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Abstract 
We present a scalable parallel deterministic annealing formalism for clustering with cutoffs and 

position dependent variances. We apply it to “peak matching" problem of identifying the common LC-
MS peaks across multiple samples in proteomic biomarker discovery. 

1 Introduction 
 
This paper extends the deterministic annealing approach of [1] to a scalable integrated parallel 

formulation. It extends earlier work [2-4] to add cutoff clusters and parallelism. It also addresses special 
features of the LC-MS problem including the very different scales in the m/z and RT dimensions. The 
large number of clusters (around 30,000 for a quarter of a million peaks) also requires new approaches to 
the parallel approach discussed in [5-9] top get efficient scalable performance. Also note most of the 
previous parallel work was not focused on vector space problems but rather on non-metric spaces[10] 
extending methods introduced by Hofmann and Buhmann [11] and at most around 100 clusters. 

2 Parallel Deterministic Annealing Clustering with Cutoff 
 
 Deterministic annealing [4] is motivated by the same key concept as the more familiar simulated 

annealing method for optimization problems. At high temperatures systems equilibrate easily as there is 
no roughness in the energy (objective) function. If one lowers the temperature on an equilibrated system, 
then it is a short well-determined path between minima at current temperature and that at previous 
temperature. Thus systems which are equilibrated iteratively at gradually lowered temperature, tend to 
avoid local minima. The Monte Carlo approach of simulated annealing is often too slow, and so in 
deterministic annealing integrals are performed analytically. In many examples as in example here T is 
essentially a distance resolution; at large temperatures all clusters are merged together and they emerge as 
one looks at the system with sharper resolution as temperature decreases. 

Consider a Hamiltonian H(χ, ϕ) which is to be minimized with respect to variables χ and ϕ. Then 
deterministic annealing is based on averaging with the Gibbs distribution at Temperature T.  

 
             P(χ, ϕ)  = exp( - H(χ, ϕ) / T) / ∫ dχ exp( - H(χ, ϕ)  / T)  (1)  

 
and one minimizes the Free Energy F combining Objective Function H and Entropy, 
 

         F = < H - T S(P) > = ∫ dχ [P(χ)H + T P(χ) lnP(χ)]  (2) 
 
One obtains an EM (Expectation Maximization) method with the variable set χ subject to annealing 

and determined by 
χ = <χ> |0 = ∫ dχ χ P(χ)       (3) 

 
And this is followed by the M step which determines the remaining parameters ϕ optimized by 

traditional methods. Note one iterates over temperature decreasing it gradually, but also iterates at fixed 
temperature until the EM step converges.  

Consider a clustering problem with N points (peaks in LC-MS application) labeled by x with position 
X(x) and K clusters labeled by k. Let clusters have standard deviation σ(k) and center Y(k). The annealed 
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variables χ are Mx(k), which are the probabilities that the point x belongs to cluster k with constraint for 
each point x. 

∑k=1
K Mx(k) = 1       (4) 

 
Let ρ(z, σ) = 0.5 ∑i=1

d (zi/σi)2      (5) 
with vector dimension d for X(x) and Y(k) with d = 2 in example given later. 
 
Define the clustering Hamiltonian 
 

H = ∑k=0
K ∑x=1

N Mx(k) f(x,k)     (6) 
 
 With for k >= 1  f(x,k) = ρ( X(x) - Y(k), σi (k))     (7a) 
 and for k=0  f(x,0) = 0.5 c2 independent of  x.    (7b) 
 

Then as | X(x) - Y(k)| increases, f(x,k) becomes larger than f(x,0) which we term the sponge as it 
absorbs all points outside all clusters (X(x) - Y(k) / σ(k)2 > c2 for all k > 0. Note there is only one sponge 
but multiple conventional clusters. An important innovation introduced by Rose [4] is the use of an 
intrinsic probability p(k) for each cluster k satisfying 
   ∑k=0

K p(k) = 1        (8) 
One can understand this as corresponding to a large number Λ (much larger than current number of 
centers K) of clusters with a fraction p(k) of them at each center. This allows one to split centers cleanly 
as one takes the number p(k) Λ at a center position and divide in two when cluster with this center splits. 
Without this approach, splitting is inelegant as the formalism naturally gives half a cluster at each center. 
The p(k) are given below and are viewed as one of variables ϕ determined at the M step of EM method. 
In this case, the Free Energy F is given by 
 
