
DACIDR: Deterministic Annealed Clustering with
Interpolative Dimension Reduction using a Large

Collection of 16S rRNA Sequences
Yang Ruan1,3, Saliya Ekanayake1,3, Mina Rho2,3, Haixu Tang2,3, Seung-Hee Bae1,3,

Judy Qiu1,3, Geoffrey Fox1,3
Community Grids Laboratory1

Center for Genomics and Bioinformatics2
School of Informatics and Computing3

Indiana University Bloomington
{yangruan, sekanaya, mrho, hatang, sebae, xqiu, gcf}@indiana.edu

Abstract
The recent advance in next generation sequencing (NGS)
techniques has enabled the direct analysis of the genetic
information within a whole microbial community, bypassing the
culturing individual microbial species in the lab. One can profile
the marker genes of 16S rRNA encoded in the sample through the
amplification of highly variable regions in the genes and
sequencing of them by using Roche/454 sequencers to generate
half to a few millions of 16S rRNA fragments of about 400 base
pairs. The main computational challenge of analyzing such data is
to group these sequences into operational taxonomic units
(OTUs). Common clustering algorithms (such as hierarchical
clustering) require quadratic space and time complexity that
makes them not suitable for large datasets with millions of
sequences. An alternative is to use greedy heuristic clustering
methods (such as CD-HIT and UCLUST); although these enable
fast sequence analyzing, the hard-cutoff similarity threshold set
for them and the random starting seeds can result in reduced
accuracy and overestimation (too many clusters). In this paper, we
propose DACIDR: a parallel sequence clustering and visualization
pipeline, which can address the overestimation problem along
with space and time complexity issues as well as giving robust
result. The pipeline starts with a parallel pairwise sequence
alignment analysis followed by a deterministic annealing method
for both clustering and dimension reduction. No explicit similarity
threshold is needed with the process of clustering. Experiments
with our system also proved the quadratic time and space
complexity issue could be solved with a novel heuristic method
called Sample Sequence Partition Tree (SSP-Tree), which allowed
us to interpolate millions of sequences with sub-quadratic time
and linear space requirement. Furthermore, SSP-Tree can enhance
the speed of fine-tuning on the existing result, which made it
possible to recursive clustering to achieve accurate local results.
Our experiments showed that DACIDR produced a more reliable
result than two popular greedy heuristic clustering methods.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering – Algorithms; C.2.4
[Computer-Communication Networks]: Distributed Systems –
Distributed Applications;

General Terms
Algorithms, Performance

Keywords
Pairwise data clustering, multidimensional scaling, deterministic
annealing, interpolation, exploratory data analysis

1. Introduction
Advances in modern bio-sequencing techniques have led to a
proliferation of raw genomic data that need to be analyzed with
various technologies such as pyrosequencing [1]. These methods
can easily analyze small or medium sample sequences (e.g., with
ten thousands of sequences) in order to allow scientists to draw
meaningful conclusions. However, many existing methods lack
efficiency on massive sequence collections analysis where the
existing computational power on single machine can be
overwhelmed. Consequently, new techniques and parallel
computation must be brought to this area.

The first step of sequence analysis is typically generating
sequences that are representatives from the microbial community.
One popular method is to use 16S rRNA sequences to study the
phylogenetic relationship between different microbial species.
Existing techniques to analyze such data are divided into two
categories: taxonomy-based and taxonomy-independent [2].
Taxonomy-based methods provide classification information
about the organisms in a sample. For example, BLAST [3] relies
on reference database that contains information about previous
classified sequences, and compares new sequences against them,
so that the new sequences can be assigned to the same organism
with the best-matched reference sequence in the database.
However, since most of the 16S rRNA sequences are not formally
classified yet, these methods cannot identify the corresponding
organisms from these sequences. In contrast, taxonomy-
independent methods use different sequence alignment techniques
to generate pairwise distances between sequences, and then
cluster them into OTUs by giving different threshold. These
methods don't require a pre-described reference database, thus
they can enumerate novel pathogenesis as well as organisms in the
preexisting taxonomic framework.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

BCB' 12, October 08 - 10 2012, Orlando, FL, USA
Copyright 2012 ACM 978-1-4503-1670-5/12/10…$15.00.

Many taxonomy-independent methods were developed over past
few years [5-7]. The key step among these methods is clustering,
which is to group input sequences into different OTUs. However,
most of these clustering methods require a quadratic space and
time over the input sequence size. For example, hierarchical
clustering is one of the most popular choices that have been
widely used in many sequence analysis tools. It is a classic
method, which is based on pairwise distance between input
sequence samples. However, the main drawback of it is the
quadratic space requirement for input distance matrix and a time
complexity of O(N2). To overcome this shortage, several heuristic
and hierarchical methods are developed [8-11]. However, they can
only perform on low dimensional data or lack accuracy.

Our techniques proposed in [12][13] for sequence analysis can be
collectively classified as taxonomy-independent, wherein different
sequence alignment tools are applied in order to glean specific
pieces of information about the related genome. We used
deterministic annealing method for dimension reduction and
pairwise clustering to group the sequences into different clusters
and visualize them in a lower dimension. An interpolation
algorithm has been used to reduce time and space cost for massive
data. All of these techniques are parallelized to process large data
on multiple compute nodes, using MapReduce, iterative
MapReduce [14] and/or MPI frameworks. We improved the
parallel efficiency of DACIDR by developing a hybrid workflow
model on high performance computers (HPC) [15]. Additionally,
we proposed SSP-Tree, which uses a heuristic method to achieve
sub-quadratic time complexity with an interpolation process.
Furthermore, we developed a new algorithm that can enable fast
refinement of the clustering result by using SSP-Tree.

