

CINET Collaboration Report

TAK LON (Stephen) WU, Thomas Wiggins, Judy Qiu

Indiana University

October 6, 2013

(Revised September 17, 2013, August 7, 2013, January 19, 2013 and August 23, 2012)

Abstract

On-demand private cloud environment has become popular due to its flexibility and scalability. However,
the complicated setup and installation process to obtain this computing resource has deterred some users.
Inspired by the batch job model, we introduce dynamic provisioning software, salsaDPI, to simplify these
complications, allowing domain scientists to focus on their scientific problems and run their applications
on clouds with dynamic and automated installation and configurations. Based on our experience using
and running IaaS (Eucalyptus and Openstack) on FutureGrid, we now support portable-cloud
capabilities to automate the scientific data analysis of the CINET project. Users of this framework can
easily prepare their one-click configuration plan and launch their applications in different clouds. This
portable API (salsaDPI) has been successfully deployed and made available to 200 graduate-level
students and IT staff at NCSA Science Cloud Summer School 2012.

Table of Contents
1. Introduction ... 3

2. Background ... 4

3. Related Work .. 5

4. Overview of CINET System Design ... 6

5. salsaDPI System Design and Implementation .. 6

Automate environment settings and application execution .. 7

Support various cloud infrastructure and permanent storage .. 8

Execute user-defined binary and obtain result .. 9

Partial-failure jobs ... 9

On-demand resource allocation .. 9

salasDPI Online Interface ... 10

6. salsaScaler: A resource monitoring interface .. 11

7. Use Cases of salsaDPI... 12

8. Evaluation ... 13

(a) Hadoop BLAST .. 14

(b) Twister WordCount... 14

(c) Hadoop and Twister Kmeans .. 15

9. Conclusion and Future Works... 16

Statement of Work .. 16

Acknowledgments ... 17

Collaboration with VT Team .. 17

Work before 2013 ... 17

Work between January and August 2013 ... 17

Reference .. 18

1. Introduction
This report provides a summary of our progress on the CINET project at Indiana University in
collaboration with the Virginia Polytechnic Institute and State University (hereafter written as Virginia
Tech).

Batch job has been widely adopted by scientists and commercial companies to handle daily tasks that
analyze terabytes of data on different computing resources. These tasks execute well in traditional static

environments such as high performance clusters. However, it is not easy to run them in a dynamic
environment like clouds. Clouds provide Infrastructure-as-a-Service (IaaS), enabling users to take control
of the computing nodes. The on-demand elastic model utilizes computing resources, which allows
applications to scale up to hundreds of nodes and hides the complicated cluster settings. Scientists may
take advantage of this computing model whenever they have an urgent deployment request for computing
resources. But before users submit a request to start up compute nodes, they need to choose the type of
virtualization image that is prepackaged from resource providers, such as FutureGrid [1]. Users can even
bundle and upload their own image with specified software stack installation. The progress of resource
selection and software configuration may be repeated daily by different cloud users [2, 3]. In addition,
once the VM image is up and running, users normally run their applications and obtain the output by
typing commands line by line. Although users can write scripts to run these applications remotely via ssh
connection, it’s hard to be automatic on this batch-like job from selecting the resources, starting the
compute nodes, installing software on-the-fly once nodes are running, executing user-defined applications,
and releasing the computing resources. Based on these considerations, we develop an experimental on-
demand dynamic provisioning software called salsaDPI which automates the job executions running on
FutureGrid cloud service, i.e. Eucalyptus and OpenStack. Moreover, in order to understand the
performance behaviors of running virtual instances, we also introduce a resource monitoring interface
called salsaScaler which utilizes Ganglia as a performance metrics provider to monitor user-interested
metrics.

This report is structured as follows. Section 2 gives an overview of the background technologies. Section
3 discusses the related works. Section 4 describes the CINET system design. Section 5 presents design
and architecture of salsaDPI. Section 6 introduces salsaScaler. Section 7 gives a use case in Science
Cloud Summer School 2012. Section 8 provides the system evaluations. Section 9 discusses the possible
experiments and draws the conclusion with future research directions.

