

Building Scalable and High Efficient Java Multimedia Collaboration

Wenjun Wu, Tao Huang, Geoffrey Fox
Community Grids Computing Laboratory, Indiana University, USA

{wewu ,taohuang, gcf }@indiana.edu

ABSTRACT

Java Media Framework (JMF) is platform-independent
multimedia programming framework which enables easy
and fast development of collaborative applications. This
paper describes our work on building a high efficient
multimedia collaboration system using JMF. We
introduce a new rendering approach to optimize the
performance of JMF and add screen capturing capability
as well as new codecs. Based on this enhanced framework,
a high efficient and platform-independent conferencing
client named Global-MMCS AVPortlet is developed. The
performance evaluation shows that it outperforms other
well-known video collaboration tools.

KEYWORDS: JMF, RTP, Multimedia Programming,
Render, Screen capture

1. INTRODUCTION

Collaboration and videoconferencing systems have
become very important applications in the Internet. Since
there are so many different technical solutions to
multimedia collaboration, the issues of the interoperability
and platform-independency are emerging to build a
general collaboration environment. And they should be
addressed in a unified and service-oriented framework.

Java as a cross-platform programming language is a very
promising candidate enabling developers to build such a
collaborative multimedia systems. It has an elegant
multimedia programing framework named Java Media
Framework (JMF) [1], which provides a unified
architecture, messaging protocol and a Java API for
accessing underlying media frameworks, managing the
acquisition, processing, and delivery of time-based media
data. By exploiting the advantages of the Java platform,
JMF delivers the promise of “Write Once, Run
Anywhere” to multimedia developers. Although JMF has
been used in some research projects on tele-collaboration,

these research works are limited in building a scalable and
high efficient Java multimedia collaboration system.
Because they are still either based on traditional client-
server or multicast communication architecture, and make
few improvement in the performance of JMF.

To build a Service-Oriented multimedia collaboration
system, we proposed XGSP (XML based General Session
Protocol) [2] as a common, interoperable, Web-Serviced
based framework. XGSP uses a unified, scalable, robust
“overlay” network is to support audiovisual and data
group communication over heterogeneous networking
environments. Based on this framework, we have
developed a prototype system called Global Multimedia
Collaboration System (Global-MMCS) [3] to support
scalable web-service based interoperable collaborations.
Global-MMCS integrates various services including
videoconferencing, instant messaging and streaming, and
supports multiple videoconferencing technologies such as
H.323, SIP and Access Grid clients [4].

JMF is the key building block for the implementation of
Global-MMCS. The media services including video,
audio mixing, snapshot generation, are all developed
using JMF library. Furthermore, we also built our own
audiovisual collaboration tool named GlobalMMCS
AVPortlet, to fully make use of the services provided by
Global-MMCS. The tool which can run on multiple
desktop platforms such as windows, Linux and Mac OSX,
integrates audio and video collaboration together
(compared to Access Grid with separate audio and video
tool) and supports the screen capture service with MPEG-
4 DivX codec.

From the experience of implementing Global-MMCS, we
realize that the performance optimization of JMF has to be
made especially for the conferencing application. The
poor implementation of JMF may lead to unacceptable
end user QoS. This paper provides a novel approach to
the application of JMF in the real-time conferencing by
extending its function, optimizing the performance and
enhancing the communication capability with the
publish/subscribe overlay network service. This approach

mailto:@indiana.edu

enables us to have an integrated platform-independent
desktop conferencing system. The paper is organized as
follows. Section 2 compares JMF to other multimedia
programming framework and describes our work on
extending Java Media Framework. Section 3 and 4
describe the enhancement of JMF and design of this
collaboration tool. Section 5 presents the result of
performance test results. Finally, Section 6 gives the
conclusion.

2. Problem Statement and Related work

Researches on multimedia programming frameworks
began as early as 90s and produced a lot of software
packages. Among them there are well-known frameworks
such as TCL/TK [5] based package, DirectShow [6] and
JMF. This section presents advantage of JMF over other
frameworks and explores the research issues which have
not been addressed by related JMF-based researches.

