
Implementing a Caching and Tiling Map Server: a Web 2.0
Case Study

Zao Liu, Marlon E. Pierce, and Geoffrey C. Fox
Community Grids Lab

Department of Computer Science
Indiana University
Bloomington, IN

{zaliu, mpierce,gcf}@cs.indiana.edu

Neil Devadasan
Polis Center

Indiana University Purdue University Indianapolis
Indianapolis, IN

ndevadas@iupui.edu

Abstract: We describe our efforts to build a caching and tiling map server that greatly improves the

performance and interactivity of traditional geographic map servers. We have used this system to
integrate and effectively federate 15 Indiana county map servers with Google map images and state-wide
ortho-photography data. Our approach is an example of the so-called Web 2.0 style of development, in
which we integrate external, third party services into a higher level service. This approach also allows
for lightweight client development using relatively simple JavaScript programming libraries. We
demonstrate this by building a Google Map client interface to our tile server. Finally, we discuss our
initial efforts to make collaborative clients using a shared event model that captures and broadcasts
browser events to other, listening browsers.

Keywords: Geographical Information Systems, Web map services, Web 2.0, Web-based collaboration

Introduction
Modern Geographical Information Systems

(GIS) [1] provide a service-oriented architecture
for interacting with geographical data sets and
related maps. Web-based GIS systems are
architected around the same principles as more
general Web service systems based on SOAP [2],
WSDL [3], and REST. Mirroring the World Wide
Web Consortium and OASIS Web service
standards-making bodies, the Open Geospatial
Consortium [5] defines open standards for
messages, XML data formats, and access protocols
that are specific to the GIS community. In addition
to OGC-based services, there are many companies
(such as ESRI and AutoDesk) that provide
proprietary, commercial solutions. Services from
these various providers are not normally
interoperable.

The methods of the traditional GIS community
have been challenged in the last two years by the

emergence of new, lighter-weight approaches
towards building clients and integrating data. The
availability of Google Maps, Google Earth,
Microsoft’s TeraServer, Yahoo! Maps and similar
systems has enabled enthusiasts and part-time
developers to make highly interactive Web
interfaces to these companies’ services and to
integrate their maps with local data.

Google Maps in particular is an important
example of the so-called Web 2.0 development
approach [6]: Google has built and maintains a
high performance, highly scalable map service
(available for free) that has a relatively simple,
JavaScript-based programming interface. This
simple but powerful public interface to a very
complicated service is the hallmark of Web 2.0,
since it democratizes the client development
process: very little programming skill is required to
build custom Web applications and to combine
them with data from other sources (so-called Web
“mash-ups”). The ProgrammableWeb [7] is an
excellent source for browsing mash-ups and

discovering APIs to on-line services. Currently
over 380 services make themselves available for
mash-up building. Google Maps is used in about
50% of the registered mash-ups.

Google Maps also provides an important lesson
in interactivity: by storing data in map tiles and by
using a programming technique known as
Asynchronous Javascript and XML (AJAX) [8],
they are able to provide highly interactive
interfaces that don’t rely on direct user requests for
map updates. Instead, the user drives the map
updates indirectly by panning and zooming.

AJAX is a development technique rather than a
new programming language. It relies heavily on
the relatively recent standardization of
XmlHttpRequest within JavaScript engines in most
major browsers. XmlHttpRequest provides a
mechanism for the page running in a browser to
call back to its original Web server to obtain
additional information without going through the
direct, user driven HTML <form/> submission
process. That is, the browser’s request/response
cycle does not have to be directly initiated by a
user hitting a submit button. Instead, it can be
initiated indirectly by user interactions. In the case
of Google Maps, for example, the user’s map
panning can initiate a request to the server for
more map tiles to be cached locally. From the
user’s point of view, the panning process is
seamless, and minimal interruption in interactions
takes place.

