

Performance of a Collaborative Framework for Federating Distributed Digital

Entities

Ahmet Fatih Mustacoglu

TUBITAK-National Research Institute of

Electronics and Cryptology (UEKAE),

Marmara Research Center, Gebze, Kocaeli,

41470 TURKEY

ahmet.fatih@uekae.tubitak.gov.tr

Geoffrey C. Fox

Community Grids Lab, Indiana University,

Bloomington, IN, 47404, USA

School of Informatics and Computing, Indiana

University, Bloomington, IN, 47405, USA

gcf@indiana.edu

ABSTRACT

We investigate the performance and the scalability

metrics of the Event-based Infrastructure and consistency

model of the IDIOM (Internet Documentation and

Integration of Metadata) framework that is for federating

online digital entities. The IDIOM consists of tools and

services for supporting Cyberinfrastructure based

scientific research. This system supports a number of

existing online Web 2.0 research tools (social

bookmarking, academic search, scientific databases,

journal and conference content management systems) and

aims to develop added-value community building tools

that leverage the management and the federation of

digital entities and their metadata obtained from multiple

services. We provide the performance and the scalability

experiment results and conclude with a discussion of

further research opportunities in this proposed research.

KEYWORDS: Collaboration, Web 2.0, Annotation

Tools, Distributed Digital Entities, Federation.

1. INTRODUCTION

One of the major challenges that people are facing with is

to remember and access information that they have found

earlier and thought could be useful for them later.

Probably the most common approach to re-finding

information on the web is to use personal bookmarks

provided by several web browsers. For instance, Mozilla

Firefox browser supports the creation of collections of

URLs. Furthermore, URLs can be annotated by using

keywords or free-form text. These collections can also be

sorted based on a various things such as keyword, last

visited, location or time. People create bookmarks depend

on their personal interests in the information and quality

of the resource, possibility of future use, current

necessities as explained in [1].

Another challenge is to find and share information that is

spread all over the Web in various locations including

centralized repositories, web servers and user desktops.

Centralized repositories represent the old fashion

techniques for resource sharing, whereas completely

decentralized systems such as P2P systems allow users to

share information without depending on a third party

repository. The necessities to find and share information

led to development of emergent Web 2.0 applications.

These new Web 2.0 applications such as social

bookmarking tools introduce a new way of sharing

information rather than the old fashion and P2P systems

do. Social bookmarking tools address the challenging

problems of finding and sharing information among small

groups, teams and communities. Various types of social

bookmarking tools developed their own systems to

support different kind of resources. Flickr [2], for

example, allows the tagging and the sharing of photos,

del.icio.us [3] the tagging and the sharing of bookmarks,

BibSonomy [4], CiteULike [5] and Connotea [6] the

tagging and the sharing of scholarly publications,

YouTube [7] the tagging and the sharing of video, and

43Things [8] the tagging and the sharing of goals in

private life.

There are several common features for social

bookmarking systems. First of all, these tools provide

their users with ability to create personal bookmarks and

share them with other users instantly. Data is stored

centrally in these social bookmarking tools and it is

available from any computer that is connected to the

internet. Second, these systems enable entering personal

keywords called tags explicitly by the user for each

bookmark. Using tags for the resources allows users to

organize and display their collections in a meaningful way.

Furthermore, assigning multiple keywords for a

bookmark makes it belong to multiple categories. The

mailto:ahmet.fatih@uekae.tubitak.gov.tr
mailto:gcf@indiana.edu

final common feature of social bookmarking tools is the

social way of their use. The collection of bookmarks

created by users is also visible to other users. For instance,

when a user name is clicked on, then the collection of

bookmarks for that user is viewable to other users. Similar

transparency is also valid for tags. So, one can retrieve

similar resources that fall into same interest of other users

by clicking on an interested tag.