2.1 JMF and other multimedia programming
frameworks

JMF provides a common cross-platform Java API,
especially the JMF RTP APIs, for developers to build
videoconferencing systems. Many researches have been
done about the multimedia programming frameworks
including the early efforts like CMT [7], VIC [8],
VuSystem [9] and mature industry solutions like
Microsoft DirectShow. CMT, VuSystem and the MBone
tools, though each developed independently, all
converged on the same basic architecture, which is split
into low-overhead control functionality implemented in a
scripting language like Tcl and performance-critical data
handling implemented in a compiled language like C or
C++. Therefore these tools can run in both UNIX and
Windows. In contrast, DirectShow is a C++ COM API
that only enables Windows applications to control a wide
variety of multimedia devices and make media processing
based on Windows codec devices and media formats.

All of these frameworks share the similar multimedia filter
pipeline architecture because of two crucial factors in
building the multimedia applications. One is the
performance issue and the other is how to support a wide
variety of media formats and devices in different
platforms. There are many standard codecs including
video: h.261/h.263/mpeg1/mpeg2/mpeg4 and audio:
ulaw/alaw/gsm/g.723/g.729. Moreover, each operating
system has it own programming API in multimedia
capture and rendering as well as codecs management.

The filter pipeline architecture can support high efficient
media processing. High-volume multimedia data is

typically generated by a source filter objects and piped
through one or more filter objects. Eventually, the media
reaches a sink filter object and is consumed. The source
usually is capture device or network receiving protocol;
filters can be color space converters, compressors /
decompressors, packetizers, and the like, while the sink
might be a render or network transmission protocol. Each
filter can run as a thread and make its process
concurrently, which can ensure the high throughput of
streaming workflow. Furthermore such a software
architecture is easy for further extension and maintenance,
which is also very critical to the development of
multimedia systems because of the diversity in media
formats and codecs.

Although the VuSystem literature cleanly articulated the
filter pipeline in TCL/TK multimedia framework research,
most of them such as VIC don’t follow filter design
pattern in their implementation. In contrast, both JMF and
DirectShow not only define their clear filter APIs but also
build the reference implementation based on media filter
pattern.

In our opinion, the portability of multimedia application is
not quite straightforward because multimedia application
usually needs a lot of native codes. First of all, multimedia
processing usually consumes a lot of CPU and other
hardware resources, especially media capture, codec
compression and decompression and media render.
Secondly, operation systems have their own media
packages which have different frameworks and APIs,
which makes it a non-trivial task to design multimedia
extensions that are portable across multiple flavors of
UNIX, Windows and the Macintosh. In fact, most
multimedia programming frameworks available today do
not provide this level of cross-platform portability. For
example, VIC can run on UNIX, Windows but has some
problems in Mac OS, and DirectShow only works in
Windows.

Therefore a portable multimedia framework must define a
good platform-independent part to cover the
heterogeneous native multimedia platforms. This
separation strategy has been proven quite useful because it
cleanly leverages the capabilities of the underlying
operating system and divides the burden of design,
maintenance and extension. And the advantage of Java
over TCL makes it possible for JMF to include the
platform-independent part as much as possible in the
whole media process workflow. For example, some bulk-
data operations like data pushing can be implemented in
Java but not in TCL. Given this fact, JMF is more flexible
and powerful than TCL media framework.

Some people may have the concern about the Java
performance for multimedia processing in
videoconferencing. It is true that the current JMF
implementation is not as good as VIC multimedia package.
And obviously it is a critical problem for using JMF in
videoconferencing development. However, through
careful performance tuning and optimization, JMF
performance can be comparable to TCL/TK based system.
We will discuss it in Section 3.1 in detail.

