaller amount of computations for a unit of input 
data. Hence MDS has larger data loading and memory over-
head.Usage of the Map-AllGather primitive in MDS BCCalc 
computation eliminates the need for reduce, merge and 
broadcasting steps in that particular computation.  

1) H-Collectives MDS Map-AllGather 

 
Figure 5.  MDS Hadoop using only the BC Calculation MapReduce job per 

iteration to highlight the overhead. 20 iterations, 51200 data points 

We implemented the MDS for Hadoop using vanilla 
MapReduce and H-Collectives Map-AllGather primitive. 
Vanilla MapReduce implementation uses the Hadoop Dis-
tributedCache to broadcast loop variant data to the Map tasks. 
Figure 5 shows the MDS strong scaling performance results 
highlighting the overhead of different phases on the computa-
tion. We used only the BC Calculation step of the MDS in 
each iteration and skipped the stress calculation step to fur-
ther highlight the AllGather component. This test case scales 
a 51200*51200 matrix into a 51200*3 matrix.  

As we can notice in the figure 5, the H-Collectives im-
plementation gets rid of the communication, reduce, merge, 
task scheduling and job cleanup overhead of the vanilla 
MapReduce computation. However, we notice a slight in-
crease of Map task overhead and Map variation in the case 
H-Collectives Map-AllReduce-based implementation. We 
believe these increases are due to the rapid scheduling of 
Map tasks across successive iterations in H-Collectives, 
whereas in the case of vanilla MapReduce the map tasks of 
successive iterations have few seconds between the schedul-
ing do perform housekeeping tasks. 

2) Twister4Azure MDS Map-AllGather 
We implemented MDS for Twister4Azure using Map-

AllGather primitive and MR-MB with optimized broadcast-
ing. Twister4Azure optimized broadcast is an improvement 
over simple MR-MB as it uses an optimized tree-based algo-
rithm to perform TCP broadcasts of in-memory data. Figure 6 

shows the MDS (with both BCCalc and StressCalc steps) 
strong scaling performance results comparing the Map-
AllGather based implementation with the MR-MB imple-
mentation. The number of map tasks per computation is equal 
to the number of total cores of the computation. The Map-
AllGather-based implementation improves the performance 
of Twister4Azure MDS by 13%-42% over MapReduce with 
optimized broadcast in the current test cases.  

 
Figure 6.  MDS application implemented using Twister4Azure. 20 

iterations. 51200 data points (~5GB). 

3) Detailed analysis of overhead  
This section presents a detailed analysis of overheads in 

the Hadoop MDS computation. Only the BCCalc MapRe-
duce job is used. MDS computations use 51200 *51200 data 
points, 6 Iterations on 64 cores using 64 Map tasks per itera-
tion. The total AllGather data size of this computation is 
51200*3 data points. Average data load time is 10.61 seconds 
per map task. Average actual MDS BCCalc compute time is 
1.5 seconds per map task. 

 
Figure 7.  Hadoop MapReduce MDS-BCCalc histogram 

 
Figure 8.   H-Collectives AllGather MDS-BCCalc histogram 

Figure 7 presents the MDS using Hadoop MapReduce. 
Figure 8 presents MDS using H-Collectives AllGather im-
plementation. These plot the total number of executing Map 
tasks at a given moment of the computation, which approxi-
mately represents the amount of useful work done in the clus-
ter at that given moment. Each blue bar represents an itera-
tion of the computation. The width of each blue bar indicates 
the time spent by Map tasks in that particular iteration. This 
includes input data loading, calculation and output data stor-
age. The space between the blue bars represents the other 
overheads of the computation.  



In Figure 8, the striped section on each blue bar repre-
sents the data loading time. As can be seen, the overheads 
between the iterations virtually disappear with the use of the 
Map-AllGather primitive.  

4) Performance difference of Twister4Azure vs Hadoop 
Twister4Azure is already optimized for iterative MapRe-

duce[4] and contains very low scheduling, data loading and 
data communication overheads compared to Hadoop. Hence 
the overhead reduction we achieve by using Map-collectives 
is comparatively. A major component of Hadoop MDS is due 
to the data loading, which Twister4Azure avoids by using 
data caching and cache aware scheduling. 

B. K-means Clustering using Map-AllReduce  

K-means Clustering[13] is often implemented using an it-
erative refinement technique, where each iteration performs 
two main steps: the cluster assignment step and the centroids 
update step. In a typical MapReduce implementation, the 
assignment step is performed in the Map task and the update 
step in the Reduce task, while centroid data is broadcasted at 
the beginning or end of each iteration.  

K-means Clustering centroid update step is an AllReduce 
computation. In this step all the values (data points assigned 
to a certain centroid) belonging to each key (centroid) are 
combined independently and the resultant key-value pairs 
(new centroids) are distributed to all the Map tasks of the 
next iteration. K-means Clustering has relatively smaller data 
loading and memory overhead vs. the number of computa-
tions compared to the MDS application discussed above.  