As the web-based social bookmarking services have

gained popularity, an emerging need has appeared for

methodologies to retrieve, represent, share and manage

information that are stored in these annotation tools for

scholarly publications. As these services enable storing,

tagging and sharing documents, another emerging need

has also appeared for supporting these tools by using their

existing services via Web Service wrappers with added

capabilities. In our Internet Documentation and

Integration of Metadata (IDIOM) framework [9-14], we

are able to manage, share and reconcile scholarly

publications that are stored in several social bookmarking

tools in a Service Oriented Architecture where

communications are provided through the Web Service

technology [15]. The IDIOM software is available from

[16]. Figure 1 illustrates the architecture of the IDIOM

system.

This paper investigates the performance and the

scalability results of the event-based infrastructure and

consistency maintenance parts of the IDIOM system [9-

14] that federates online digital entities. The rest of this

paper is organized as follows: Section 2 provides

background information on event-based systems and

consistency mechanisms. Section 3 provides a discussion

of the underlying event-based and the consistency

structure of the IDIOM framework. Section 4 presents the

performance and the scalability test results for the IDIOM

system. Finally, Section 5 summarizes the work and

describes further research opportunities.

2. BACKGROUND

We overview the event systems and the consistency

maintenance issues for distributed systems that are crucial

for the IDIOM framework in the following sub-sections

respectively.

2.1. Event Systems

In recent years, there has been an increasing amount of

research focused on event based systems. Their main

objective is to notify the necessary entities about the

changes that occurred in the domain of interest. Today,

event systems are needed and used in several areas such

as graphical user interfaces, databases, web based

applications, networking applications, distributed

applications, publish-subscribe paradigm etc. Several

tools have been developed for each of these areas to

satisfy their needs, and NaradaBrokering [17-21], which

is an open-source messaging infrastructure, is an example

for publish-subscribe paradigm. NaradaBrokering was

developed in Community Grids Lab at Indiana University

[22]. There are two different approaches to the event

definition. The first approach defines an event as it is an

instantaneous atomic occurrence, so it is represented as a

point in time [23-25]. Based on this approach, timestamps

of event occurrences can be categorized in three different

ways:

 Absolute time point: It consists of date and time

 Relative time points: It is defined relative to a

particular position

 Virtual Clocks are explained in detail in [26],

and unique timestamp values are assigned

automatically to each event by the system.

The second approach defines an event occurrence as an

interval in time [27-30]. Based on this approach, a state

change of an event can be specified within a specific

interval and the interval can be represented in two ways:

 As relative, absolute, or virtual time points

represent starting and ending point of an interval

 Event occurrences that represent the initial and

ending points of an interval

So, the first approach defines events as having no duration

while the second approach defines events by having a

particular duration. For example; in a windows based

system consists of buttons, panels and textboxes, a user

focuses on a particular user interface component and

activates it by a mouse or a keyboard input. This

instantaneous action triggers a graphical user interface

event that is related to the activated component registered

with the system. State transition occurs at an instant point

(by pressing or adding a text) in time when the user

generates the action. Because of the atomic occurrence,

second approach cannot be used for the representation of

this graphical user interface event, however first approach

can be used for representing these type of events. In a

closed room, rise and drop of the temperature want to be

monitored by a heat sensor. When the room is heated

externally, the temperature starts to increase and after a

certain level and when the heat energy is balanced within

the system, the temperature value read from the sensor

stays at a fixed level above the previous value. The

increase of the temperature represent an event occurrence

within an interval started when the room temperature

begins to increase and terminated when the heat sensor

readings is at the constant level. Due to the interval of

occurrence, first approach cannot be used to represent this

type of events; instead second approach should be used

for this type of events.

2.2. Consistency Maintenance

Consistency is an important issue in distributed systems.

Consistency means that all copies of a same document

meant to be the same. When one copy is updated, then it

must be ensured that all copies are updated as well [31].

According to [31], consistency models can be classified

into two groups: (a) Data-Centric Consistency Models; (b)

Client-Centric Consistency Models. Details about these

two models are given in the following sections

respectively.

2.2.1. Data-Centric Consistency Models

A consistency model is an agreement between processes

and hosting environment, where data is stored. As long as

processes obey the rules, the hosting environment

promises to work correctly. A process that executes a read

operation on a data item expects to get a value that is a

result of the last write operation on the data item.