   F = - T ∑x=1

N ln ∑k=0
K p(k) exp( - f(x, k) /T )   (9) 

 
Now we use equation (3) to determine the annealed variables < Mx(k)> and in this case, the integrals can 
be done exactly as Hamiltonian is a quadratic. We describe how to tackle the case with more complicated 
forms for H and intractable integrals elsewhere [7, 10]. This is followed by an M step with a simple 
minimization to find the ϕ variables Y(k) and p(k) subject to equation (8). We introduce auxiliary 
variables Zx given by 
 

Zx = ∑k=1
K p(k) exp( - (X(x) - Y(k))2/(2 σ(k)2 T)  ) + p(0)exp( - c2/(2 T))   (10) 

 
  < Mx(0)> = p(0) exp( - c2/(2 T) ) / Zx      (11a) 
  < Mx(k)> = p(k) exp( - (X(x) - Y(k))2 / (2 σ(k)2 T)  ) / Zx  for k > 0 (11b) 
  

Y(k) = ∑x=1
N < Mx(k)> X(x) / ∑x=1

N < Mx(k)> k ≠0   (12) 
 
  p(k) = ∑x=1

N <Mx(k)> / N      (13) 
 
Note in the conventional formalism p(k) = 1, small clusters contribute similarly to a big cluster in Zx 
which appears in denominators like equation (11b). In equation (13), the cluster probability p(k) is the 
fraction of points in the k’th cluster and this implies that in (10), clusters are weighted according to their 
size which is intuitively attractive. The sponge k=0 is rather different from the other clusters as it will not 
be split and will dominate equation (8) in the case of very many individually small clusters k if we use 
(13) for it. So we modified (13) with a fixed p(0) that we did not vary at M step. 
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As explained in detail in earlier papers [4, 10], the minimized free energy (9) will exhibit instabilities 
corresponding mathematically to second derivatives that have negative eigenvalues. These are phase 
transitions in a physics terminology [3]. One can calculate the second derivatives of F 
 

∂2F/∂Yi(λ) ∂Yj(µ)   =   δij  δµλ ∑x=1
N < Mx(λ)> / σi (λ)2    (14a) 

 
- δµλ ∑x=1

N (Yi(λ)) - Xi(x)) (Yj(µ)) – Xj(x)) < Mx(λ)>/ (Tσi (λ)2σj (µ)2)  (14b) 
 

+ ∑x=1
N (Yi(λ)) - Xi(x)) (Yj(µ)) – Xj(x)) < Mx(λ)>< Mx(µ)>/ (Tσi (λ)2σj (µ)2) (14c) 

 
Interestingly the formula is independent of p(k) and sponge term as long as we express in terms of 
fractional probabilities < Mx(k)>. Equation (14) has a reasonable structure with (14b) increasing in 
importance as T decreases. One examines (14) for instabilities separately for each cluster λ = µ  running 
from 1 .. K. It is easy to see that elongated clusters will have large values of the term (14b) and these will 
naturally split first as T decreases. Note as T decreases the exponential in terms like (10) and (11) can 
lead to arithmetic errors. This was avoided by both testing on exponent and checking for overflow. 
 
The equations above are solved by starting with one cluster at large T∞ which is determined from (14) to 
be so large that it is above the phase transition temperatures. The precise value is not important as the 
computation runs so fast with one cluster that this stage of the computation takes negligible time. Then 
the temperature is reduced by a factor fannealing with the EM steps above converged at each temperature. 
Splitting is checked at each new temperature for each cluster. If (14) is singular for cluster λ then this 
cluster is split and given a perturbed position determined by direction of the unstable eigenvector of 
∂2F/∂Yi(λ) ∂Yj(λ) and a magnitude determined so that cluster count ∑x=1

N <Mx(k)> will change by a 
modest amount (~5%) for each of two child clusters. This process is continued until reasonable 
termination criteria met. In this problem clusters were not split if their average width was small and if 
they were small (these cuts were set differently depending on value of cutoff c). Also clusters were 
removed if they were too small or if their centers were too close. As seen in figure 6, this close cluster 
check was only used at low temperatures i.e. at a distance scale when clusters were resolved. Clusters are 
considered final when the freezing factor FF given in (15) is small. Note at convergence <Mx(k)> are 
either 1 or zero whereas at any “non-zero” temperature the <Mx(k)> sum to 1 for each k and are 
interpreted as probabilities that are resolved at low temperature.  All clusterings are finished with a set of 
annealing iterations where there is no splitting but one just waits that all clusters have FF < 0.002 (most 
are much smaller than this). The final temperature for this is around T ~ 0.01. 
 