We describe the organization of the paper in the following:
Section 2 discusses the background and related work. In Section 3
we describe DACIDR pipeline and various algorithms used in it.
We present the SSP-Tree in Section 4. In Section 5 we show that
choice over alignment methods is important. We demonstrate the
efficiency of interpolation using SSP-Tree and compare our
results with two popular heuristic clustering methods. The
conclusion and future work is presented in Section 6.

2. Related Work
There are already some taxonomy-independent heuristic or
hierarchical methods existing in this area. MUCSLE+DOTUR is a
popular pipeline for sequence analysis. MUCSLE [4] is used for
multiple sequence alignment where it uses k-mer distance and a
hierarchical method is applied to achieve fast speed. In our
pipeline, we use pairwise sequence alignment instead of multi-
sequence alignment. DOTUR [5] assigns sequences to OTUs by
using all possible distances. Therefore, a pairwise distance matrix
must be generated as input for DOTUR. This causes its O(N2)
time, disk space and memory complexity. So although it can
generate reasonable result on small dataset, it can’t be applied on
massive data. HCLUST [6] is another similar method developed
in Mother, which is a well-known open-source, expandable
software in the microbial ecology community. It is similar to a
taxonomy-based clustering pipeline that a temporary pairwise
distance matrix will be generated first by aligning input sequences
against a pre-aligned reference database. Since generating a
reference database is done before clustering, the computational
complexity of the sequence-alignment step is O(N) instead of
O(N2). ESPRIT [7] is a method that tries to use parallel computing
to address the space and time issue in sequence analysis. It uses
global pairwise alignment on each pair of sequences and the
clustering method of it group sequences into OTUs on-the-fly,

while keeping track of linkage information to overcome memory
limitations. Although ESPRIT can experiment on hundreds of
thousands of sequences, it has a time complexity of O(N2) thus
has limitation on millions of sequences. ESPRIT-Tree [8] has
been proposed later to address this issue. It uses probability
sequences and a tree-like structure in hyperspace to reduce the
time and memory usage for sequence analysis where its tree
construction relies on a subset of result from ESPRIT. Although
by using ESPRIT-Tree, sequence clustering has a time complexity
of O(NlogN), but the tree construction itself takes O(N2) time,
which can only be applied on small dataset.

Another direction to solve the taxonomy-independent clustering is
greedy heuristic method where several algorithms have been
developed trying to solve this problem, such as CD-HIT [9],
UCLUST [10] and AbundantOTU [11]. CD-HIT sorts the
sequences first, and then the longest sequence becomes the
representative of the first cluster. Each remaining sequence is
compared with the representatives of existing clusters and
assigned to an existing cluster or creates a new cluster as the
representative sequence based on the similarity. In each pair of
sequences comparison, a short word filtering algorithm is used,
which can determine if the similarity between two sequences is
below a certain value without performing an actual sequence
alignment. Therefore, by reducing the comparison times the actual
computation time cost is saved as well. UCLUST uses a clustering
method similar to CD-HIT, but it can set a threshold of similarity
below 80% while CD-HIT doesn’t have this flexibility. Both of
these two methods are capable of processing millions of
sequences, however, the precision of their results suffers from the
overestimation problem because a hard-cutoff similarity threshold
is set and it’s hard to tune this parameter for a reasonable
clustering. Additionally, CD-HIT and UCLUST start the
clustering by randomly giving the first sequence in a FASTA file
to a new cluster as the reference sequence. Different from CD-
HIT and UCLUST, AbundantOTU uses a consensus alignment
algorithm to find the consensus sequence of each cluster without
clustering them first so that its result is less affected by
sequencing errors. Although this method can generate a clustering
result better than CD-HIT on abundant species, it has a higher
time complexity and lacks ability to group rare species correctly.
In our pipeline, we propose a deterministic annealing method of
pairwise clustering, which can generate clusters automatically
without having a hard-cutoff threshold of similarity or an initial
seed. Clusters emerge as phase transitions as temperature is
lowered [16]. This robust clustering method has been proved to be
efficient over hundreds of thousands of sequences and indeed in
many problem areas [17]. By using SSP-Tree method, we can
process millions of sequences efficiently with a clustering result
better than UCLUST and CD-HIT.

3. Data Clustering and Visualization Pipeline
As shown in Figure 1, DACIDR includes all-pair sequence
alignment (ASA), pairwise clustering (PWC), multidimensional
scaling (MDS), interpolation and visualization. The ASA reads a
FASTA file and generates a dissimilarity matrix; The PWC can
read the dissimilarity matrix and generate OTUs; MDS reads
dissimilarity matrix and generates a 3D mapping; Region
Refinement is done on the PWC result along with the 3D mapping
from MDS; Interpolation read the OTUs and plots to generate
mapping for further sequences. In DACIDR, the 16S rRNA input
dataset D is divided into a sample set and an out-of-sample set,
where the number of sequences in sample set is N and number of
sequences in out-sample set is M. The sample set is processed at

order N2 by ASA, PWC and MDS, while out-of-sample set M is
processed at order M by Interpolation. In this section, we will
explain how the ASA, PWC, MDS and Interpolation work. Since
the Region Refinement and heuristic method of Interpolation
involves with SSP-Tree, they will be explained in next section.

3.1 All-pair Sequence Alignment
Biological similarity between two sequences is the property
driving the DACIDR pipeline. Thus, to form a measurable value
of similarity we first align the two sequences and compute a
distance value for the alignment, which represents the inverse of
similarity and is used by algorithms down the line. A distance
should be computed for each pair of sequences; hence the name is
all-pair sequence alignment.