However, in the absence of a global clock, it is difficult to

say which write operation is the last one. So to maintain

consistency in different ways, there are other data-centric

consistency model definitions. Each data-centric

consistency model has different restrictions on what a

read operation can return on a data item. It is easy to

implement and use consistency models with minor

restrictions whereas it requires lots of effort to use

consistency models with major restrictions. But the gain

is different in each model since the one with major

restrictions provide better results than the one with minor

restrictions do [31]. More information on consistency

models can be found in [32, 33]. Tanenbaum classifies

data-centric consistency models into seven sub-categories:

(a) Strict Consistency; (b) Linearizability and Sequential

Consistency; (c) Casual Consistency; (d) FIFO

Consistency; (e) Weak Consistency; (f) Release

Consistency; and (g) Entry Consistency [31].

2.2.2. Client-Centric Consistency Models

In the previous section, we have overviewed and

summarized data-centric consistency models that are all

about providing a system wide consistent view on a

shared data. On the other hand, client-centric consistency

models ensure the consistent view of data from a client’s

perspective. They allow copies of a data to be inconsistent

with each other as long as the consistency is maintained

from a single client’s point of view. Tanenbaum classifies

client-centric consistency models into five sub-categories:

(a) Eventual Consistency; (b) Monotonic Reads; (c)

Monotonic Writes; (d) Read Your Writes; and (e) Writes

Follow Reads.

3. THE EVENT-BASED INFRASTRUCURE

AND CONSISTENCY MODEL OF THE

IDIOM FRAMEWORK

We describe the novel event-based infrastructure and

consistency maintenance of the IDIOM framework that is

designed to provide an ideal approach to unify and

federate major annotation tools, support collaboration,

represent and manage content of scientific documents

coming from various sources in a flexible fashion. The

event-based infrastructure and consistency maintenance

constitute the core underlying architectural concepts of

the IDIOM framework. Both concepts are briefly

overviewed in this section but the detailed information

can be found in [9].

The content of scientific documents is represented as a

Digital Entity (DE) in the IDIOM framework. Another

word is that a DE consists of several metadata fields that

hold the related metadata of a scholarly publication. In the

Event-based Infrastructure of the IDIOM framework, data

and metadata coming from various sources are

represented as events. The initial metadata of a scientific

document is represented by a major event, while further

updates to any metadata field of an existing DE are

represented by minor events. Both major and minor

events, which form DE and contain the metadata fields of

the document, are stored into a MySQL system database

[9]. General architectural design for the Event-based

Infrastructure (EBI) and Consistency Framework for

Distributed Annotation Records (CFDAR) of the IDIOM

system appears in Figure 1.

Digital Entity

Manager

Annotation Tools

Update Manager

Database

Timestamp

Generator

Data Manager

E
v

e
n

t-
b

a
s

e
d

 I
n

fr
a

s
tr

u
c

tu
re

 S
e

rv
ic

e
s

W
S

D
L

Connotea API

Annotation Tools

Communication Manager

Various

Clients

Citeulike RSS and

Heuristic Approach
Delicious API

Figure 1. The Architectural Design for the Event-based

Infrastructure and Consistency Framework for Distributed

Annotation Records

The consistency maintenance issue has to do with

ensuring that all copies of the same data to be the same at

a given time. Some approaches to maintain consistency

are discussed in detail in [31, 34-38]. Tanenbaum [31]

differentiates consistency under two main categories: (1)

data-centric; and (2) client-centric. In data-centric

approach, all copies of data are updated whether some

clients is aware of those updates or not. In client-centric

approach, consistency is maintained from a client’s

perspective. Client-centric consistency model allows

copies of data to be inconsistent with each other as long

as the consistency is ensured from a single client’s point

of view. The implementation of the consistency models

can be categorized as primary-based protocols (primary-

copy approach) and replicated-write protocols [31]. In

primary copy approach, updates are executed on a single

location, and propagated replicas from there, while in the

replicated-write approach; updates can be originated from

multiple locations.

