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Abstract 
The recent advance in next generation sequencing (NGS) 
techniques has enabled the direct analysis of the genetic 
information within a whole microbial community, bypassing the 
culturing individual microbial species in the lab. One can profile 
the marker genes of 16S rRNA encoded in the sample through the 
amplification of highly variable regions in the genes and 
sequencing of them by using Roche/454 sequencers to generate 
half to a few millions of 16S rRNA fragments of about 400 base 
pairs. The main computational challenge of analyzing such data is 
to group these sequences into operational taxonomic units 
(OTUs). Common clustering algorithms (such as hierarchical 
clustering) require quadratic space and time complexity that 
makes them not suitable for large datasets with millions of 
sequences. An alternative is to use greedy heuristic clustering 
methods (such as CD-HIT and UCLUST); although these enable 
fast sequence analyzing, the hard-cutoff similarity threshold set 
for them and the random starting seeds can result in reduced 
accuracy and overestimation (too many clusters). In this paper, we 
propose DACIDR: a parallel sequence clustering and visualization 
pipeline, which can address the overestimation problem along 
with space and time complexity issues as well as giving robust 
result. The pipeline starts with a parallel pairwise sequence 
alignment analysis followed by a deterministic annealing method 
for both clustering and dimension reduction. No explicit similarity 
threshold is needed with the process of clustering. Experiments 
with our system also proved the quadratic time and space 
complexity issue could be solved with a novel heuristic method 
called Sample Sequence Partition Tree (SSP-Tree), which allowed 
us to interpolate millions of sequences with sub-quadratic time 
and linear space requirement. Furthermore, SSP-Tree can enhance 
the speed of fine-tuning on the existing result, which made it 
possible to recursive clustering to achieve accurate local results. 
Our experiments showed that DACIDR produced a more reliable 
result than two popular greedy heuristic clustering methods. 
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I.5.3 [Pattern Recognition]: Clustering – Algorithms; C.2.4 
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Keywords 
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1. Introduction 
Advances in modern bio-sequencing techniques have led to a 
proliferation of raw genomic data that need to be analyzed with 
various technologies such as pyrosequencing [1]. These methods 
can easily analyze small or medium sample sequences (e.g., with 
ten thousands of sequences) in order to allow scientists to draw 
meaningful conclusions. However, many existing methods lack 
efficiency on massive sequence collections analysis where the 
existing computational power on single machine can be 
overwhelmed. Consequently, new techniques and parallel 
computation must be brought to this area.  

The first step of sequence analysis is typically generating 
sequences that are representatives from the microbial community. 
One popular method is to use 16S rRNA sequences to study the 
phylogenetic relationship between different microbial species. 
Existing techniques to analyze such data are divided into two 
categories: taxonomy-based and taxonomy-independent [2]. 
Taxonomy-based methods provide classification information 
about the organisms in a sample. For example, BLAST [3] relies 
on reference database that contains information about previous 
classified sequences, and compares new sequences against them, 
so that the new sequences can be assigned to the same organism 
with the best-matched reference sequence in the database. 
However, since most of the 16S rRNA sequences are not formally 
classified yet, these methods cannot identify the corresponding 
organisms from these sequences. In contrast, taxonomy-
independent methods use different sequence alignment techniques 
to generate pairwise distances between sequences, and then 
cluster them into OTUs by giving different threshold. These 
methods don't require a pre-described reference database, thus 
they can enumerate novel pathogenesis as well as organisms in the 
preexisting taxonomic framework.  
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Many taxonomy-independent methods were developed over past 
few years [5-7]. The key step among these methods is clustering, 
which is to group input sequences into different OTUs. However, 
most of these clustering methods require a quadratic space and 
time over the input sequence size. For example, hierarchical 
clustering is one of the most popular choices that have been 
widely used in many sequence analysis tools. It is a classic 
method, which is based on pairwise distance between input 
sequence samples. However, the main drawback of it is the 
quadratic space requirement for input distance matrix and a time 
complexity of O(N2). To overcome this shortage, several heuristic 
and hierarchical methods are developed [8-11]. However, they can 
only perform on low dimensional data or lack accuracy. 

Our techniques proposed in [12][13] for sequence analysis can be 
collectively classified as taxonomy-independent, wherein different 
sequence alignment tools are applied in order to glean specific 
pieces of information about the related genome. We used 
deterministic annealing method for dimension reduction and 
pairwise clustering to group the sequences into different clusters 
and visualize them in a lower dimension. An interpolation 
algorithm has been used to reduce time and space cost for massive 
data. All of these techniques are parallelized to process large data 
on multiple compute nodes, using MapReduce, iterative 
MapReduce [14] and/or MPI frameworks. We improved the 
parallel efficiency of DACIDR by developing a hybrid workflow 
model on high performance computers (HPC) [15]. Additionally, 
we proposed SSP-Tree, which uses a heuristic method to achieve 
sub-quadratic time complexity with an interpolation process. 
Furthermore, we developed a new algorithm that can enable fast 
refinement of the clustering result by using SSP-Tree.  