We present in this paper an examination of
these issues through a specific case study:
federating Google Map data with more detailed
county data obtained from map servers run by state
and local governments in Indiana. This is a
particularly interesting example of federation,
since there are 15 counties with public, on-line GIS
services as well as a collection of state-wide
services. These services collectively span four
different, non-interoperable GIS products (ESRI
ArcIMS, ESRI ArcMap, Autodesk MapGuide, and
the OGC-based Minnesota Map Server). The

county services have very detailed layer
information: Marion County (Indianapolis) GIS
services [9], for example, provide more than 100
map layers (such as park boundaries, parcel
boundaries, voting precincts, and school districts)
that are obviously not available from Google.
These maps also provide higher level zooming
capabilities and pin-point addressing that are
superior to Google’s geocoding service.

What the county GIS services lack, however, is
scope: county GIS services stop at the county
boundaries, but natural and man-made disasters
(floods, tornadoes, chemical spills, etc) do not.
There is currently no means for integrating data
from multiple services into a unified view. Thus
we see integrating local GIS services with
Google’s broader coverage into a single system as
both an interesting Computer Science challenge as
well as an activity with potential benefits to
emergency management, disaster planning, and
similar problems.

Building a Federated Cache
Server

System Architecture: The basic system
architecture is depicted in Figure 1. Pre-existing
and externally managed map servers for various
Indiana counties are shown at the top, as is
Google’s map service. In order to harvest map
data from these servers, we build adapters that can
be invoked by the Cache Server to construct
appropriate requests to the county servers. Adapter
construction is described below. We have also built
Google Map adapters that can directly harvest data
from Google. This is described in more detail in
[10].

Map segments from the various county servers
can be requested in any size, but to support
integration with Google map tiles through Google
Map client libraries, we will make bounding box
requests for tiles that will be identical to the tiles
used by Google Maps.

Browser +
Google Map API

Cass County
Map Server

(OGC Web Map
Server)

Hamilton
County Map

Server
(AutoDesk)

Marion County
Map Server

(ESRI ArcIMS)

Browser client fetches
image tiles for the
bounding box using
Google Map API.

Cache Server

Tile Server

Adapter Adapter Adapter

Cache Server requests
map tiles at all zoom
levels with all layers.
These are converted
to uniform projection,
indexed, and stored.
Overlapping images
are combined.

Must provide adapters
for each Map Server
type .

The tile server fulfills
Google map calls with
cached tiles at the
requested bounding
box that fill the
bounding box.

Google Maps Server

Figure 1 shows the basic system architecture. Solid arrows indicate network connections (Web Service

request/response over HTTP). Filled boxes indicate network-enabled system components.

Message Patterns, Adapters, and Federation:

All of the local GIS map servers that we have
encountered follow a request-response style
message pattern: the requesting agent (the adapter
in Figure 1) constructs a request for maps,

specifying the image bounding box’s latitude and
longitude, the zoom level, the size in pixels of the
desired images, the desired map layer (i.e. parcel
boundaries), styling options, and so on.

Figure 2 shows a sample request to an ESRI ArcIMS or ArcMap server.

Figures 2 and 3 show a typical request and

response for ESRI map services. These XML
messages are transported over HTTP. Note that in

Figure 2 the image is not directly returned in the
response, but instead the service sends back a URL
to the image. This allows the server to

communicate in a non-blocking fashion with the
client. This is convenient as map images are

typically created on demand, and so it can take
several seconds to actually generate the image.

Figure 3 shows the response of the request in Figure 2.

In contrast to the XML-over-HTTP approach of

ESRI, AutoDesk’s MapGuide and the OGC’s Web
Map Server use HTTP GET style messages to
construct requests. A sample AutoDesk request is
shown in Figure 4. OGC Web Map Server

requests are similar. The response images are
included in the HTTP response. This approach has
the obvious drawback that it blocks until the
requested image can be constructed and returned.

Figure 4 shows an example of a client request to an AutoDesk map service.

Abstracting these requests with adapters is not

technically difficult. As we have reviewed, one
must know the syntax needed to construct the
commands, which may be serialized as XML or
HTTP GET name/value pairs. It is possible to
construct a federating map server solely from these
adapters, which dynamically make requests to the
backend map servers every time a user requests a
new map. This non-caching approach, however,
has very limited interactivity.