Our proposed framework CFDAR supports collaboration

among DARs, which are replicas of the same document,

kept at various web-based annotation tools. CFDAR

adopts optimistic replication approach to ensure eventual

consistency between annotation tools and the system

database. An overview of the proposed architecture

design appears in Figure 1.

4. THE PERFORMANCE AND THE

SCALABILITY EXPERIMENTS RESULTS

We performed extensive series of measurements to

evaluate the prototype implementation of the proposed

architecture and investigate its practical usefulness in real

life applications.

4.1. Testing Environment

We tested our Event-based Infrastructure and Consistency

Framework implementation by using gf12-15 and gf16

Linux machines that are part of a cluster located at

Community Grids Laboratory at Indiana University [22].

We have run our client programs on gf12-gf15 Linux

machines, we have deployed our service-based Event-

based Infrastructure and Consistency Framework system

on gf16 Linux machine, and we have installed our

database on gf16 Linux machine. Summary of these

machine configurations are given in Table 1.

In our general experiments methodology, we have used

single-threaded and multi-threaded client programs. Our

Event-based Infrastructure and Consistency Framework is

also a multi-threaded service-enabled system running on

cluster node gf16.ucs.indiana.edu. We have sent various

requests from the client programs to our proposed system

implementation to test the performance, and the

scalability of our proposed system.

Table 1. Summary of Cluster Nodes

 Cluster Nodes

gf12-15.ucs.indiana.edu gf16.ucs.indiana.edu
Processor Intel® XeonTM CPU

(E5345 2.33GHz)

Intel® XeonTM CPU

(E5345 2.33GHz)
RAM 8 GB (each node) 8 GB Total
OS GNU/Linux (kernel

release 2.6.9-5.ELsmp)

GNU/Linux (kernel

release 2.6.9-5.ELsmp

We have implemented our service-enabled Event-based

Infrastructure and Consistency Framework in Java

Language, using Java 2 Standard Edition compiler with

version 1.5.0_12. In our experiments with the prototype

implementation, we used Apache Tomcat Server as a

container with version 5.0.28 and Apache Axis

technology for Web Service technology with version 1.2.

We set the maximum heap size of Java Virtual Machine

(JVM) to1024MB by using the option –Xmx1024m. In

our experiments, we also increased the maximum number

of threads from default value to 1000 in Apache Tomcat

Server to be able to test the system behavior for the huge

numbers of concurrent clients.

4.2. System Responsiveness Experiments

Our main goal in doing this experiment is to measure the

baseline performance of our Event-based Infrastructure

and Consistency Framework implementation. We have

tested the performance of our proposed system by

measuring the times necessary to download a record from

an annotation tool into a repository, and to upload a new

record from a repository to an annotation tool (forms a

DAR). Furthermore, we have investigated latency values

for More Info functionality with DB access and memory

utilization, and Update DE functionality. The

performance evaluation is done when there is no

additional traffic in the system. The primary interest for

doing system responsiveness experiment was to

investigate the optimum performance of the system for

download, upload, more info and update digital entity

primary operations for the proposed system. The client

programs were running on a cluster nodes gf12-gf15,

while service-enabled Event-based Infrastructure and

Consistency mechanism was running on a cluster node

gf16. In this experiment, we were exploring the

performance of our methodology for download, upload,

more info and update digital entity operations of the

proposed system. We have conducted the following test

cases: a) A single client sends a request to download a

DAR from an annotation tool as a major event required to

access to the DB; b) A single client sends a request to

make a new DAR required to access to an annotation tool;

c) A single client sends a request to get a more info on a

digital entity from a repository required to access to the

DB; d) A single client sends a request to get a more info

on a digital entity from the cache required to access to the

memory; and e) A single client sends a request to update a

digital entity existed in a repository. In our each testing

case, the clients send 400 sequential requests for

download, upload, more info and update digital entity

standard operations. We recorded the average execution

time, and this experiment was repeated 5 times. Figure 2

shows the design of these experiments.

