
 1

A PERMIS-based Authorization Solution between Portlets and
Back-end Web Services

Hao Yin1, Sofia Brenes Barahona4, , Donald F. McMullen2, Marlon Pierce2, Kianosh Huffman3,

Geoffrey Fox2,4,
1School of Computer Science and School of Electronic Information, Sichuan University, No. 24, South Section 1,

Yihuan Road, Chengdu, 610065, China
2The Pervasive Technology Labs at Indiana University, 501 N. Morton St. Bloomington, Indiana 47404 USA

3School of Informatics, Indiana University, 901 E. 10th St., Bloomington, Indiana 47408
4Department of Computer Science, Indiana University, 215 Lindley Hall, 150 S. Woodlawn, Bloomington, Indiana

47405
{hayin, mcmullen, marpierc, kihuffma, gcf, sbrenesb}@indiana.edu

Abstract:
 A portal is a Web-based application that acts
as an entry point to distributed resources.
Individual portlets in a portal can be used to
integrate information from a variety of back-end
Web services. However, when Web services are
deployed, they are available to unintended clients
not related to the portal so a general solution for
authorizing access to them is needed that is
integrated with the portal’s own authentication
and authorization mechanisms. This paper
investigates the feasibility of an implementation of
a general purpose solution for authorization
between portlets and their back end Web services
based on Privilege and Role Management
Infrastructure Standards (PERMIS) which uses
Web services security standards such as WS-
Security and SAML. This solution is also
appropriate for authorization across
organizational boundaries supporting the
inclusion of service resources to a portal which
are contributed by many different organizations. A
motivating example of instrument sharing based
on the CIMA remote instrument access protocol is
presented.
Key Word: Web Portal, Web services, instrument
middleware, WS-Security, Authorization, Role Based
Access Control

1. Introduction
 Web-based science portals [1, 2] have been
increasingly used as gateways connecting users to

a range of services. For example, the National
Science Foundation’s TeraGrid project funds
numerous science gateways to provide higher
level user interface and services to TeraGrid
resources. Many other national Grid systems have
adopted similar approaches. This work has been
surveyed by the Science Gateways workshop held
at Global Grid Forum 14 [3]. Portals are designed
to aggregate and integrate content from different
sources, possibly provided by Web services [4].
Figure 1 shows a common architecture of Web-
based portals and their services. The Common
Instrument Middleware Architecture (CIMA)
portal system [5] discussed in more detail below
provides a realistic example of this system.

One of the distinguishing features of science
portals is that they must establish and manage a
user’s identity. In addition to this authentication
process, they also typically provide a system for
making authorization decisions about what a
particular user can do. These approaches taken by
portal system designers to authorization only have
scope within a particular instance of a portal and
do not extend to external services that are
aggregated and presented in the portal, creating a
serious gap in the overall design methodology.
The key problem, then, in distributed systems
such as shown in Figure 1 is that we must provide
a “global” way of establishing and conveying
identity and privilege to all components of the
system.

 In practice, end users can authenticate
themselves to a portal through a login module.
Modern Java portal systems, such as GridSphere[6]

 2

Figure 1. Architecture of Web-based Portal interacting with remote Web Services. The arrows represent network
communication links (HTTP or SOAP over HTTP in the case of services). Each box represents a separate
component running of the system, typically running on a separate service

are built to be extended by standard
component, called portlets [7]. The portal can
decide which portlets the user can access, and
only indirectly which Web services can be used.
Exposing Web services creates the potential for
misuse: a user could invoke the Web service
directly instead of logging in to the portal. It is
possible to provide individual authentication
mechanisms per Web service but this creates
additional complexity. Specifically, then, there is
an authorization gap between portlets and the
services behind them, and a need exists for a
reusable, scaleable role-based access mechanism
by which identities and authorization schemes
used by portals and their backing services can be
meshed other than re-authenticating the user at
each service-to-service interface.

