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Abstract—MapReduce has become popular in recent years due 
to its attractive programming interface with scalability and 
reliability in processing big data problems. Recently several 
iterative MapReduce frameworks including our Twister 
system have emerged to improve the performance on many 
important data mining applications.  Utilizing local memory on 
each compute node to cache invariant data, we are able to 
accelerate MapReduce execution but we still find performance 
issues when transferring massive data between or during 
iterations. Taking K-means Clustering as an example, the 
centroids are required to be broadcasted to all the Map tasks 
each iteration and every local new centroid generated by each 
Map task must be transferred in the shuffling stage. Here we 
research several new methods to improve the performance of 
broadcasting and shuffling in iterative MapReduce. We 
introduce a new Multi-Chain broadcast method that reduces 
the broadcasting time by 60% when broadcasting 1 GB data to 
125 nodes.  Further we show a new local reduction method can 
reduce shuffling time to about 10% of the original time, where 
a K-means Clustering application runs 1000 Map tasks with 1 
GB data output per Map task. 

KeyWords-Iterative MapReduce; Data-intensive applications; 
Data transfer; Broadcasting; Shuffling; Fat-Tree topology 

I. INTRODUCTION 
The rate of data generation has now exceeded the growth 

of computational power predicted by Moore’s law. 
Computational challenges are related to mining and analysis 
of these massive data sources for the translation of large-
scale data into knowledge-based innovation. However, many 
existing analysis tools are not capable of handling such big 
data sets. MapReduce frameworks have become popular in 
recent years for their scalability and fault tolerance in large 
data processing and simplicity in programming interface. 
Hadoop [1], an open source implementation following 
original Google’s MapReduce [2] concept, has been widely 
used in industry and academia.   

Intel’s RMS (recognition, mining and synthesis) 
taxonomy [3] identifies iterative solvers and basic matrix 
primitives as the common computing kernels for computer 
vision, rendering, physical simulation, (financial) analysis 
and data mining applications. These observations suggest 
that iterative MapReduce will be a runtime important to a 
spectrum of eScience or eResearch applications as the kernel 
framework for large scale data processing. 

However, classic Map and Reduce task pair cannot meet 
the requirement of executing iterative algorithms as 

inefficiency of repetitive disk access for fetching and 
merging data over iterations. Several new frameworks 
designed for iterative MapReduce are proposed to solve this 
problem, including Twister [4] and HaLoop [5]. 

Twister, developed by our group, is an iterative 
MapReduce framework. It categorizes data to be static and 
variable.  Static data is loaded from disk and cached into 
memory in the configuration stage before the MapReduce 
job execution. Worker daemons are under the control of 
driver node and execute MapReduce jobs by spawning Map 
and Reduce task threads. The early version of Twister 
iterative MapReduce is targeted for optimizing data flow and 
reducing data transfer between iterations by caching 
invariant data in local memory or disk of compute nodes. 
The scheduling mechanism assigns tasks to the node where 
relevant invariant data is located. 

In this paper, we propose three Map-collective methods: 
Multi-Chain, Scatter-Allgather-BKT (bucket) and Scatter-
Allgather-MST (minimum spanning tree) to accelerate data 
transfers in Twister. They improve the performance of two 
key data transfer operations: broadcasting and shuffling. For 
broadcasting, we develop parallel methods based on the 
traditional deterministic broadcasting algorithms in MPI [7]. 
Multi-Chain creates multiple chains to transfer data in a 
pipeline style [8]. Scatter-Allgather-BKT and Scatter-
Allgather-MST both follow the style of “divide, distribute 
and gather” [9].  The difference is that the former sets a 
barrier between Scatter and Allgather stage and uses bucket 
algorithm  [10] for Allgather while the latter broadcasts each 
data piece scatted in a minimum spanning tree (MST) 
without waiting for a barrier. These Map-collective methods 
provide important capabilities of our new iterative 
MapReduce framework for date intensive applications. We 
show improved performance of transferring 8 Terabytes of 
intermediate data with 1000 Map tasks on 125 nodes 
enabling large-scale image classification. 

A network topology commonly used in HPC or cloud 
environment is a Fat-Tree topology [12] where the cost of 
inter-switch connection is high. Instead of applying Multi-
Chain, MST and BKT algorithm simplistically, we add the 
topology information into the algorithms.   

Although Twister has already achieved better 
performance than Hadoop by leveraging in memory 
shuffling, the cost of shuffling is still high for applications 
like K-means Clustering [6] with intensive intermediate data 
transfer. We propose an extra step of local reduction before 



shuffling to reduce data size by utilizing shared memory as 
Map tasks and Reduce tasks run on threads. Another 
optimization is to serialize data objects in memory 
efficiently. Instead of serializing data objects to byte arrays 
and then merge them into a byte stream at each iteration step, 
we provide new messaging interfaces and mechanisms to 
minimize the cost of data serialization. We also overlap data 
serialization and communication to reduce data broadcasting 
time. 

We evaluate our new methods using a real application of 
image identification on 125 compute nodes of the PolarGrid 
[13] cluster at IU. K-means Clustering produces 1 GB data 
output per Map task with a total of 1000 Map tasks. We 
show that the new Multi-Chain method reduces the 
broadcasting time to 44% of the original broker based 
method and to 54% of standard MPI Scatter-Allgather-BKT 
algorithm. Shuffling operation with local reduction is about 
10% of the original time and the total cost per iteration is 
reduced 50%.  