In ASA, we choose Smith-Waterman (SW) [18] alignment
method out of two well-known sequence alignment algorithms:
Smith-Waterman and Needleman-Wunsch (NW) [19]. SW
performs local sequence alignment to determine similar regions
between two nucleotide or protein sequences. Instead of looking
at the total sequence, it compares segments of all possible lengths
and optimizes the similarity measure. In contrast, NW performs a
global alignment on two sequences which is not suitable for the
particular dataset due to reasons mentioned under Section 5.1.

We use percentage identity to represent similarity among
sequences, the distance δ between sequence i and sequence j is
considered as the dissimilarity between them, as calculated in
Equation 1:

𝛿𝑖𝑗 = 1 −
𝑛𝑖𝑗
′

𝑛𝑖𝑗
 Eq.1

where 𝑛𝑖𝑗′ is the number of identical pairs between sequence i and
sequence j and 𝑛𝑖𝑗 is the aligned sequence length.

SW algorithm is time consuming, and for all-pair problem, the
time and space complexity is O(N2). Thus, it is not practical to run
millions of sequence alignments using SW on a single machine.
However, ASA is an embarrassingly parallel problem and thus we
have mapped it into MapReduce paradigm by adopting coarse
granularity task decomposition. The parallelized ASA makes it
possible to generate large dissimilarity matrices resulting from
aligning millions of sequences and has been proved to be highly
efficient in our previous work [15].

3.2 Pairwise Clustering
As we use raw sequence data and not multiply aligned sequences,
clustering is based on pairwise distances and must use appropriate
algorithms. The deterministic annealing (DA) approach [20]
introduced ~20 years ago for the vector spaces was modified ~10
years for pairwise case and extended by us to fully operational
parallel software DA-PWC [12] using MPI. As noted above this
approach is robust (inheriting the well-known advantages of
annealing) and intrinsically multi-resolution. Temperature
corresponds to pairwise distance scale and one starts at high

temperature with all sequences in same cluster. As temperature is
lowered one looks at finer distance scale and additional clusters
are automatically detected from the appearance of negative
eigenvalues for a second order derivative matrix first introduced
by Rose [17] for vector clustering and extended by us to pairwise
domain. We only need one parameter – namely the lowest
temperature where one looks to split clusters; this corresponds to
smallest size cluster desired. Other clustering methods like
UCLUST and CD-HIT need more heuristic input.

To use DA-PWC in DACIDR, one inputs the dissimilarity matrix
from ASA and outputs a group file, which contains the
information about which cluster each sequence is assigned to.

3.3 Multidimensional Scaling
Multidimensional scaling (MDS) is a set of related statistical
techniques often used in information visualization for exploring
similarities or dissimilarities in data. MDS algorithms use the
pairwise distance matrix Δ and generate a mapping for each
sequence to a point in an L-dimensional Euclidean space
approximately preserving inter-point distances. Scaling by
Majorizing a Complicated Function (SMACOF) algorithm is one
of the MDS algorithms that have been proved to be fast and
efficient [21][22]. It uses an Expectation Maximum (EM) method
to minimize the objective function value, called Stress given in
Equation 2.

𝜎(𝑋) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.2

where w denotes a possible weight, 𝑑𝑖𝑗 is the Euclidean distance
from point i to j in the mapping and 𝛿𝑖𝑗 is the distance from
sequence i to j in Δ. However, it is well known that EM method
suffers from local minima problem and we have developed a
Deterministic Annealing (DA) enhancement to SMACOF with
computational temperature [23].

In DACIDR, we parallelize DA-SMACOF applications to make it
usable for large sequences visualization by applying on iterative
MapReduce paradigm. We set target dimension to 3 and visualize
the mapping in a tool called PlotViz3 [24] that we developed. We
call the 3D-coordinates visualization result from MDS a plot,
which can be integrated with the clustering result from PWC so
that different clusters can be visualized in different
colors/size/shape. In Figure 2(a), we have shown the raw result
from PWC and MDS, where 15 clusters are generated with the
100k sample sequences selected from 16S rRNA dataset. Each
sequence is mapped to a point in the 3D plot.

3.4 Interpolation
Although using DA on clustering and dimension reduction can
generate robust result, both DA-PWC and DA-SMACOF have
time(compute) and space(memory) complexity of O(N2) which
limits their applicability to large problems. Figure 5 illustrates that
DA-MDS is applicable to other clustering algorithms. We will in

Figure 1 The structure of DACIDR pipeline

a later paper describe how to improve DA-PWC performance to
O(N) behavior in many circumstances. To overcome this
difficulty, we adopted a technique called Majorizing Interpolation
MDS (MI-MDS) [25], which is a simple interpolation approach
based on pre-mapped MDS result of a sample set selected from
the given data.

This algorithm’s basic idea is to map out-of-sample data into
target dimension space by k nearest neighbor (k-NN) interpolation
without running full MDS on all of them. We add the function
which can assign the out-of-sample data into designated cluster
without running full PWC. Compare to existing MDS and PWC
methods, this interpolation algorithm only needs O(N) memory
and time to execute. Furthermore, it’s a pleasingly parallel
application that it is highly efficient on multiple compute nodes.
As described in following section we then divide full sample into
regions and refine the clustering in small regions with
computational modest cost.