To illustrate this, we present sample response
times for various Indiana county map servers are
shown in Figure 5. These values are intended
only to show orders of magnitude. As can be seen,
the response time is measured in seconds. For a
federated map server delivering maps from several
different counties, the total response time will be
limited by the slowest server. This problem is
compounded by the great variability of server
hardware, software, and network connectivity of
the various county servers.

Figure 5 lists sample response times for various

county map servers.

Obviously these times are not acceptable for

AJAX-style clients. The solution is of course to
exchange computing time for disk space. By pre-
requesting and caching the images as tiles, we can
greatly decrease the time required to deliver the
map images.

Requesting, Storing, and Indexing Tiles:
Although any reasonable tiling strategy can be
used, we have adopted Google’s approach in order
to enable integration with the Google Map API on
the client side, as discussed below. In constructing
our tile requests, we have relied on Mapki [11], a
Google Map community Wiki that provides
information for developers.

In summary, our basic procedure is first to
discover the size of tiles used by Google at a
particular zoom level and next to harvest map data
from state and county map servers using this same
tile size as a bounding box in the request. These
images are stored on the cache server’s file system
using a convenient naming convention.

The first step in this process is to pick a zoom
level and bounding box. These are then used to
determine the tiles used by Google to represent this
map. As described at [12], Google Map tiles have
a simple matrix notation. It is possible to discover
the particular matrix element of any given point
(say, the upper left and lower right corners of the
map in Figure 6). From this, we may infer all the
tile elements and the latitude/longitude values of
their bounding boxes. Note this is repeated for all
zoom levels.

The next step is to iterate through all the tiles at
all zoom levels and request local map layers from
the county servers. To do this, we must determine
which county or counties are at least partially in
the bounding box. This can be done by sending
the bounding box coordinates to the Indiana
Geological Survey’s boundary service [13], which
will return all the counties in this tile. We then
iterate over these counties to request the desired
map layer.

When a bounding box lies across county
boundaries, we can still use the original bounding
box. The resulting response from each county will
be only a partially filled box. We then (in the
cache server) combine the two partial tiles into a
single tile, as shown in Figure 7. The original tiles
are discarded to save space.

Figure 6 shows the Google tiles associated with

the indicated bounding box. Note the Indiana
county boundaries obtained from the Indiana
Geological Survey’s map survey have been overlaid
on this map.

All tiles are stored in the Mercator project used
by Google. This requires that we transform county
imagery, since all Indiana county servers use the
EPSG4326 projection by default.

Tile Storage Strategy: We cache all tiles using
the same matrix notion as the corresponding
Google map tiles and use this to give each tile a
unique file name. These are stored in hierarchical
file system directories using the zoom level and
layer as the directory name. When a client sends a
request to get the tile from the server, the server
can directly retrieve the exact tile without the
requirement of querying any database, which
would decrease the response time of the server.

Marion
County

Hancock
County

Figure 7 illustrates how partial tiles are

combined. This situation occurs when the tile’s
bounding box includes partial information from two
or more county servers. The partial images are
combined and stored as a single tile, and the original
tiles are discarded.

We now illustrate this process. A client may

request a parcel boundary tile image from our
server by using an HTTP GET request like
http://.../CacheClient/servlet/WMSConnection?lay
er=parcel&x=36&y=40&z=0. This request directly
maps to the tile location of
/CacheTileDir/zoom0/parcel/tile36.40.png on the
server’s file system. The server can then return
this image in its response. This HTTP GET
service interface approach was chosen specifically
to support Google Map clients, as discussed below.
We can also provide other programming interfaces,
such as WSDL, to support other clients.

This approach is sufficient for our current
implementation, but we must address scaling
issues to store more data. Since the number of tile
file grows exponentially along with the increase of
map magnification (zoom) level, we will
eventually experience operating system limitations
for numbers of files in a single directory. A more
efficient mechanism for directory organization
needs to be applied. We are currently investigating
solutions. A related problem is storing tiles across
multiple independent file systems. Modern storage
area networks can store data in the hundreds of
terabytes [18], but simpler service-based
approaches may also be a low-cost alternative.
This would imply a hierarchy of cache servers in
Figure 1.