4.2.1. System Responsiveness Experiment Results

We conduct experiments where we investigate the base

performance of the proposed system. Depicted in Figure 3,

Figure 4, and listed in Table 2, Table 3 represents basic

responsiveness result of our system. In this experiment we

first recorded execution times for: a) calling the download

service to measure the processing time of our

implemented service; b) calling the upload service to

measure the processing time of our implemented service.

Next, we recorded round trip times for: a) calling the

More Info service with database access to measure the

latency of our implemented service; b) calling More Info

service with memory utilization to measure the latency of

our implemented service; c) calling Update DE service to

measure the latency of our implemented service.

Downloading a new entry requires to store this entry as a

major event in the database and it is one of the major

services provided by our Event-based Infrastructure and

Consistency Framework system. Furthermore, our Event-

based Infrastructure and Consistency Framework system

propagates the updates via push mechanism by using

upload service of the system in order to maintain

consistency. This experiment shows the necessary time

requirements for these major services to download or to

upload a digital entity between the database and

annotation tools (replicas).

Figure 3. Download and Upload a Record

Figure 4. Latency and STDev Values for Update DE and More

Info Standard Operation (with DB and Memory Utilization)

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Test-2. Upload a record to

an Annotation Tool

1 user and 400 requests

W

S

D

L

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Test-1. Download a

record into a database

1 user and 400 requests

Annotation

Tools

Database

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

Single

Thread

Test-3. More Info request

with database access

Database

1 user and 400 requests

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

W

S

D

L

Single

Thread

Test-4. More Info request

with memory access

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

1 user and 400 requests

W

S

D

L

Single

Thread

Test-5. Update digital entity

request with database access

Database

1 user and 400 requests

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

Database

Annotation

Tools

Figure 2. Testing Cases for System Responsiveness

Experiment

4.3. Scalability Experiment

The primary interest in doing this experiment was to

investigate the scalability of Event-based Infrastructure

and Consistency Framework implementation. We

conducted three testing cases and tried to answer the

1 2 3 4 5
0

50

100

150

Repeated Test Cases

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c
)

process time-download a record

STDev-download a record

process time-upload a record

STDev-upload a record

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Repeated Test Cases

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c
)

latency-MoreInfo with DB access

STDev-MoreInfo with DB access

latency-MoreInfo with cache utilization

STDev-MoreInfo with cache utilization

latency-Update DE

STDev-Update DE

following research questions: a) how well does the system

perform when the message rate per second is increased

for More Info standard operation request on a DE with

DB access?; b) how well does the system perform when

the message rate per second is increased for More Info

standard operation request on a DE with memory

utilization?; c) how well does the system perform when

the message rate per second is increased for Update DE

standard operation request?

In the first experiment, our main goal is to identify the

number of concurrent requests requiring DB access that

can be handled by the proposed system when message

rate per second are increased in the Event-based

Infrastructure and Consistency Framework. We have

completed this test case by increasing the message

rate/sec until the response time degrades. In this testing

case, we recorded round trip time at each MoreInfo

request on a DE with DB access. In the second testing

case, we have applied the same technique as previous

experiment except that each request is responded by using

memory utilization. In the third experiment, we have

investigated the concurrent requests for an Update DE

main operation that can be serviced by the Event-based

Infrastructure and Consistency Framework while message

rate per second are increased. The designs of these testing

cases are depicted in Figure 5.

4.3.1. Scalability Experiment Results

Based on the results depicted in Figure 6, we determined

that concurrent inquiry requests may be well responded

by Event-based Infrastructure and Consistency

Framework without any error. According to the

experiment result, we identified that Event-Based

Infrastructure and Consistency Framework’s major

operations performed well for the increased message rate.

However, after a certain number of messages per second,

performance starts to degrade due to high message rate.

Based on the results depicted in Figure 6, we determine

that a large number of concurrent inquiry requests may

well be responded to without any error by the system and

do not cause significant overhead on the system

performance. We observe that after around 1060 inquiry

messages per second for More Info with DB access, after

around 2068 inquiry messages per second for More Info

with memory utilization, after around 533 inquiry

messages per second for Update DE, the system

performance degrades due to high message rate.