1) H-Collectives KMeansClustering-AllReduce 
 

 
Figure 9.  Hadoop K-means Clustering comparison with H-Collectives 

Map-AllReduce Weak scaling. 500 Centroids,20 Dimensions. 10 iterations. 

 
Figure 10.  Hadoop MapReduce K-means Clustering & H-Collectives Map-

AllReduce Strong scaling. 500 Centroids, 20 Dimensions,10 iterations.  

We implemented the K-means Clustering application for 
Hadoop using the Map-AllReduce and plain MapReduce. 

The MapReduce implementation uses in-map combiners to 
perform aggregation of the values to minimize the size of 
map-to-reduce intermediate data transfers. 

Figure 9 illustrates the K-means Clustering weak scaling 
performance where we scaled the computation while keeping 
the workload per core constant. Figure 10 presents the K-
means Clustering strong scaling performance where we 
scaled the computation while keeping the data size constant. 
Strong scaling test cases with smaller number of nodes use 
more map task waves optimizing the intermediate data com-
munication, resulting in relatively smaller overhead for the 
computation  

As we can see, the H-Collectives implementation gets rid 
of the communication, reduce, merge, task scheduling and 
job cleanup overhead of the vanilla MapReduce computation. 
A slight increase of Map task overhead and Map variation 
can be noticed in the case of Map-AllReduce based imple-
mentation, similar to the behavior observed and explained in 
MDS section 7.a.1. 

2) Twister4Azure KmeansClustering-AllReduce 

 
Figure 11.  Twister4Azure K-means weak scaling with Map-AllReduce. 500 

Centroids, 20 Dimensions. 10 iterations. 32 to 256 Million data points.  

 

Figure 12.  Twister4Azure K-means Clustering strong scaling. 500 

Centroids, 20 Dimensions, 10 iterations. 128Million data points.  

We implemented the K-means Clustering application for 
Twister4Azure using the Map-AllReduce primitive and 
MapReduce-MergeBroadcast. MR-MB implementation uses 
in-map combiners to perform local aggregation of the output 
values to minimize the size of map-to-reduce data transfers. 
Figure 11 shows the K-means Clustering weak scaling per-
formance results, where we scale the computations while 
keeping the workload per core constant. Figure 12 presents 
the K-means Clustering strong scaling performance, where 
we scaled the number of cores while keeping the data size 
constant. As can be seen in these figures, the Map-AllReduce 



implementation gets rid of the communication, reduce and 
merge overheads of the MR-MB computation.  

VIII. BACKGROUND AND RELATED WORKS 

A. Collective Communication Primitives 

Collective communication operations[2] facilitate opti-
mized communication and coordination between groups of 
nodes of a distributed computation and are used heavily in 
the MPI type of HPC applications. These powerful operations 
make it much easier and efficient to perform complex data 
communications and coordination inside the distributed par-
allel applications. Collective communication also implicitly 
provides some form of synchronization across the participat-
ing tasks. There exist many different implementations of 
HPC collective communication primitives supporting numer-
ous algorithms and topologies suited to different environ-
ments and use cases. The best implementation for a given 
scenario depends on many factors, including message size, 
number of workers, topology of the system, the computation-
al capabilities/capacity of the nodes, etc. Oftentimes collec-
tive communication implementations follow a poly-algorithm 
approach to automatically select the best algorithm and to-
pology for the given scenario.  

Data redistribution communication primitives can be used 
to distribute and share data across the worker processors. 
Examples of these include broadcast, scatter, gather, and all-
gather operations. Data consolidation communication primi-
tives can be used to collect and consolidate data contributions 
from different workers. Examples of these include reduce, 
reduce-scatter and allreduce. We can further categorize col-
lective communication primitives based on the communica-
tion patterns as well, such as All-to-One (gather, reduce), 
One-to-All (broadcast, scatter), All-to-All (allgather, allre-
duce, reduce-scatter) and Synchronization (barrier). 

The MapReduce model supports the All-to-One opera-
tions through the Reduce step. The broadcast operation of 
MR-MB model (section II) serves as an alternative to the 
One-to-All type operations. The MapReduce model contains 
a barrier between the Map and Reduce phases and the itera-
tive MapReduce has a barrier between the iterations. The 
solutions presented in this paper focus on introducing All-to-
All type collective communication operations to the MapRe-
duce model.  

We can implement All-to-All communications using pairs 
of existing All-to-One and One-to-All type operations present 
in the MR-MB model. For example, the AllGather operation 
can be implemented as Reduce-Merge followed by Broad-
cast. However, these types of implementations would be inef-
ficient and harder to use compared to dedicated optimized 
implementations of All-to-All operations. 

B. MapReduce and Apache Hadoop 

MapReduce, introduced by Google[14], consists of a pro-
gramming model, storage architecture and an associated exe-
cution framework for distributed processing of very large 
datasets. MapReduce frameworks take care of data partition-
ing, task parallelization, task scheduling, fault tolerance, in-
termediate data communication, and many other aspects of 
these computations for the users. MapReduce provides an 
easy to use programming model allowing users to utilize the 

distributed infrastructures to easily process large volumes of 
data. 

