
Grids of Grids of Simple Services

Geoffrey Fox
Community Grids Laboratory

Indiana University
gcf@indiana.edu

Grids
Here we propose a way of describing systems built from Service oriented Grids in a way
that allows one to build new Grids by composing and adapting existing collections
(libraries) of Grids. We also suggest some “best practices” in deciding how to architect
services and package systems.

We have of course discussed Grids extensively here in previous articles and we adopt the
view that they represent the system formed by the distributed collections of electronic
capabilities that are managed and coordinated to support some sort of enterprise (virtual
organization). Sometimes one reserves Grid to describe just the technology used to build
these electronic communities or organizations. One thinks of Grid technology as the
CyberInfrastructure (NSF) or e-Infrastructure (European Union) that supports e-Science,
e-Business or in fact e-moreorlessanyenterprise. There is no firm consensus as to the best
Grid approach but we will adopt the popular architecture based on Web services. There is
a vigorous debate in the community as to the “right” way to do this and if conventional
Web services need enhancement to cope with the large scale secure managed distributed
services needed in a Grid. In particular there is lot of debate on the appropriate ways to
represent state and how much to standardize in this area. WSRF (Web Service Resource
Framework http://www.globus.org/wsrf/) and WS-GAF (Web Service Grid application
Framework http://www.neresc.ac.uk/ws-gaf/) are two important activities whose
development and interaction will have important implications for the detailed structure of
services. However here we discuss aspects independent of these issues – namely “what is
the right size” for a service and how should one package services and Grids together.
Often one considers Grids as providing seamless access to a set of resources; here we
adopt this view with however an architecture with many “small Grids”. This reflects the
many different types of overlapping communities and resource collections that naturally
form individual Grids. Each individual Grid can have a seamless elegant environment –
in fact this could be a criterion for defining Grids – but a composite Grid would
amalgamate multiple such subGrids and exhibit a resultant heterogeneous environment.
In other words, we do not expect there to be a few Grids produced but very many that can
get composed, divided and overlapped together to support dynamic communities and
requirements.

Services
The service oriented architecture SOA used by Grids is subtly different from previous
distributed systems built with COM CORBA and Java with new ideas to enhance
especially interoperability and scalability. Key features of (Web) services in today’s
Grids include:

1) Architectures that choose wherever possible message-based and not method or RPC
based linkage of capabilities. This produces lightweight loosely-coupled services that
can be distributed and replicated to achieve needed performance and functionality.

2) Interfaces defined with XML based SOAP and WSDL technologies that support a
wide set of implementations trading off performance, ubiquity and functionality.

The first feature of loose message based coupling is certainly not very precise. The
traditional distributed object model produces components that exchange messages
typically with an RPC (Remote Procedure Call) or equivalently RMI (Remote Method
Invocation in Java). These are coupled messages corresponding to the distributed version
of a traditional method call and its return. Loose coupling for services corresponds to a
messaging strategy where individual message are not directly coupled in pairs but
response messages are generated if needed asynchronously from the original
communication. The second requirement of services – XML based specifications of the
service interfaces and their associated messages – is important for interoperability but
less distinctive in its architectural implications; it roughly corresponds to a different
specification language from the IDL (CORBA) or Java used in RMI.