4.3. Discussion of Experiments

Based on the experiments, the process of retrieving a

record from an annotation tool and inserting it into a

database (download operation) takes around 146ms, and

the process of reading a record from a database and

uploading it to an annotation tool takes around 145ms.

Furthermore, it takes around 2.5ms to read a record from

the database. As a result, we can conclude that 145ms –

2.5ms = 142.5ms is consumed by an annotation tool to

process the coming upload or download request. Finally,

we can say that our proposed system can perform well for

both upload and download operations.

We have also measured our proposed system’s scalability

behavior by increasing the message rate (number of

coming messages per second). The system performance

starts to decrease while the number of requests exceeds:

1060 simultaneous messages per second for More Info

operation with DB access, 2068 inquiry messages per

second for More Info with memory utilization, and 533

inquiry messages per second for Update DE. Hence, the

system performance degradates due to high message rate

after this number of requests. This threshold is mainly due

to the limitations of Web Service container, as we observe

the similar threshold when we test the system with an

echo service that returns the input parameter passed to it

with no message processing is applied. Based on the

results depicted in Figure 6, we also determine that a

significant number of concurrent publication requests may

well be responded without any error by the system and do

not cause big overhead on the system performance. This

experiment results also showed that the proposed system

is able to scale to increasing high message sizes and

performs well for high number of concurrent requests.

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Database

Event-based Infrastructure and Consistency

Framework – More Info request (database

access) with increasing Message rates

Single

Thread

Various # of Clients

Single

Thread

Single

Thread

Various # of Clients

Event-based

Infrastructure

and Consistency

Framework

Event-based Infrastructure and Consistency

Framework – More Info request (memory usage)

with increasing Message rates

Single

Thread

W

S

D

L

Single

Thread

Database

Event-based Infrastructure and Consistency

Framework – Update DE request with

increasing Message rates

Event-based

Infrastructure

and Consistency

Framework

Message rate scalability investigation

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

Various # of Clients

 Figure 5. Testing Cases of Scalability Experiment for More

Info and Update DE Requests

Figure 6. Update DE and MoreInfo Message Rate with DB and

Memory Access

Table 2. Statistics of the Experiment Depicted in Figure 3

Repeated Test Cases 1 2 3 4 5

Download Process

time (msec)

145.44 146.49 145.72 147.77 147.37

Download STDev 12.74 13.64 13.09 14.54 13.94

Upload Process time
(msec)

146.24 144.23 144.75 146.33 144.3

Upload STDev 6.61 5.52 7.11 7.6 7.24

Table 3. Statistics of the Experiment Depicted in Figure 4

Repeated Test Cases 1 2 3 4 5

Latency-MoreInfo with DB
access

2.58 2.55 2.56 2.54 2.54

STDev-MoreInfo with DB access 0.49 0.49 0.50 0.49 0.49

Latency-MoreInfo with cache

utilization

1.62 1.61 1.63 1.62 1.64

STDev-MoreInfo with cache
utilization

0.49 0.48 0.48 0.48 0.48

Latency-Update DE 4.46 4.45 4.49 4.43 4.48

STDev-Update DE 0.49 0.51 0.50 0.49 0.51

5. FUTURE WORK

The IDIOM framework deploys an Event-based

Infrastructure and adopts a consistency technique for

distributed systems to maintain consistency among

distributed annotation records and their primary copies

stored at a central repository. It introduces an Event-based

Infrastructure and utilizes optimistic replication approach

to ensure eventual consistency between distributed

annotation records representing scholarly publications.

We plan to expand on this approach to be able to apply

other application domains such as video collaboration

domain (YouTube etc.) and social networking domain

(Facebook etc.). We will further research machine

learning techniques to identify typing errors within the

documents. An additional area that we intend to research

is to migrate from centralized structure to decentralized

structure.

6. CONCLUSION

In this paper we presented the performance and the

scalability experiment results of our proposed IDIOM

framework. We have also mentioned the event-based

infrastructure and consistency model of the IDIOM

system briefly. Furthermore, we described the architecture

components of the IDIOM and outlined some directions

for future work.