FF(k) = ∑x=1
N <Mx(k)> ( 1 - <Mx(k)> ) / N    (15) 

 
The scale represented by sponge cutoff c is much smaller than initial temperature T∞ and so we started the 
clustering with no sponge factor and then introduce it a lower temperature and in fact anneal it to reach its 
final value at low temperature. In example given later in figure 6, the desired sponge cutoff of 2 was 
reached at T = 2 after being introduced as a cutoff of 45 at T = 30.  
 
In the LC-MS problem, the variance in m/z is much smaller than that of RT and if used directly would 
lead to anomalies as formalism designed for circular clusters. So we adjusted above formalism to make 
the variance in m/z anneal from a large value at T∞ to the desired value at T = 12. Note that for LC-MS 
the variances are the “real values” and so temperature has a natural scale with T=1 as natural “tipping 
point”. 
 
The most straightforward parallelism is that of points and is implemented [10] by uniformly dividing the 
points between compute units (processes or threads) when the equations above consist of parallel 
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arithmetic and global reductions that can be implemented by either MPI or iterative MapReduce [6, 12-
14]. This approach works well for initial values of temperature up to around 512 clusters. However as 
temperatures decrease the <Mx(k)> change character and each point becomes associated with a few 
clusters (an average of 8 out of ~25000 in example below). Thus calculating terms like ∑x=1

N <Mx(k)> as 
a sum over all clusters becomes inefficient and an unnecessary memory use. Rather one uses a data 
structure that only keeps the <Mx(k)> for clusters whose centers are near each point. Further one can 
exploit parallelism over clusters and both calculate and split clusters separately for the above equations in 
different regions. This leads to a familiar “local geometric” structure with points divided so nearby points 
are in the same process and local communications are used for point/clusters which are near the boundary 
between geometric domains. In LC-MS case, this geometric structure was implemented in one dimension 
with m/z splits. One finds a difficulty as a given decomposition may not be best for both point and cluster 
parallelism; this is well known for example in particle in the cell computations in scientific simulations. 
In our current results we implement the cluster parallelism for the MPI processes but not the thread 
parallelism. We kept the decomposition with equal number of points in each process; this led to about a 
factor of two load imbalance in number of clusters. We can improve this but current approach gives 
satisfactory performance for current LC-MS problems. 
 
In the LC-MS problem, we repeated the steps above 2 or 3 times to get presented results. After first step, 
we took the peaks assigned to “sponge cluster” (k =0) and identified clusters in it that had been 
incorrectly split in first step. The new clusters were merged with those from first step by annealing the 
combined sample starting not at  T∞  but rather a low temperature T ~ 0.2. This was done at most 2 times 
in results presented here. 
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3 Results 

3.1 Clustering Methods 
This evaluation section includes several clustering methods. There are DAVS(c) which are the parallel 
multi-cluster deterministic annealing introduced in this paper with cutoff c so that all clusters are trimmed 
with all peaks satisfying ∆2D(x) ≤ c2 where 

∆2D(x) = ((m/z|cluster center – m/z|x )/ δ(m/z))2 + ((RT|cluster center – RT|x )/ δ(RT))2  (16) 
We present results for c = 1, 2 and 3 although latter case does not appear in all analyses as we consider 
c=3 as so large that many “incorrect” peaks are assigned to clusters. This extends Medea, which is the 
trimmed deterministic annealing algorithm described in [1] where deterministic annealing is applied 
separately to each trimmed cluster.  
DA2D is the identical parallel multi-cluster deterministic annealing algorithm run without any trimming. 
It is a modern implementation of the algorithm introduced in [2-4]. 
Mclust is a model-based clustering algorithm [15] whose use for this problem is described in [1]. 
Landmark is sometimes used. It is a collection of reference peaks used to calibrate and evaluate methods 

3.2 Computers Used 
We used two Indiana University Clusters Madrid and Tempest specified below. These are running 

Windows HPC Server with parallelism from MPI (using MPI.Net [16] on top of Microsoft MPI) and TPL 
[17] for thread parallelism. All codes were written in C#. The results should be similar on Linux with Java 
or C++ coding. 