Consider any (software) problem you like and imagine how it would look in a traditional
approach of a decade or so ago. One would get a giant glob of software in some language
like C++ or perhaps even Fortran. This would be divided into methods or subroutines and
we would be browbeaten to build it in modular fashions using libraries and well defined
interfaces. Us people from the past would have given up use of the GOTO in Fortran and
adopted better practice for specifying control structures. As technologies developed we
added new languages like Java and better software engineering processes where the latter
were adopted more broadly in industry than academia. As implied above, distributed
object technology supported the implementation of this paradigm across multiple
computers with the method or procedure calls implemented as paired messages. However
most software systems still consisted of large globs with each glob having multiple
functionalities. One can find lots of very useful and important examples of this for Java at
the Apache site (http://www.apache.org) . One can convert such code into services by
specifying each of interfaces in XML and providing a Web Service wrapper. This activity
is important for jump starting our collection of services but I would view it as an interim
step. For example looking at the many different Apache projects, one will find many
related but different implementations of common subservices like security and user
profile. Building a system combining several projects would often require an integrated
approach to common services like security. This would be relatively easy if the
implementation of each subservice like security was a separate Grid service with well
defined message-based interfaces. However with traditional approach, the typical
subservice can have an external message-based interface but unfortunately in addition
many internal method linkages to other parts of the software glob. Thus subservices like
security cannot be extracted from the glob and it is very hard to compose such traditional
software systems even if they run excellently with service interfaces.

The above rambling discussion allows us to identify a strategy for defining services. Start
by examining the different capabilities of one’s systems. Services are distributed
components that have distinct functionality – especially functionality that is usefully

shared among different uses. Services must be able to achieve acceptable performance
when implemented with message based interfaces and distributed platforms. In the

January February 2004 issue, we discussed the inevitable difference in latency between
message and method based interactions; messages could experience 100’s of milliseconds
in network latency while this is reduced to a millisecond or so for communication
between nearby services. One should build services that are as small as possible given the
performance implications from the decomposition. Services are then the unit to which
traditional programming models and languages apply. We will not discuss this aspect but
rather take services as the atomic unit whose management and packaging into Grids need
to be discussed.

Packaging Services and Resources into Grids
In this article Grids represented a packaging and coupling approach that generalizes and
distributes that familiar from the traditional software hierarchy:
lines of code methods (subroutines) objects (programs) packages (libraries).
As shown in fig. 1, Grids can be considered in this fashion with the basic unit of
distribution being a service or a resource. However a given Grid is not the last word but
rather can itself be the building block in larger Grids. Thus we propose to build systems
as Grids of Grids with the smallest Grids being just single services or resources. Note that
we view a cluster as a special resource Grid shown in fig. 1. We have chosen to
separately specify Grids that correspond to resources (made up of data repositories,
sensors and CPUs) as well as those corresponding to functionalities (software services).
However this is a little confusing as every resource is represented in the Grid by a
service. Thus we could simplify the above picture and just talk about services. Note some
unification of well known concepts; an individual Grid service could correspond to a
single database (using the OGSA-DAI technology described in the July/August 2003
column). A federated database then corresponds to a Database Grid. Again individual
CPU could have a Grid Service interface and then a cluster Grid corresponds to a cluster
of CPU’s.

Overlay
and Compose
Grids of Grids

Methods Services Functional Grids

CPUs Clusters Compute
Resource Grids

MPPs

Databases Federated
Databases

Sensor Sensor Nets

Data
Resource Grids

Fig. 1: Composing Functionality and Resources in the Grid of Grids

Another example can be taken from education and arises when you try to take science
Grids and use them in schools and universities. As shown in figure 2, education involves
many separate communities and capabilities that can be expected to form independent
electronic (virtual) organizations supported by their own Grid. An Education Grid is
formed as a Grid of Grids by linking and adapting services in the component Grids.

Figures 2 and 3 illustrate the key idea of transformations or filters used to adapt services

Education Grid

Inservice Teachers
Preservice Teachers
School of Education
Teacher Educator

Grids

Informal
Education
(Museum)

Grid

Student/Parent …
Community Grid

Science Grids
Bioinformatics

Earth Science …….