2.2 Related Researches based on JMF

There are many JMF-based collaboration systems, for
example Java Collaborative Environment (JCE) [10] from
National Institute of Standards and Technology (NIST)
and Java Enabled Telecollaboration System (JETS) [11]
from University of Ottawa. Based on multicast
communication, JCE introduces video multiplexers and
audio mixers to address the issue of conferencing
scalability and has a Java-based GUI interface to integrate
all the video windows created by JMF into one frame,
instead of having the windows scattered all over the
desktop. JETS is based on client-server framework that
permits sharing of Java applets and applications. JETS
2000, the latest version of JETS, also offers video-
conferencing using JMF.

All these works didn’t make any quantitative performance
measurement of JMF, or investigate the performance
issues of JMF for the conferencing application and make
optimization. Furthermore, they built Java tele-
collaboration based on either multicast or client-server
framework, which restricts their scalability. Research
community has reach the consensus that tele-collaboration
applications need a scalable, robust and QoS-aware
“overlay” network for multimedia group communication
over heterogeneous networking environments. Actually
these problems hinder the widely application of JMF in
the real-time conferencing. This paper addresses the
critical issues by optimizing the performance, extending
its function, and enhancing the communication capability
with the publish/subscribe overlay network service.

3. Enhanced Java Media Framework

This section introduces our work on JMF, including how
to improve JMF performance by exposing the interfaces
of the JMF filters and rewriting a faster one, how to add
the state-of-art codecs in JMF and screen capture, and
how to extend the JMF to the Mac-OS platform.

3.1 Video Rendering

Video rendering, quite different from ordinary bitmap
operation, is a high-throughput task involving large
amount data movement between main memory and
display memory. In most modern operation systems, the
video rendering procedure has similar three steps:
initialization, bitmap copying and blittering. During the
initialization, a screen surface and an off-screen surface
are created based on the window handle. The second step
copies the video bitmap data into the off-screen surface.
Finally a Blit service which can supported directly by
display hardware, is called to move the bitmap data from
the off-screen surface to the screen surface

Java has its AWT package for rendering. But to support
fast native rendering，the developer must use AWT
Native DrawSurface [12] and override the paint method
to direct drawing operations to a native rendering library
which then queries the Java VM to determine the
information it needs in order to render. JMF already
includes Windows native draw (DirectDraw) and UNIX
native draw (X11). We developed the JMF rendering
interface for Mac OSX. QuickDraw Port of CoCoView is
used to access video surfaces and Decompressor Method
is used to blit image into the QuickDraw Port.

In multi-party videoconferencing, most CPU overhead
caused by client comes from video rendering, especially if
a client has to display multiple video streams. And since at
most time motions in video streams coming from the
meeting scenes are relatively small, each video frame only
contains some changed pixel blocks that need to be
rendered. If the client only pushes these blocks into the
video surface, the amount of data copy is definitely
reduced. Since video rendering is a high-throughput task,
this optimization strategy will remove a lot of unnecessary
overhead and improve the performance.

Unfortunately, current JMF 2.0 reference implementation
makes its optimization impossible. JMF filter pipeline is
composed of filter Modules and linking Connectors. Each
Module has either InputConnecor or OutputConnector.
The OutputConnector of the upstream Module connects to
the InputConnector of the downstream. There are two
kinds of streaming protocols between a OutputConnector
and InputConnector. One is Safe protocol, which means
both the downstream Module and the upstream Module
run in separate threads. The “safe” protocol introduces an
extra copy since the upstream module needs to copy data
into the intermediate circular buffer and the downstream
Module reads the buffer as follows. In JMF2.0,
BasicCodec Module and BasicSource Module run in the
same thread, while BasicRender Module runs in the other
thread. The other is Push protocol, which means that the
upstream Module and downstream Module share the same

thread. The upstream Module loops on its "process"
method and invokes the writeReport () method after it
finishes one frame. Consequently, this method triggers the
next call of the "process" method in the downstream
Module running in the current thread. When this
downstream Module finishes its “process”, it calls the next
downstream Module, recursively.