Tempest: 32 nodes, each 4 Intel Xeon E7450 CPUs at 2.40GHz with 6 cores, totaling 24 cores per 
node; 48 GB node memory and 20Gbps Infiniband network connection 

Madrid: 8 nodes, each 4 AMD Opteron 8356 at 2.30GHz with 4 cores, totaling 16 cores per node; 
16GB node memory and 1Gbps Ethernet network connection 

3.3 Structure of Data  

Figure 1. The DA2D clustering at high temperature with 60 clusters determined from a run from 241605 peak 
charge 2 data where D(m/Z) was fixed at 0.005 and D(RT) was correctly 2.35. Each of those 60 clusters will 
eventually be broken into 500 smaller clusters and spread out along x axis as D(m/Z) is annealed to its final much 
smaller value. The sponge was not used in this run as it is only introduced at lower temperatures 
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. 

Figure 2. A tiny fragment of clustered space for a full DAVS(1) run. The orange triangles are sponge peaks outside 
any cluster. The colored hexagons are peaks inside clusters with the white hexagons being determined cluster 
centers. Each cluster is colored differently. This comes from 241605 peak charge 2 clustering. 
 
The first two plots illustrate the nature of the data to be clustered. As the error in m/z is proportional to the 
inverse of this quantity, we define new 2D positions (x, y) rather than (m/z, RT) 

x =  ln(m/z) / D(m/Z) 
y = RT / D(RT) 

where previous analysis of the measurement of known peaks gave D(m/Z) = 5.98 10-6 and D(RT) = 2.35 
where δ(m/z) = D(m/Z) . (m/z) and δ(RT) = D(RT) are three times standard deviation of measurement 
determined by study of landmark peaks. By using x and y as defined above, we get reduced variables 
which should give circular clusters with same size in each dimension. Note this change of variables is 
only used for display purposes. As described we directly use m/z and RT as coordinates in the clustering 
and account for position dependent error by calculating the value of δ(m/z) (and the fixed δ(RT)) 
dynamically for each cluster center position. The much smaller value of D(m/Z) compared to D(RT), 
makes the reduced space very much larger in x than y direction. This would distort the clustering 
algorithm at large temperatures. Thus as described, we anneal the value of D(m/Z) starting at “infinite” 
temperature with a large value.  
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3.4 Parallelism 
 

 
Figure 3: Parallelism within a Single Node of Madrid Cluster. A set of runs on 241605 peak data with a single node 
with 16 cores with either threads or MPI giving parallelism. Parallelism is either number threads or number of MPI 
processes. For MPI, we show case of cluster and no cluster porallelism 

Figure 4: Speedups for several runs on Madrid from sequential through 128 way parallelism defined as product of 
number of threads per process and number of MPI processes. We look at different choices for MPI processes which 
are either inside nodes or on separate nodes. For example 16-way parallelism shows 3 choices with thread count 
1:16 processes on one node (the fastest), 2 processes on 8 nodes and 8 processes on 2 nodes.  
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Figure 5: Speedups for several runs on Tempest from 8-way through 384 way MPI  parallelism with one thread per 
process. We look at different choices for MPI processes which are either inside nodes or on separate nodes. 
 
Figure 3 illustrates two aspects of parallel performance. Firstly that MPI parallelism outperforms that 
coming from threads (compare green and blue). Secondly that we get higher performance (compare red 
and green) when we use the cluster parallelism described in section 2. Figure 3 only looks at parallelism 
within a single 16 core node whereas figures 4 and 5 extends this to up to 32 nodes where the network 
overheads impact performance on the runs with larger parallelism. This is especially true on the Madrid 
cluster which only has Ethernet network links whereas Tempest has Infiniband. Again we find MPI 
outperforms threading but as described earlier, we only implemented the cluster parallelism (used in all 
runs in this figure) with MPI. Several of these runs use a mix of thread and MPI parallelism; threads 
implement peak parallelism and MPI peak and cluster parallelism. All runs in figure 3 to 5 used the 
efficient model where each peak x only stores the occupation probability Mx(k) for relevant (i.e. nearby) 
clusters k. Throughout the run (from 1 to around 25200 clusters in figures), the mean number of clusters 
stored for each peak averaged at most 8 which is < 0.1% of average number of clusters. Figure 3 to 5 
corresponds to DAVS(3) runs.  
 