This paper will focus on this problem and give
a Privilege and Role Management Infrastructure
Standards (PERMIS)-based [8] authorization
solution, exemplified by a remote instrument
access portal based on the Common Instrument
Middleware Architecture (CIMA) we are
developing. This scenario is described in more
detail in Section 5. This portal provides access
to shared instrument resources across a federation
of laboratories with similar research interests. We
begin by surveying general approaches to
authorization mechanisms and discuss which ones
are appropriate to our portal system.

2. Overview of Authorization
Mechanisms

Four main approaches to authorization are
available, each with advantages and drawbacks in
a given application: access control lists, role-based
access control, attribute-based access control, and
capabilities-based access control. As we discuss,
our motivating scenario is best implemented using

authorization roles, which we want to contrast
with other approaches.

An access control list (ACL) is a data structure,
usually a table, containing an entry for each user
with access privileges to a particular system
object, such as a file or a directory. The most
common privileges include the ability to read,
write or execute a file. ACL is widely used on
Microsoft Windows NT/2000 and UNIX based
operation systems. A fundamental problem with
ACLs is the confused deputy problem in which a
process started under one set of permissions
performs a task for a process with a lesser set of
privileges, and does so under the least restrictive
ACL [9].

Role-based access control (RBAC) [10] is an
alternative approach to ACLs. Instead of assigning
permissions to users directly, roles are created for
various responsibilities and access permissions are
assigned to specific roles. The assignment of
permissions is fine-grained and meaningful, and
users obtain the permissions to perform particular
operations through their assigned role. A policy
file contains the definition of roles related to
protected resources and permissions related to a
specific role. This mechanism has better scaling
for large numbers of users and simplifies the
authorization management.

Attribute-based Access Control. Most current
authorization systems are based on identity, which
means that the subject should be known to the
system before their request for protected resources
can be authorized. Attribute-based access control
(ABAC) [11] is an approach to solve these
scalability problems and establish mutual trust
negotiation in the large distributed systems.
ABAC enables authorization decisions to be made
without subject identity by basing on attribute
credentials, which contains the characteristics of
the subject, such as name, job title, email, etc.

 3

Capability-based access control. Another
approach defines capabilities. L. Fang [12]
defines a capability as “an identifier that carries a
set of specific access permission policies on the
referred objects.” Capabilities combine user role,
target service, and action in a single token. In a
capability-based system the user presents a signed
list of capabilities to a service and the service
determines whether the user is authorized to
perform the requested function based on this list.
This is similar to attribute-based access except
capabilities are directly related to the service
being called, as opposed to attributes, the
semantics of which can be shared by several
services.

In addition to the methods discussed above
there are several software systems available that
are suitable for implementing and managing
cross-organizational access schemes: Virtual
Organization Membership Service (VOMS) [13],
Community Authorization Service (CAS) [14],
Shibboleth [15] and Privilege and Role
Management Infrastructure Standards (PERMIS).

 Our motivating application is a collection of
portals used to access instruments and data across
a global network of loosely federated, peer
laboratories. Role-based authorization best models
this environment. Individual users are assigned
specific roles to accomplish different operations
using shared resources accessible across the lab
federation as Web services and accessed through
JSR 168 portlets. To simplify authorization
decisions users are assigned roles with respect to
each shared resource. PERMIS was chosen as the
decision engine primarily because it provides a
concrete implementation of roles and policies for
role-based authorization and can be easily
integrated with back-end Web services through
Apache Axis API handlers. Also PERMIS can use
a Shibboleth identity provider.

3. An Authorization Solution for
Portlets
 As discussed previously, we need to combine
authentication with authorization. Our proposed
solution involves not only the usage of XML
Signature [16], XML Encryption [17] to guarantee
SOAP [18] message level security, but also the
usage of WS-Security [19] and SAML [20] to
provide security information so that Web services

can know who the user is, and then make an
authorization decision according to a role-based
policy with the information of user, operation and
resource extracted from SOAP message.

 WS-Security is a formal OASIS standard,
which applies existing XML security standards,
such as XML-Signature, XML-Encryption and
SAML, to SOAP message. The purpose of WS-
Security is to provide a standard format in SOAP
header to provide interoperable and secure SOAP
message. Security tokens, XML encryption and
XML signature are three major elements in SOAP
header. Username token, binary token (e.g., X.509
certificate, Kerberos v5 ticket) and XML token
are composed of security tokens.