Tile Storage Requirements: Currently in our
implementation, for storing 15 Indiana counties at
13 zoom levels for 13 map layers, there are more
than 3,591,013 tiles for each map layer. The tiles
are 4KB in size, except aerial photography tiles,
which are 25KB. Our current storage requirement
is thus [3,591,013* (12*4KB +25KB)], or
approximately 250 GB.

Indiana has 92 counties. Assuming we can
obtain access to these additional counties’ data, we
estimate the storage for the whole state as follows.
Each tile at one zoom level represents the same
area as four tiles at the next lower level. In the
zoom level 0, there are 4 tiles to cover the whole
state. In the zoom level 12, there are 4*(4^12) tiles.
So, it requires 67108664*13 tiles to cache the
whole states for 13 layers. Caching the whole state
for 13 layers would require over 4.5 TB disk space.
Extending this approach to the entire country
would require hundreds of terabytes.

Creating Overlays: Maps are generally
constructed as overlays: one or more partially
transparent top layers can be placed upon a base
map. We do this with standard Java Advanced
Imaging libraries [14]. Note that the layer overlays
are actually composed this way on the client’s
request. For example (in Figure 8), the parcel
layers (top left) and the base map (bottom left) are
combined into a single image. The imaging
libraries’ performance is sufficient to layer these
on demand.

Figure 8 show how to tiles are overlaid. See text

for a description.

Building Clients
In our current implementation, our caching and

tiling service can be accessed via HTTP GET-style
requests, allowing us to integrate with version 2 of
the Google Map API. The general details are
overviewed at [15]. The advantage of the Google
API is, of course, that it allows us to build highly
interactive browser clients.

A portion of a sample client is shown in Listing
1. Note that GCopyrightCollection, GTileLayer,
CustomGetTileUrl, and GTileLayer are defined in
the Google API. Different layer families in our
service begin with the URL
http://.../GoogleCacheClient/servlet/WMSConnecti
on. The example shows how to retrieve orth-
photography image tiles, parcel boundaries, and
parcel IDs.

In addition to the map requests, we have also
built adapters for interacting with county data
servers that allow us to obtain (for example) parcel
information across county boundaries. The
approach is very similar to the map service
adapters discussed above.

Figure 9 shows a sample client that can be
constructed using client code based on Listing 1.
The display shows the boundary between Marion
and Hancock counties (eastern Indianapolis). The
ortho-photography tiles in the image (originally
harvested from Ref [17]) are obtained from our
server (that is, these are not Google Maps’
“satellite” images). The red and blue numbers are
parcel IDs taken from local county map servers.
We have not attempted to unify the styling across
the two map servers. The left-hand side bar
displays results from a parcel ID query to the
Marion county feature data service.

Building an EventBased
Collaborative System

We have extended our clients and services to
build a collaborative system using shared events.
We have based our prototype implementation on
Flex libraries from Adobe [16]. Our basic system
allows two or more browsers to synchronize their
displays using shared events: if the controlling user
zooms or pans the display, the other participants in
the session will have their browser displays
automatically updated.

Listing 1 provides an example of how to call our

map cache server through the Google Map (version
2) API using JavaScript.

To enable “co-browsing” and synchronous

collaboration of multiple clients, the tile server
uses a Flex data service, which defines a
destination and provides a channel for clients to
subscribe. The clients who are subscribes to the
same channel can publish messages to all others
synchronously. The communication between client
and server in Flex uses Adobe’s ActionScipt.

In our prototype, when a client subscribing to
the collaboration channel takes an action such as
pan or zoom, these actions will lead to an event

// ===Create
GCopyrightCollection

var copycol = new
GCopyrightCollection("");

// ===Create tile layers
var indiana_orthos= new

GTileLayer(copycol,6,19);

indiana_orthos.myBaseURL
='http://.../GoogleCacheClient/

servlet/WMSConnection?layer=0';

indiana_orthos.getTileUrl
 =CustomGetTileUrl;

// ====== County Parcels

(Spring 2006) ======
var parcels= new

GTileLayer(copycol,16,19);

parcels.myBaseURL='http://.../G

oogleCacheClient/servlet/WMSConnec
tion?layer=9';

parcels.getTileUrl=CustomGetTil

eUrl;