The rest of paper is organized as follows. Section 2 
discusses the basic Twister MapReduce framework and K-
means Clustering algorithm. Section 3 presents the design of 
broadcasting algorithm. Section 4 presents how the new 
shuffling mechanism works. Section 5 shows the 
experiments and results. Section 6 gives related work And 
Section 7 the conclusion and discussion about future work. 

II. BACKGROUNDS 
Twister is a framework which can accelerate iterative 

MapReduce job execution by caching the invariant data into 
the local memory of the compute nodes. In this section, we 
provide an overview of Twister and discuss about the current 
problems. We also give the background knowledge of K-
means Clustering algorithm with related applications and 
show how it works in Twister. Finally we give a brief 
discussion of the Fat-Tree topology in IU PolarGrid.  

A. Twister Iterative MapReduce Framework 
Twister has several components, a single driver to drive 

MapReduce jobs, and daemon nodes to handle requests from 
the driver and execute iterative MapReduce jobs (See Fig. 1). 
These components are connected through messaging brokers 
via a publish/subscribe mechanism. Currently Twister 
supports two different kinds of brokers. One is ActiveMQ 
[13], another is NaradaBrokering [14]. 

The Twister driver program allows users to configure an 
iterative MapReduce job with static data cached in Map tasks 
or Reduce tasks before the start of job execution and to drive 
the job iteratively with loop control. It can also send the 
variable data to work nodes at the beginning iteration and 
collected back at the end of the iteration. In this model, fault 
tolerance is provided through setting checkpoints between 
iterations. 

On daemon nodes, during the configuration stage, Map 
and Reduce workers are created and static data is loaded 
from the local disk and cached into memory. Later in the 
execution stage, daemons start to execute MapReduce tasks 

with threads. Twister uses static scheduling for workers in 
order to leveraging the local data cache.  

 

In current released version, there is no support for a 
distributed file system. Files and replicas are stored on local 
disks of each compute node and recorded in a partition file. 
The Max Flow algorithm [15] is used to decide the mapping 
between workers and the files in job execution. Since our 
current solution lacks reliability and scalability, we are 
moving toward using distributed file systems such as HDFS 
[16].  

Early Twister work used messaging brokers to do data 
transfers and the first Twister prototypes use only one 
broker, which is sufficient for small messages transfers. 
However for large data transfers, it becomes a hot spot and 
stops Twister from scaling. Then we switched to use a 
network of brokers, but we still find the following issues:  

• Unnecessary communication hops are added in data 
transfers.  It is especially bad for big messages which 
usually need significant time to transfer from one 
point to another point.  

• The Broker network doesn’t provide optimal route to 
transfer data between a set of brokers and nodes. 
Every broker gets the message and forwards it 
directly. 

• Reliability issues are found in maintaining brokers. 
Brokers are not always reliable in message 
transmission. Messages can get lost without 
notification and the broker could also fail. Then the 
potential failure points in the system increase as the 
number of brokers increase. This brings additional 
work to manage distributed brokers.   

For these reasons, in current released version of Twister, 
we already transfer intermediate data in shuffling through 
TCP sockets. Though some broker based methods can 
improve broadcasting, they are far from the optimal, and so 
we no longer use brokers.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Twister achitecture  



 

 

 

 

 

 

 

 

 

 

 

 

 

B. K-means Clustering and Image Clustering Application 
K-means Clustering is an iterative algorithm to partition 

data points into a given number of clusters. At the beginning, 
a set of centroid points are randomly generated or randomly 
picked from the data points. To assign a point to a cluster, 
the algorithm lets each data point go through the whole list of 
centroid points to find the closest centroid by calculating the 
Euclidean distances. Once all the data points are assigned, 
the new centroids of clusters are recalculated by calculating 
the mean of all the coordination values of the points in each 
cluster. After several iterations, the positions of centroids 
reach a local optimization.   

We observe that the positions of data points are static 
over iterations. So for Twister K-means Clustering, the data 
points are partitioned and each cached to a Map task. We 
broadcast centroid data to all the Map tasks. Then we let 
each Map task assign the data points it owns to the clusters 
and output the partial sum of coordination values of data 
points in each cluster. We use one reducer or multiple 
reducers to collect the partial sum of data points assigned to 
each cluster from the Map tasks and calculate the mean after 
getting the total sum. By combining these new centroids 
from Reduce tasks and the driver gets the update and goes to 
the next iteration (See Fig. 2). 

In a real application, we use K-means Clustering 
algorithm to cluster images. In this application, each image is 
presented as a vector with 500 feature values so that it can be 
treated as a point with 500 dimensions. We use K-means 
clustering algorithm to partition images to clusters with each 
of which contains images with similar features.  

However, there is difficulty to scale this application. As 
each point has high dimensions, the total size of centroids 
can be very large and go to MB or GB level. Because the 
time required for broadcasting and shuffling is proportional 
to the number of compute nodes and the data size of 
centroids, the cost of broadcasting and shuffling is extremely 
high. 