Obviously, since the Push protocol has no extra copy like
the safe protocol, rendering should take the second
protocol for the performance reason. But JMF 2.0 uses the
first protocol and makes the copy operation over the
whole video frame no matter how many macro blocks are
actually updated. We believe the reason is that JMF
designers regard rendering as a time consuming job and
want to separate from the decoder processing module.
This design strategy turns out insufficient. Since in the
modern desktop machines, hardware improvement like
AGP graphic interface enables the high throughput
rendering which needed by conferencing application, the
rendering operation should be able to keep up with the
codec decompression operation. This paper proposes a
“Direct Write Through” approach to address the issue.

Video
Decoder

Direct
Draw

Renderer

OffScreen
YUV Surface

Primary
YUV Surface

Output
Connector

Input
Connector

BLT

Mark

Data

Circular
Buffer

 Figure 1. Direct-Write-Through optimization in JMF
rendering

Figure 1 displays the connectors and filters in the
rendering data path of a conferencing client. In the current
JMF implementation, the Video decoder copies all the
pixels in a decoded frame into the circular buffer shared
by the output and input connectors. Through the input
connector, the DirectDraw renderer transfers the frame
from the buffer to the offscreen surface and then blit the
video frame into the screen surface. “Direct-Write-
Through” allows the OutputConnector of the decoder to
directly move the changed pixel blocks to the offscreen
surface so that the extra copying between connectors is
removed. Each time the decoder finishes the copy, the
DirectDraw Renderer will do Blit to fresh the screen
display.

In some platforms, there is no such hardware video
surface available and it also needs some video color
conversion filter such as transformation from YUV to
RGB in the rendering process pipeline. For example, JMF

needs to use YUV-to-RGB filter to make the format
conversion on Linux because Linux rendering depends
upon XLib which can only support RGB bitmap. In such a
case, the “Safe” protocol has to be applied to match the
speeds of the decoder and renderer. Therefore, the
OutputConnector of the decoder should passes the “Pixel
Block Mark” down to the transformation and renderer
filters so that these downstream filters could read it and
make whatever optimization they can do to reduce the
bitmap copying based on the mark.

3.2 Video Capturing

The task of Video capture is to grab the video frame from
the video capture device in a constant interval of frame
rate and push the data to the downstream codec filter for
compressing. JMF creates a video data source to abstract
the real capture services which usually have different APIs
in modern operating systems.

We added Mac OS video capturing into JMF package.
Apple’s QuickTime architecture [13] is the primary
support for video-based applications on Mac OS X.
QuickTime has two types of video capture API: the low
level API is called Video Digitizer and the high level one
is Sequence Grabber of QuickTime. Since the Video
Digitizer is not quite stable and dependent of underlying
device, the high level API seems to be a better choice in
terms of portability. Unfortunately QuickTime’s model of
real-time video input is based around the recording of the
input stream to disk, and providing screen based video
previews to assist this. This model is not quite suitable for
the video capture in video conferencing. Therefore the
Sequence Grabber API has to be adapted to fit in JMF
video capture interface.

Beside a video capture devices like a Web camera, the
desktop is also can be regarded as a video data source
especially the window playing a movie. The feature is
necessary to support remote desktop sharing. We built
JMF screen capture which can create a JMF DataSource
from the data in the framebuffer in the operating systems.
The screen DateSource should have such a form of URL:
screen://screen-number, in which the screen number
means the number for multiple screens in the system.
Users have to specify the co-ordinates < left, top, width,
height > of the desktop area mapped by the screen
DateSource.

The screen DateSource thread grabs the bitmap from the
target region of the framebuffer, and copies it into the off-
screen buffer, and pushes the data like JMF
PushBufferDatasource. The rate of the copying
framebuffer is determined by the frame rate of the video

stream. Before the screen data source is pushed into video
codecs for compressing, RGB-to-YUV conversion is
usually needed because the bitmap in the screen frame is
usually RGB rather than YUV.

Screen capture can be regarded as a reverse operation to
video rendering since it grabs bitmap from the
framebuffer. Through the graphic API provided by
operation systems, we can get the pointer to the
framebuffer and copy the bitmap into the buffer in the
application memory space. Note that the low level graphic
API is preferred to get the best of performance. For
example, we should use DirectDraw API instead of GDI
in windows because DirectDraw allows the programmer
to access the framebuffer directly.