// ====== County ParcelID

(Spring 2006) ======
var parcelID= new

GTileLayer(copycol,16,18);

parcelID.myBaseURL='http://.../

GoogleCacheClient/servlet/WMSConne
ction?layer=10';

parcelID.getTileUrl=CustomGetTi

leUrl;

call in JavaScript that can directly call back to the
ActionScript function, which pushes the event
message back to the channel registered in Flex data
service in the server side. Then the channel will
broadcast the event message to all its subscribed
clients. The client browsers that receive the
message will then run the events without user

intervention. We have used this approach to make
collaborative versions of the interface shown in
Figure 9. We can also add shared tools, such as
whiteboard markups and annotations by simply
using libraries provided by Flex.

Figure 9 displays a screen shot of a Google map client to our cache map server. This image is discussed in
detail in the text.

Although the Flex model gives us an easy way
to send message between clients, we must still
address some classic issues in collaborative
systems.

• We must be able to save and replay stored
events. This will allow late-joining and
rejoining participants to synchronize
themselves with the system’s global state.

• In our prototype implementation, anyone
joining the session can control the map. It
is thus relatively easy to create
unsynchronized states in the participants
(e.g., User A attempts to pan before
receiving a “zoom” event generate by User
B). There are numerous event throttling
strategies that can prevent these situations.

Typically, only a single user’s events are
published to the system at any time, and the
states of the passive participants can be
forced to synchronize with the controller’s
state.

• Shared whiteboard displays must take into
account the scaling between different
screen resolutions of the participants.

We are currently investigating the best
approaches for solving these issues.

Conclusions an Future Work
We have described the architecture and

implementation of our caching and tiling map
server. We have followed basic Web 2.0 design

principles by investing heavily in the server side
development and providing a relatively simple
client API (that is, we make our system compatible
with the Google Map API, version 2). The
simplicity of the client programming interface
allows so-called mash-ups such as Figure 9 to be
developed with relative ease. These mash-ups can
be easily developed by users without detailed
knowledge of the underlying service
implementation.

Our caching and tiling service demonstrates
how to federate data from multiple map providers
into a single map service. We have implemented
an HTTP GET-style interface to this service that is
suitable for integration with Google Map clients,
but other service interface to support additional
clients can be developed.

We note generally that Web 2.0 is very similar
to the “service oriented architecture” approach of
both Grids [20] and enterprise systems. One of the
major differences is the simple client development
model: by supplying or supporting existing open
and simple programming interfaces for clients, we
allow end users to develop clients and integrate
their own data, thus democratizing the web
development process. This has been extremely
successful for general Web development, and we
hope to extend this approach to the Grid developer
and user communities.

Several challenges are ahead. First, we must
systematically investigate the performance options
of our tile naming scheme to efficiently support
more extensive map coverage. The map data for
significant portions of the United States (for
example) will be hundreds of terabytes in size.
These may easily fit on modern storage area
networks, which can provide seamless access to
hundreds of terabytes of data. Indiana University’s
535 TB Data Capacitor [18] provides an extreme
example of this approach. There are other
interesting approaches for more loosely coupled,
federation-style architectural approaches that we
would like to investigate as well.

We must also investigate how to integrate large
statistical maps, especially choropleth maps for
block groups or census tracts, and also how to have
the ability to change the color schemes and number
of breaks of clusters. For example, to provide the
population density view for whole United States
census and give the user the ability to change the
rendering colors according to what a user selects

while delivering acceptable performance is a
challenging problem.

Finally, we are very interested in coupling our
mapping system with scientific plotting, which will
be driven by the geophysical requirements of the
QuakeSim project [19]. One important example is
the plotting of InSAR map images (both directly
observed and synthetically produced by models) as
map tile layers. This problem will require the
coupling of our caching server to high performance
computing resources, as the InSAR images can
take several minutes to hours to create from both
raw observational and simulation data.

Acknowledgments: Liu, Pierce, and Fox
acknowledge support from NASA’s Advanced
Information Systems Technology program, part of
the Earth-Sun Systems Division.