Note that the parallel clustering is 

a) Inefficient in that it is not load balanced. We currently decompose problem so there are equal 
number of peaks in each process. This leads to a factor of 2-4 variation in number of clusters per 
node. For example the case with 32 MPI processes in figure 4 finishes with an average of 789 
clusters per node while the minimum number is 511and the maximum 1391. 

b) Efficient as it naturally spreads splitting over the full region of peaks and this implies that cases 
with just one MPI process (and any number of threads) need slower annealing to get same 
number of clusters as runs with more than 4 MPI processes. 

The parallel performance is currently limited by the load imbalance effect (a) and MPI communication 
overheads such that 64 way parallelism is good choice for this 241605 peak dataset on Madrid and 120 
way (30 Tempest nodes with 4 MPI processes in each node) gives best speedup on Tempest. There is also 
the usual effects that memory bandwidth limits the useful parallelism on each node. We intend tests on 
larger datasets where higher levels of parallelism will be optimal. The “production” execution time used 
in runs reported here vary from 2 to 10 hours (dependent on annealing schedule) on the 8 node Madrid 
cluster which has rather old (2008) AMD processors. Tempest is a factor 1.8 faster. 

3.5 Characteristics of Clustering Solutions 
We present in table 1, some summary statistics over the clusterings considered here. The methods 
considered here are: 
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Table 1:  Basic Statistics 

Charge Method Number 
Clusters 

Number of Clusters with 
occupation count  

Count > 1 
Scaled Error 

Count > 30 
Scaled Error 

1 2 >2 >30 m/z RT m/z RT 
2 DAVS(1) 73238 42815 10677 19746 1111 0.081 0.084 0.036 0.056 
2 DAVS(2) 54055 19449 10824 23781 1257 0.191 0.205 0.079 0.100 
2 DAVS(3) 41929 13708 7163 21058 1597 0.404 0.355 0.247 0.290 
2 DA2D 48605 13030 9563 22545 1254 6.02 3.68  0.100 0.120 
2 Mclust 84219 50689 14293 19237 917 0.048 0.060 0.021 0.041 
Note that we list errors which are just the mean squared scaled differences between peaks and cluster 

centers. 
Error(m/z) = ((m/z|cluster center – m/z|x )/ δ(m/z))2 averaged over peaks x in cluster 
Error(RT) = ((RT|cluster center – RT|x )/ δ(RT))2 averaged over peaks x in cluster 
 

The calculation in this fashion is not very reliable if clusters are not trimmed. One can calculate a 
much more reliable mean (as used later in comparison with Landmark clusters) by a cut like ∆2D(x) ≤ 1.2 
to remove outliers.  

Note both DAVS(c) and DA2D start with one cluster and then split automatically as temperature is 
reduced. This is illustrated earlier in figure 1 showing a high temperature with 60 clusters. Figure 6 shows 
how the number of clusters changes with temperature 

Figure 6: Variation of cluster count in DAVS(2) and DA2D as a function of the annealing temperature as it is 
reduced from left to right. Changes in strategy give glitches with discontinuity in cluster count. Particularly blatant 
is a crude switching on of a check on closeness of cluster centers. The addition of the Sponge (trimming) factor has 
less impact as that effect is itself annealed as described in formalism. 
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Figure 7. Histograms of ∆2D(x) for 4 different clusters methods, and the landmark set plus expectation for a 
Gaussian distribution with standard deviations given as 1/3 in the two directions. The “Landmark” distribution 
correspond to previously identified peaks used as a control set. Note DAVS(1) and DAVS(2) have sharp cut offs at 
∆2D(x) = 1 and 4 respectively. Only clusters with more than 5 peaks are plotted. 

Figure 8. Histograms of ∆2D(x) for 4 different clusters methods, and the landmark set plus expectation for a 
Gaussian distribution with standard deviations given as δ(m/z)/3 and δ(RT)/3 in two directions. The “Landmark” 
distribution correspond to previously identified peaks used as a control set. Note DAVS(1) and DAVS(2) have sharp 
cut offs at ∆2D(x) = 1 and 4 respectively. Only clusters with more than 50 members are plotted. 
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The next set of figures describe the characteristics of the different solutions. Figures 7 and 8 plots the 
squared distance distributions scaled by δ(m/z) for m/z and δ(RT) for RT in two dimensions i.e. the 
ordinate is ∆2D(x). These include the expectation of a Gaussian distribution in ∆2D(x) with standard 
deviation of 1/3 in both m/z and RT. It is normalized at ∆2D(x) ~ 0.5 to the DAVS distributions that are 
similar in value there. 
 