MapReduce frameworks are typically not optimized for 
the best performance or parallel efficiency of small scale ap-
plications. The main goals of MapReduce frameworks in-
clude framework managed fault tolerance, ability to run on 
commodity hardware, ability to process very large amounts 
of data, and horizontal scalability of compute resources. 

Apache Hadoop[15], together with Hadoop distributed 
parallel file system(HDFS) [16], provides a widely used 
open-source implementation of MapReduce. Hadoop sup-
ports data locality-based scheduling and reduces the data 
transfer overheads by overlapping intermediate data commu-
nication with computation. Hadoop performs duplicate exe-
cutions of slower tasks and handles failures by rerunning the 
failed tasks using different workers. MapReduce frameworks 
like Hadoop trade off costs such as large startup overheads, 
task scheduling overhead and intermediate data persistence 
overhead for better scalability and reliability 

C. Iterative MapReduce and Twister4Azure 

Data-intensive iterative MapReduce computations are a 
subset of iterative computation, where individual iterations 
can be specified as MapReduce computations. Examples of 
applications that can be implemented using iterative MapRe-
duce include PageRank, Multi-Dimensional Scaling[3, 17], 
K-means Clustering, Descendent query[7], LDA, and Col-
laborative Filtering with ALS-WR. 

These data-intensive iterative computations can be per-
formed using traditional MapReduce frameworks like Ha-
doop by manually scheduling the iterations from the job cli-
ent driver, albeit in an un-optimized manner. However, there 
exist many possible optimizations and programming model 
improvements to improve the performance and usability of 
the iterative MapReduce programs. Such optimization oppor-
tunities are highlighted by the development of many iterative 
MapReduce frameworks such as Twister[6], HaLoop[7], 
Twister4Azure[3], Daytona[18] and spark[19]. Optimizations 
exploited by these frameworks include caching of loop-
invariant data, cache aware scheduling of tasks, iterative 
aware programming models, direct memory streaming of 
intermediate data, iteration-aware fault tolerance, caching of 
intermediate data (HaLoop reducer input cache), dynamic 
modifications to cached data (e.g. genetic algorithm), and 
caching of output data (in HaLoop).  

Twister4Azure is a distributed decentralized iterative 
MapReduce runtime for Windows Azure Cloud that was de-
veloped utilizing Azure cloud infrastructure services. Twist-
er4Azure optimizes the iterative MapReduce computations 
by multi-level caching of loop invariant data, performing 
cache aware scheduling, optimizing intermediate data trans-
fers, optimizing data broadcasts and many other optimiza-
tions described in Gunarathne et al[3]. 

IX. FUTURE WORKS – MAP-REDUCESCATTER 

There are iterative MapReduce applications where only a 
small subset of loop invariant data product is needed to pro-
cess the subset of input data in a Map task. In such cases, it’s 
inefficient to make all the loop invariant data available to 
such computations. In some of these applications, the size of 



loop variant data are too large to fit in to the memory and 
introduce communication and scalability bottlenecks as well. 
Example of such a computation is PageRank. The Map-
ReduceScatter primitive, modeled after MPI ReduceScatter, 
is aimed to support such use cases in an optimize manner. 

Map-ReduceScatter gets rid of the inefficiency of simple 
broadcast of all the data to all the workers. Another alterna-
tive approach is to perform a join of loop invariant input data 
and loop variant data using an additional MapReduce step. 
However, this requires all the data to be transported over the 
network from Map tasks to Reduce tasks, making the compu-
tation highly inefficient.  

Map-ReduceScatter primitive is still a work in progress 
and we are planning on including more information about the 
Map-ReduceScatter in our future publications. 

X. CONCLUSIONS 

We introduced Map-Collectives, collective communica-
tion operations for MapReduce inspired by MPI collectives, 
as a set of high level primitives that encapsulate some of the 
common iterative MapReduce application patterns. Map-
Collectives improve the communication and computation 
performance of the applications by enabling highly optimized 
group communication across the workers, by getting rid of 
unnecessary/redundant steps and by enabling the frameworks 
to use poly-algorithm approach based on the use case. Map-
Collectives also improve the usability of the Mapreduce 
frameworks by providing abstractions that closely resembles 
the natural application patterns and reduces implementation 
burden of the developers by providing optimized substitu-
tions to certain steps of MapReduce model. We envision a 
future where many MapReduce and iterative MapReduce 
frameworks support a common set of portable Map-
Collectives and consider this work as a step towards that. 

In this paper, we defined Map-AllGather and Map-
AllReduce Map-Collectives and implemented Multi-
Dimensional Scaling and K-means Clustering applications 
using these operations. We also presented the H-Collectives 
library for Hadoop, which is a drop-in Map-Collectives li-
brary that can be used with existing MapReduce applications 
with only minimal modification. We also presented a Map-
Collectives implementations for Twister4Azure iterative 
MapReduce framework as well. MDS and K-means applica-
tions were used to evaluate the performance of Map-
Collectives on Hadoop and on Twister4Azure depicting up to 
33% and 50% speedups over the non-collectives implementa-
tions by getting rid of the communication and coordination 
overheads. 
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