We describe the organization of the paper in the following: 
Section 2 discusses the background and related work. In Section 3 
we describe DACIDR pipeline and various algorithms used in it. 
We present the SSP-Tree in Section 4. In Section 5 we show that 
choice over alignment methods is important. We demonstrate the 
efficiency of interpolation using SSP-Tree and compare our 
results with two popular heuristic clustering methods. The 
conclusion and future work is presented in Section 6. 

2. Related Work 
There are already some taxonomy-independent heuristic or 
hierarchical methods existing in this area. MUCSLE+DOTUR is a 
popular pipeline for sequence analysis. MUCSLE [4] is used for 
multiple sequence alignment where it uses k-mer distance and a 
hierarchical method is applied to achieve fast speed. In our 
pipeline, we use pairwise sequence alignment instead of multi-
sequence alignment. DOTUR [5] assigns sequences to OTUs by 
using all possible distances. Therefore, a pairwise distance matrix 
must be generated as input for DOTUR. This causes its O(N2) 
time, disk space and memory complexity. So although it can 
generate reasonable result on small dataset, it can’t be applied on 
massive data. HCLUST [6] is another similar method developed 
in Mother, which is a well-known open-source, expandable 
software in the microbial ecology community. It is similar to a 
taxonomy-based clustering pipeline that a temporary pairwise 
distance matrix will be generated first by aligning input sequences 
against a pre-aligned reference database. Since generating a 
reference database is done before clustering, the computational 
complexity of the sequence-alignment step is O(N) instead of 
O(N2). ESPRIT [7] is a method that tries to use parallel computing 
to address the space and time issue in sequence analysis. It uses 
global pairwise alignment on each pair of sequences and the 
clustering method of it group sequences into OTUs on-the-fly, 

while keeping track of linkage information to overcome memory 
limitations. Although ESPRIT can experiment on hundreds of 
thousands of sequences, it has a time complexity of O(N2) thus 
has limitation on millions of sequences. ESPRIT-Tree [8] has 
been proposed later to address this issue. It uses probability 
sequences and a tree-like structure in hyperspace to reduce the 
time and memory usage for sequence analysis where its tree 
construction relies on a subset of result from ESPRIT. Although 
by using ESPRIT-Tree, sequence clustering has a time complexity 
of O(NlogN), but the tree construction itself takes O(N2) time, 
which can only be applied on small dataset. 

Another direction to solve the taxonomy-independent clustering is 
greedy heuristic method where several algorithms have been 
developed trying to solve this problem, such as CD-HIT [9], 
UCLUST [10] and AbundantOTU [11]. CD-HIT sorts the 
sequences first, and then the longest sequence becomes the 
representative of the first cluster. Each remaining sequence is 
compared with the representatives of existing clusters and 
assigned to an existing cluster or creates a new cluster as the 
representative sequence based on the similarity. In each pair of 
sequences comparison, a short word filtering algorithm is used, 
which can determine if the similarity between two sequences is 
below a certain value without performing an actual sequence 
alignment. Therefore, by reducing the comparison times the actual 
computation time cost is saved as well. UCLUST uses a clustering 
method similar to CD-HIT, but it can set a threshold of similarity 
below 80% while CD-HIT doesn’t have this flexibility. Both of 
these two methods are capable of processing millions of 
sequences, however, the precision of their results suffers from the 
overestimation problem because a hard-cutoff similarity threshold 
is set and it’s hard to tune this parameter for a reasonable 
clustering. Additionally, CD-HIT and UCLUST start the 
clustering by randomly giving the first sequence in a FASTA file 
to a new cluster as the reference sequence. Different from CD-
HIT and UCLUST, AbundantOTU uses a consensus alignment 
algorithm to find the consensus sequence of each cluster without 
clustering them first so that its result is less affected by 
sequencing errors. Although this method can generate a clustering 
result better than CD-HIT on abundant species, it has a higher 
time complexity and lacks ability to group rare species correctly. 
In our pipeline, we propose a deterministic annealing method of 
pairwise clustering, which can generate clusters automatically 
without having a hard-cutoff threshold of similarity or an initial 
seed. Clusters emerge as phase transitions as temperature is 
lowered [16]. This robust clustering method has been proved to be 
efficient over hundreds of thousands of sequences and indeed in 
many problem areas [17]. By using SSP-Tree method, we can 
process millions of sequences efficiently with a clustering result 
better than UCLUST and CD-HIT. 