2. Background
Infrastructure-as-a-Service is the basic service model of cloud computing. It provides a scalable
computing environment supported by a large amount of virtual machines managed through virtualization
management tools such as Eucalyptus, OpenStack, Nimbus and OpenNebula. These virtual machines are
running as guest operating systems on the top of hypervisor. Here, Xen and KVM are the most common
open source hypervisors utilized by the private cloud providers. In order to run applications on cloud,
users may have to create and upload their own images by installing special software stack on a base image.
This image generation progress is normally handled by system administrators, as it requires system
background knowledge and goes through several complicated steps.

Opscode Chef [4] is a provisioning and configuration management tool that deploys cloud resources and
user-specified applications throughout different IaaS clouds and physical clusters automatically. It is an
open source system written in Ruby, which means the configuration plan (chef recipes) can be easily built.
Also, Chef is implemented as a traditional client-server model, where it invokes system and API calls
through a RESTful API service or through the default command line tool knife. Starting from Chef 0.10,
chef project provides contributor programming interface to write plugins, which enables more
functionalities. Knife-eucalyptus is one of the plugins that enables cloud support. It provisions compute
nodes directly on various clouds such as Amazon Cloud, Eucalyptus Cloud, and OpenStack Cloud. Figure
1 shows the internal communication when chef client is provisioning compute nodes on clouds. Knife-
euca and knife-openstack utilize several Ruby and Chef libraries to achieve this compute node
provisioning task. They are Fog, Chef::Knife:Bootstrap, Chef::Knife:EucaBase, Chef::Json_compat,

Net::Ssh, and Net::Ssh::Multi. Here, Fog Library is the key component to communicating with cloud
infrastructure API. Chef::Knife:Bootstrap takes chef-client installation tasks by loading default or user-
defined ruby templates based on the started VM’s Operation System. In addition, this tool utilizes
standard ssh library Net::Ssh and Net::Ssh::Multi to execute related software installation commands.

Figure 1. Chef knife-euca and knife-openstack
internal communication

Figure 2. salsaDPI control flow

3. Related Work
Engage [5] is a deployment management system which targets the system deployment within a distributed
environment. It defines three key system components: a domain-specific component describes
interdependent software dependencies; a constraint-based component constructs the software installation
plan based on the interdependent software dependencies; a runtime component deploys the system and
coordinates the application across multiple machines. Engage is built without integrating any existing
configuration management tool such as Chef. Also, it focuses on definition of resource type, software
dependencies, and software installation order in a concrete model.

Cloudinit.d [3, 6] presents a Unix-like init.d tool for launching, configuring, monitoring, and fault
tolerating a set of interdependent VMs over IaaS clouds. Cloudinit.d is similar to Engage, but it provides
a monitoring component to periodically check the system status before and after the first successful
software deployment. This feature helps the system to detect and recover from unexpected failures in a
distributed environment.

J. Klinginsmith [2] introduces a reproducible framework which was developed based on FutureGrid and
Amazon Cloud. As data locality is one of the key features of Cloud Computing, his work mainly focuses
on moving computational infrastructure as close as possible to the location of data in a dynamically
deployed environment. The goal is to help users, especially eScience scientists, to automate their daily
experiments by going through two phases: virtual machine resource allocation on-demand at
infrastructure level and installation of selected software on-the-fly when resources are booting up. Also,
he writes a customized Chef Plugin (with Chef 0.10+) to read different configuration parameters in order
to support various cloud IaaS API. This work has been presented at NCSA Science Cloud Summer
School 2012 [7] as an educational package. salsaDPI framework has been installed within a pre-packaged
portable VirtualBox [8] image for this event.