4. SSP-Tree
In Section 3 we described the basic functionalities in the DACIDR
pipeline. Although by using interpolation method, we made it
possible to visualize and cluster millions of data, but the time
complexity of MI-MDS algorithm remained high. As mentioned
earlier, in MI-MDS, each sequence in the sample set will need to
be aligned with each sequence in the out-of-sample set. In our
test, an ASA with 100k 16s rRNA needed several hours to finish
on 800 cores, the total number of alignments in that computation
is 100k * 100k / 2. If this 100k is considered as sample set and the
rest one million sequences as out-of-sample set, the total number
of alignments will increase to 1m * 100k, which will take 18 times
longer than the ASA computation.

To address the time complexity issue of MI-MDS, we use the
concept from astrophysics simulations (solving O(N2) particle
dynamics) to split the sample data in L=3-dimension space into an
octree with Barnes-Hut Tree (BH-Tree) [26] techniques. Our tree,
called Sample Sequence Partition Tree (SSP-Tree) is similar to
BH-Tree, and the sample dataset is divided up into cubic cells via
an octree (in a L=3-dimension space), where the tree node set K is
divided into two sets: leaf node set E and internal node set I. Each
leaf node 𝑒 ∈ 𝐸 contains one sequence, and each internal node
𝑖 ∈ 𝐼 contains all the sequences belong to its decedents. Each 𝑖 ∈ 𝐼
has a child nodes set denoted as {C, 2L} where the number of its
children smaller or equals to 2L. Figure 3 is an example shown
how the SSP-Tree works in 2D with 8 sequences. If a node
contains only one sequence, then it becomes a leaf node;

otherwise it is an internal node. Node e0 to e7 contains the
sequences from A to H accordingly. i1 contains sequences A, B, C
and D. i2 contains sequences G and H. i0 contains all the sequence
as it is the biggest box.

Figure 3 An example for SSP-Tree in 2D with 8 points

Algorithm 1: SSP-Tree Generation
Take every sample points in dimension L space, take the 𝑋𝐵𝑚𝑎𝑥
and 𝑋𝐵𝑚𝑖𝑛 to construct the root node B.
For each sample n in sample set, insert it to node 𝑘 ∈ 𝐾
 If k doesn’t has a sequence assigned, simply assign n to k,
and k is added to E
 If k belongs to I, determine n should be inserted to c in {C,
2L} of k by comparing Xn to (𝑋𝑘𝑚𝑎𝑥 + 𝑋𝑘𝑚𝑖𝑛)/2. Insert n to c.
 If k belongs to E, remove the sequence s assigned to k,
insert s to {C, 2L} of k; insert n to {C, 2L} of k; k added to I

A tree node can be represented in only two points in dimension L,
which are 𝑋𝑘𝑚𝑎𝑥 = (𝑥0𝑚𝑎𝑥, 𝑥1𝑚𝑎𝑥, 𝑥2𝑚𝑎𝑥, … , 𝑥𝐿𝑚𝑎𝑥) and 𝑋𝑘𝑚𝑖𝑛 =
(𝑥0𝑚𝑖𝑛, 𝑥1𝑚𝑖𝑛, 𝑥2𝑚𝑖𝑛, … , 𝑥𝐿𝑚𝑖𝑛) where 𝑘 ∈ 𝐾 and 𝑥𝑖𝑚𝑎𝑥 , 𝑥𝑖𝑚𝑖𝑛
denotes the maximum and minimum value of all the points'
coordinates value in L dimensions. Constructing a SSP-Tree in L-
dimension follows the procedure from Algorithm 1 where the
only computation for it is to calculate the center of each node
𝑘 ∈ 𝐾 . Inserting the sample points into the tree only needs
comparison and assignment. In our experiment, insert 100k
sample points from 16S rRNA data into a SSP-Tree only takes
about a few seconds on a desktop.

In SSP-Tree, every tree node k has a set of points Pk where PB is
the sample point set. Each tree node k is represented by a center
point 𝑝𝑐𝑘, which is the one nearest to the mass center inside each
node. The mass center of node k is given by Equation 3

𝑝𝑐𝑘 = {𝑥𝑙𝑘 | 𝑥𝑙𝑘 = ∑ 𝑥𝑙
𝑖

𝑛𝑘
𝑛𝑘
𝑖=0 , 0 ≤ 𝑙 < 𝐿} Eq.3

where 𝑛𝑘 is the number of sequences in node k.

(a) Raw result from DA-PWC and DA-

SMACOF on 100k sample sequences,
15 regions in total

(b) After region refinement on 100k

sample sequences, 12 regions in total

(c) After interpolated 580k out-of-sample

sequences by heuristic interpolation,
12 regions in total

Figure 2 Visualization result in 3D, each cluster is in different color (this is before final refinement)

We describe a simple hierarchical majorizing interpolation
method (HI-MI) as follows: One compares an out-of-sample point
𝑝̂ ∈ 𝑃� to 𝑝𝑐𝐵 first, and then recursively assign 𝑝̂ to a nearest child
node until the node containing nearest k neighbors is reached.
This HI-MI method can reduce the time cost of interpolation from
O(N*M) to O(M*logN). However, its accuracy is poor due to the
correctness of center point representation. It is obvious that the
nodes in leaf set E are represented directly by the points they
contain, so the representation is 100% accurate. But their parents
in set I may contain multiple points, where could be in a same
cluster or different clusters. The lower node level is, the more
likely the points in that node belong to a same cluster. At upper
level, the representation precision becomes worse because the
points might be in different clusters. Since HI-MI method
searches the tree from top to bottom, where it starts with worst pc,
there is some probability that 𝑝̂ could be assigned to a different
node other than the node the k nearest neighbors are in. To
overcome this issue while keeping the lower time cost, we
propose a heuristic majorizing interpolation method (HE-MI).