C. IU PolarGrid 
IU PolarGrid uses Fat-Tree topology to connect nodes. 

The nodes are split into sections of 42 nodes which are then 
tied together with 10 GigE into a Cisco Nexus core switch.  
For each section, nodes are connected with 1 GigE to an 
IBM System Networking Rack Switch G8000. So it is a 2-
level Fat-Tree structure with first level 10 GigE connection 
and second level 1 GigE connection (See Fig. 3).  

This kind of topology can easily cause contention when 
there are many inter-switch communication pairs. It is not 
only because inter-switch communication has more delay 
than intra-switch communication, but also because a 10 GigE 
connection limits the number of parallel communication 
pairs across switches. Assuming that every 1 GigE link to 
each node is fully utilized, a 10 GigE connection can only 
support 10 parallel communication pairs across rack switches 
in maximum. Otherwise the inter-switch communication 
pairs could affect each other in performance. As a result, 
reducing the times of inter-switch communication is the first 
thing to be considered in the design of efficient collective 
communication algorithms on this fat-tree topology, 

For computing capacity, each compute node in PolarGrid 
uses a 4-core 8-thread Intel Xeon CPU E5410 2.33 GHz 
processor. The L2 cache size per core is 12 MB.  The total 
memory per node is 16 GB.   

III. BROADCASTING TRANSFERS 
To solve the performance problems of broadcasting, we 

investigated several approaches. Initially we tried to use 
multiple brokers to replace original single broker only 
solution to improve broadcasting speed. However those 
methods still have performance issue because message routes 
between brokers or between brokers and clients are far from 
optimal. Thus we moved to other methods which uses TCP 
sockets directly. The broker systems can only achieve good 
performance if they are optimized for the structured 
communication patterns we need; this could be an interesting 
research area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. K-means Clustering execution flow in Twister 

 

Figure 3. Fat-Tree Topology in IU PolarGrid 



 

 

 

 

 

 

 

 

 

 

 

With utilizing bucket algorithm and minimum-spanning-
tree algorithm, we develop two methods: Scatter-AllGather-
BKT and Scatter-AllGather-MST. Then to fully utilize the 
bandwidth per link, we develop Multi-Chain method based 
on pipelined broadcasting. We also embed topology 
awareness in algorithm design and make the time used on 
message serialization overlap with the time used on 
broadcasting. To illustrate the performance model, we use 𝑝 
as the number of daemon nodes (each node is controlled by 
one daemon process), 𝑏 as the number of brokers, 𝑘 as the 
number of data chunks, 𝑛  as the data size, 𝛼  as 
communication startup time and 𝛽 as data transfer time per 
unit. 

A. Broker-Based Methods 
Two methods are used to remedy the one broker only 

method. One is a full mesh broker network for tree based 
broadcasting and another is a set of brokers for broadcasting 
in “scatter and allgather”.  

In full mesh broker network, every broker connects with 
the rest of brokers (See Fig. 4). Each broker serves several 
Twister daemons which are evenly distributed except one 
broker serves Twister driver exclusively. By this way, we 
can maintain the reachability of connections between every 
two Twister components and do broadcasting in a two level 
tree structure. Once the exclusive broker gets the data sent 
from the driver, it forwards the data to each of the rest of 
brokers. Then these brokers continue forwarding the data to 
the clients it connects to. The performance improvement is 
gained from the second level where each broker can do data 
forwarding in parallel. Network contention can be avoided if 
the nodes served by one broker are in the same switch. The 
performance model can be established as follow:  

𝑇𝐹𝑢𝑙𝑙𝑀𝑒𝑠ℎ𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑝, 𝑏,𝑛) ≈ (𝑏 + 𝑝 𝑏⁄ )(𝛼 + 𝑛𝛽) (1) 

When 𝜕𝑇 𝜕𝑏⁄ = 0, we can get 𝑏𝑜𝑝𝑡 ≈ �𝑝. Though it is 
much better than naïve broadcasting in performance, it is still 
very slow. Considering 1GB broadcasting on 100 nodes 
using 1Gbps links, this method needs 10 brokers and use 
about 200 seconds to finish! Besides we found that messages 
could be lost in this algorithm..  

 

 

 
 

 

 

 

 

 

 

 

Another broker  topology is an unconnected broker array. 
In this method, each broker connects to all Twister 
components and each client also connects to all the brokers 
and tries to balance the workload of data sending among 
broker connections (See Fig. 5). Broadcasting is done in a 
style of “scatter and allgather”. In Scatter phase, data is split 
and sent to brokers first. Then in Allgather phase, each 
broker broadcasts the data chunk it owns to all the client 
processes. Ideally, assuming there is no contention, we can 
derive: 

𝑇𝑆𝑐𝑎𝑡𝑡𝑒𝑟−𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟−𝐵𝑟𝑜𝑘𝑒𝑟(𝑝, 𝑏,𝑛) ≈ (𝑏 + 𝑝)(𝛼 + 𝑛𝛽 𝑏⁄ ) =
(𝑏 + 𝑝)𝛼 + 𝑛𝛽 + 𝑝𝑛𝛽 𝑏⁄   (2) 

Since 𝛼  can be ignored in large data transferring, we 
conclude that  𝑏𝑜𝑝𝑡 ≈ 𝑝 . However, this is not verified in 
experiments. The problem is that we cannot control the 
routes of messages in broker based communication and 
congestion can happen on some links. As a result, Allgather 
overlaps Scatter and they affect each other and the 
performance degrades and is variable. There is also a 
reliability issue in deploying this kind of topology in large 
scale. Because the number of connections each node can 
support is limited, the number of connections on each node 
cannot grow as 𝑝  grows. As 𝑝  goes to a large number, 
failures can happen on some broker connections. Despite of 
seeing these shortcomings, we still see the method achieves 
better performance than the full mesh broker network.  