3. Data Clustering and Visualization Pipeline 
As shown in Figure 1, DACIDR includes all-pair sequence 
alignment (ASA), pairwise clustering (PWC), multidimensional 
scaling (MDS), interpolation and visualization. The ASA reads a 
FASTA file and generates a dissimilarity matrix; The PWC can 
read the dissimilarity matrix and generate OTUs; MDS reads 
dissimilarity matrix and generates a 3D mapping; Region 
Refinement is done on the PWC result along with the 3D mapping 
from MDS; Interpolation read the OTUs and plots to generate 
mapping for further sequences. In DACIDR, the 16S rRNA input 
dataset D is divided into a sample set and an out-of-sample set, 
where the number of sequences in sample set is N and number of 
sequences in out-sample set is M. The sample set is processed at 



order N2 by ASA, PWC and MDS, while out-of-sample set M is 
processed at order M by Interpolation. In this section, we will 
explain how the ASA, PWC, MDS and Interpolation work. Since 
the Region Refinement and heuristic method of Interpolation 
involves with SSP-Tree, they will be explained in next section. 

3.1 All-pair Sequence Alignment 
Biological similarity between two sequences is the property 
driving the DACIDR pipeline. Thus, to form a measurable value 
of similarity we first align the two sequences and compute a 
distance value for the alignment, which represents the inverse of 
similarity and is used by algorithms down the line. A distance 
should be computed for each pair of sequences; hence the name is 
all-pair sequence alignment.   

In ASA, we choose Smith-Waterman (SW) [18] alignment 
method out of two well-known sequence alignment algorithms: 
Smith-Waterman and Needleman-Wunsch (NW) [19]. SW 
performs local sequence alignment to determine similar regions 
between two nucleotide or protein sequences. Instead of looking 
at the total sequence, it compares segments of all possible lengths 
and optimizes the similarity measure. In contrast, NW performs a 
global alignment on two sequences which is not suitable for the 
particular dataset due to reasons mentioned under Section 5.1. 

We use percentage identity to represent similarity among 
sequences, the distance δ between sequence i and sequence j is 
considered as the dissimilarity between them, as calculated in 
Equation 1: 

𝛿𝑖𝑗 = 1 −
𝑛𝑖𝑗
′

𝑛𝑖𝑗
 Eq.1 

where 𝑛𝑖𝑗′  is the number of identical pairs between sequence i and 
sequence j and 𝑛𝑖𝑗 is the aligned sequence length. 

SW algorithm is time consuming, and for all-pair problem, the 
time and space complexity is O(N2). Thus, it is not practical to run 
millions of sequence alignments using SW on a single machine. 
However, ASA is an embarrassingly parallel problem and thus we 
have mapped it into MapReduce paradigm by adopting coarse 
granularity task decomposition. The parallelized ASA makes it 
possible to generate large dissimilarity matrices resulting from 
aligning millions of sequences and has been proved to be highly 
efficient in our previous work [15]. 

3.2 Pairwise Clustering 
As we use raw sequence data and not multiply aligned sequences, 
clustering is based on pairwise distances and must use appropriate 
algorithms. The deterministic annealing (DA) approach [20] 
introduced ~20 years ago for the vector spaces was modified ~10 
years for pairwise case and extended by us to fully operational 
parallel software DA-PWC [12] using MPI. As noted above this 
approach is robust (inheriting the well-known advantages of 
annealing) and intrinsically multi-resolution. Temperature 
corresponds to pairwise distance scale and one starts at high 

temperature with all sequences in same cluster. As temperature is 
lowered one looks at finer distance scale and additional clusters 
are automatically detected from the appearance of negative 
eigenvalues for a second order derivative matrix first introduced 
by Rose [17] for vector clustering and extended by us to pairwise 
domain. We only need one parameter – namely the lowest 
temperature where one looks to split clusters; this corresponds to 
smallest size cluster desired. Other clustering methods like 
UCLUST and CD-HIT need more heuristic input. 

To use DA-PWC in DACIDR, one inputs the dissimilarity matrix 
from ASA and outputs a group file, which contains the 
information about which cluster each sequence is assigned to. 

3.3 Multidimensional Scaling 
Multidimensional scaling (MDS) is a set of related statistical 
techniques often used in information visualization for exploring 
similarities or dissimilarities in data. MDS algorithms use the 
pairwise distance matrix Δ and generate a mapping for each 
sequence to a point in an L-dimensional Euclidean space 
approximately preserving inter-point distances. Scaling by 
Majorizing a Complicated Function (SMACOF) algorithm is one 
of the MDS algorithms that have been proved to be fast and 
efficient [21][22]. It uses an Expectation Maximum (EM) method 
to minimize the objective function value, called Stress given in 
Equation 2.  

𝜎(𝑋) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.2 

where w denotes a possible weight, 𝑑𝑖𝑗  is the Euclidean distance 
from point i to j in the mapping and 𝛿𝑖𝑗  is the distance from 
sequence i to j in Δ. However, it is well known that EM method 
suffers from local minima problem and we have developed a 
Deterministic Annealing (DA) enhancement to SMACOF with 
computational temperature [23]. 