Algorithm 2: Heuristic Majorizing Interpolation
Given a sample point set, get a set of terminal nodes T where
point number in 𝑡 ∈ 𝑇 is larger than a threshold µ where the
number of regions 𝑁𝑇 ≪ 𝑁.
For each 𝑝̂ ∈ 𝑃� , compare the original distance δ between
𝑝̂ and 𝑝𝑐𝑡 in 𝑇, assign it to the nearest node 𝑡′
All the sample points 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑘′ ∈ 𝑃𝑡′′ in that node will
be considered as the 𝑘′ nearest points to 𝑝̂.
Find k nearest points to 𝑝̂. Compute every δij between 𝑝̂𝑖 and
𝑝𝑗 ∈ 𝑃𝑖′;
Use the k-NN: 𝑝0,𝑝1,𝑝2, … , 𝑝𝑘 ∈ 𝑃𝑡′ to 𝑝̂ . (𝑘 ≤ 𝑘′) to
determine the position for 𝑝̂ in dimension L. The group of 𝑝̂ is
assigned to the same group where the nearest 𝑝𝑖 is.

4.1 Heuristic Interpolation
First, we introduce the concept of terminal nodes T where
{𝑷𝒕| 𝒕 ∈ 𝑻} is PB. We can use optimization parameters, such as
node level, maximum number of points inside, to control the
number and quality of T. So instead of searching through top to
bottom, we can directly use the high quality 𝒑𝒄𝒕(𝒕 ∈ 𝑻) where t
contains only one or few cluster inside to find nearest k neighbors
for an out-of-sample point. Additionally, the number of T is much
smaller than sample points number N. So the time cost of HE-MI
is much lower than MI-MDS which needs to compare all the
sample sequences. HE-MI is described in Algorithm 2. By
applying HE-MI, the time complexity is O(MNT). The time cost is
greater than HI-MI, but the accuracy of interpolation is much
higher in practice.

4.2 Region Refinement
Not only is SSP-Tree applied to dimension reduction and
clustering so that it enables a fast and efficient way of
interpolation, but also it can be used on fast refinement of existing
DA-PWC result.

As we have clustering result from DA-PWC and mapping result
DA-SMACOF, the clustering result can be refined using both of
the factors. Here we call the raw clusters from DA-PWC mega-
regions. After defining the mega-regions g in {1…G}, we classify
the terminal nodes T into three categories: 1) Node cluster g’ in
G’, where a node cluster is assigned as the same cluster to the
most points in that node. So the node in the node cluster actually
represents the cluster of 𝑃𝑚𝑜𝑠𝑡

𝑔′ ; 2) Unclear mixture U, where the

unclear mixture is defined as a node contains significant number
of points belonging to different clusters. As a terminal node may
contain several different groups of points, this terminal node is
undefined as to which g should it belongs to; 3) In the
"intergalactic void" V, where normally the points inside these
nodes are in between visually obvious clusters. Those points
belonging to V needs to be classified to clusters as well. Each
terminal node t is represented by a center point 𝑝𝑐𝑡 given in
Equation 3. The goal of region refinement is to use the location
information from MDS and the cluster information from PWC to
classify node in {1…G} clearer and make region identification for
nodes in U. Algorithm 3 describes region refinement process. To
process with this algorithm, we set f as a cluster-define fraction
threshold where cluster-define fraction is defined in Equation 4:

𝑓𝑡
𝑔′ = 𝑛𝑡

𝑔

𝑛𝑡
 Eq.4

where 𝑛𝑡
𝑔is the number of points in node t with assigned to g, and

𝑛𝑡 is the total number of points in node t. We set a threshold θ as
a number from 0.5 to 1. Node size, node level and number of
points inside node are used in a node determination function Η
with a threshold η to distinguish the V from U and G’.

Algorithm 3: Fast Region Refinement
Iterate Following
 Create SSP-Tree and get T
 Loop over 𝑡 ∈ 𝑇
 If Η(t) < η, t is added to set V
 If H(t) ≥ η,
 If 𝑓𝑡

𝑔′ > θ, assign t to g and t is added to set G.
 If no 𝑓𝑡

𝑔′ > θ (𝑔 ∈ 𝐺), t is added to set U.
 Loop over 𝑡 ∈ 𝑇
 Update center point 𝑝𝑐𝑡
 Loop over p in 𝑡 ∈ 𝑈 ∪ 𝐺
 Assign p to g where distance(p, 𝑝𝑐𝑡̂)is minimum and 𝑡̂ ∈ 𝐺
 If all 𝑝𝑐𝑡̂ in 𝑡̂ ∈ 𝑈 are the same in last iteration, break
 Else, continue
Finally assign all 𝑝 ∈ 𝑃 to 𝑡̂ ∈ 𝐺 where distance(p , 𝑝𝑐𝑡̂) is
minimum

After the region refinement, the cluster with high density near
each other can be merged automatically, and the cluster with
lower density can be reassigned with more points. By observing
from the plot with the region refinement result and raw DA-PWC
result, our mega-regions are much clearer as shown in Figure 2(b).
Region 9(dark grey), 12(purple) and 15(light green) on the upper
right of Figure 2(a) have been refined and merged into one
region(grey). Region 8(light blue) on the top left is split and
becomes part of cluster 2(green) and 4(yellow). Furthermore, this
method is extremely fast since the number of terminal nodes is
much smaller than N. The computational cost of algorithm 3 is
very small that it takes about 10 seconds to process a 100k dataset
on a desktop.