4. Overview of CINET System Design
As shown in Figure 3, requests sent to FutureGrid data management and execution brokers involve jobs
running on FutureGrid Eucalyptus cloud service. We provide support and work with CINET project
contributor Hemanth Makkapati from Virginia Tech regarding system design and testing several potential
components which may be integrated into data management and execution brokers. These tasks mainly
focus on the FutureGrid resource utilization in a Cloud Computing environment, which enables elastic
resource allocation. Meanwhile, we are working on a dynamic provisioning software, salsaDPI, which
automates job executions running on FutureGrid Eucalyptus cloud service. As previously discussed,
salsaDPI will potentially be a component of the execution broker.

Figure 3. Current CINET Blackboard System Architecture

5. salsaDPI System Design and Implementation
Reproducibility on public/private clouds is very important for any commercial and science-executable
binaries. With this reproducible feature, much data analysis could be done without worrying about the
complicated system setup progress, the learning curve of different cloud infrastructure tools, and whether
someone has detailed background knowledge of Cloud. Programmers or scientists can focus on writing
their own applications and fire them on Cloud with the support of scalability. salsaDPI has been tested
and runs user-defined binaries with more than 80 VM instances on FutureGrid Eucalyptus cloud.

The design goals of salsaDPI are:

1. Support various cloud infrastructure and permanent storage
2. Automate environment settings and application execution
3. On-demand resource allocation using virtual clusters
4. Support user-defined binary and obtain result in individual VMs
5. Support scalable analytics with Hadoop MapReduce and Twister iterative MapReduce platforms.

Automate environment settings and application execution
At a higher level, salsaDPI currently provides a configurable interface which defines resource selection,
location and usage, on-demand software requirements, and user-defined binary parameters. Figure 4
shows a configuration example of Hadoop WordCount program in sandbox mode. This configuration file
is written in JSON [9] format. There are five important JSON objects: mode, chef/eucaInfo, ssh,
softwareRecipes, and applicationParameters. Once these parameters are verified by the salsaDPI driver
program, the driver communicates with a hosted chef server to receive authorization and permission by
calling a chef plugin, knife-eucalyptus. This plugin is involved internally from salsaDPI driver which
submits compute node startup requests to the FutureGrid Eucalyptus service. Once chef server detects that
the requested VMs are running, it installs the software stack according to the software recipes specified in
salsaDPI configuration object on every compute node. Afterwards the salsaDPI driver deploys the user-
defined program binary, e.g. Hadoop WordCount, and copies program-related files such as input and
binary dependency files to each compute node. Afterwards job execution commands are sent via ssh
remote call and return results back to the remote laptop/machine or a permanent storage like Walrus.
Finally, driver program terminates the compute nodes and releases the resources back to the Eucalyptus
service pool. The detailed control flow is illustrated in Figure 2. Note that current interface could be
extended to support more features if needed.

{
'mode':'sandbox',
'chef':{'chefSoloRecipeUrls':'http://129.79.49.248/chef-solo.tar.gz',
'chefSoloConfFilePath':'/root/salsaDPI/solo.rb'},

'ssh':{'SSHLoginUsername':'root',
'SSHPrivateKeyPath':'/root/.ssh/id_rsa' },

'softwareRecipes':['recipe[hadoopSandbox]'],

'applicationParameters':{'applicationType':'Hadoop',
'localPathOfProgramBinary':'/root/salsaDPI/apps/hadoopWordCount.jar',
'localPathOfProgramInput':'/root/salsaDPI/input/hadoopWordCountInput.txt',
'localPathOfBinaryDependency':'',
'programExecuteLocation':'',
'programArgs':'bin/hadoop jar #_JAR_# #_HDFS_INPUTDIR_# #_HDFS_OUTPUTDIR_#'}
}

