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ABSTRACT
The study and adoption of deep learning methods has led
to significant progress in different application domains. As
deep learning continues to show promise and its utilization
matures, so does the infrastructure and software needed to
support it. Various frameworks have been developed in re-
cent years to facilitate both implementation and training of
deep learning networks. As deep learning has also evolved
to scale across multiple machines, there’s a growing need for
frameworks that can provide full parallel support. While
deep learning frameworks restricted to running on a sin-
gle machine have been studied and compared, frameworks
which support parallel deep learning at scale are relatively
less known and well-studied. This paper seeks to bridge that
gap by surveying, summarizing, and comparing frameworks
which currently support distributed execution, including but
not limited to Tensorflow, CNTK, Deeplearning4j, MXNet,
H2O, Caffe, Theano, and Torch.

1. INTRODUCTION
Deep learning has been quite successful in improving predic-
tive power in domains such as computer vision and natural
language processing. State-of-the-art performance in com-
puter vision is driven by the convolutional neural network
model, a special kind of feed-forward deep learning model.
The high-level idea is to learn images filters for extracting
meaningful features and predictions. On the other hand,
natural language processing has had a lot of success apply-
ing recurrent neural networks, a type of feedback model well-
suited for learning order and context-sensitive sequences (as
in natural languages).

As accuracies continue to increase in both domains, so do
the complexity of network architectures and the size of the
parameter space. Google’s network for unsupervised learn-
ing of image features reached a billion parameters [22], and
was increased to 11 billion parmeters in a separate experi-
ment at Stanford [27]. In the NLP space, Digital Reasoning
Systems trained a 160 billion parameter network [29] fairly
recently. Handling problems of this size involves looking be-
yond the single machine, which Google first demonstrated
through its distributed DistBelief framework [21].

The goal of this paper is to survey the landscape of deep
learning frameworks with full support for parallelization.
Three levels of parallelization exist on the hardware level:
within a GPU, between GPUs on a single node, and between

nodes. Two forms of parallelism also exist on the application
level: model and data parallelism. Other aspects of frame-
works include release date, core language, user-facing API,
computation model, communication model, deep learning
types, programming paradigm, fault tolerance, and visual-
ization. This choice of criteria is explained in detail in Sec-
tion 2. Tensorflow, CNTK, Deeplearning4j, MXNet, H2O,
Caffe, Theano, and Torch do not necessarily encompass the
entire space of frameworks for deep learning, but were se-
lected by a combination of factors: their being open-source,
level of documentation, maturity as a complete product, and
level of adoption by the community. These frameworks, as
well as some others not included in the Section 2 chart, are
examined in detail in Section 3. Section 4 discusses finer
points of parallelism and scalability in deep learning which
may escape but are pertinent to the framework discussion.
Section 5 offers concluding remarks.

2. FRAMEWORK COMPARISON
The relevance of release date, core language, user-facing
APIs are self-explanatory. Synchronization model speci-
fies the nature of data consistency through execution, i.e.
whether updates are synchronous or asynchronous. In con-
text of optimization kernels like stochastic gradient descent
(SGD), synchronous execution has better convergence guar-
antees by maintaining consistency or near-consistency with
sequential execution. Asynchronous SGD can exploit more
parallelism and train faster, but with less guarantees of con-
vergence speed. Frameworks like Tensorflow and MXNet
leave this tradeoff as a choice to the user.

The communication model tries to categorize the nature of
across-machine execution according to well-known paradigms.

There are three possible levels of parallelism at the hardware
level: cores within a CPU/GPU device, across multiple de-
vices (usually GPUs for deep learning), or across machines.
Most lower-level library kernels (e.g. for linear algebra) are
designed to use multiple cores of a device by default, so this
is not a major point of comparison. At this point, all the
frameworks also support parallelism across multiple GPUs.
Theano and Torch do not yet support multi-machine paral-
lelism.