4.3 Recursive Clustering
By applying HE-MI to the result from region refinement on 100k
sample data, all the sequences from hmp16S rRNA data have
been successfully clustered and visualized as shown in Figure
2(c). However, because each of these clusters contains several
hundreds of thousands sequences, they still have internal
structures which seems to be several sub-clusters. These sub
clusters on a plot with the whole dataset couldn’t be shown clearly
because the distance between regions are relatively larger than the
distance between sub-clusters in each region. So the points in each

region are tend to be closer to each other, thus the differences are
diminished. Therefore, to amplify the dissimilarity between sub-
clusters, we introduce the recursive clustering, which is to apply
DACIDR on each separate region. The recursive clustering result
of region 6(dark green) in shown in Figure 4. 16 clusters were
found in this region which shows clear separation between each
cluster.

5. Experiments
The experiments were carried out on PolarGrid (PG) cluster using
100 compute nodes and Tempest using 32 compute nodes. The
compute nodes we used on PG are iDataPlex dx340 rack-mount
servers with 8 cores per node. Tempest is an HP distributed shared
memory cluster with 768 processor cores. The data was selected
within 16S rRNA data from the NCBI database. The total input
sequence number is 1160946. First, we examined the dataset and
found all duplicate sequences, which have exactly the same length
and composition. Then we screened the data by keeping only one
sequence in each duplicate group, so that every sequence in the
filtered set is different from each other. Finally, we could have a
unique data set of 684769 sequences. Since the rest of the
sequences all have a corresponding unique sequence in the unique
set, they can be assigned to clustering result directly.

5.1 SW versus NW
We evaluated both SW and NW on the sample N=100k dataset
before proceeding with the rest of the pipeline and found SW to
produce more reliable results than NW. Sequence lengths were
not uniform in the 16S rRNA dataset and NW, being a global
alignment algorithm, had done its best by producing alignments
with many gaps. In cases where a shorter sequence is aligned with
a longer one, the gaps were dearly added by NW simply to make
the alignment from end to end. Unfortunately, the distance
measure we computed over the alignments was susceptible to
gaps and produced artificially large distances for sequence pairs.
The plots we generated with NW based distances had long thin
cylindrical point formations as shown in Figure 6, which later we
identified as a direct consequence of the number of gaps present
in the alignment. Pictorially, this effect is shown in Figure 7.
From the DACIDR result, multiple points selected on the same
cylinder belong to a same cluster, but by using NW, instead of
clustered, these points are aligned in line. The selected points are
based on their ID number in the given sample dataset, where their
lengths are 507 to 284.

The analysis of the line structure is shown in Figure 8, which
concludes that points along the line are linearly related in lengths

and NW has introduced gaps linearly to form global alignments.
The sequences from 2-9 are aligned with Sequence 1, whose
length is the longest. It shows that original lengths decrease
linearly from one end to the other. The mismatches introduced by
gaps for the alignments of these sequences have thus increased
linearly according to the Mismatches by Gaps line. Also, clear is
the fact that gaps have a dominant effect on the number of
mismatches as the Total Mismatches line overlaps with the
Mismatches by Gaps line. Thus, aligning short sequences with
long sequences using NW has caused the introduction of
biologically unimportant number of gaps purely for the sake of
forming a global alignment.

SW in contrast performed a local alignment producing alignment
segments with fewer gaps. This reduction in superfluous gaps
immediately improved the quality of clustering and plots where
more globular structure was evident rather long thin cylinders.

5.2 Comparison with UCLUST and CD-HIT
We have used two popular choices of clustering methods:
UCLUST and CD-HIT to compare the result with DACIDR. As
mentioned in previous section, UCLUST and CD-HIT are two
popular greedy heuristic methods which are capable of processing
millions of sequences on a desktop. Thus we apply these two
methods on our dataset.

From Figure 9 it is shows that by directly applying CD-HIT or
UCLUST on the whole 16S rRNA dataset we have, the clustering
result is overestimate. By using DACIDR on the whole dataset
and one more time on each region, a total number of 188 clusters
are found, and they contain a reasonable number of sequences in
each cluster, from 300 to 40000. However, by using CD-HIT and
UCLUST with a dissimilarity threshold of 0.97, we found 8418
and 6000 clusters. Among the clusters found, most of them only
contain 1 or 2 sequences. As shown in the histogram, CD-HIT
found 5475 clusters only have less than 10 sequences in them, and
UCLUST found 3829 such clusters. Moreover, some clearly
separated clusters in visualization result still have mixed colors in
them. Figure 5 is the visualization result we used to show how
UCLUST works as different color for each cluster. The UCLUST
results are messier and some clusters are broken into several
components. Table 1 shows the statistics of cluster quality by
using DA-PWC, UCLUST and CDHIT with input sequences from
Region 6. A total number of 16 V-clusters are found in plot shown
in Figure 4. Even though we tried different dissimilarity
thresholds on UCLUST and CDHIT, they still lack of accuracy
where some V-clusters are composed by multiple A-cluster
(number of A-clusters in single V-cluster) or some of A-cluster

Figure 4 Recursive clustering result for

mega-region 6 in DACIDR result of
whole dataset

Figure 5 UCLUST result for mega-

region 6 in DACIDR result of whole
dataset

Figure 6 Visualization result for 100k

sample set using NW distance

are composed by multiple V-cluster (number of shared A-cluster).
In contrast, DA-PWC uniquely identified all 16 V-clusters.
UCLUST identify 9 V-clusters at most while CDHIT only
manages to identify 3 V-clusters. This is because the hard-cutoff
dissimilarity threshold is difficult to optimize, and the global
alignment methods they used give unreliable answers with varies
sequences lengths. This experiment demonstrates that DACIDR
can have a robust clustering result which is better than CD-HIT
and UCLUST. DACIDR is computationally more complicated but
we have shown how using interpolation and SSP-Tree, we get
practical computation and memory requirements.