Figure 4. Hadoop WordCount configuration example

Figure 5 shows the architecture of salsaDPI’s internal communication. From the client side, we run a java
executable salsaDPI driver program which validates and converts the configuration file into an object
DPIConf. This DPIConf contains information defined by the user interface. Then the Driver creates a Job
Information object, JobInfo, which is used to construct the infrastructure and software level resources
deployment. Based on the JobInfo, we utilize the java external process (java.lang.Process) class to call
knife binary and start compute nodes with the support of an external hosted Chef Server. In between

pending resources and after the compute nodes are ready for the next stage, we rely on Chef to monitor
the deployment progress. Once compute nodes have been booted and installed user-defined software, all
the resource information, such as hostname and IPs, is stored within this JobInfo object. Driver continues
to upload the user applications and inputs to each compute node via general ssh communication (a java
library Jsch). In the end, we remotely call the application execution commands and return the result back
to the working client.

Figure 5. salsaDPI Architecture Figure 6. salsaDPI add nodes communication

Support various cloud infrastructure and permanent storage
FutureGrid Eucalyptus [10] and OpenStack [11] cloud has been tested and supported. In addition to
computing resources, we have added permanent storage support such as Walrus (open source S3-like
storage) and HTTP data parameters to store program-related read-only files and output.

For example, 'applicationParameters' object in the configuration file can be filled with existing online data
in HTTP format. This setting is also applied for program-related dependencies to the fields of
'localPathOfProgramBinary', 'localPathOfProgramInput' and 'localPathOfProgramDB'. Figure 7 shows a
Twister WordCount example which use external HTTP resources as program binary and input.

{ // mode = 'cloud'
 'mode':'cloud',
 // euca cloud parameters
 'eucaInfo':{'IaaS':'openstack',
 'eucarcFilePath':'/root/novarc',
 'eucaImageEmi':'4bc49f12-955b-47ce-8bd1-1933433439b2',
 'eucaSSHPublicKey':'taklwu_openstack', // replace stephen to your pub key name
 'eucaVmType':'2',
 'amountOfInstances':2},

 'ssh':{'SSHLoginUsername':'root',
 'SSHPrivateKeyPath':'/root/taklwu_openstack.pem'}, // replace stephen.pem to your private key

 'softwareRecipes':['recipe[twisterCloud]'],

 'applicationParameters':{'applicationType':'Twister',
 'localPathOfProgramBinary':'http://salsahpc.indiana.edu/salsadpi/apps/Twister-WordCount-0.9.jar',

 'localPathOfProgramInput':'http://salsahpc.indiana.edu/salsadpi/input/twisterWordCountInput.tar.gz',
 'localPathOfProgramDB':'',
 'programExecuteLocation':'samples/wordcount/bin',
 'twisterInputFilesPreFix':'wc_data',
 'programArgs':'./run_wc.sh #_TWISTER_PARTITION_FILE_# #_TWISTER_OUTPUTDIR_#/wc.out 4 1'}
}

Figure 7. Twister WordCount on India OpenStack configuration example

Execute user-defined binary and obtain result
From the CINET portal, users can select or upload the program inputs according to the selected
algorithms and applications. This input will be passed to the data management broker and execution
broker in order to automatically run the chosen algorithm/application. This part of functions generally
supports prepared CINET application library.

Partial-failure jobs
In the design of salsaDPI, a job is a continuous resource aggregation from the same IaaS resource
provider. In other words, if there is a single node failure out of 10 requested VM nodes, this job is
considered as failed and does not proceed with any further operations. Failures were common when there
were many submitted jobs, especially when IaaS providers were running out of resources, which results in
a waste of started resources. In the current release, salsaDPI allows a job to execute normally with a
minimum number of started nodes, by default set to 1, although the overall execution time is slower than
expected. The related evaluation results will be shown in section 8.