We note that the four deterministic annealing solutions are quite similar at small values of ∆2D(x) ≤ 1and 
in each case we see a peak above the Gaussian for ∆2D(x) ≤ 0.1. Note the parallel DAVS(1) does precisely 
enforce the cut ∆2D(x) ≤ 1. Mclust has sharper distributions but as is made clearer with later data, it misses 
several clusters and many peaks that are properly associated with a given cluster.  
 
Figure 9 shows a histogram of occupation counts for the clustering methods. Mclust tends to lie below the 
deterministic annealing solutions for the larger clusters. 
 

Figure 9. Histograms of number of peaks in clusters for 4 clustering methods and the landmark set. Note lowest bin 
is clusters with one member peak, i.e. unclustered singletons. For DAVS these are Sponge peaks. 

3.6 Quality of Determination of Landmark Peaks 
 

Table 2: Landmark Peaks  >3 Peaks in Cluster (at least 3 match) 
   Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

Number 
Landmark 

Clusters 

∆2D(x) ≤ 1.2 
  

Charge Number 
Peaks Method 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 

Landmark 
Peaks 

Non 
Landmark 

Peaks 
2 241605 DAVS(1) 30424 42815 1025 0.039 0.059 24825 6779 
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2 241605 DAVS(2) 34606 19449 1033 0.044 0.066 25012 7641 
2 241605 DAVS(3) 28221 13708 1038 0.085  0.112 24939 9825 
2 241605 DA2D 35472 13134 1033 0.044 0.067 24996 7606 
2 241605 Mclust 33530 50948 1007 0.035 0.051 23432 4945 
2 26916 Landmark 1263 228 1034 0.000 0.000 25151 0 
 
 

Table 3: Landmark Peaks  >40 Peaks in Cluster (at least 36 match) 
  

Number 
Landmark 

Clusters 

∆2D(x) ≤ 1.2   

Charge Method 
Scaled 
Error 
m/z 

Scaled 
Error 

RT 
Landmark 

Peaks 
Non 

Landmark 
Peaks 

2 DAVS(1) 125 0.021 0.028 6468 831 
2 DAVS(2) 126 0.025 0.032 6563 956 
2 DAVS(3) 129 0.028 0.041 6695 1093 
2 DA2D 126 0.025 0.032 6579 964 
2 Mclust 111 0.021 0.031 5597 584 
2 Landmark 129 0.000 0.000 6675 0 
 

Table 4: Landmark Peaks  >3 Peaks in Cluster (at least 3 match) 
   

Number 
Landmark 

Clusters 

∆2D(x) ≤ 0.7   

Charge Number 
Peaks Method 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 
Landmark 

Peaks 
Non 

Landmark 
Peaks 

2 241605 DAVS(1) 1017 0.033 0.050 24650 6330 
2 241605 DAVS(2) 1020 0.034 0.052 24717 6716 
2 241605 DAVS(3) 1020 0.075 0.103 24239 8242 
2 241605 DA2D 1020 0.035 0.054 23691 6709 
2 241605 Mclust 1005 0.033 0.047 23394 4856 
2 26916 Landmark 1023 0.000 0.000 24855 0 
 

Table 5: Landmark Peaks  >40 Peaks in Cluster (at least 36 match) 
  

Number 
Landmark 

Clusters 

∆2D(x) ≤ 0.7   

Charge Method 
Scaled 
Error 
m/z 

Scaled 
Error 

RT 
Landmark 

Peaks 
Non 

Landmark 
Peaks 

2 DAVS(1) 125 0.018 0.024 6446 783 
2 DAVS(2) 126 0.018 0.026 6516 835 
2 DAVS(3) 128 0.022 0.030 6595 905 
2 DA2D 126 0.019 0.026 6315 835 
2 Mclust 111 0.018 0.028 5596 571 
2 Landmark 128 0.000 0.000 6592 0 
We analyzed the reliability of determining the known Landmark peaks in identical fashion for each 