5.3 Comparison of Interpolation Methods
In this experiment, we conduct three interpolation methods
compare with each other in execution time and normalized stress
value which is given in Equation 5:

𝜎(𝑋) = ∑ 1
∑ 𝛿𝑖𝑗𝑖<𝑗

𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.5

where the notations are from Equation 2. Generally speaking, the
normalized stress value is the error value from target dimension
mapping to the original dimension. Therefore, a mapping result
has a higher accuracy when the normalized stress value is lower.

This test is done using the 100k dataset from 16S rRNA data on
32 nodes from PG. We selected 10k, 20k, 30k, 40k and 50k from
it as sample sets and the rest 90k, 80k, 70k, 60k and 50k are
considered as out-of-sample sets. The sample sets are assumed to
have the mapping in target dimension.

Figure 10 shows that HE-MI and HI-MI execute interpolation
much faster than MI-MDS while both of former methods takes
around 1000 seconds to finish and MI-MDS takes about 50 times
longer than that. The computation for MI-MDS is O(MN) where N

is the sample size and M is the out-of-sample size. Note that both
HE-MI and MI-MDS’s execution time increases while out-of-
sample size decreases. This is because computation for both of
these methods correlates with sample size * out-of-sample size
while this value increases from 10k * 90k to 50k * 50k. But for
HI-MDS, since it’s time complexity is O(MlogN), so logN will
remains almost same from N increases from 10k to 50k. And M
decreases from 90k to 50k, so its execution time decreases. Figure
11 shows that MI-MDS has the most accurate result because of
computing every distance between each sample and out-of-sample
point. However, this experiment shows that by using HE-MI, the
interpolation processes much faster than MI-MDS, and the
accuracy of the mapping result is much better than HI-MI, which
makes HE-MI the ideal solution for massive size of data
interpolation.

6. Conclusion and Future Work
In this paper we proposed a parallel data clustering and
visualization method: DACIDR, which can efficiently cluster
millions of sequences with various lengths. DACIDR utilizes the
computing power of HPC by applying on several distribute and
parallel computing frameworks. Compared to traditional sequence
clustering method without visualization, such as UCLUST and
CD-HIT, our visualization result combined with the clustering
result can help biologist observe and analysis structures among
different gene clusters. These correlations enable us to cluster
millions of sequences efficiently with high accuracy. Using the
deterministic annealing method can help us avoid local optima
and overestimation problem. By using SSP-Tree in DACIDR, not
only can the interpolation to clustering and visualization result run
faster, but also we can refine the result from DA-PWC for
hundreds of thousands results in a few seconds.

Figure 7 Long thin formation of points resulting from NW

alignment (Point ID Number: Sequence ID)

Figure 8 Effect of gaps towards the long thin structure

Figure 9 Histogram of number of

clusters found based on number of
sequences in each cluster

Figure 10 Execution time of three

interpolation method

Figure 11 Normalized Stress value of

100k interpolation mapping result

0

100

200

300

400

500

2 3 4 5 6 7 8 9

Co
un

t

Point ID Number

Total Mismatches
Mismatches by Gaps
Original Length

1

10

100

1000

10000

1 30 60 90 30
0

60
0

90
0

30
00

60
00

90
00

30
00

0

60
00

0

Co
un

t

Sequence Count

PWC in each
Region
CD-HIT default

1

10

100

1000

10000

100000

10k 20k 30k 40k 50k

Se
co

nd
s

Sample Size

HE-MI
HI-MI
MI-MDS

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

10k 20k 30k 40k 50k

N
or

m
al

iz
ed

 S
tr

es
s

Va
lu

e

Sample Size

HE-MI
HI-MI
MI-MDS

We are currently integrating phylogenetic trees with our analysis
both by adding it to visualization and using it to improve
specification of mega-regions where there are ambiguous clusters.

7. Acknowledgments
Our thanks to UITS in Indiana University for Polar Grid support
and Ryan Hartman from CGL in Indiana University for Windows
HPC cluster support. This work is under National Health Institute
Grant 1RC2HG005806-01 support.

8. References
[1] Peterson J, Garges S, et al. (2009). "NIH Human Microbiome

Project." Genome Research. 19(12): 2317-2323.
[2] Cole JR, Chai B, et al. (2005). "The Ribosomal Database

Project (RDP-II): sequences and tools for high-throughput
rRNA analysis." Nucleic Acids Res. 33(suppl_1): D294-296.

[3] Altschul, S. F., et al. (1990). "Basic Local Alignment Search
Tool." Journal of Molecular Biology. 215: 403-410.

[4] Edgar, R. C. (2004). "MUSCLE: multiple sequence
alignment with high accuracy and high throughput." Nucleic
Acids Res. 32: 1792-1797.

[5] Schloss, P. D. and J. Handelsman. (2005). "Introducing
DOTUR, a computer program for defining operational
taxonomic units and estimating species richness." Appl.
Environ. Microbiol. 71: 1501-1506.

[6] Schloss, P. D., S. L. Westcott, et al. (2009). "Introducing
mothur: opensource, platform-independent, community-
supported software for describing and comparing microbial
communities." Appl. Environ. Microbiol. 75: 7537–7541.