Typical Science Grid
Service such as Research
Database or simulation

Transformed by Grid Filter
to form suitable for education

Learning Management
or LMS Grid

Publisher
Grid

Campus or
Enterprise

Administrative
Grid

Fig. 2: Science Education as a Grid of Grids

Digital
Library

Grid

Database Database

Analysis and
Visualization
Portal

Repositories
Federated Databases

Data
Filter

Services

Field Trip DataStreaming
Data

Sensors

?
Discovery
Services

SERVOGrid

Research
Simulations

Research Education

Customization
Services

From
Research

to Education

Education
Grid
Computer
FarmFig. 3: Geoscience Research and Education Grids

GIS

in old component Grid to the Education. This could take research simulation or database
services and simplify them for use in education. The resultant Education Grid will consist
of three types of services. Firstly those that are unique to education such as educational
meta-content (lesson plans and objectives), online knowledge bases, grading and
homework services, as well as federal and state standards; these could be delivered by the
learning management and digital library Grids. Figure 3 shows the details of a Science
Grid for Earthquake science (http://www.servogrid.org) linked in this fashion with other
Grids to form a Geoscience Education Grid. We show field data being gathered by
students as part of the category of education specific services. Secondly there are services
like collaboration that are essentially the same as those developed for other Grids; thirdly
there are the transformed Grid resources that were developed for research but have been
transformed to directly support teaching & learning.

Thus we propose that one first build “lean and mean services” as discussed in the
previous section. Then we package these into “atomic (basic) Grids” covering core
functionalities and services; Geoscience, digital library and learning management systems
are atomic Grids discussed above. Later we will describe other such basic Grids including
GIS (Geographical Information Systems), Flood or electrical power simulation. Fig. 3
shows the Geoscience Grid using a GIS Grid as a component. After defining the basic
Grids, most operational Grids will be built by linking component Grids together. In many

cases the component Grids need customization; this is achieved by adding services to
filter or transform the services of the component Grids. This gives our final packaging as
Grids of Grids.

As a further example of a Grid of Grids, Fig. 4 illustrates how one can build Grids to
support the strategic or critical infrastructure of the nation. The Department of Homeland
Security has identified these infrastructures that include Agriculture and Food, Water,
Health, Industrial and Defense Base, Telecommunications, Energy, Transportation,
Banking and Finance, Chemical Industry and Hazardous Materials, Postal and Shipping.

Gas Services
and Filters

Physical Network

Registry Metadata

Flood Services
and Filters

Flood CIGrid Gas CIGrid… Electricity
CIGrid …

Data Access/Storage

Security WorkflowNotification Messaging

Portals Visualization GridCollaboration Grid

Sensor Grid Compute GridGIS Grid

Fig. 4: Critical Infrastructure (CI) Grids built in composite fashion

Core Grid Services

The critical atomic Grids in this case include those for sensors, GIS, visualization,
computing and collaboration. We also need of course the core Grid shown at the bottom
of the figure with services like security, notification and meta-data. These atomic Grids
can be re-used as shown in figure 4 in all critical infrastructure Grids and illustrate the
important interoperability principles with which Grids are built. These CI(Critical
Infrastructure) Grids are in turn customized, composed and overlaid with other Grids
(such as weather, census data) for different CI communities. This way one generates
Grids aimed at Public Health, Emergency Response (Command and Control) or Crisis
Grids, Infrastructure Planning, Education (schools) and Training (of managers and first
responders). Clearly the Grid of Grids concept can be applied recursively and
dynamically.

Conclusions
We have presented a model of building systems hierarchically with traditional software
engineering describing the structure of individual services. Services are aggregated into
atomic Grids that perform core functionalities. Composite Grids are built recursively
from both atomic and other Composite Grids. This is similar to traditional software
models with components and libraries. The use of transformation services in this
coupling is an interesting feature distinguishing this packaging from that familiar from
libraries. Although there is a lot of research on the workflow technology supporting the
composition of services (http://www.extreme.indiana.edu/groc/ggf10-ww/index.html),
little consideration as been given to capabilities seen in modern IDEs (Integrated
Development Environments) for traditional software models and supporting them for the
higher level of integration seen in Grids of Grids. In fact it is hard to support my earlier
suggestion to make services as small as possible given the poor support for managing
them. We expect the ideas described here to receive increasing attention in the future
with the growing importance of software engineering and its extension to services.