clustering method. The “Landmark” peaks are labelled and we determined for each “Landmark cluster”, 
the cluster that best matched it for each of 5 non-Landmark methods. Then we found the center of the 
cluster which averaged all peaks whose value of ∆2D(x) was ≤ 1.2; this cut improved accuracy as recorded 
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in tables 2 and 3 as the scaled error in each dimension. Reducing value of cut increases accuracy at cost of 
reducing number of clusters found as shown in tables 4 and 5 which have cut ∆2D(x) ≤ 0.7. The tables also 
record the number of Landmark and Non-Landmark peaks in each cluster after this cut. The Deterministic 
Annealing methods DAVS and DA2D are quite similar with DAVS(3) recognizing more clusters in case 
where we restrict clusters to those with at least 40 members. However this comes with slightly larger 
errors. The systematics suggest that the methods can be ordered DAVS(3), DA2D, DAVS(2), DAVS(1), 
Mclust in ability to identify Landmark clusters with error decreasing as number of cluster do. Reducing 
the cut c in DAVS(c) below 1 or similarly adding a low ∆2D(x) cut to a DAVS( c≥ 1) clustering gives 
results that get errors that are similar to Mclust and still find more Landmark clusters than Mclust as seen 
clearly in table 5. 

3.7 All Charge configurations 
 
In tables 6-11, we record comparative results for DAVS(2) and Mclust for basic clustering statistics 

for charge z= 1 to 6. The rightmost column in tables 6, 7, 8A, 9A, 10 and 11gives the average number of 
peaks per cluster excluding singletons (“clusters” with one member or the sponge for DAVS(2)). Tables 
8B and 9B give the Landmark peak analysis for charges 3 and 4 where there are significant data. As in 
charge 2 case, DAVS determines more clusters than Mclust. 

 
Table 6: Charge 1 Basic Results 162818 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 55008 22323 11316 21369 4.3 
Mclust 84478 56107 15017 13354 3.76 

 
Table 7: Charge 2 Basic Results 241605 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 54054 19449 10824 23781 6.42 
Mclust 84219 50689 14293 19237 5.69 

 
Table 8A: Charge 3 Basic Results 174171 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 49136 21057 9490 18589 5.45 
Mclust 74257 48122 12082 14053 4.82 

 
 
 

Table 8B: Charge 3 ∆2D(x) ≤ 1.0 Landmark Peaks   
 >3 Peaks in Cluster (at least 3 match) >40 Peaks in Cluster (at least 36 match) 

 Method 
Number 

Landmark 
Clusters 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 

Landmark 
Peaks 

Non 
Landmark 

Peaks 

Number 
Landmark 

Clusters 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 

Landmark 
Peaks 

Non 
Landmark 

Peaks 
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DAVS(2) 422 0.032 0.047 10526 2024 57 0.013 0.031 2946 341 
Mclust 417 0.028 0.042 9980 1346 53 0.010 0.022 2625 142 

Landmark 422 0.000 0.000 10563 0 57 0.000 0.000 2954 0 
 
 

Table 9A: Charge 4 Basic Results 57068 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 23337 12732 4641 5964 4.18 
Mclust 32434 23999 4582 3853 3.92 

 
 

Table 9B: Charge 4 ∆2D(x) ≤ 1.0 Landmark Peaks   
 >3 Peaks in Cluster (at least 3 match) >40 Peaks in Cluster (at least 36 match) 

 Method 
Number 

Landmark 
Clusters 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 

Landmark 
Peaks 

Non 
Landmark 

Peaks 

Number 
Landmark 

Clusters 

Scaled 
Error 
m/z 

Scaled 
Error 

RT 

Landmark 
Peaks 

Non 
Landmark 

Peaks 
DAVS(2) 74 0.032 0.038 1673 367 6 0.007 0.002 308 32 
Mclust 73 0.019 0.031 1637 271 5 0.004 0.010 265 27 

Landmark 74 0.000 0.000 1683 0 6 0.000 0 308 0 
 
 

Table 10: Charge 5 Basic Results 16747 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 8984 6020 1481 1483 3.62 
Mclust 11353 9150 1280 923 3.45 

 
Table 11: Charge 6 Basic Results 1332 Peaks 

Method 
Total 

Clusters 
(Not 

Singleton) 

Singleton 
Cluster 

(Sponge) 

# 
Clusters 

2 
members 

# 
Clusters 

> 2 
members 

Average 
Peaks 

per 
Cluster 

DAVS(2) 1016 879 76 61 3.31 
Mclust 1097 983 70 44 3.06 
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