[7] Sun, Y., Y. Cai, et al. (2009). "ESPRIT: estimating species
richness using large collections of 16S rRNA
pyrosequences." Nucleic Acids Res. 37(76).

[8] Cai, Y., et al.(2011). "ESPRIT-Tree: hierarchical clustering
analysis of millions of 16S rRNA pyrosequences in
quasilinear computational time." Nucleic Acids Res. 39(95).

[9] Li, W. and A. Godzik (2006). "Cd-hit: a fast program for
clustering and comparing large sets of protein or nucleotide
sequences." Bioinformatics. 22: 1658–1659.

[10] Edgar, R. C. (2010). "Search and clustering orders of
magnitude faster than BLAST." Bioinformatics. 26.

[11] Yuzhen Ye. "Identification and quantification of abundant
species from pyrosequences of 16S rRNA by consensus
alignment." The Proceedings of BIBM 2010, 153-157

[12] Fox, G. C. (2011). "Deterministic Annealing and Robust
Scalable Data Mining for the Data Deluge." PDAC’11,
Seattle, Washington, ACM.

[13] Hughes, A., Y. Ruan, et al. (2012). "Interpolative
multidimensional scaling techniques for the identification of
clusters in very large sequence sets." BMC Bioinformatics
13(Suppl 2): S9.

[14] J.Ekanayake, et al. "Twister: A Runtime for iterative
MapReduce." Proceedings of MapReduce’10 of ACM HPDC
2010, Chicago, Illinois, ACM.

[15] Ruan, Y., Z. Guo, et al. "HyMR: a Hybrid MapReduce
Workflow System." Proceedings of ECMLS’12 of ACM
HPDC 2012, Delft, Netherlands, ACM.

[16] Rose, K., Gurewitz E., Fox, G. C. (1990). "Statistical
mechanics and phase transitions in clustering." Phys. Rev.
Lett. 65: 945--948.

[17] Rose, K. (1998). "Deterministic Annealing for Clustering,
Compression, Classification, Regression, and Related
Optimization Problems." Proceedings of the IEEE 86(11):
2210--2239.

[18] O. Gotoh, (1982) "An improved algorithm for matching
biological sequences." Journal of Molecular Biology.
162:705-708.

[19] Needleman, Saul B. and Wunsch, Christian D. (1970). "A
general method applicable to the search for similarities in the
amino acid sequence of two proteins." Journal of Molecular
Biology 48 (3): 443–53.

[20] Rose, K., Gurewwitz, E., and Fox, G. (1990). "A
deterministic annealing approach to clustering." Pattern
Recogn. Lett.11: 589-594.

[21] Bronstein, M. M., A. M. Bronstein, et al. (2006). "Multigrid
multidimensional scaling." Numerical Linear Algebra with
Applications. Wiley.

[22] Borg, I., and Groenen, P. J. (2005) "Modern
Multidimensional Scaling: Theory and Applications."
Springer, 2005.

[23] Bae, S.-H., J. Qiu, et al. (2010). "Multidimensional Scaling
by Deterministic Annealing with Iterative Majorization
algorithm." Proceedings of the 6th IEEE e-Science
Conference, Brisbane, Australia.

[24] PlotViz - A tool for visualizing large and high-dimensional
data. http://salsahpc.indiana.edu/pviz3/

[25] Bae, S.-H., J. Y. C., et al. (2010). "Dimension reduction and
visualization of large high-dimensional data via
interpolation." Proceedings of the 19th ACM HPDC
Conference, Chicago, Illinois, ACM.

[26] J. Barnes and P. Hut (1986). "A hierarchical O(N log N)
force-calculation algorithm." Nature 324 (4): 446–449

Table 1 Cluster quality comparison of different algorithms on Region 6. V-clusters are the clusters visible shown in the
dimension reduction result, A-clusters are the clusters found by particular clustering algorithm.

 PWC UCLUST CDHIT
Hard-cutoff similarity threshold -- 0.75 0.85 0.9 0.95 0.97 0.9 0.95 0.97
Number of A-clusters (number of clusters
contains only one sequence) 16 6 23 71(10) 288(77) 618(208) 134(16) 375(95) 619(206)

Number of clusters uniquely identified 16 2 9 8 9 4 3 2 1

Number of shared A-clusters 0 4 2 1 0 0 0 0 0

Number of A-clusters in single V-cluster 0 0 12 62(10) 279(77) 614(208) 131(16) 373(95) 618(206)

http://salsahpc.indiana.edu/pviz3/
http://salsahpc.indiana.edu/pviz3/
http://salsahpc.indiana.edu/pviz3/

	1. Introduction
	2. Related Work
	3. Data Clustering and Visualization Pipeline
	3.1 All-pair Sequence Alignment
	3.2 Pairwise Clustering
	3.3 Multidimensional Scaling
	Multidimensional scaling (MDS) is a set of related statistical techniques often used in information visualization for exploring similarities or dissimilarities in data. MDS algorithms use the pairwise distance matrix Δ and generate a mapping for each ...
	3.4 Interpolation

	4. SSP-Tree
	4.1 Heuristic Interpolation
	First, we introduce the concept of terminal nodes T where {,𝑷-𝒕.| 𝒕∈𝑻} is PB. We can use optimization parameters, such as node level, maximum number of points inside, to control the number and quality of T. So instead of searching through top to b...
	4.2 Region Refinement
	4.3 Recursive Clustering

	5. Experiments
	5.1 SW versus NW
	5.2 Comparison with UCLUST and CD-HIT
	5.3 Comparison of Interpolation Methods

	6. Conclusion and Future Work
	7. Acknowledgments
	8. References