Data and model parallelism are the two prevalent oppor-
tunities for parallelism in training deep learning networks
at the distributed level. In data parallelism, copies of the
model, or parameters, are each trained on its own subset of
the training data, while updating the same global model. In
model parallelism, the model itself is partitioned and trained
in parallel.



Table 1: Open-source Frameworks
Platform Tensorflow CNTK Deeplearning4j MXNet H2O Caffe Theano Torch

Release Date 2016 2016 2015 2015 2014 2014 2010
2011 (deep
learning)

Core Language C++ C++ C++ C++ Java C++ C++ C

API
C++,

Python
NDL Java, Scala

C++,
Python, R,

Scala,
Matlab,

Javascript,
Go, Julia

Java, R,
Python,
Scala,

Javascript,
web-UI

Python,
Matlab

Python Lua

Synchronization
Model

Sync or
async

Sync Sync
Sync or
async

Async Sync Async Sync

Communication
Model

Parameter
server

MPI
Iterative

MapReduce
Parameter

server
Distributed

fork-join
N/A N/A N/A

Multi-GPU 3 3 3 3 3 3 3 3
Multi-node 3 3 3 3 3 7 7 7

Data
Parallelism

3 3 3 3 3 3 3 3

Model
Parallelism

3 N/A 7 3 7 7 3 3

Deep Learning
Models

DBN,
CNN,
RNN

DBN,
CNN,
RNN

DBN, CNN,
RNN

DBN,
CNN,
RNN

DBN
DBN, CNN,

RNN

DBN,
CNN,
RNN

DBN,
CNN,
RNN

Programming
Paradigm

Imperative Imperative Declarative Both Declarative Declarative Imperative Imperative

Fault
Tolerance

Checkpoint-
and-

recovery

Checkpoint-
and-resume

Checkpoint-
and-resume

Checkpoint-
and-resume

N/A N/A
Checkpoint-
and-resume

Checkpoint-
and-resume

Visualization

Graph (in-
teractive),
training

monitoring

Graph
(static)

Training
monitoring

None None
Summary
Statistics

Graph
(static)

Plots

Deep learning models can be categorized into three major
types: deep-belief networks (DBNs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs).
CNNs and RNNs were briefly described in the introduc-
tion. DBNs are less domain-specific compared to CNNs and
RNNs, and could be considered a precursor to CNNs, but
are fundamental nonetheless.

Programming paradigm falls into the categories of imper-
ative, declarative, or a mix of both. Conventionally, im-
perative programming specifies how a computation is done,
where as declarative programming specifies what needs to
be done. There is plenty of gray area, but the distinction is
made in this paper based on whether the API exposes the
user to computation details that require some understand-
ing of the inner math of neural networks (imperative), or
whether the abstraction is yet higher (declarative).

Fault tolerance is included for two reasons. Distributed ex-
ecution tends to be more failure prone, especially at scale.
Furthermore, any failures (not necessarily limited to dis-
tributed execution) that interrupt training part-way can be
very costly, if all the progress made on the model is simply
lost.

Finally, UI/Visualization is a feature supported to very dif-
ferent degrees across the frameworks studied. The ability
to monitor the progress of training and the internal state
of networks over time could be useful for debugging or hy-
perparameter tuning, and could be an interesting direction.
Tensorflow and Deeplearning4j both support this kind of
visualization.