On-demand resource allocation
For the command-line and programmable interface, we support long running instances after execution of
the user specified application. This advanced resource control is designed for applications requiring
multiple-rounds of calculation, and supports HBase as persistent storage. Furthermore, the amount of
running instances of existing virtual clusters can be adjusted by adding/removing VM nodes with the
programmable interface cgl.salsa.salsadpi.plugin.AddANodeToExistingIaaSCluster. The user or program
developer needs to provide the cluster name (normally master node hostname), master node hostname and
virtual network private IP address, a shorter salsaDPI configuration file (excluding the application object),
and amount of add/remove instance(s). Figure 8 shows a salsaDPI configuration file for adding HBase
regionserver nodes to an existing cluster which installs HBase and Ganglia when starting the instance.

{
'mode':'cloud',
'eucaInfo':{ 'IaaS':'eucalyptus',
'eucarcFilePath':'/root/eucarc',
'eucaImageEmi':'emi-A8F63C29',
'eucaSSHPublicKey':'stephen',
'eucaVmType':'c1.medium'},

'ssh':{'SSHLoginUsername':'root',
'SSHPrivateKeyPath':'/root/.ssh/id_rsa' },

'softwareRecipes':['recipe[hbase]', 'recipe[ganglia]']
}

Figure 8. A shorter salsaDPI configuration for HBase and Ganglia

When salsaDPI receives addnodes requests, it starts the VM instances with the provided shorter salsaDPI
configuration file, the same as starting a new cluster. Once the VMs have begun their work, salsaDPI
sends ssh commands to the specified nodes for requesting configuration files from the Master Node. If
configuration files are received correctly, user-defined services such as Ganglia, Hadoop, Twister, or
HBase, start running and new started VMs are added to the cluster. Figure 6 shows the communication
among salsaDPI, the master node of an existing virtual cluster, and new added nodes. salsaDPI continues
tracking these ssh communications and logs errors.

salasDPI Online Interface
In addition to the command line and programmable interface, we also built a user-friendly online
prototype for submitting pre-packaged applications, Hadoop/Twister WordCount and Hadoop/Twister
Kmeans. The website link is http://salsahpc.indiana.edu/salsaDPI/. Note that this prototype could be
extended to provide more functions, such as allowing users to upload their own applications and program
input. The current online portal allows users to select several parameters like Eucalyptus and OpenStack
instance type, total amount of compute nodes, and type of applications. Once the job is submitted from
the portal, it executes a backend salsaDPI job on the same machine as mentioned in the above section.
The submitted job is capable of being tracked from the real-time job listing page. Once finished, it
provides a direct link to the program output. These features are shown in Figure 9.

Figure 9 a). Online job submission interface Figure 9 b). Message after a job submitted

Figure 9 c). Job status page Figure 9 d). Real time job tracking page

http://salsahpc.indiana.edu/salsadpi/�

Figure 9 e). Example of Twister Kmeans output

6. salsaScaler: A resource monitoring interface
In addition to salsaDPI, we also provide a monitoring software package, salsaScaler, to monitor the
activated virtual cluster system-level and service-level resources. Figure 10 shows control flow for
salsaScaler. On each started instance, we install and run Ganglia [12] resource monitoring tool as
foundational software, where only the first/master node runs the gmetad [13] daemon to collect node
system usages monitored by gmond [13]. salsaScaler communicates with known gmetad daemons among
the virtual clusters and analyzes the collected performance metric based on the user-defined interests. It
collects performance metrics from each cluster every 10 seconds and summarizes a general decision when
four different metrics are received. Based on the decision, salsaScaler notifies salsaDPI to add nodes or to
remove them from a monitored cluster. Users of salsaScaler must write a metric.xml configuration file to
specify the targeted cluster with listed hostname and public IP address, the metrics interests, and SLA
calculation method. Figure 11 shows an example for monitoring two clusters while watching the average
usages on cpu_idle, cpu_aidle, mem_cached, and swap_free. In addition, we also provide a command-line
interface to manually add targeted clusters, add nodes to an existing cluster and list information of all the
current monitored instances.