 Security Assertion Markup Language (SAML)
is also an approved OASIS standard that defines
XML structures for representing security-related
information pertaining to user authentication and
authorization. There are three kinds of SAML
assertions: Authentication Assertion,
Authorization Assertion and Attribute Assertion.
SAML assertions can be used with WS-Security
as an XML token.

 Web services handlers can be adopted on the
portal side to intercept SOAP message, add a
SAML assertion in SOAP header and sign it on
behalf of the issuer. On the Web services side,
handlers can be used to verify the signature and
extract the security information from the received
SOAP message. By using handlers, only minimal
changes need to be made to the portal side’s code,
and no changes need to be made to the Web
services code. This solution is a general purpose
approach and can be easily integrated with various
applications. Figure 2 illustrates our solution.

 Step 1: A user authenticates to the portal, and
then the portal invokes Web services to acquire
requested instrument data. Before the SOAP
request is sent, the request handler on the portal
side embeds security tokens in SOAP header with
digital signature of the portal. The request handler
creates a SAML authentication statement
containing the name identifier of the user who
logged in the portal, and signs it on behalf of the
portal. If necessary, the SOAP message can be
also encrypted.

 Step 2: The request handler on Web services
side validates the signature of the received SOAP
message. After that it acts as an Authorization

 4

Figure 2. Our authorization solution model uses Web service handlers to transmit identity information between
portlets and remote Web services. This identity is then mapped to a role and used to make an access decision on
the service. The numbered steps are explained in the text.

Enforcement Function (AEF) [29] and constructs
the essential factors for making an authorization
decision. These factors are subject, action and
target. Subject, also called user identity can be
obtained from the SAML assertion in the SOAP
header. Action can be deduced by the operation
name in the SOAP body element. Target should
be the qualified name of Web services, which is
self-evident to Web services side.

 Step 3: Authorization Decision Function (ADF)
[29] gets the factors from AEF and verifies the
access control according to the assigned role of
the user and a role-based policy, which can be
stored in files or in a LDAP [21] server.

 Step 4: ADF returns the decision to AEF. If the
user is granted the privilege, then AEF forwards
the request to a Web service instance, or breaks
off the processing.

 Step 5: Web services return the result to portal.

 There could be a pair of response handlers on
both Web services side and portal side to encrypt
or sign the SOAP message when Web services
return the result. In addition, the functions of Web
services handler can be divided into several
modules, which consist of a handler chain. Take
the request handler on portal side for example, one
handler for adding SAML assertion; one for
signing the SOAP message; and one for
encrypting the SOAP message as needed.

4. Implementation
4.1 Architecture of Implementation

 Our implementation of the authorization
solution is designed in terms of Web services
security standards. We adopt GridSphere as a JSR
168 compliant portlet container, Apache Axis [22]
as Web services engine and PERMIS as ADF. If
necessary, OpenLDAP [23] can be used to store
the role-based policy. OpenSAML [24] is used to
create a SAML assertion and WSS4J [25] is used
to add security tokens such as SAML assertion in
SOAP header and sign or encrypt SOAP message.
Figure 3 shows the overall architecture.

4.2 Handlers
 We present in this section some implementation
details so that the reader can reproduce our
approach. In order to complete the steps
mentioned above, a request handler or handler
chain can be deployed on both portal and Web
services side with minimal changes to the source
code. On the portal side it can be implemented
using the Axis 1.x API. In the code below a WS-
Security token handler is added to the SOAP
message processing chain, which embeds a SAML
authentication assertion in the SOAP header
containing the user identity.
 SimpleChain sc = new SimpleChain();
 sc.addHandler(new WssTokenHandler());
 sc.addHandler(new WssSignHandler());

 // adds a handler to the end of the chain
 call.setClientHandlers(sc, null);
 The first argument of the method
setClientHanders is for request handler, the
second is for response handler. The request

 5

Figure 3. Our implementation of the general architecture shown in Figure 2 uses the software packages shown.