3. FRAMEWORK DISCUSSION

3.1 Tensorflow
Tensorflow was released by Google Research as open source
in November 2015, and included distributed support in 2016.
The user-facing APIs are C++ and Python. Programming
with Tensorflow leans more imperative. While plenty of ab-
straction power is expressed in its library, the user will prob-
ably also be working with computational primitive wrap-
pers such as matrix operations, element-wise math opera-
tors, and looping control. In other words, the user is ex-
posed to some of the internal workings of deep learning net-
works. Tensorflow treats networks as a directed graph of
nodes encapsulating dataflow computation and required de-
pendencies [15]. Each node, or computation, gets mapped
to devices (CPUs or GPUs) according to some cost func-
tion. This partitions the overall graph into subgraphs, one
per device. Cross-device edges are replaced to encode nec-
essary synchronization between device pairs. Distributed
execution appears to be a natural extension of this arrange-
ment, except that TCP or Remote Direct Memory Access
(RDMA) is used for inter-device communication on sepa-
rate machines. This approach of mapping subgraphs onto
devices also offers potential scalability, because each worker
can schedule its own subgraph at runtime instead of relying
on a centralized master [15]. Parallelism in Tensorflow can
be expressed at several levels, notably both data parallelism
and model parallelism. Data parallelism can happen both
across and within workers, by training separate batches of
data on model replications. Model parallelism is expressed
through splitting one model, or its graph, across devices.
Model updates can either be synchronous or asynchronous
for parameter-optimizing algorithms such as SGD. For fault
tolerance, Tensorflow provides checkpointing and recovery



of data designated to be persistent, while the overall com-
putation graph is restarted. In terms of other features, Ten-
sorBoard is a tool for interactive visualization of a user’s
network, and also provides time series data on various as-
pects of the learning network’s state during training.

3.2 CNTK
Computational Network Toolkit (CNTK) was made open-
source by Microsoft around January of 2016. It currently
offers a high-level domain-specific language called NDK for
implementing networks. The programming paradigm is ex-
pressive, complete with vector, matrix, and tensor oper-
ations [30] for specifying computations. CNTK generally
treats a network as a directed graph, where nodes encapsu-
late operations and edges for data flow, similar to Tensor-
flow. There is also a special operator to handle feedback,
supporting arbitrary recurrent neural networks [12]. MPI is
used for distributed communication. Data parallelism is en-
abled in a synchronous manner [9], for SGD [11]. However,
support for model parallelism is not explicitly mentioned.
Fault tolerance involves checkpoint-and-restart [5].

3.3 Deeplearning4j
Deeplearning4j is a Java-based deep learning library built
and supported by Skymind, a machine learning intelligence
company, in 2014. It is an open source product designed for
adoptability in industry, where Java is very common. The
framework currently interfaces with both Java and Scala,
with a Python SDK in-progress. Programming is primar-
ily declarative, involving specifying network hyperparame-
ters and layer information. Deeplearning4j integrates with
Hadoop and Spark, or Akka and AWS for processing back-
ends. Distributed execution provides data parallelism through
the Iterative MapReduce model [6]. Each worker processes
its own minibatch of training data, with workers periodically
”reducing” (averaging) their parameter data. Deeplearn-
ing4j hosts its own C++ based scientific computing library,
which claims 2x or more speedup over Python’s Numpy li-
brary on large matrix multiplies [10]. Fault tolerance is not
mentioned, although Spark does have built-in fault tolerance
mechanisms. One of Deeplearning4j’s features is out-of-the-
box support for reinforcement learning using deep learning,
a relatively recent application.

3.4 MXNet
MXNet became available in 2015 and was developed in col-
laboration across several institutions, including CMU, Uni-
versity of Washington, and Microsoft. It currently interfaces
with C++, Python, R, Scala, Matlab, Javascript, Go, and
Julia. MXNet supports both declarative and declarative ex-
pressions; declarative in declaring computation graphs with
higher-level abstractions like convolutional layers, and im-
perative in the ability to direct tensor computation and con-
trol flow. Data parallelism is supported by default, and it
also seems possible to build with model parallelism. Dis-
tributed execution in MXNet generally follows a parameter
server model, with parallelism and data consistency man-
aged at two levels: intra-worker and inter-worker [19]. De-
vices within a single worker machine maintain synchronous
consistency on its parameters. Inter-worker data consis-
tency can either be synchronous, where gradients over all
workers are aggregated before proceeding, or asynchronous,
where each worker independently updates parameters. This

trade-off between performance and convergence speed is left
as an option to the user. The actual handling of server
updates and requests is pushed down to MXNet’s depen-
dency engine, which schedules all operations and performs
resource management [19]. Fault tolerance on MXNet in-
volves checkpoint-and-resume, which must be user-initiated.