<!DOCTYPE properties SYSTEM
"http://java.sun.com/dtd/properties.dtd">
<configuration>
<property>
<name>targeted.clusters</name>
<value>LocalPlayGround:129.79.49.181, i-
07DF4398:149.165.158.203</value>
<description>specify the your own targeted headnode which
has installed gmetad</description>
</property>
<property>
<name>metrics.interests</name>
<value>cpu_idle, cpu_aidle, mem_cached, swap_free</value>
<description>specify the your own metric
interests</description>
</property>
<property>
<name>sla.calculation.method</name>
<value>average</value>
</property>
</configuration>

Figure 10. salsaScaler Architecture Figure 11. salsaScaler configuration file

7. Use Cases of salsaDPI
In the summer of 2012, Indiana University and 9 other sites of university level
(http://www.vscse.org/summerschool/2012/scss.html) held a virtual conference across nations. This
conference mainly introduced cloud technologies to graduate-level students and staff. A salsaDPI online
tutorial page is located at http://salsahpc.indiana.edu/ScienceCloud/reproduce-intro.html, one of the main
tutorials of this activity. Figure 12 is one of the photos taken during this event. It shows the ability to
deploy single node and virtual runtime environments for Hadoop and Twister applications from a raw OS
environment (without any software pre-installed). Also, it automatically executes Hadoop and Twister
applications such as WordCount and Kmeans after installing the selected software stack (see Figure 4 for
configuration details). Figure 13 shows snapshots when salsaDPI is running with a user-defined Hadoop
WordCount configuration file (the video link can be seen
at http://www.youtube.com/watch?feature=player_embedded&v=kWom0lj8qxI, please view it with video
quality of 1080p).

Figure 12. Science Cloud Summer School 2012

http://www.vscse.org/summerschool/2012/scss.html�
http://salsahpc.indiana.edu/ScienceCloud/reproduce-intro.html�
http://www.youtube.com/watch?feature=player_embedded&v=kWom0lj8qxI�

Figure 13. Running salsaDPI Hadoop WordCount on FutureGrid

8. Evaluation
We evaluate systematically different applications. Here, (a) Hadoop BLAST represents the pleasingly
parallel program; (b) Hadoop/Twister WordCount exemplifies classic MapReduce programming model;
(c) Twister Kmeans stands for iterative applications. We ran performance tests on two different
resources – FutureGrid Eucalyptus and OpenStack Cloud.

Figure 14. Classification of Applications and Communication Patterns

(a) Hadoop BLAST
We run Hadoop BLAST tests on both Euclyptus and Openstack Cloud. The result in Figure 15 indicates
that partial failure jobs had a longer startup time and execution time. In the worse case, 2 out of 4 nodes
failed, and the Hadoop BLAST computation was postponed for a 600 second timeout from the VM
response. Due to this, execution time doubles, as it only obtained half of the requested computing
resources. Virtual instances may fail to start due to lack of resources and IaaS DoS prevention setting.

Figure 15a. Hadoop Blast on Euca Figure 15b. Hadoop Blast on Openstack

(b) Twister WordCount
Twister WordCount application runs on two c1.medium eucalyptus instances. It is periodically submitted
(every 3 seconds) by running a salsaDPI client from an Ubuntu 12.04 machine located within the same
intranet. This setup guarantees the chef server and salsaDPI client have seamless connection as they both
are linked to the same Gigabit network with low latency. We capture the VM startup time, program data
and dependencies deployment time, runtime startup and program execution time, and finally VM
termination time. Initially we executed 40 jobs to determine the feasibility, then another 60 jobs to
overload the system capacity. As shown in figure 16, VM startup and termination time are the two largest
portions. Also, their huge variation is due to connection latencies from the India Eucalyptus headnode
when it handles a large amount of connections and bootstrap VMs onto physical machines. We verify the
slow response time by running the 60 jobs test. 1 out of 40 jobs and 7 out of 60 jobs failed in our test
cases. The reasons are mainly related to VM image deployment on physical machines and the incoming
connection capacity of India Eucalyptus headnode. Results are shown in Figure 17.