3.3 Add New Codec

JMF 2.0 package only supports H.261 decoder, H263 and
JPEG. We added H.261 encoder and MPEG-4 video
codec (DivX[14]) based on JMF codec interface. In
addition, new RTP format and payload for MPEG-4 video
are also added through JMF RTPManager.

4. Global-MMCS AVPortlet

On the basic services of JMF, we develop a custom
conferencing client named Global-MMCS AVPortlet,
which uses publish/subscribe for multiparty audiovisual
collaboration. Although publish/subscribe was mostly
used for large-scale event notification and information
dissemination, it is also perfect candidate for scalable
conferencing media distribution networks. A RTP
videoconference usually has three components: RTP video
stream set (RVS), RTP audio stream set (RAS) and
participating RTP endpoints (RES). A multimedia RTP
stream either from RVS or RAS, is regarded as a “topic”
and each RTP packet from this stream as an “event” for
this topic. The sender of this stream (publisher) can
“publish” RTP events to this topic. Other endpoints
(subscribers) need to subscribe to this topic in order to
receive the stream.

In addition to the semantic adequacy in supporting the
conferencing multicast communication, the
publish/subscribe broker network (NaradaBrokering) has
very important features in terms of network engineering.
First of all, it provides software overlay solution to the
deployment issue of hardware multicast. Secondly, it
enables RTP communication through NAT and firewall
barrier. It also offers the similar service to single-source-
multicast that only forwards the subscribed streams to
reduce the network traffic.

Narada
Connector

RTPEvent
Transport

Video / Audio
Processor

Video / Audio
Player

RTP/
RTCP

Session

Narada
Connector

RTPEvent
Transport

XGSP
AV Session
Controller

NaradaBroker
JMS

Transport

Narada
Bridge

Video / Audio
Processor

Video / Audio
Player

XGSP
AV Session

Protocol Stack

RTP/
RTCP

Session

Figure 2. Global-MMCS AVPortlet

Figure 2 displays the internal architecture of
GlobalMMCS AVPortlet. The upper half is the RTP
media processing path discussed in Section 4.1. The
bottom half is the control components presented in
Section 4.2.

4.1 Extending JMF RTP Transport over
Publish/Subscribe Overlay

In order to be transported in the NaradaBrokering overlay,
RTP/RTCP packets have to be wrapped into RTPEvents
with a short extra header to simplify the topic-based
routing service. JMF RTPConnector is extended to
support this encapsulation at the side of client.
RTPConnector class abstracts the underlying transport
mechanism for RTP control and data from the
RTPManager. An implementation of the RTPConnector
must be created and handed over to RTPManager during
initialization. The RTPManager will then use it to handle
the sending and receiving of the data and control packets.
We implement an RTPConnector subclass named
NaradaConnector, which acts as a transport layer for JMF
applications to talk to NaradaBrokering network. It can
send and receive RTPEvents over various transport
protocols including UDP, TCP and HTTP. In addition, a
factory class NaradaBridge is also introduced to create
NaradaConnectors with the subscription of RTP topics
and deliver the outbound RTP events of the connectors to
brokers. As an overlay networking on Internet,
NaradaBrokering can use the available transport channels
through the firewall and NAT boundaries. By extending
the JMF RTP transport over this overlay, Global-MMCS
AVPortlet can run behind firewalls and NATs.

4.2 XGSP Audiovisual Session Management

To support different audiovisual application endpoints
having their own signaling procedures, XGSP framework
provides a common XML based signaling protocol for
them. H.323 (H.225, H.245) and SIP signaling protocols
have to be translated into the XGSP A/V signaling
protocol and vice versa. The complete discussion for
using the XGSP goes beyond the scope of this paper. One
of the reasons for using XGSP for the GlobalMMCS
AVPortlet is because of underlying media communication
overlay – NaradaBrokering. To support the topic based
publish/subscribe media transport, there is no way to use
the standard conferencing signaling framework like H.323
or SIP. Or we can say XGSP enables the customized
clients to make full use of services provided by
NaradaBrokering and Global-MMCS.