Figure 4. Request Handler Chain on Portal Side

Figure 5. The Request Handler in the Axis service container processes the SAML assertions in the SOAP header

to extract the portal user’s identity. This identity will then be mapped to a role.

handler chain on the portal side is showed in
Figure 4:

 On the Web services side, handlers are added in
the configuration file, server-config.wsdd:
<service name="WssService" provider="java:RPC">

 <requestFlow>
 <handler name="wssHandler"

 type="java:examples.WssHandler"/>
 </requestFlow>

 6

 …
</service>

 The Axis engine will load the handler
determined by the deployment configuration.
Figure 5 shows the request handler on Web
services side.

 WssHandler first verifies the signature of the
received SOAP message, and then extracts the
user identity from SAML authentication assertion,
after that maps it to LDAP Distinguished Name
(DN), which is the value of subject. Action can be
obtained from the element in the SOAP body.
Target is set up by the name of the invoked Web
services. These factors are essential for SamlADF
to make a decision on the basis of entries stored in
the LDAP. SamlADF acts as an authorization
engine by using PERMIS API. A fragment of the
source codes is shown below to initialize a generic
Role-Based Access Control interface:

DirContext dirCtx[] = new DirContext[1];
Hashtable env = new Hashtable();
 //LDAP connection and configuration information

 placed in the Hashtable.
dirCtx[0] = new InitialDirContext(env);
AttributeRepository repository =

 (AttributeRepository) new
LDAPRepository(dirCtx);

 //Construct the PBAAPI object using the
 AttributeRepository. Specific constructor
 arguments omitted.

PBAAPI pbaApi = new PermisRBAC(…);
//Use the PBAAPI object to make an authorization
 decision.

boolean result = pbaApi.decision(subject, action,
 target, null);
If result is true, the current user is granted the

privilege to invoke the Web services, or terminate
the processing and return an AxisFault exception.

In our implementation, AEF and ADF are built
as a single module to avoid an additional Web
services invocation, which consists of a SAML
request with authorization query and a SAML
response with authorization statement

4.3 Setup of the PERMIS System

 The previous discussion illustrates how a
configured PERMIS system can be used to make
authorization decisions. Prior to this, PERMIS
itself must be properly configured with roles and
rules (or policies) by an administrator. This
administrator creates an XML-based policy using
Policy Editor provided by the PERMIS software
package. The policy includes the following:

• object ID, which acts as a handle, or
name, for the policy instance;

• Source of Authority (SOA), a signing
certificate for all role and service
certificates;

• roles, which are specified with X.509
certificates;

• protected targets, which are the X.509
certificate identifiers for Web services;

• actions, which are methods of the Web
service that can be invoked; and

• privilege allocation, i.e. which roles can
do specific actions on a specific target.

 We take as an example the CIMA portal, which
provides access to data collection services running
at several facilities, including the Indiana
University Molecular Structures Center (IUMSC).
User roles consist of IUMSC_Researcher and
IUMSC_Member, the target service base name is
“OU=IUMSC, O=CIMA”, and service actions (i.e.
Web service operations) include RequestSession
and Register. The administrator creates X.509
Attribute Certificates (ACs) for users using either
the Attribute Certificate Manager or the Privilege
Allocator tools provided by PERMIS. For each
general user, the AC contains the user identity and
assigned roles with the signature of the SOA. For
the SOA, the AC contains the policy mentioned
above with self-sign. The SOA is required to hold
a PKCS#12 file to store a pair of PKI keys, which
is used to sign the ACs. The administrator can
optionally use an LDAP server to store the ACs..
In order to load ACs into LDAP, the following
schema is defined to support the Attribute
Certificate attribute for entries.

attributetype (2.5.4.58
 NAME 'attributeCertificateAttribute'

DESC 'A binary attribute certificate'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5)

objectclass (2.5.6.24 NAME 'pmiUser'
SUP top AUXILIARY

 7

DESC 'a pmi entity that can contain X509 ACs'
 MAY attributeCertificateAttribute)