Figure 16a. 40 Twister WordCount jobs on India

Eucalyptus
Figure 16b. Detail deployment time

Figure 17a. Twister WordCount on India Eucalyptus Figure 17b. Detail deployment time

In addition to Inda with Eucalyptus, the same tests were also run on India and Sierra with OpenStack.
However, due to different system settings, we cannot obtain the same large-scale results as on OpenStack.
For every job, Twister WordCount application runs on two m1.small openstack instances periodically
submitted (every 30 seconds) by running a salsaDPI client from the same Ubuntu 12.04 machine. The 30-
second delay is decided by system setting, when OpenStack only allows 10 POST requests per minute to
their RESTful API. Moreover, India OpenStack has a special automatic floating IP assignment which
conflicts with the chef knife-openstack plugin used by salsaDPI Driver. This floating IP conflict may be
the critical factor which limits the amount of running instances. Figure 18 shows a 5-jobs test result run
on India-OpenStack. The VM startup time in OpenStack is much faster, despite our test size being so
small.

Figure 18a. Twister WordCount on India OpenStack Figure 18b. Detail deployment time

(c) Hadoop and Twister Kmeans
For Hadoop Kmeans, the input data size is 50,000 data points with set 500 centroids, and the program
runs for 10 iterations. For Twister Kmeans, the input data size is 80,000 data points with set 2 initial
centroids. The program stops if the centroids errors are the same as the previous iteration. As shown in
Figure 19, Hadoop Kmeans and Twister Kmeans run without any failure on India Eucalyptus.

Figure 19a Hadoop Kmeans on Euca Figure 19b. Twister Kmeans on Euca

The same input datasets are used to run tests on India OpenStack. However, due to the 10 Posts
limitation on India OpenStack, we got a different result, as can be seen in Figure 20. A total of 5 jobs
were submitted and the break interval was 30 seconds. Both tests had 1 failure job and partial failure
nodes. The startup time of Hadoop Kmeans is better due to it having less nodes failed for each node.

Figure 20a. Hadoop Kmeans on Openstack Figure 20b. Twister Kmeans on Openstack

9. Conclusion and Future Works
We at Indiana University have delivered the command-line runnable, programmable, and user-friendly
initial framework salsaDPI to the CINET project, which shows the reproducibility in dynamic computing
environments. In addition, there are possible future enterprises to raise this collaboration to an advanced
level of research.

Statement of Work
We list future work (after September 18th, 2013) below:

• Continue salsaDPI integration with VT team.
• For salsaScaler, we need to identify the most importance performance metrics and find analytical

algorithms to define performance leaks on a running cluster. These parts need more research
work and more advice from Prof. Judy Qiu.

• Improve salsaScaler to provide a programmable interface to calculate collected metrics.

• Replace execution steps from knife-euca/knife-openstack to start VMs using jclouds APIs and
purely Java SSH sessions. This contribution makes salsaDPI portable and platform-free without
installing any dependency-like chef-client and the rest of the knife-related APIs.

Acknowledgments
We would like to thank Dr. Madhav Marathe, Dr. Keith Bisset, and Hemanth Makkapati from the VT
team at Virginia Tech. Our thanks also to Dr. Geoffrey Fox from IU team at Indiana University, and the
FutureGrid support team, especially Dr. Javier Diaz and system admin Koji Tanaka. This project is in part
supported by NSF Grant OCI-1032677.

Collaboration with VT Team
This has been a collaboration project with the Virginia Tech (VT) team since early 2012. This section
illustrates milestones that have been reached and those that will be achieved in the future.