B. Scatter-Allgather Methods 
Well known successes with MPI collective 

communication algorithms makes us turn to use TCP socket 
connection directly in order to control the message routes in 
broadcasting ourselves.  As Scatter-Allgather-Broker 
method, the following two methods are also called Scatter-
Allgather methods because they all follow the principle of 
“divide, distribute and gather”. The difference is that in 
Allgather phase, one uses bucket algorithm but the other uses 
minimum-spanning-tree algorithm. We call them Scatter-
Allgather-BKT and Scatter-Allgather-MST separately. 

Scatter-Allgather-BKT algorithm is an algorithm used in 
MPI for long vectors broadcasting. It first scatters the data to 
all the nodes. To do this, it can use MST algorithm or a 

 
 

Figure 4. Full mesh broker network topology with 5 brokers and 16 
daemon nodes 

Figure 5. Unconnected broker array with 5 brokers and 4 daemon nodes 



straightforward algorithm. Then in Allgather phase, it views 
the nodes as a chain. At each step, each node sends data to its 
right neighbor. By taking advantage of the fact that messages 
traversing a link in opposite direction do not conflict, we can 
do Allgather in parallel without any network contention (See 
Fig. 6). The performance model can be established as follow:   

𝑇𝑆𝑐𝑎𝑡𝑡𝑒𝑟−𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟−𝐵𝐾𝑇(𝑝,𝑛) ≈ 𝑝(𝛼 + 𝑛𝛽 𝑝⁄ ) + (𝑝 −
1)(𝛼 + 𝑛𝛽 𝑝⁄ ) = (2𝑝 − 1)(𝛼 + 𝑛𝛽 𝑝⁄ )                            (3) 

Since we can control every step in the algorithm, we set a 
barrier between Scatter and Allgather to prevent them from 
affecting each other. We also make the communication in 
Allgather be topology-aware, i.e. nodes in the same rack are 
close to each other in the chain and each data only travel on 
any inter-switch link once. This makes its performance much 
better than broker based methods. But in experiments, we see 
the performance is still slightly slower than the theoretical 
value. Since it is impossible to enable all the nodes to do 
Allgather at the same global time through sending control 
messages from the driver, some links have more load than 
the others and thus it causes network contention. 

An alternative method is Scatter-Allgather-MST which 
uses MST algorithm in Allgather phase Since MST is good 
at broadcasting small messages [10], we scatter small data 
chunks to nodes and let each node broadcast the data chunk 
in a MST (See Fig. 7). 

To reduce the conflict, each node builds its own MST 
with itself as root. In each MST, each node in the tree is 
assigned with a rank for calculating the sending topology in 
the tree. The root node is always assigned with rank 0. 
Assuming the real ID of the root node is 𝑖 (0 ≤ 𝑖 ≤ 𝑝 − 1), 
then rank 𝑗  in the MST is the node with (𝑖 + 𝑗) 𝑚𝑜𝑑 𝑝.  So 
every node has a different rank in each tree. Due to the 
difficulty of mapping a set of MSTs to the physical topology, 
the contention still exists in this algorithm, but the total 
workload on each node in data sending is balanced and the 
link contention between trees is also reduced by rearranging 
ranks for each tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Multi-Chain  
Here we present the Multi-Chain method, an algorithm 

based on pipelined broadcasting. In this method, compute 
nodes in Fat-Tree topology are treated as a linear array and 
data is forwarded from one node to its neighbor chunk by 
chunk. The performance is gained by dividing the data into 
many small chunks and overlapping the transmission stages. 
For example, one would send the first chunk of the data to 
the next node. Then, while the second node sends the first 
piece to the third node, one would send the second piece to 
the second node, and so forth [8]. Furthermore, to better 
utilize the bandwidth and multi-core, we create multiple 
chains. For IU PolarGrid, we create 8 chains with each 
thread managing a chain.  

Since in Fat-Tree topology each node only has two links, 
which is less than the number of links per node in 
Mesh/Torus [17] topology, chain broadcasting can maximize 
the utilization of the links per node. We also make the chain 
be topology-aware by putting nodes within the same rack 
close in the chain. If nodes are not evenly distributed among 
switches, assuming 𝑁𝑅1 > 𝑁𝑅2 > 𝑁𝑅3 > ⋯, then we put the 
nodes in 𝑅1 at the beginning of the chain, then nodes in 𝑅2 at 
the second, and then nodes in 𝑅3 ….  