4.4 User Mapping between Portal and
PERMIS
 Generally, a user is required to provide
username and password to authenticate to the
portal. This user identity can be obtained through
the portlet API. Meanwhile, PERMIS policy also
defines users, roles and privileges. The user
identity in PERMIS is in the form of an X.509
Distinguished Name (DN). Therefore portal user
names need to be in correspondence with those in
PERMIS. Because the user identity in portal is
always a simple name or an email address, a
mechanism is required to map it from portal to
PERMIS. An easy and feasible way is to extract
the simple name is to require it have the DN
information in the simpler email-style through
portal and construct the DN from this. For
example, a user identity in portal is
“hayin@iumsc.cima”, the user identity in
PERMIS can be “CN=hayin, OU=IUMSC,
O=CIMA”. This matching is currently done
manually.

4.5 Federated Authorization for Multiple
Organizations.

The CIMA portal and Web service software are
decoupled. A lab site may run its own data
services but use the main CIMA portal, or it can
use its own copy of the portal software. As the
CIMA portal system for federating
crystallography labs has been adopted by several
sites in the United States and abroad, a single role
such as "administrator" is not sufficient. For
example, users at two sites may each have the role
“administrator”, but the contents that should be
displayed to each one are site- or instrument-
specific and therefore different for each user. The
"administrator" role provided by the portal is not
enough to distinguish between these two types of
administrators, so an authorization policy
hierarchy as described below is used for this
purpose.

The top level in the DN used by PERMIS is
"O=CIMA". The second level can be used for
different labs. For example, the DN for IUMSC
could be "OU=IUMSC, O=CIMA" and the DN
for the lab at Purdue could be “OU=Purdue,
O=CIMA”. In our implementation, the DN for

each lab is the target name used in PERMIS. A
user that belongs to these labs has a specific role
related to each lab. For an Indiana University
professor, the role may be “IUMSC_Researcher”.
If the same user on the same portal can also access
services at Purdue, the role may be
“Purdue_Member” for this service. When the user
accesses the CIMA portal, the portal system
knows the correct Web Service to invoke and to
construct the necessary elements for the PERMIS
authorization engine. With this solution, PERMIS
can support authorization management across
organizations.

5. A Use Case for the CIMA Portal
 The CIMA project is a Web services-based
approach to making instruments and sensor
networks accessible in a standards-based, uniform
way and for interacting remotely with instruments
and the data they produce [26]. A high level
overview of the CIMA architecture is shown in
Figure 6.

 The CIMA Service runs as a Web service, and
its responsibilities include communicating with all
available instruments through their corresponding
plugin implementation. As each plugin is specific
to an instrument or instrument variable, it contains
code for interacting with the instrument and
knows how to process each request and construct
an appropriate reply, placing its results on a
channel that identifies the result as its own.

 On the portal side, the CIMA Sink is responsible
for receiving real time data from instruments and
displaying it as tables and graphs. In our
application, the CIMA Service is deployed using
the Apache Axis for Java API. Our PERMIS-
based authorization solution is embedded in both
CIMA Sink and CIMA Service by using Web
services handlers as provided by the Axis API.

 CIMA must include security in order to restrict
access to an instrument, or to restrict the types of
operations that particular users can perform. As
SOAP messages are being used for
communication, the PERMIS framework can be
used as an authorization solution that will only
allow requests verified by PERMIS to reach the
CIMA Service.

 The scenario implemented for this paper
considers the case where a Researcher is leading

 8

an experiment with the aid of a group of Students.

Figure 6. A high level overview of CIMA system components includes real-time instrument data sources that are
proxied through Web services using instrument-specific plugins. Sinks receive data from the service. Specific clients
can be built using these sinks to display or process the data.

The instrument in use requires a valid session key
to be provided before data can be retrieved from
it. This session key can only be generated by the
Researcher, which in turn distributes it to the
Students. The Students then use the session key to
register with the instrument and start receiving
data.

 There are two possible actions, RequestSession
and Register. The Student user is only authorized
to perform the latter. If a Student issues a
RequestSession request, the request will be denied
by PERMIS before it reaches the CIMA Service.