REFERENCES

[1] A. David, B. Ron, and C. Mark, "Information archiving

with bookmarks: personal Web space construction and

organization," in SIGCHI conference on Human factors in

computing systems, Los Angeles, California, United States,

1998.

[2] Flickr web site. http://www.flickr.com/

[3] Delicious web site. http://de.icio.us

[4] Bibsonomy web site. http://www.bibsonomy.org

[5] CiteULike web site. http://www.citeulike.org

[6] Connotea web site. http://www.connotea.org

[7] YouTube web site. http://www.youtube.com/

[8] 43things web site. http://www.43things.com/

[9] A. F. Mustacoglu, "Event-Based Infrastructure for

Reconciling Distributed Annotation Records," PhD Thesis

in Computer Science, 2008, p-184, Indiana University:

Bloomington, IN.

[10] A. F. Mustacoglu and G. Fox, "Hybrid Consistency

Framework for Distributed Annotation Records in a

Collaborative Environment " in The 2008 International

Symposium on Collaborative Technologies and Systems

(CTS 2008) Irvine,CA: IEEE Computer Society, ACM,

2008, pp. 267-274.

[11] A. E. Topcu, A. F. Mustacoglu, G. Fox, and A. Cami,

"Integration of Collaborative Information Systems in Web

2.0," in 3rd International Conference on Semantics,

Knowledge and Grid vol. 0 Xian,China: IEEE Computer

Society, 2007, p. 523.

[12] A. F. Mustacoglu, A. E. Topcu, A. Cami, and G. Fox, "A

Novel Event-Based Consistency Model for Supporting

Collaborative Cyberinfrastructure Based Scientific

Research," in Collaborative Technologies and Systems CTS

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

message rate (message/per second)

a
v
e
ra

g
e
 r

o
u

n
d

 t
ri

p
 t

im
e
 (

m
s
e
c
)

MoreInfo message rate with DB access

MoreInfo message rate with memory utilization

Update DE message rate

http://www.flickr.com/
http://de.icio.us/
http://www.bibsonomy.org/
http://www.citeulike.org/
http://www.connotea.org/
http://www.youtube.com/
http://www.43things.com/

2007 in Technical Cooperation with The IEEE Computer

Society Orlando, FL, USA: IEEE Computer Society, 2007.

[13] G. Fox, A. F. Mustacoglu, A. E. Topcu, and A. Cami,

"SRG: A Digital Document-Enhanced Service Oriented

Research Grid," in Information Reuse and Integration IRI-

07 Las Vegas, NV, USA: IEEE Computer Society, 2007,

pp. 61-66.

[14] G. C. Fox, M. E. Pierce, A. F. Mustacoglu, and A. E.

Topcu, "Web 2.0 for E-Science Environments," in 3rd

International Conference on Semantics, Knowledge and

Grid. vol. 0 Xian,China: IEEE Computer Society, 2007, p.

1.

[15] H. Kreger, "Web Services Conceptual Architecture (WSCA

1.0)," 2001. Available from:

http://www.cs.uoi.gr/~pvassil/courses/diplomatikes/miscell

aneous/WebServicesConceptualArchitecture.pdf

[16] "Internet Documentation and Integration of Metadata

(IDIOM) Project web site.

http://gf16.ucs.indiana.edu:54571/IDIOM/login.jsp

[17] G. Fox and S. Pallickara, "Deploying the NaradaBrokering

Substrate in Aiding Efficient Web and Grid Service

Interactions," Grid Computing, vol. 93, pp. 564-577, 2005.

[18] S. Pallickara, M. Pierce, H. Gadgil, G. Fox, Y. Yan, and H.

Yi, "A Framework for Secure End-to-End Delivery of

Messages in Publish/Subscribe Systems," vol. 0, p. 215,

2006.

[19] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed

Middleware Framework and Architecture for Enabling

Durable Peer-to-Peer Grids," Middleware 2003, pp. 998-

999, 2003.