In DACIDR, we parallelize DA-SMACOF applications to make it 
usable for large sequences visualization by applying on iterative 
MapReduce paradigm. We set target dimension to 3 and visualize 
the mapping in a tool called PlotViz3 [24] that we developed. We 
call the 3D-coordinates visualization result from MDS a plot, 
which can be integrated with the clustering result from PWC so 
that different clusters can be visualized in different 
colors/size/shape. In Figure 2(a), we have shown the raw result 
from PWC and MDS, where 15 clusters are generated with the 
100k sample sequences selected from 16S rRNA dataset. Each 
sequence is mapped to a point in the 3D plot. 

3.4 Interpolation 
Although using DA on clustering and dimension reduction can 
generate robust result, both DA-PWC and DA-SMACOF have 
time(compute) and space(memory) complexity of O(N2) which 
limits their applicability to large problems. Figure 5 illustrates that 
DA-MDS is applicable to other clustering algorithms. We will in 

 
Figure 1 The structure of DACIDR pipeline 



a later paper describe how to improve DA-PWC performance to 
O(N) behavior in many circumstances. To overcome this 
difficulty, we adopted a technique called Majorizing Interpolation 
MDS (MI-MDS) [25], which is a simple interpolation approach 
based on pre-mapped MDS result of a sample set selected from 
the given data. 

This algorithm’s basic idea is to map out-of-sample data into 
target dimension space by k nearest neighbor (k-NN) interpolation 
without running full MDS on all of them. We add the function 
which can assign the out-of-sample data into designated cluster 
without running full PWC. Compare to existing MDS and PWC 
methods, this interpolation algorithm only needs O(N) memory 
and time to execute. Furthermore, it’s a pleasingly parallel 
application that it is highly efficient on multiple compute nodes. 
As described in following section we then divide full sample into 
regions and refine the clustering in small regions with 
computational modest cost. 

4. SSP-Tree 
In Section 3 we described the basic functionalities in the DACIDR 
pipeline. Although by using interpolation method, we made it 
possible to visualize and cluster millions of data, but the time 
complexity of MI-MDS algorithm remained high. As mentioned 
earlier, in MI-MDS, each sequence in the sample set will need to 
be aligned with each sequence in the out-of-sample set. In our 
test, an ASA with 100k 16s rRNA needed several hours to finish 
on 800 cores, the total number of alignments in that computation 
is 100k * 100k / 2. If this 100k is considered as sample set and the 
rest one million sequences as out-of-sample set, the total number 
of alignments will increase to 1m * 100k, which will take 18 times 
longer than the ASA computation. 

To address the time complexity issue of MI-MDS, we use the 
concept from astrophysics simulations (solving O(N2) particle 
dynamics) to split the sample data in L=3-dimension space into an 
octree with Barnes-Hut Tree (BH-Tree) [26] techniques. Our tree, 
called Sample Sequence Partition Tree (SSP-Tree) is similar to 
BH-Tree, and the sample dataset is divided up into cubic cells via 
an octree (in a L=3-dimension space), where the tree node set K is 
divided into two sets: leaf node set E and internal node set I. Each 
leaf node 𝑒 ∈ 𝐸  contains one sequence, and each internal node 
𝑖 ∈ 𝐼 contains all the sequences belong to its decedents. Each 𝑖 ∈ 𝐼 
has a child nodes set denoted as {C, 2L} where the number of its 
children smaller or equals to 2L. Figure 3 is an example shown 
how the SSP-Tree works in 2D with 8 sequences. If a node 
contains only one sequence, then it becomes a leaf node; 

otherwise it is an internal node.  Node e0 to e7 contains the 
sequences from A to H accordingly. i1 contains sequences A, B, C 
and D. i2 contains sequences G and H. i0 contains all the sequence 
as it is the biggest box. 

 
Figure 3 An example for SSP-Tree in 2D with 8 points 

Algorithm 1: SSP-Tree Generation 
Take every sample points in dimension L space, take the 𝑋𝐵𝑚𝑎𝑥 
and 𝑋𝐵𝑚𝑖𝑛 to construct the root node B. 
For each sample n in sample set, insert it to node 𝑘 ∈ 𝐾 
    If k doesn’t has a sequence assigned, simply assign n to k, 
and k is added to E 
    If k belongs to I, determine n should be inserted to c in {C, 
2L} of k by comparing Xn to (𝑋𝑘𝑚𝑎𝑥 + 𝑋𝑘𝑚𝑖𝑛)/2. Insert n to c. 
    If k belongs to E, remove the sequence s assigned to k, 
insert s to {C, 2L} of k; insert n to {C, 2L} of k; k added to I 