 In order to test the CIMA and PERMIS
implementation, both the CIMA Service and the
CIMA Sink were modified to use PERMIS as their
authorization method. For the CIMA portal at
Indiana University, a Researcher is assigned with
the role IUMSC_Researcher, and a Student with
the role IUMSC_Member. Integration was
successful in that whenever the Researcher
performed any of the operations, PERMIS would
verify and allow the request to continue. In
contrast, when the Student attempted to perform a
RequestSession operation, PERMIS would deny
the request, returning an appropriate message to
the Student, indicating that an unauthorized
operation was attempted. None of the denied
operations ever reached the CIMA Service, as
PERMIS intercepted and denied them.

6. Conclusions and Future Work
 Access rights of portal users to interact with a
particular portlet are qualitatively different from
rights that a portlet may need in order to access a
service on behalf of users. Hiding back-end
services or securing them with an authentication
layer leads to scaling difficulties, especially when

services are “owned” by different organizations.
We have shown that PERMIS provides a flexible
and lightweight role-based way to manage
permissions when portlets access Web services for
content, both within and across organizational
boundaries. Roles and authorization policies based
on them are defined by the service owner and
associated with user identities shared with the
portal owner. The sharing of roles across services
and the distribution of management between the
service provider (defining roles and policies,
associating roles with users) and the portlet
provider (defining users and providing user
identities when portlets access content provider
services) gives a scalable solution with local
control.

 The PERMIS based authorization solution
between portlets and Web services described here
is built on industry standards. In conjunction with
PERMIS, this solution provides both secure
SOAP message transactions and an authorization
mechanism to enhance the security of Web
services. The limitation of our proof-of-concept
implementation is that the portal user identities
must be synchronized with PERMIS through
external mechanisms and user name conventions.
The username must match our X.509 DN structure
(see 4.4), and the PERMIS administrator must
assign that identity to one or more roles. This
implementation shortcoming can be solved in the
following general manner: the portal owner could
create appropriate AC if the service provider gives
the portal provider the Source of Authority
certificates. Containers like GridSphere can have
their user management system extended to support
these additional actions (c.f. the Grid Account
Management Architecture (GAMA) [27]). We
also need to investigate the XML Key
Management System [28] for managing the PKI

 9

signing keys used in the system.

7. Acknowledgements
 CIMA is supported by National Science
Foundation cooperative agreements and grants
SCI 0330568 and MRI CDA-0116050,
respectively. OGCE development is supported by
the National Science Foundation’s Middleware
Initiative, SCI 0330613.

 We thank Professor Jiliu Zhou, School of
Computer Science, Sichuan University, China for
supporting H.Y.; Professor David Chadwick,
Computer Science Department, University of
Kent and PERMIS team for their invaluable help.

Reference:
[1] M. A. Smith, “Portals: toward an application

framework for interoperability”, Commun. ACM
47, 10 (Oct. 2004), 93-97. available
http://doi.acm.org/10.1145/1022594.1022600

[2] Hey, A. and Fox, G., eds. Concurrency and
Computation: Practice and Experience, Vol. 14,
No. 13-15 (2002). Special Issue on Grid
Computing Environments.

[3] Science Gateways Workshop, Global Grid Forum
14, July 27-30 2005, Chicago, Illinois.
Workshop URL:
http://www.gridforum.org/GGF14/ggf_events_ne
xt_schedule_Gateways.htm

[4] W3C Working Group, "Web Services
Architecture", W3C, 2004, Available
http://www.w3.org/TR/ws-arch

[5] R. Bramley, K. Chiu, T. Devadithya, N. Gupta, C.
Hart, J.C. Huffman, K.L. Huffman, Y. Ma, D.F
McMullen. (2006) “Instrument Monitoring, Data
Sharing and Archiving Using Common
Instrument Middleware Architecture (CIMA)”,
Journal of Chemical Information and Modeling,
46(3) p.1017-25, May-June 2006.