In the ideal case, if every transfer can be overlapped 
seamlessly, the theoretical performance is as follow: 

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄ ) + (𝑘 − 1)(𝛼 + 𝑛𝛽 𝑘⁄ ) (4) 

Because 𝑛 is large in our transfers, when 𝜕𝑇1𝐷 𝜕𝑘⁄ = 0, 
𝑘𝑜𝑝𝑡 = �(𝑝 − 1)𝑛𝛽/𝛼  [8]. However, the speed of data 
transfers on each link could not be always at the same speed 
in practice so that network congestion could happen at some 
time or place in the network when you keep forwarding the 
data into the pipeline. So we add barriers inside of the 
execution flow to coordinate the pipeline. The data is 
partitioned to chunks. Each chunk is broadcasted in a 
pipeline called “small pipeline” and the whole data is also 
broadcasted in a pipeline called “big pipeline”.  

 

 

Figure 6. Bucket algorithm in Allgather of Scatter-Allgather-BKT 

 

Figure 7. MST algorithm in Allgather of Scatter-Allgather-MST 



 

 

 

 

 

 

 

 

 

 

In the small pipeline, every node receives partial data 
chunk called a block) and forwards it to the next node 
directly. No barrier is required to coordinate the behavior of 
this pipeline. Chunk 0 sent from Driver is pipelined in this 
way. But before sending Chunk 1, Driver needs to wait for 
an ACK sent from Daemon 0. For Daemon 0, once it finishes 
the action of receiving and forwarding Chunk 0, it sends an 
ACK to Driver to let it send Chunk 1 and wait for an ACK 
from Daemon 1 to see if it gets Chunk 0 just forwarded by 
Daemon 0. Once these two conditions are met, another small 
pipeline starts to transfer Chunk 1. This is the coordination in 
big pipeline. We present the algorithm steps of this flow in 
Fig. 8 and execution flow in Fig. 9. In the experiments, we 
set chunk size to 4 MB and block size to 8192 bytes as the 
optimal choices. 

D. Auxillary Steps in Broadcasting 
To start and end broadcasting, auxiliary processes are 

required, including topology learning, data serialization, 
serialization and transferring overlapping, and mechanisms 
to provide resiliency.  

Currently automatic topology detection is not 
implemented. We put the topology information in a property 
file and let each node read it before starting broadcasting.  

Broadcast data are abstracted and presented as Key-
Value pairs in memory and they are serialized before sending 
and de-serialized after receiving. We find the serialization 
time of a single big object is extremely long so that so that 
we enable users to divide it into a set of small objects. Using 
small data objects also enable us to parallelize the 
serialization and let it be overlapped with broadcasting to 
improve the overall performance. In Multi-Chain, we use a 
producer/consumer model and in Scatter-Allgather methods, 
we let each thread serialize a data object and send it.  

We also adapt several strategies to make the whole 
process fault tolerant. For failures in each node-to-node 
sending step, we do retry first otherwise jump to the other 
destinations. At the end of the broadcasting, the driver waits 
and checks if all the nodes have received all the data blocks. 
If driver doesn’t get all the ACK within a time window, it 
restarts the process of broadcasting. 

 

 

 

 

 

 

 

 

 

 

 

IV. SHUFFLING TRANSFERS 
During the shuffling phase, the <Key, Value> pairs 

generated from Map tasks are regrouped by keys and 
processed as <Key, <Value>> by a Reduce task. In original 
MapReduce framework, this operation heavily uses the 
distributed file system and causes repetitive merges and disk 
access. As this could be very inefficient, in Twister, we 
leverage memory to do shuffling operation by directly 
transferring intermediate data through the network from the 
memory of the node where the Map task lives to the memory 
of the node where the Reduce task locates, so that the whole 
process is different from the one in original MapReduce.  

But when the scale goes large, the performance degrades 
drastically.  For example, in K-means Clustering, the data 
required to be transferred in shuffling is about 𝑎𝑝𝑛 bytes, 𝑎 
is the number Map task threads per node, 𝑝 is the number of 
the node, and 𝑛 is the data size of centroids generated by 
each Map task. So even the data of centroids is small, it can 
generate large intermediate data and cause the inefficiency of 
transferring large amount of data. So we try to reduce the 
intermediate data size to minimum by using local reduction 
across Map tasks.  

To support local reduction, we provide related interface 
to help user to define the operation for local reduction. We 
also optimize the interface for serialization to reduce its cost.   

A. Memory-leveraging Shuffling in Twister 
Instead of disk-based repetitive merge in MapReduce 

frameworks like Hadoop, the current Twister does shuffling 
in memory. Due to the poor reliability and scalability of the 
brokers, we turn to use direct TCP transfers instead of 
relying on brokers to send intermediate data.  

In Twister, each Map task is located in a daemon process 
and executed by a thread. Once a Key-Value pair is output 
from a Map task, it is hashed according to the key and 
regrouped according to the destination, i.e., the location of 
the Reduce task which is selected to process this key. The 
reduce task selection can be redefined by the user but the 
default implementation is based on the key’s hash code and 
modulo operation. When a Map task finishes, it sends out all 
the Key-Value pairs it collects. There are two different kinds 
of routes. If the data size is small, e.g. less than 1MB, they 
are sent through the broker network. Otherwise, a small 

 
 

Figure 8. The algorithm steps per chain Figure 9. The execution flow per chain 



control message which contains the metadata information of 
the real data is sent through brokers to the daemon process 
where the Reduce task resides. Then it processes the message 
and fetches the real data by using direct TCP transfers. 