3.5 H2O
H2O is the open-source product of H2O.ai, a company fo-
cused on machine learning solutions. H2O is unique among
the other tools discussed here in that it is a complete data
processing platform, with its own parallel processing engine
(improving on MapReduce) with a general machine learn-
ing library. The discussion will be limited to H2O’s deep
learning component, available since 2014. H2O is Java-
based at its core, but also offers API support for Java,
R, Python, Scala, Javascript, as well as a web-UI inter-
face [17]. Programming for deep learning appears declara-
tive, as model-building involves specifying hyperparameters
and high-level layer information. Distributed execution for
deep learning follows the characteristics of H2O’s process-
ing engine, which is in-memory and can be summarized as
a distributed fork-join model (targeting finer-grained paral-
lelism) [25]. Data parallelism follows the ”HogWild!” [26]
approach for parallelizing SGD. Multiple cores handle sub-
sets of training data and update shared parameters asyn-
chronously. Scaling up to multi-node, each node operates in
parallel on a copy of the global parameters, while parameters
are averaged for a global update, per training iteration [17].
There does not seem to be explicit support for model par-
allelism. Fault tolerance involves user-initiated checkpoint-
and-resume. H2O’s web tool can be used to build mod-
els and manage workflows, as well as some basic summary
statistics, e.g. confusion matrix from training and valida-
tion.

3.6 Caffe
Caffe is a framework for convolutional deep learning released
by UC Berkeley’s computer vision community in 2014. It of-
fers Python and Matlab API. Programming is highly declar-
ative; creating a deep learning network involves specify-
ing layers and hyperparameters, which are compiled down
to a configuration file that Caffe then uses. In terms of
other notable features, Caffe itself hosts a repository of pre-
trained models of some popular convolutional networks such
as AlexNet or GoogleNet. It also integrates support for data
preprocessing, including building LMDB databases from raw
data for higher-throughput, concurrent reading. While Caffe
itself is restricted to intra-node parallelism, there are exter-
nal offerings that integrate Caffe with distributed support.

CaffeOnSpark is a Spark deep learning package released
open-source in early 2016 by Yahoo’s Big ML team. The lan-
guage interface for CaffeOnSpark is Scala (following Spark).
Spark launches ”executors,” each responsible for a partition
of HDFS-based training data and trains the data by running
multiple Caffe threads mapped to GPUs [7]. MPI is used
to synchronize executor’s respective the parameters’ gradi-
ents in an Allreduce-like fashion, per training batch [1]. It
does not seem that CaffeOnSpark presently offers any fault
tolerance other than what comes with Spark.

3.7 Theano



Theano with deep learning support was released in 2010,
supported by researchers from the University of Montreal.
It’s implemented in C++ and integrates with Python. The
programming model is strongly expressive, as Theano’s in-
terface shares a lot in common with Python’s Numpy com-
putation library [16]. Theano takes a symbolic represen-
tation of operations and compiles them down to optimized
C/C++ for CPU/GPU. There currently isn’t official sup-
port for deep learning across machines, although there is for
multi-GPU. Data parallelism [8] and model parallelism [14]
are both supported at the application level; in the latter
case, the user must explicitly specify data transfers. Paral-
lelism in optimization algorithms like SGD are handled asyn-
chronously. Users can checkpoint-and-resume workflows.
Visualization does not seem to be an emphasized feature,
but there is support for drawing static computation graphs
via d3viz.