Besides of the RTP events for the stream topic, some
control events indicating the status of each stream topic
have to be defined. They include five major events:
NewStreamEvent, ByeEvent, TimeOutEvent, Active-to-
Passive, Passive-to-Active. Separate audio video stream
lists are maintained by using these control events. To
visualize the video stream list, GlobalMMCS AVPortlet
requires the thumbnail service of media servers to display
a JPEG picture along with the metadata of each video
stream. Although a multicast conferencing client such as
VIC can generate up-to-date thumbnails by receiving and
decoding all the video streams in a multicast session, it
causes a lot of network traffic if there are many streams in
the multicast session. For example, in the lobby session of
Access Grid, nearly fifty H.261 streams can be seen at
most time. It demands at least 10Mbps wide-area network
connection for such a medium-size group of multicast
video session [15]. In contrast, our approach can save a
lot of network resources. For the JPEG thumbnails, we
can just update in one frame per minute which will allow
enough visual awareness for users to select the video
streams. Conservatively, it can be estimated that such a
solution only cost less than 100 kbps even in the 50-
stream video session. (Assume each JPEG image of the
streams have the size of 20 KB. Then totally we have
1000 KB to be transmitted in one minute, which means
130kbps average.) Therefore even DSL user with 1Mbps
can attend Access Grid meetings through Global-MMCS.

The client sends its subscription to NaradaBrokering for
video stream selection. Once the subscription is
established as a pair of < client identification, media
stream topic >, the overlay will route the media stream
packets to the client. This subscription reduces the traffic
to receivers because they only need to handle the
incoming streaming to their interests.

5. Performance Evaluation

As mentioned in Section 3.1, the most CPU consuming
part in medium-scale videoconference is the video
rendering. In the following test, we measure the rendering
performance of VIC, JMF 2.0 reference implementation
and the optimized JMF 2.0. It shows that through careful
performance tuning and optimization, JMF performance
can be comparable to TCL/TK based system.

Testing video streams are captured from the same desktop
of the sending machine, and multicasted to the receiver
machine which runs Access Grid VIC, two JMF clients
based on Sun’s JMF implementation and our improved
version. The receiver machine is the XP desktop with the
configuration of P4 2.0 GHz, 1.0 GRAM. And the
configuration of its display device is GeForce2 MX/MX
400 with On-Board memory 64MB. The sender machine
with 4 CPUs is powerful enough to pump up to 8 testing
video streams.

We have two test scenarios with different source streams.
In the first test one, the CIF-size still image of the desktop
area is sent to the clients. Each stream is encoded in
H.261, and has average bandwidth 20kbps. In the second
test scenario, the CIF-size video sequence from a 30-
second movie with a lot of motions is streamed to the
clients. Each stream is encoded in H.261, and has average
bandwidth 500kbps. The CPU overhead caused by these
clients running in these tests is compared in the figure 3.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

AG VIC
SunJMF
FastJMF

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8

AG VIC
SunJMF
FastJMF

Figure 3 Video Rendering performance (top: still
desktop, bottom: movie sequence)
From the result, we can see the CPU overhead is roughly
in linear increase when the number of stream rises. We
can imagine an empirical equation like OverHead = A*X
+ B, where X: the number of rendered stream; A:
normalized incremental step associated with the
bandwidth or frame-per-second of the video stream; B: the
constant depends upon the machine. Since the traffic
bandwidth for the still-image video is much less than the
motion movie, the rendering overhead is also less. And in
both cases, the optimized JMF implementation is much
faster than Sun JMF, and even better than VIC. In Test 1,
the average incremental step (A in the empirical equation)
for VIC is about 3 %(2.8%), for Sun JMF is 6% (6.3%)
and for FastJMF is 1%. In Test 2, the average incremental
step for VIC is about 4%, for Sun JMF is 7% and for
FastJMF is 2%.