Since the intermediate data is large in shuffling, the 
program enters the second route in most cases. A thread pool 
is used at the receiver side to schedule the data retrieving 
activities to prevent it from crashing in heavy workload. The 
data received from the remote daemons are de-serialized and 
regrouped in a hash map based on the key. Once the data of a 
key from all the Map tasks are available, the daemon process 
starts the Reduce without delay. So the shuffling and reduce 
stages are coupled together and executed in a pipeline style. 

B. Local Reduction 
The mechanism currently used in Twister is efficient 

compared with original disk-based shuffling mechanism. 
However, the essence of the problem is that the data 
transferred in the shuffling stage is really large and the 
number of links is limited. Some solutions try to use 
Weighted Shuffle Scheduling (WSS) [18] to balance the data 
transfers by making the number of transferring flow to be 
proportional to the data size. But for K-means Clustering, 
this is not helpful because the data size generated per Map 
task is same and then there is no space for optimization.  

By observing the computation flow of K-means 
Clustering, we find that each Key-Value pair in intermediate 
data is a partial sum of the coordination values of data points 
in a cluster. Since addition is an operation with both 
commutative and associative properties, for any two values 
belonging to the same key, we can operate them and merge 
them to a single Key-Value pair. This doesn’t change the 
final result. This property can be illustrated by the following 
formula:  

𝑓�𝑘𝑣1,⋯ , 𝑘𝑣𝑖 ,⋯ , 𝑘𝑣𝑗 ,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑖 ⊕
𝑘𝑣𝑗�,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑗 ⊕ 𝑘𝑣𝑖�,⋯ , 𝑘𝑣𝑛� ∀ 𝑖, 𝑗, 1 ≤
𝑖, 𝑗 ≤ 𝑛  (5) 

Here ⊕ is the operation defined on any two KeyValue 
pairs, 𝑓 is the Reduce function and 𝑛 is the number of Key-
Value pairs belonging to the same key. In K-means 
Clustering, it is the addition of two partial sums of 
coordination values of data points.  In other applications, we 
can also find this property. In Word Count [2], the 
intermediate data is the partial count of a word.  We can 
merge two Key-Value pairs together to a single Key-Value 
pair with the value as the sum of two count values. And ⊕ 
can be operations other than addition, such as multiplication 
and max/min value selection, or just simple combination of 
the two values. 

With this property and the fact that Map tasks works as 
threads in Twister daemon processes, we do local reduction 
in the memory of daemon processes shared by Map tasks. 
Once a Map task is finished, it doesn’t send data out 
immediately but caches the data to a shared memory pool. 
When the key conflict happens, the program invokes user 
defined operation to merge two Key-Value pairs into one. A 

barrier is set so that the data in the pools are not transferred 
until all the Map tasks are finished. By exchanging 
communication time with computation time, the data 
required to be transferred can be significantly reduced. 

C. New Interface Design 
To support shuffling and local reduction, we provide new 

interfaces to let user define the Key and Value objects. We 
abstract data presentation through general interfaces Key and 
Value extended from TwisterSerializable Java  interface.  

Originally we serialize each Key-Value pair into a byte 
array and merge them together. However, it is very 
inefficient in shuffling stage when a large number of Key-
Value pairs are required to be serialized and merged into a 
single byte array because the byte streams have to be created 
repeatedly to serialize each Key-Value pair. Now the new 
interface is provided to delegate TwisterMessage object to do 
serialization. With TwisterMessage object, user can use its 
APIs to directly serialize multiple Key-Value pairs into a 
single byte stream managed by it.  

 
 
 
 
 
 
 

 

Based on TwisterSerializable, the interfaces Key and 
Value are defined. In the interface Key, an API named 
isMergeableInShuffle is defined to check if the current Key-
Value pair can be merged in shuffling. At the same time, an 
API mergeInShuffle is defined in Value. It can take a Value 
object and merge its contents to the current Value object. 

 
 
 
 
 
 
 
 
 
 

 

V. EXPREIMENTS 
We do experiments on IU PolarGrid to evaluate the per-

formance of the new methods we propose and compare the 
pros and cons of them. We do micro-benchmarking on 
broadcasting and shuffling, and full application benchmark-
ing on K-means Clustering. The results show that Multi-
Chain and Scatter-Allgather-BKT are two good choices for 
broadcasting and Shuffling with local reduction can out-
perform the original shuffling significantly. 

 

public interface Key extends 
TwisterSerializable { 

public boolean equals(Object key); 

public int hashCode(); 

public boolean isMergeableInShuffle(); 
} 

public interface Value extends 
TwisterSerializable { 

public boolean mergeInShuffle(Value value); 
} 

public interface TwisterSerializable { 

    public void  
fromTwisterMessage(TwisterMessage                                          
message) throws SerializationException; 

    public void toTwisterMessage(TwisterMessage 
message) throws SerializationException; 

} 



 

 

 

 

 

 

 

 

 

 

 

 

A. Broadcasting 
Four broadcasting methods are tested in IU PolarGrid: 

Scatter-Allgather-BKT/MST/Broker, and Multi-Chain. The 
first three are all the methods following the principle of 
“divide, distribute and gather” and the final one is a pipeline 
based method described above. 