3.8 Torch
Torch was originally created in 2002, with deep learning sup-
port available in 2011 [20]. Its core language is in C, with
Lua as the user-facing scripting language. Programming in
Torch is a mix of imperative and declarative, but overall
leans more imperative with its support for computation-
level operations. Like Theano, there isn’t yet support for
machine-level parallelization. However, both data paral-
lelism and model parallelism are support as library modules
in fbcunn, Facebook’s deep learning CUDA library extension
[3]. Synchronization for data parallelism is synchronous [13].
Fault tolerance involves checkpoint-and-resume, while data
plotting is the extent of visualization.

3.9 Additional Frameworks
Caffe, besides SparkOnCaffe, also has some other external
extensions. FireCaffe [23] is a recent version created at UC
Berkeley. Operating on the premise that deep learning scal-
ability is dominated by communication overhead, FireCaffe
uses a reduction-tree communication model, which is meant
to be asymptotically faster than global synchronization via
parameter server model. This work does emphasize having
proper hardware, namely fast interconnects for communica-
tion between devices. Experiments were ran on a 128-GPU
cluster with Infiniband/Cray interconnect.

DIGITS [2], while not distributed, is an NVIDIA integration
with Caffe that provides scalability across NVIDIA-GPUs.
As a framework, or an extension thereof, one distinguish-
ing feature is that programming is entirely through a GUI
interface, making for highly declarative programming.

4. SCALING DEEP LEARNING
Distributed frameworks exist under the basic premise that
easily scaling up to more machines is important for scal-
ing up to bigger problems. At the heart of this premise
is being able to utilize parallelism effectively. While ex-
ecution on more machines can help, there are also other
important factors, namely the underlying hardware and ap-
plication characteristics, which can escape the abstraction
of a general-purpose framework. One example of this is the
difference in Google’s and Stanford’s approaches in training
a large-model convolutional auto-encoder network. Whereas
Google’s seminal billion-parameter model was trained using
thousands of machines for several days, Stanford demon-
strated training a 11 billion-parameter version of a similar

model using a tiny fraction of the hardware in 3 days [18].
Stanford used a HPC cluster of 16 machines, with 4 NVIDIA
GPUs each. Communication was via MPI on top of fast
Infiniband interconnects. It turned out that the application
characteristics, namely a convolutional neural network (with
auto-encoding) with 200x200 images as input, limited the
amount of model parallelism that could be extracted from
mapping partitions of the images to different GPUs. There-
fore, it seems that 16 machines, or 64 GPUs, was optimal
enough.

Taking the hardware concept further, NVIDIA now has a
state-of-the-art server (DGX-1) consisting of 8 Tesla P100
GPUs (over 28,000 CUDA cores), optimized for deep learn-
ing [4]. The communication network features a direct-connect
topology for inter-GPU communication. It is certainly pos-
sible that such specialized hardware could sufficiently handle
certain deep learning problems, at-scale, without the need
of a second machine.

On the application side, it also is not necessarily the case
that greater model size correlates with higher model accu-
racy. In fact, a fairly state-of-the-art convolutional neu-
ral network like GoogleNet [28] achieves similar accuracy
to other networks that used far more parameters.

So while software frameworks for deep learning provide help-
ful abstractions both for constructing networks and running
them at scale, necessary attention must also be paid to un-
derlying hardware and application-specific characteristics to
effectively utilize parallelism.

5. CONCLUSIONS
Tensorflow, CNTK, Deeplearning4j, MXNet, H2O, Caffe,
Torch, and Theano were deep learning frameworks, chosen
for their traction among other factors, for detailed study
in this paper. They were compared according to a consis-
tent set of characteristics, ranging from parallelism at the
hardware and application level, to other information such
as release date, core language, API, synchronization and
communication models, programming paradigm, fault tol-
erance, and visualization. These findings have been summa-
rized in Table 1. Finally, while deep learning frameworks
provide abstraction and many are designed to scale up to
many machines, there is evidence that some deep learning
problems can be solved efficiently and accurately without
needing many machines, given the right utilization of spe-
cialized hardware and attention to application-specific char-
acteristics.
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