A tree node can be represented in only two points in dimension L, 
which are 𝑋𝑘𝑚𝑎𝑥 = (𝑥0𝑚𝑎𝑥, 𝑥1𝑚𝑎𝑥, 𝑥2𝑚𝑎𝑥, … , 𝑥𝐿𝑚𝑎𝑥)  and 𝑋𝑘𝑚𝑖𝑛 =
(𝑥0𝑚𝑖𝑛, 𝑥1𝑚𝑖𝑛, 𝑥2𝑚𝑖𝑛, … , 𝑥𝐿𝑚𝑖𝑛)  where 𝑘 ∈ 𝐾  and 𝑥𝑖𝑚𝑎𝑥 ,  𝑥𝑖𝑚𝑖𝑛 
denotes the maximum and minimum value of all the points' 
coordinates value in L dimensions. Constructing a SSP-Tree in L-
dimension follows the procedure from Algorithm 1 where the 
only computation for it is to calculate the center of each node 
𝑘 ∈ 𝐾 . Inserting the sample points into the tree only needs 
comparison and assignment. In our experiment, insert 100k 
sample points from 16S rRNA data into a SSP-Tree only takes 
about a few seconds on a desktop.  

In SSP-Tree, every tree node k has a set of points Pk where PB is 
the sample point set. Each tree node k is represented by a center 
point 𝑝𝑐𝑘, which is the one nearest to the mass center inside each 
node. The mass center of node k is given by Equation 3 

𝑝𝑐𝑘 =  {𝑥𝑙𝑘  | 𝑥𝑙𝑘 =  ∑ 𝑥𝑙
𝑖

𝑛𝑘
𝑛𝑘
𝑖=0 , 0 ≤ 𝑙 < 𝐿} Eq.3 

where 𝑛𝑘 is the number of sequences in node k. 

 
(a) Raw result from DA-PWC and DA-

SMACOF on 100k sample sequences, 
15 regions in total 

 
(b) After region refinement on 100k 

sample sequences, 12 regions in total 

 
(c) After interpolated 580k out-of-sample 

sequences by heuristic interpolation, 
12 regions in total 

Figure 2 Visualization result in 3D, each cluster is in different color (this is before final refinement) 



We describe a simple hierarchical majorizing interpolation 
method (HI-MI) as follows: One compares an out-of-sample point 
𝑝̂ ∈ 𝑃� to 𝑝𝑐𝐵 first, and then recursively assign 𝑝̂ to a nearest child 
node until the node containing nearest k neighbors is reached. 
This HI-MI method can reduce the time cost of interpolation from 
O(N*M) to O(M*logN). However, its accuracy is poor due to the 
correctness of center point representation. It is obvious that the 
nodes in leaf set E are represented directly by the points they 
contain, so the representation is 100% accurate. But their parents 
in set I may contain multiple points, where could be in a same 
cluster or different clusters. The lower node level is, the more 
likely the points in that node belong to a same cluster. At upper 
level, the representation precision becomes worse because the 
points might be in different clusters. Since HI-MI method 
searches the tree from top to bottom, where it starts with worst pc, 
there is some probability that 𝑝̂ could be assigned to a different 
node other than the node the k nearest neighbors are in. To 
overcome this issue while keeping the lower time cost, we 
propose a heuristic majorizing interpolation method (HE-MI). 

Algorithm 2: Heuristic Majorizing Interpolation 
Given a sample point set, get a set of terminal nodes T where 
point number in 𝑡 ∈ 𝑇 is larger than a threshold µ where the 
number of regions 𝑁𝑇 ≪ 𝑁. 
For each 𝑝̂ ∈ 𝑃� , compare the original distance δ between 
𝑝̂ and 𝑝𝑐𝑡 in 𝑇, assign it to the nearest node 𝑡′ 
All the sample points 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑘′ ∈ 𝑃𝑡′′  in that node will 
be considered as the 𝑘′ nearest points to 𝑝̂.  
Find k nearest points to 𝑝̂. Compute every δij between 𝑝̂𝑖 and 
𝑝𝑗 ∈ 𝑃𝑖′;  
Use the k-NN: 𝑝0,𝑝1,𝑝2, … , 𝑝𝑘 ∈ 𝑃𝑡′  to 𝑝̂ . ( 𝑘 ≤ 𝑘′ ) to 
determine the position for 𝑝̂ in dimension L. The group of 𝑝̂ is 
assigned to the same group where the nearest 𝑝𝑖 is. 

4.1 Heuristic Interpolation 
First, we introduce the concept of terminal nodes T where 
{𝑷𝒕| 𝒕 ∈ 𝑻} is PB. We can use optimization parameters, such as 
node level, maximum number of points inside, to control the 
number and quality of T. So instead of searching through top to 
bottom, we can directly use the high quality 𝒑𝒄𝒕(𝒕 ∈ 𝑻) where t 
contains only one or few cluster inside to find nearest k neighbors 
for an out-of-sample point. Additionally, the number of T is much 
smaller than sample points number N. So the time cost of HE-MI 
is much lower than MI-MDS which needs to compare all the 
sample sequences. HE-MI is described in Algorithm 2. By 
applying HE-MI, the time complexity is O(MNT). The time cost is 
greater than HI-MI, but the accuracy of interpolation is much 
higher in practice. 