The original one-broker and mesh-network solutions are 
not included in performance evaluation because they are not 
only extreme slow in theoretical performance but also easily 
cause failures in real experiment. The action of sending 1 GB 
data to a broker often fails. Due to the constraint of 1Gbps 
connection, one-broker method uses about 1250 seconds and 
mesh-network method uses 240 seconds on 125 nodes from a 
theoretical analysis. 

For time evaluation, we measure the whole broadcasting 
process which starts from serializing message, then sending 
data, and ends with getting all the ACK messages from the 
receivers. We test the performance of broadcasting from a 
small scale to a moderate large scale. The range include 1 
node, 25 nodes with 1 switch, 50 nodes under 2 switches, 75 
nodes with 3 switches, 100 nodes with 4 switches, and 125 
nodes with 5 switches. We also test on different data size, 
including 100 MB and 1GB. Each test is done 10 times. The 
performance results are given in Fig. 10 and Fig. 11. 

We use different data chunking settings on different 
algorithms. For Multi-Chain, each chunk is about 4MB. That 
means for 1 GB data, there is about 250 chunks and for 100 
MB data, there is about 25 chunks. For Scatter-Allgather-
BKT/MST/Broker, we set the number of chunks equal to the 
number of nodes. But for 1 node test, because of the absence 
of Allgather stage, we can set the number of chunks 
comparable to the settings in Multi-Chain.  

On 1 GB data broadcast, the performance results show 
that Multi-Chain has the best performance for all node 
counts. For Scatter-Allgather-BKT/MST, the former is not 
only better than the latter in performance but also more 
stable with lower deviation. For Scatter-Allgather-Broker, it 
only works well on small scale. When the scale goes large, 

 

 

 

 

 

 

 

 

 

 

 

 

 

the performance drops drastically because of the network 
contention caused by its route selection in Allgather stage. 
Multi-Chain  outperforms it by a factor 2.3. 

However, on 100 MB data broadcast, the chart tells a 
different story. The performance of Multi-Chain is variable 
at large node count. Though it can achieve the highest 
performance, its average performance is slower than Scatter-
Allgather-BKT. The jitters probably come from the 
stragglers in the chain or the nondeterministic behaviors in 
the network. At the same time, Scatter-Allgather-MST is 
even worse than Scatter-Allgather-Broker in performance 
due to the contention on the receivers. 

We also present Cumulative Distribution Function (CDF) 
chart of completion times of data chunks received in 1 GB 
data broadcast on 125 nodes (See Fig. 12) to give a closer 
look of the performance. The results show that Multi-Chain 
and Scatter-Allgather-BKT have higher data receiving rate 
than the rest two. We also see a large delay in MST method 
at receiving the final few data chunks.  This is probably due 
to the contention on receivers for receiving messages from 
different MSTs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 12. CDF of the received data chunks on 125 nodes under different 
broadcast methods (TA: Topology-Awareness) 

Figure 11. 100 MB data broadcasting Figure 10. 1 GB data broadcasting 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides, we show the importance of topology in our 
algorithm design by comparing the topology–aware Multi-
Chain and the chain without topology-awareness on 125 
nodes. By executing each method 30 times, we show that 
inter-switch transfers have significant impact compared with 
intra-switch transfers. The one with topology-awareness 
shows a factor of 2.8 performance increase shown in Fig. 13. 
Further, in Fig. 12, we also show that it has the lowest data 
chunk receiving rate.  

B. Shuffling and K-means Clustering Application 
We test shuffling with local reduction by using K-means 

Clustering. In order to show the clear difference of shuffling 
with local reduction and shuffling without local reduction, 
we focus on the case of 125 nodes. 

To benchmark the performance of shuffling, we lower 
the number of data points each Map task processes to one 
point per task in order to shorten the total execution time. To 
simulate the image clustering application, we set each point 
to 500 dimensions. This application is called K-means 
Clustering benchmarking application. We measure the time 
from the start of shuffling to the end of Reduce. Time costs 
on Reduce tasks are included but can be ignored because 
they are very small compared with the data transfer time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 shows the time difference on shuffling with or 
without local reduction on 125 nodes with 1000 Map tasks. 
We see that when the data size output per Map task is 1 GB, 
the total time used on shuffling with local reduction is one 
tenth of the original algorithm as the data is reduced to one 
tenth of the original.  For 100 MB data per Map task, the 
time difference of shuffling is just a factor of two. 

We also benchmark the total time cost per iteration by 
using the benchmarking application above to see how much 
the performance improvement is gained in by changing from 
the old data transfer methods to the new ones. We test with 1 
GB centroids data. For the old methods we use broker based 
method for broadcasting and shuffling without local 
reduction. The new methods use Multi-Chain broadcasting 
and shuffling with local reduction. We find that the time cost 
per iteration is reduced to 20% of the original time (See Fig. 
15). 