In both cases, the incremental step of fastJMF is much less
than SunJMF because of “Direct-Write-Through” Strategy.
However, in the first scenario, the benefit of the
optimization is much obvious than the second one since
the movie stream demands more bitmap copying in
fastJMF than the still desktop stream. Notice that
AccessGrid VIC has also better performance than
SunJMF since it implements “Direct-Write” in the native
C/C++ code. The rendering performance of our fastJMF
even outperforms AG VIC because we are using video
memory for bitmap copying while AG VIC uses main
memory.

6. Conclusion

This paper introduces our effort to support a high-efficient
multimedia collaboration using JMF. It provide a new
approach of applying JMF in the real-time conferencing
by extending its function, optimizing the performance and
enhancing the communication capability with the
publish/subscribe overlay network service.

We make comprehensive analysis about the advantage of
JMF as multimedia programming framework. From the
experience of implementing the whole system, we realize
that the performance optimization of JMF has to be made
especially for the conferencing application. Therefore
“Direct-Write-Through” optimization is introduced to
improve the video rendering performance. And it achieves
almost two timers faster than the original version, and as
fast as the VIC version of Access Grid. Furthermore,
Screen capture function was built in JMF to extend the
video data source and upgrade the collaboration capability.

And the latest codec like DivX MPEG-4 was integrated
into JMF package. JMF RTP transport layer was extended
to support publish/subscribe software multicast. Based on
all the above work, a flexible and high-efficient
audiovisual collaboration tool based on Java Media
Framework was developed.

REFERENCES

[1] Gordon R. and Tally S., Essential JMF -- JMF Java
Media Framework, 1st edition, Prentice Hall, 1998.

[2] Wu W., Fox G. C, Bulut H., Uyar A., Altay H.,
“Design and Implementation of A Collaboration Web-
services system”, Journal of Neural, Parallel & Scientific
Computations, Volume 12, 2004.

[3] Global Multimedia Collaboration System,
www.globalmmcs.org

[4] Access Grid, www.accessgrid.org

[5] Ousterhout J., Tcl and the Tk Toolkit. Addison-
Wesley Publishing Company, 1994.

[6] Microsoft DirectX (version 8.0): Microsoft
DirectShow, Online Documentation:
http://msdn.microsoft.com/directx/.

[7] L. Rowe and B. Smith. “A Continuous Media Player.”
Network and Operating Systems Support for Digital
Audio and Video. Third Int'l Workshop Proceedings,
1992.

[8] McCanne S. and Jacoboson V., “VIC: A Flexible
Framework for Packet Video”, ACM Multimedia 1995.

[9] Lindblad C.J., Wetherall D. J., Tennenhouse D.L.,
“The VuSystem: A Programming System for Visual
Processing of Digital Video”, ACM Multimedia, San
Francisco, California, 1994. pp 307-314.

[10] Abdel-Wahab H., Kim O., et al, “Java-based
Multimedia Collaboration and Application Sharing
Environment”, Colloque Francophone sur l’Ingenierie
des Protocols , CFIP'99, Nancy, France, April 26 - 29,
1999

[11] de Oliveira J. C., Hosseini M., Shirmohammadi S.,
Malric F., Nourian S., Saddik A.E. and Georganas N. D.,
“Java Multimedia Telecollaboration”, IEEE Multimedia,
pp18-29, Vol.10, No. 3, July-Sept 2003.

http://www.globalmmcs.org
http://www.accessgrid.org
http://msdn.microsoft.com/directx/

[12] AWT Native DrawSurface,
http://java.sun.com/j2se/1.3/docs/guide/awt/AWT_Native
_Interface.html

[13] QuickTime, www.apple.com/quicktime/

[14] DivX, www.divx.com

[15] Access Grid Node Minimum Requirements,
http://www.accessgrid.org/agdp/guide/min-req/1.0/min-
req-1-0.pdf

http://java.sun.com/j2se/1.3/docs/guide/awt/AWT_Native
http://www.apple.com/quicktime/
http://www.divx.com
http://www.accessgrid.org/agdp/guide/min-req/1.0/min