4.2 Region Refinement 
Not only is SSP-Tree applied to dimension reduction and 
clustering so that it enables a fast and efficient way of 
interpolation, but also it can be used on fast refinement of existing 
DA-PWC result. 

As we have clustering result from DA-PWC and mapping result 
DA-SMACOF, the clustering result can be refined using both of 
the factors. Here we call the raw clusters from DA-PWC mega-
regions. After defining the mega-regions g in {1…G}, we classify 
the terminal nodes T into three categories: 1) Node cluster g’ in 
G’, where a node cluster is assigned as the same cluster to the 
most points in that node. So the node in the node cluster actually 
represents the cluster of 𝑃𝑚𝑜𝑠𝑡

𝑔′ ; 2) Unclear mixture U, where the 

unclear mixture is defined as a node contains significant number 
of points belonging to different clusters. As a terminal node may 
contain several different groups of points, this terminal node is 
undefined as to which g should it belongs to; 3) In the 
"intergalactic void" V, where normally the points inside these 
nodes are in between visually obvious clusters. Those points 
belonging to V needs to be classified to clusters as well. Each 
terminal node t is represented by a center point 𝑝𝑐𝑡  given in 
Equation 3. The goal of region refinement is to use the location 
information from MDS and the cluster information from PWC to 
classify node in {1…G} clearer and make region identification for 
nodes in U. Algorithm 3 describes region refinement process. To 
process with this algorithm, we set f as a cluster-define fraction 
threshold where cluster-define fraction is defined in Equation 4: 

𝑓𝑡
𝑔′ = 𝑛𝑡

𝑔

𝑛𝑡
  Eq.4 

where 𝑛𝑡
𝑔is the number of points in node t with assigned to g, and 

𝑛𝑡  is the total number of points in node t. We set a threshold θ as 
a number from 0.5 to 1. Node size, node level and number of 
points inside node are used in a node determination function Η 
with a threshold η to distinguish the V from U and G’. 

Algorithm 3: Fast Region Refinement 
Iterate Following 
    Create SSP-Tree and get T 
    Loop over 𝑡 ∈ 𝑇 
        If Η(t) < η, t is added to set V 
        If H(t) ≥ η,  
            If 𝑓𝑡

𝑔′ > θ, assign t to g and t is added to set G. 
            If no 𝑓𝑡

𝑔′ > θ (𝑔 ∈ 𝐺), t is added to set U. 
    Loop over 𝑡 ∈ 𝑇 
        Update center point 𝑝𝑐𝑡 
    Loop over p in 𝑡 ∈ 𝑈 ∪ 𝐺 
        Assign p to g where distance(p, 𝑝𝑐𝑡̂)is minimum and 𝑡̂ ∈ 𝐺 
    If all 𝑝𝑐𝑡̂ in 𝑡̂ ∈ 𝑈 are the same in last iteration, break 
    Else, continue 
Finally assign all 𝑝 ∈ 𝑃  to 𝑡̂ ∈ 𝐺  where distance(p , 𝑝𝑐𝑡̂ ) is 
minimum 

After the region refinement, the cluster with high density near 
each other can be merged automatically, and the cluster with 
lower density can be reassigned with more points. By observing 
from the plot with the region refinement result and raw DA-PWC 
result, our mega-regions are much clearer as shown in Figure 2(b). 
Region 9(dark grey), 12(purple) and 15(light green) on the upper 
right of Figure 2(a) have been refined and merged into one 
region(grey). Region 8(light blue) on the top left is split and 
becomes part of cluster 2(green) and 4(yellow). Furthermore, this 
method is extremely fast since the number of terminal nodes is 
much smaller than N. The computational cost of algorithm 3 is 
very small that it takes about 10 seconds to process a 100k dataset 
on a desktop. 

4.3 Recursive Clustering 
By applying HE-MI to the result from region refinement on 100k 
sample data, all the sequences from hmp16S rRNA data have 
been successfully clustered and visualized as shown in Figure 
2(c). However, because each of these clusters contains several 
hundreds of thousands sequences, they still have internal 
structures which seems to be several sub-clusters. These sub 
clusters on a plot with the whole dataset couldn’t be shown clearly 
because the distance between regions are relatively larger than the 
distance between sub-clusters in each region. So the points in each  



region are tend to be closer to each other, thus the differences are 
diminished. Therefore, to amplify the dissimilarity between sub-
clusters, we introduce the recursive clustering, which is to apply 
DACIDR on each separate region. The recursive clustering result 
of region 6(dark green) in shown in Figure 4. 16 clusters were 
found in this region which shows clear separation between each 
cluster. 