We also test K-means Clustering with real image 
clustering data: 10K centroids and 1 million data points.  We 
test it on a smaller scale with 80 nodes. The old methods still 
use Scatter-Allgather-Broker method for broadcasting and 
shuffling without local reduction. The new methods use 

 

  

 

Figure 15. Comparison of time cost per iteration on 125 nodes with K-
means clustering benchmarking application on 250K 500D centroids (1 GB 

data), and 1000 data points 

Figure 13. Broadccasting time comparison of Multi-Chain with or without 
Topology-Awareness 

Figure 14. Shuffling time comparison with or without local reduction on 
125 nodes with 1000 Map tasks 

Figure 16. Comparison of communication time cost per iteration on 80 
nodes with real image clustering application on 10K 500D centroids and 1 

million data points 



Scatter-Allgather-BKT for broadcasting because of its good 
performance on broadcasting small data and shuffling with 
local reduction. We show that the communication cost per 
iteration of the new method  is half that of the old (See Fig. 
16). 

VI. RELATED WORK 
Collective communication algorithms are well studied in 

MPI runtime. The communication operations are divided into 
two parts, data redistribution operations including Broadcast, 
Scatter, Gather, Allgather, and data consolidation operations 
including Reduce, Reduce-scatter, Allreduce. Each operation 
has several different algorithms based on message size and 
network topology such as linear array, mesh and hypercube 
[10]. Basic algorithms are pipeline broadcast method [8], 
minimum-spanning tree method, bidirectional exchange 
algorithm, and bucket algorithm [10]. Since these algorithms 
have different advantages, algorithm combination is widely 
used to improve the communication performance [10]. And 
some solution also provides auto algorithm selection [19].  

However, many solutions have a focus which is different 
from our work as they study small data transfers up to 
megabytes level [10][20]. The data type is typically vectors 
and arrays whereas we are considering objects. Many 
algorithms such as Allgather algorithms have the assumption 
that each node has the same amount of data [9][10] but this is 
not common in MapReduce computation model. As a result, 
though shuffling can be viewed as Reduce-scatter operation, 
its algorithm cannot be applied directly on shuffling because 
the data amount generated by each Map task is uneven in 
most MapReduce applications.  

Furthermore, many past effort work on static topology 
such as linear array and mesh. But for Fat-Tree topology, 
algorithms have to be topology-aware in order to handle the 
differences on speed of heterogeneous links. Several papers 
discuss this and developed topology-aware broadcast, 
scatter/gather operations to map the logical communication 
topology to real network topology. Not only the algorithm 
itself is optimized, but also auxiliary services such as 
topology detection [21][22] and fault detection and recovery 
[23] are also added to these solutions to improve the 
performance and resiliency.  

In MapReduce domain, there are several solutions to 
improve the performance of data transfers.  Orchestra [18] is 
such a global control service and architecture to manage intra 
and inter-transfer activities on Spark [24]. It not only 
provides control, scheduling and monitoring on data 
transfers, but also provides optimization on broadcasting and 
shuffling. For broadcasting, it uses an optimized BitTorrent 
[25] like protocol called Cornet, augmented by topology 
detection. Though this method achieves similar performance 
as our Multi-Chain method, it is still unclear about its 
internal design and what kind of communication graph 
formed in data transfers.  For shuffling, it uses weighted 
shuffle Scheduling (WSS) to set the weight of the flow to be 
proportional to the data size. But as what we discussed 
above, it is not helpful to applications such as K-means 
Clustering. 

There are also other solutions to improve shuffling 
performance. One is Hadoop-A [26] that provides a pipeline 
to overlap the shuffle, merge and reduce phases, which is 
very similar to the mechanism in Twister. But it uses an 
alternative Infiniband RDMA [27] based protocol to leverage 
RDMA inter-connects for fast data shuffling. However, due 
to the limitation of test environment, we didn’t see how it 
performs on 100+ nodes. Another is MATE-EC2 [28], a 
MapReduce like framework working on EC2 [29] and S3 
[30] with alternate APIs. For shuffling it uses local reduction 
and global reduction. The mechanism is similar to what we 
did in Twister but it focuses on EC2 cloud environment so 
that the design and implementation are totally different.   

For iterative MapReduce, there are also other solutions 
such as iMapReduce [31] iHadoop [32] to optimize to the 
data transfers between iterations by doing iteration asynch-
ronously. That means there is no barrier between any two 
iterations. However, this doesn’t work for applications which 
need broadcast data in every iteration because all the outputs 
from Reduce tasks are needed for every Map task.  

VII. CONCLUSION 
In this paper, we improved the performance of data 

transfers in Twister iterative MapReduce framework. We 
removed original broker-based methods and implemented 3 
topology-aware algorithms including Multi-Chain, and 
Scatter-Allgather-BKT/MST. Among them, Multi-Chain 
method can improve broadcasting performance by 60% of 
original broker based broadcast method and 50% of Scatter-
Allgather-BKT, a standard broadcasting algorithm for large 
vectors in MPI. We also improve shuffling performance to 
10% of the original time by using local reduction.  

There are number of directions in future work. We try to 
apply Twister with new data transfer methods to other 
iterative applications [33]. We are also transplanting our 
algorithms to Infiniband and test the performance gain from 
different methods. The initial observation suggests that the 
optimal choice could be different from the situation on 
Ethernet. Further we try to extend the methods to a complete 
service by building topology and link speed detection service 
and utilizing auxiliary service such as ZooKeeper [34] to 
provide coordination and fault detection. 
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