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1. The Clouds + Exascale Infrastructure 
There are several important trend driving computing. We have the Data Deluge from Commercial 

(e.g. Amazon, e-commerce), Community (e.g. Facebook, Search), and Scientific applications (e.g. 
Analysis of LHC data, Genomics) with examples given just being representative of many others[1]. We 
have light weight clients from smartphones, tablets to sensors. The multicore chip architecture is 
reawakening parallel computing while it and GPGPU’s (even more cores) are behind Exascale initiatives, 
which will continue drive to high end with a simulation orientation. Clouds with cheaper, greener, easier 
to use IT for (some) applications are growing in importance. They enable the lightweight clients by acting 
as a backend resource and answer the difficult question “what do we do all with all those cores on a chip”. 
As that’s not so easy to answer on a conventional client, this is one driver to lighter weight client (using 
smaller CPU chips) but on a server, each core can host a separate cloud service. These developments 
drive both research and education and will weave together as we look at data analysis in the clouds. 
Curricula based on the “Science of Clouds”[2, 3] and/or “Data Science” [4] are attractive as both area 
are predicted to generate several million jobs and not find the needed skills. Finally the need for data 
analytics links old (e.g. finance, retail) business and new (Web 2.0) business with science. 

Clouds have many interesting characteristics including on-demand service, measured service, scalable 
elastic service, broad any-time any-where network access, pooling of resources leading to economies of 
scale in performance and electrical power (Green IT). These correspond to Infrastructure as a Service but 
there are also powerful new software models corresponding to Platform as a Service that are also 
important. We will see examples such as cloud support of sensors (lightweight clients) where IaaS with 
broad access drives cloud data analysis and others where novel MapReduce algorithms (i.e. PaaS) are 
most important. Areas like genomics are driven both by the need for the most effective computing 
combined with interest in new programming models like MapReduce[5]. The most visible and major data 
intensive area – analysis of LHC data from CERN – could use clouds (as can typical high throughput 
computing loads) but they have an effective operational grid solution.  

Simulations have been explored on clouds but traditional super computers are typically required to get 
good performance on large highly parallel jobs. Clouds are currently only clearly get good performance 
on “bags of simulation tasks” with many small jobs that are not individually sensitive to synchronization 
costs.  Synchronization costs are higher in clouds as virtualization leads to overheads both from software 
costs and difficulties in preserving locality. Thus we get classic HPC systems now moving inevitably to 
Exascale as likely to remain a critical part of the computing Cyberinfrastructure. 

The above analysis suggests a “Clouds+Exascale” Cyberinfrastructure scenario and in next section we 
ask how data intensive applications map into this ecosystem. 

 
2. Example Applications 
Previously we have used the MapReduce paradigm to classify parallel applications into four major 

groups [6-9].. 
Map-only applications are bags of independent tasks and clearly are suitable for clouds. This 

pleasingly parallel case includes not only LHC and similar science analysis but also support of the 
“Internet of Things” (IoT)  [10] where each of the world’s distributed devices (including smart phones) is 
backended by the cloud. The IoT is forecast to grow to 24 billion devices on the Internet by 2020. Robots 
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are important sub-class of the IoT and cloud-backed robotics is very promising. The map-only case 
included “the long tail of science” (or indeed the “the long tail of most things”) where one has parallelism 
over users each running smallish jobs that run effectively on clouds. 

MapReduce jobs consist of independent maps and reducers with communication between tasks 
happening at the link between Map and Reduce. These of course cover many “Life-style Informatics” 
applications such as those used in the social media and search industries. Clouds can support this problem 
class well. There are some scientific applications of this class including for example basic statistical 
analysis (such as histogramming ) common for example at final stage of LHC analysis. 

Classic MPI jobs are those identified for supercomputers above and typically involve many small size 
point to point messages. This class is target of HPC systems and the domain of “Exascale” component of 
the computing ecosystem. 

The final category has been called Iterative MapReduce [11-16] and is very clear in many data 
analysis applications. Many data analytics algorithm involve linear algebra at their core where the 
parallelism is well understood. These do not have the geometric parallelism of simulations but rather that 
of matrix rows, columns or blocks. Correspondingly we do not get many small messages but large 
reduction of broadcast (multicast) messages that are not as sensitive to latency overheads that are 
important for MPI structure of particle dynamics or partial differential equation solvers. Thus clouds are 
an interesting architecture and one can introduce a “Map Collective” programming abstraction that can be 
supported by either MPI or iterative versions of MapReduce. 

Supporting the three categories suitable of clouds has important issues including especially the data 
architecture where one needs to move the computing to the data which is typically not easy in today’s 
HPC or cloud environments. We discussed this in a previous note. In the last section we discuss a missing 
component that must be addressed. 

3. Data Analytics Libraries 
 Here we note that in the 

hugely successful but largely 
simulation-oriented HPCC 
activities starting around 1990, 
an important activity was the 
design and construction of core 
libraries such as PETSc, 
SCALAPACK (becoming 
PLASMA now [17]) and 
underlying technologies such as 
BLACS and MPI. Data 
intensive cloud applications 
require scalable parallel 
analysis routines and that these 
will cross many application 
areas just as the earlier HPCC 
libraries enable differential 
equation solvers and linear 
algebra across many disciplines. 
We further expect that reliable 
data analysis will need new 

robust algorithms to mimic the 
oft-quoted observation that HPC progress has benefited equally from Moore’s Law-driven hardware 
improvements and from new algorithms. These observations motivate the introduction of SPIDAL, or the 
Scalable Parallel Interoperable Data Analytics Library, to address the analysis of big data. Figure 1 
shows the components of the project. We include communities with data intensive applications which 

Figure 1: A Data Analytics Architecture with abstractions 
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need to identify what library members need to be built. Good existing examples are R [18] and Mahout 
[19] but these are not aimed at high performance needed for large scale applications. As shown in Figure 
1, we identify six layers and also five broad abstraction areas [20] whose definition allows library 
members to be built in a way that is portable. One abstraction is Jobs where we can identify the Pilot job 
concept [21, 22] to obtain interoperably; Communication where we need both MPI and MapReduce 
patterns and will use iterative MapReduce to design a common abstraction; a Data Layer where one 
needs abstractions to support storage, access and transport (since SPIDAL algorithms will need to run 
interoperably with databases, NOSQL, wide area file systems and file systems like Hadoop’s HDFS[23]). 
One also needs an Application Level Data abstraction between L2 and L3. Our final abstraction is the 
virtual machine or Appliance to deploy applications, where one could use a recently developed template 
approach [24-30] that can be realized on bare metal or commercial and private cloud VM managers. This 
supports both interoperability between different resources and preservation so that scientific results using 
SPIDAL will be reproducible. 
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