[6] J. Novotny, M. Russell, O. Wehrens, “GridSphere:
 a portal framework for building collaborations”,
 Concurrency - Practice and Experience, 2004,
 16(5), pp. 503-513.
[7] A. Abdelnur, S. Hepper, "Java Portlet Specification

version 1.0", 2003, Available
http://www.jcp.org/aboutJava/communityprocess/
final/jsr168

[8] D.W. Chadwick, O. Otenko, (2002) “The PERMIS
X.509 Role Based Privilege Management
Infrastructure” In Proc 7th ACM Symposium On
Access Control Models And Technologies
(SACMAT 2002), Monterey, USA, pages 135-
140, June 2002.

[9] N. Hardy, (1988) “The confused deputy”, Operating
Systems Review, 22(4), pp. 36-38, Oct. 1988.

[10] D.F. Ferraiolo, J. A. Cugini, D. R. Kuhn, "Role-
Based Access Control (RBAC): Features and
Motivations," 11th Annual Computer Security
Applications Proceedings, 1995.

[11] W. Winsborough, J. Jacobs, “Automated trust
negotiation in attribute-based access control,”
DARPA Information

[12] L. Fang, D. Gannon, F. Siebenlist, “XPOLA – An
Extensible Capability-based Authorization
Infrastructure for Grids.” 4th Annual PKI R&D
Workshop: Multiple Paths to Trust Proceedings,
August 2005. NIST Interagency Report 7224.
Available
http://csrc.nist.gov/publications/nistir/ir7224/NIS
TIR-7224.zip.

[13] R. Alfieri, R. Cecchini, V. Ciaschini, L.
dell'Agnello, A. Frohner, A. Gianoli, K.
Lörentey, F. Spataro, (2003) “VOMS, an
Authorization System for Virtual Organizations”
European Across Grids Conference 2003: 33-40

[14] L. Pearlman, C. Kesselman, V. Welch, I. Foster, S.
Tuecke, (2003) “The Community Authorization
Service: Status and Future” In Proceedings of the
Conference for Computing in High Energy and
Nuclear Physics, La Jolla, California, USA, Mar.
2003.

[15] Shibboleth Project, Available at
http://shibboleth.internet2.edu/

[16] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E.
Simon, “XML-Signature Syntax and Processing”,
W3C, Available http://www.w3.org/TR/xmldsig-
core/

[17] T. Imamura, B. Dillaway, E. Simon, “XML
Encryption Syntax and Processing”, W3C,
Available

 http://www.w3.org/TR/xmlenc-core/
[18] Simple Object Access Protocol.

http://www.w3.org/TR/soap
[19] OASIS Web Services Security TC, "WS-

Security", OASIS, Available http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=w
ss

[20] OASIS Security Services TC, "Security Assertion
Markup Language (SAML)", OASIS, Available
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=s
ecurity

[21] T. Howes, M.C. Smith, G.S. Good, T.A. Howes,
“Understanding and Deploying Ldap Directory
Services (MacMillan Network Architecture and
Development Series)”, Macmillan Technical Pub,
1998

[22] Apache Axis Project, http://ws.apache.org/axis
[23] OpenLDAP project, http://www.openldap.org
[24] OpenSAML project, http://www.opensaml.org

 10

[25] Apache WSS4J project,
http://ws.apache.org/wss4j/

[26] D. F. McMullen, T. Devadithya, K. Chiu.
“Integrating Instruments and Sensors into the
Grid with CIMA Web Services” In Proceedings
of the Third APAC Conference on Advanced
Computing, Grid Applications and e-Research.
2005.

[27] K. Bhatia, S. Chandra, K. Mueller (2005)
“GAMA: Grid Account Management
Architecture” In Proceedings of the First
International Conference on e-Science and Grid
Technologies (e-Science 2005), 5-8 December
2005, Melbourne, Australia. IEEE Computer
Society 2005, ISBN 0-7695-2448-6 pp. 413-420.

[28] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway,
B. LaMacchia, J. Epstein, J. Lapp, “XML Key
Management Specification (XKMS), W3C, 2001,
Available: http://www.w3.org/TR/xkms/
Survivability Conference and Exposition

 (DISCEX III), April, 2003.
[29] M. Lorch et al, "Conceptual Grid Authorization

Framework and Classification,” Global Grid
Forum Document GFD-I.038. Available from
http://www.ggf.org/documents/GFD.38.pdf.