[20] G. Fox, S. Pallickara, and X. Rao, "A scaleable event

infrastructure for peer to peer grids," in the 2002 joint

ACM-ISCOPE conference on Java Grande, Seattle,

Washington, USA, 2002.

[21] S. Pallickara, H. Bulut, P. Burnap, G. Fox, A. Uyar, and D.

Walker, "Support for High Performance Real-time

Collaboration within the NaradaBrokering Substrate,"

2005.

[22] Community Grids Lab at Indiana University web site.

Available from: http://communitygrids.iu.edu/index.php

[23] S. Gatziu, Events in an active, object-oriented database

system. Hamburg: Verlag Dr. Kovac, 1995.

[24] K. R. Dittrich and S. Gatziu, "Time Issues in Active

Database Systems," in International Workshop on an

Infrastructure for Temporal Databases, Arlington, Texas,

1993.

[25] G. Liu, A. Mok, and P. Konana, "A Unified Approach for

Specifying Timing Constraints and Composite Events in

Active Real-Time Database Systems." vol. 00, 1998, p. 199.

[26] L. Lamport, "Time, clocks, and the ordering of events in a

distributed system," Commun. ACM, vol. 21, pp. 558-565,

1978.

[27] J. F. Allen and G. Ferguson, "Actions and Events in

Interval Temporal Logic," Journal of Logic and

Computation, vol. 4, pp. 531-579, 1994.

[28] P.-s. Kam and A. W.-c. Fu, "Discovering temporal patterns

for interval-based events," Lecture Notes in Computer

Science, vol. 1874/2000, pp. 317-326, 2000 2000.

[29] C. Liebig, M. Cilia, and A. Buchmann, "Event

Composition in Time-Dependent Distributed Systems." vol.

00, 1999, p. 70.

[30] Peter R., Pietzuch R., Shand B., and B. J., "A Framework

for Event Composition in Distributed Systems," in 4th

International Conference on Middleware (MW'03) Rio de

Janeiro, Brazil: Springer, 2003, pp. 62-82.

[31] A. S. Tanenbaum and M. V. Steen, Distributed Ssytems

Principles and Paradigms, 2002.

[32] S. V. Adve and K. Gharachorloo, "Shared Memory

Consistency Models: A Tutorial." vol. 29, 1996, pp. 66-76.

[33] D. Mosberger, "Memory consistency models," SIGOPS

Oper. Syst. Rev., vol. 27, pp. 18-26, 1993.

[34] S. Chengzheng and C. David, "Consistency maintenance in

real-time collaborative graphics editing systems," ACM

Trans. Comput.-Hum. Interact., vol. 9, pp. 1-41, 2002.

[35] L. Jiang, L. Xiaotao, S. Prashant, and R. Krithi,

"Consistency Maintenance In Peer-to-Peer File Sharing

Networks," in Proceedings of the The Third IEEE

Workshop on Internet Applications: IEEE Computer

Society, 2003.

[36] R. Jonathan, F. Sarah, and V. Sankar, "Consistency

management for distributed collaboration," ACM Comput.

Surv., vol. 31, p. 13, 1999.

[37] V. Jurgen, V. JiRgen, G. Werner, C. Li-Te, and M. Michael,

"Consistency Control for Synchronous and Asynchronous

Collaboration Based on Shared Objects and Activities,"

Comput. Supported Coop. Work, vol. 13, pp. 573-602, 2004.

[38] G. Werner, V. Jurgen, C. Li-Te, and M. Michael,

"Supporting activity-centric collaboration through peer-to-

peer shared objects," in Proceedings of the 2003

international ACM SIGGROUP conference on Supporting

group work Sanibel Island, Florida, USA: ACM Press,

2003.

http://www.cs.uoi.gr/~pvassil/courses/diplomatikes/miscellaneous/WebServicesConceptualArchitecture.pdf
http://www.cs.uoi.gr/~pvassil/courses/diplomatikes/miscellaneous/WebServicesConceptualArchitecture.pdf
http://gf16.ucs.indiana.edu:54571/IDIOM/login.jsp
http://communitygrids.iu.edu/index.php