Work before 2013
The salsahpc group at Indiana University Bloomington has been providing assistance to the Virginia
Tech team on interfacing with FutureGrid computing resources, virtual machine environment setups and
providing salsaDPI. This portable API has been successfully deployed and used by 300 nationwide
graduate-level students and IT staff at Science Cloud Summer School 2012 [7]. Their website can be seen
at https://portal.futuregrid.org/projects/241. Details about this summer school activity are included in later
sections. Moreover, a programming interface will be ready in mid-January which can be integrated with
CINET software package.

Work between January and September 2013
The following improvements have been made for salsaDPI between January 1st, 2013 and September 18th,
2013:

• Support India-OpenStack and HTTP input
• Web Interface reconstruction
• A heavy-duty test on Eucalyptus and OpenStack
• Support partial failure job
• Provide on-demand resource extension/reduction to existing user-level clusters
• Provide salsaScaler for resource monitoring with Ganglia

http://jclouds.incubator.apache.org/�
https://github.com/jclouds/jclouds-chef�
https://portal.futuregrid.org/projects/241�

Reference
1. FutureGrid. Available from: https://portal.futuregrid.org/.
2. Klinginsmith, J., M. Mahoui, and Y.M. Wu, Towards Reproducible eScience in the Cloud, in

Proceedings of the 2011 IEEE Third International Conference on Cloud Computing Technology
and Science. 2011, IEEE Computer Society. pages. 582-586. DOI: 10.1109/CloudCom.2011.89.

3. Bresnahan, J., T. Freeman, D. LaBissoniere, and K. Keahey, Managing appliance launches in
infrastructure clouds, in Proceedings of the 2011 TeraGrid Conference: Extreme Digital
Discovery. 2011, ACM. Salt Lake City, Utah. pages. 1-7. DOI: 10.1145/2016741.2016755.

4. Opscode Chef. Available from: http://www.opscode.com/chef/.
5. Fischer, J., R. Majumdar, and S. Esmaeilsabzali, Engage: a deployment management system.

SIGPLAN Not., 2012. 47(6): p. 263-274. DOI:10.1145/2345156.2254096
6. Keahey, K., P. Armstrong, J. Bresnahan, D. LaBissoniere, and P. Riteau, Infrastructure

Outsourcing in Multi-Cloud Environment, in the 8th Open Cirrus Summit. 2012. San Jose, CA.
7. Science Cloud Summer School 2012. 2012 Available from:

https://portal.futuregrid.org/projects/241.
8. Oracle VM VirtualBox. Available from: https://www.virtualbox.org/.
9. JSON metadata format. Available from: http://www.json.org/.
10. Eucalyptus Open Source Cloud Software. Available from: http://open.eucalyptus.com/.
11. Open Stack. Open source, Open standards Cloud. 2010 [accessed 2010 November 7]; Available

from: http://openstack.org/index.php.
12. Massie, M.L., B.N. Chun, and D.E. Culler, The Ganglia Distributed Monitoring System: Design,

Implementation And Experience. Parallel Computing, 2003. 30(Massie03theganglia): p. 2004.
13. Ganglia Monitoring System. Available from: http://ganglia.sourceforge.net/.

http://www.opscode.com/chef/�
http://www.virtualbox.org/�
http://www.json.org/�
http://open.eucalyptus.com/�
http://openstack.org/index.php�
http://ganglia.sourceforge.net/�

	1. Introduction
	2. Background
	3. Related Work
	4. Overview of CINET System Design
	5. salsaDPI System Design and Implementation
	Automate environment settings and application execution
	Support various cloud infrastructure and permanent storage
	Execute user-defined binary and obtain result
	Partial-failure jobs
	On-demand resource allocation
	salasDPI Online Interface

	6. salsaScaler: A resource monitoring interface
	7. Use Cases of salsaDPI
	8. Evaluation
	(a) Hadoop BLAST
	(b) Twister WordCount
	(c) Hadoop and Twister Kmeans

	9. Conclusion and Future Works
	Statement of Work

	Acknowledgments
	Collaboration with VT Team
	Work before 2013
	Work between January and September 2013

	Reference