5. Experiments 
The experiments were carried out on PolarGrid (PG) cluster using 
100 compute nodes and Tempest using 32 compute nodes. The 
compute nodes we used on PG are iDataPlex dx340 rack-mount 
servers with 8 cores per node. Tempest is an HP distributed shared 
memory cluster with 768 processor cores. The data was selected 
within 16S rRNA data from the NCBI database. The total input 
sequence number is 1160946. First, we examined the dataset and 
found all duplicate sequences, which have exactly the same length 
and composition. Then we screened the data by keeping only one 
sequence in each duplicate group, so that every sequence in the 
filtered set is different from each other. Finally, we could have a 
unique data set of 684769 sequences. Since the rest of the 
sequences all have a corresponding unique sequence in the unique 
set, they can be assigned to clustering result directly. 

5.1  SW versus NW 
We evaluated both SW and NW on the sample N=100k dataset 
before proceeding with the rest of the pipeline and found SW to 
produce more reliable results than NW. Sequence lengths were 
not uniform in the 16S rRNA dataset and NW, being a global 
alignment algorithm, had done its best by producing alignments 
with many gaps. In cases where a shorter sequence is aligned with 
a longer one, the gaps were dearly added by NW simply to make 
the alignment from end to end. Unfortunately, the distance 
measure we computed over the alignments was susceptible to 
gaps and produced artificially large distances for sequence pairs. 
The plots we generated with NW based distances had long thin 
cylindrical point formations as shown in Figure 6, which later we 
identified as a direct consequence of the number of gaps present 
in the alignment. Pictorially, this effect is shown in Figure 7. 
From the DACIDR result, multiple points selected on the same 
cylinder belong to a same cluster, but by using NW, instead of 
clustered, these points are aligned in line. The selected points are 
based on their ID number in the given sample dataset, where their 
lengths are 507 to 284. 

The analysis of the line structure is shown in Figure 8, which 
concludes that points along the line are linearly related in lengths 

and NW has introduced gaps linearly to form global alignments. 
The sequences from 2-9 are aligned with Sequence 1, whose 
length is the longest. It shows that original lengths decrease 
linearly from one end to the other. The mismatches introduced by 
gaps for the alignments of these sequences have thus increased 
linearly according to the Mismatches by Gaps line. Also, clear is 
the fact that gaps have a dominant effect on the number of 
mismatches as the Total Mismatches line overlaps with the 
Mismatches by Gaps line. Thus, aligning short sequences with 
long sequences using NW has caused the introduction of 
biologically unimportant number of gaps purely for the sake of 
forming a global alignment. 

SW in contrast performed a local alignment producing alignment 
segments with fewer gaps. This reduction in superfluous gaps 
immediately improved the quality of clustering and plots where 
more globular structure was evident rather long thin cylinders.  

5.2 Comparison with UCLUST and CD-HIT 
We have used two popular choices of clustering methods: 
UCLUST and CD-HIT to compare the result with DACIDR. As 
mentioned in previous section, UCLUST and CD-HIT are two 
popular greedy heuristic methods which are capable of processing 
millions of sequences on a desktop. Thus we apply these two 
methods on our dataset. 

From Figure 9 it is shows that by directly applying CD-HIT or 
UCLUST on the whole 16S rRNA dataset we have, the clustering 
result is overestimate. By using DACIDR on the whole dataset 
and one more time on each region, a total number of 188 clusters 
are found, and they contain a reasonable number of sequences in 
each cluster, from 300 to 40000. However, by using CD-HIT and 
UCLUST with a dissimilarity threshold of 0.97, we found 8418 
and 6000 clusters. Among the clusters found, most of them only 
contain 1 or 2 sequences. As shown in the histogram, CD-HIT 
found 5475 clusters only have less than 10 sequences in them, and 
UCLUST found 3829 such clusters. Moreover, some clearly 
separated clusters in visualization result still have mixed colors in 
them. Figure 5 is the visualization result we used to show how 
UCLUST works as different color for each cluster. The UCLUST 
results are messier and some clusters are broken into several 
components. Table 1 shows the statistics of cluster quality by 
using DA-PWC, UCLUST and CDHIT with input sequences from 
Region 6. A total number of 16 V-clusters are found in plot shown 
in Figure 4. Even though we tried different dissimilarity 
thresholds on UCLUST and CDHIT, they still lack of accuracy 
where some V-clusters are composed by multiple A-cluster 
(number of A-clusters in single V-cluster) or some of A-cluster 