References
[1] Zhong-Ren Peng and Ming-Hsiang Tsou,

Internet GIS: Distributed Geographical
Information Services for the Internet and
Wireless Networks. Wiley, 2003.

[2] [Gudgin, 2003] Gudgin, M., Hadley, M.,
Mendelsohn, N., Moreau, J.-J., and
Nielsen, H. (2003), SOAP Version 1.2 Part
1: Messaging Framework. W3C
Recommendation 24 June 2003. Available
from http://www.w3c.org/TR/soap12-
part1/.

[3] [Christensen, 2001] Christensen, E.,
Curbera, F., Meredith, G., and
Weerawarana, S. (2001), Web Service
Description Language (WSDL) 1.1. W3C
Note 15 March 2001.

[4] Roy T. Fielding, "Architectural Styles and
the Design of Network-based Software
Architectures", PhD thesis, UC Irvine,
2000. Available from
http://roy.gbiv.com/pubs/dissertation/top.h
tm.

[5] The Open Geospatial Consortium Web
Site: http://www.opengeospatial.org/.

[6] Paul Graham “Web 2.0” Available from
http://www.paulgraham.com/web20.html.

[7] The ProgrammableWeb: Mashups and the
Web as Platform,
http://www.programmableweb.com/

[8] Jesse James Garrett, “Ajax: A New
Approach to Web Applications.” Available
from
http://www.adaptivepath.com/publications/
essays/archives/000385.php. See also
http://en.wikipedia.org/wiki/AJAX.

[9] City of Indianapolis and Marion County
Geographical Information Services:
http://www.indygov.org/eGov/County/ISA
/Services/GIS/home.htm

[10] Galip Aydin, Ahmet Sayar,
Harshawardhan Gadgil, Mehmet S. Aktas,
Geoffrey C. Fox, Sunghoon Ko, Hasan
Bulut,and Marlon E. Pierce Building and
Applying Geographical Information
System Grids. Submitted to special issue
on Geographical information Systems and
Grids Concurrency and Computation:
Practice and Experience.

[11] Google Mapki: www.mapki.com.

[12] Simple Analysis of Google Map and
Satellite Tiles:
http://www.dunck.us/collab/Simple_20An
alysis_20of_20Google_20Map_20and_20
Satellite_20Tiles.

[13] Indiana Geological Survey:
http://igs.indiana.edu/.

[14] Java Advanced Imaging API
Documentation:
http://java.sun.com/products/java-
media/jai/docs/index.html.

[15] “Add Your Own Custom Map”, Google
Mapi:
http://mapki.com/wiki/Add_Your_Own_C
ustom_Map.

[16] Adobe Flex2:
http://www.adobe.com/products/flex/produ
ctinfo/overview/

[17] 2005 Indiana Orthophotography Project—
gis.iu.edu:
http://www.indiana.edu/~gisdata/05orthos.
html.

[18] Stephen C. Simms, Matt Davy, Bret
Hammond, Matt Link, Craig Stewart,
Randall Bramley, Beth Plale, Dennis
Gannon, Mu-Hyun Baik, Scott Teige, John
Huffman, Rick McMullen, Doug Balog,
Greg Pike: Bandwidth challenge - All in a
day's work: advancing data-intensive
research with the data capacitor. SC 2006:
244.

[19] Andrea Donnellan, John Rundle, Geoffrey
Fox, Dennis McLeod, Lisa Grant, Terry
Tullis, Marlon Pierce, Jay Parker, Greg
Lyzenga, Robert Granat , Margaret
Glasscoe QuakeSim and the Solid Earth
Research Virtual Observatory. To be
published in Special Issue of Pure and
Applied Geophysics (PAGEOPH) for
Beijing July 2004 ACES Meeting, Volume
163, Numbers 11-12 / December, 2006
DOI See also the QuakeSim project Web
Site: www.quakesim.org.

[20] Ian T. Foster: Globus Toolkit Version 4:
Software for Service-Oriented Systems. J.
Comput. Sci. Technol. 21(4): 513-520
(2006)