 
Figure 4 Recursive clustering result for 

mega-region 6 in DACIDR result of 
whole dataset 

 
Figure 5 UCLUST result for mega-

region 6  in DACIDR result of whole 
dataset 

 
Figure 6 Visualization result for 100k 

sample set using NW distance 



are composed by multiple V-cluster (number of shared A-cluster). 
In contrast, DA-PWC uniquely identified all 16 V-clusters. 
UCLUST identify 9 V-clusters at most while CDHIT only 
manages to identify 3 V-clusters. This is because the hard-cutoff 
dissimilarity threshold is difficult to optimize, and the global 
alignment methods they used give unreliable answers with varies 
sequences lengths. This experiment demonstrates that DACIDR 
can have a robust clustering result which is better than CD-HIT 
and UCLUST. DACIDR is computationally more complicated but 
we have shown how using interpolation and SSP-Tree, we get 
practical computation and memory requirements. 

5.3 Comparison of Interpolation Methods 
In this experiment, we conduct three interpolation methods 
compare with each other in execution time and normalized stress 
value which is given in Equation 5: 

𝜎(𝑋) = ∑ 1
∑ 𝛿𝑖𝑗𝑖<𝑗

𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2  Eq.5 

where the notations are from Equation 2. Generally speaking, the 
normalized stress value is the error value from target dimension 
mapping to the original dimension. Therefore, a mapping result 
has a higher accuracy when the normalized stress value is lower. 

This test is done using the 100k dataset from 16S rRNA data on 
32 nodes from PG. We selected 10k, 20k, 30k, 40k and 50k from 
it as sample sets and the rest 90k, 80k, 70k, 60k and 50k are 
considered as out-of-sample sets. The sample sets are assumed to 
have the mapping in target dimension. 

Figure 10 shows that HE-MI and HI-MI execute interpolation 
much faster than MI-MDS while both of former methods takes 
around 1000 seconds to finish and MI-MDS takes about 50 times 
longer than that. The computation for MI-MDS is O(MN) where N 

is the sample size and M is the out-of-sample size. Note that both 
HE-MI and MI-MDS’s execution time increases while out-of-
sample size decreases. This is because computation for both of 
these methods correlates with sample size * out-of-sample size 
while this value increases from 10k * 90k to 50k * 50k. But for 
HI-MDS, since it’s time complexity is O(MlogN), so logN will 
remains almost same from N increases from 10k to 50k. And M 
decreases from 90k to 50k, so its execution time decreases. Figure 
11 shows that MI-MDS has the most accurate result because of 
computing every distance between each sample and out-of-sample 
point. However, this experiment shows that by using HE-MI, the 
interpolation processes much faster than MI-MDS, and the 
accuracy of the mapping result is much better than HI-MI, which 
makes HE-MI the ideal solution for massive size of data 
interpolation. 

6. Conclusion and Future Work 
In this paper we proposed a parallel data clustering and 
visualization method: DACIDR, which can efficiently cluster 
millions of sequences with various lengths. DACIDR utilizes the 
computing power of HPC by applying on several distribute and 
parallel computing frameworks. Compared to traditional sequence 
clustering method without visualization, such as UCLUST and 
CD-HIT, our visualization result combined with the clustering 
result can help biologist observe and analysis structures among 
different gene clusters. These correlations enable us to cluster 
millions of sequences efficiently with high accuracy. Using the 
deterministic annealing method can help us avoid local optima 
and overestimation problem. By using SSP-Tree in DACIDR, not 
only can the interpolation to clustering and visualization result run 
faster, but also we can refine the result from DA-PWC for 
hundreds of thousands results in a few seconds.  

 
Figure 7 Long thin formation of points resulting from NW 

alignment (Point ID Number: Sequence ID) 

 
Figure 8 Effect of gaps towards the long thin structure 

 
Figure 9 Histogram of number of 

clusters found based on number of 
sequences in each cluster 

 
Figure 10 Execution time of three 

interpolation method 

 
Figure 11 Normalized Stress value of 

100k interpolation mapping result 
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We are currently integrating phylogenetic trees with our analysis 
both by adding it to visualization and using it to improve 
specification of mega-regions where there are ambiguous clusters. 
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Table 1 Cluster quality comparison of different algorithms on Region 6. V-clusters are the clusters visible shown in the 
dimension reduction result, A-clusters are the clusters found by particular clustering algorithm. 

 PWC UCLUST CDHIT 
Hard-cutoff similarity threshold -- 0.75 0.85 0.9 0.95 0.97 0.9 0.95 0.97 
Number of A-clusters (number of clusters 
contains only one sequence) 16 6 23 71(10) 288(77) 618(208) 134(16) 375(95) 619(206) 

Number of clusters uniquely identified 16 2 9 8 9 4 3 2 1 

Number of shared A-clusters 0 4 2 1 0 0 0 0 0 

Number of A-clusters in single V-cluster 0 0 12 62(10) 279(77) 614(208) 131(16) 373(95) 618(206) 
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