
Accelerating Data Transfers In Iterative MapReduce
Framework

Bingjing Zhang
Department of Computer Science
Indiana University Bloomington

zhangbj@indiana.edu

Judy Qiu
Department of Computer Science
Indiana University Bloomington

xqiu@indiana.edu

Abstract—MapReduce has become popular in recent years due
to its attractive programming interface with scalability and
reliability in processing big data problems. Recently several
iterative MapReduce frameworks including our Twister
system have emerged to improve the performance on many
important data mining applications. Utilizing local memory on
each compute node to cache invariant data, we are able to
accelerate MapReduce execution but we still find performance
issues when transferring massive data between or during
iterations. Taking K-means Clustering as an example, the
centroids are required to be broadcasted to all the Map tasks
each iteration and every local new centroid generated by each
Map task must be transferred in the shuffling stage. Here we
research several new methods to improve the performance of
broadcasting and shuffling in iterative MapReduce. We
introduce a new Multi-Chain broadcast method that reduces
the broadcasting time by 60% when broadcasting 1 GB data to
125 nodes. Further we show a new local reduction method can
reduce shuffling time to about 10% of the original time, where
a K-means Clustering application runs 1000 Map tasks with 1
GB data output per Map task.

KeyWords-Iterative MapReduce; Data-intensive applications;
Data transfer; Broadcasting; Shuffling; Fat-Tree topology

I. INTRODUCTION
The rate of data generation has now exceeded the growth

of computational power predicted by Moore’s law.
Computational challenges are related to mining and analysis
of these massive data sources for the translation of large-
scale data into knowledge-based innovation. However, many
existing analysis tools are not capable of handling such big
data sets. MapReduce frameworks have become popular in
recent years for their scalability and fault tolerance in large
data processing and simplicity in programming interface.
Hadoop [1], an open source implementation following
original Google’s MapReduce [2] concept, has been widely
used in industry and academia.

Intel’s RMS (recognition, mining and synthesis)
taxonomy [3] identifies iterative solvers and basic matrix
primitives as the common computing kernels for computer
vision, rendering, physical simulation, (financial) analysis
and data mining applications. These observations suggest
that iterative MapReduce will be a runtime important to a
spectrum of eScience or eResearch applications as the kernel
framework for large scale data processing.

However, classic Map and Reduce task pair cannot meet
the requirement of executing iterative algorithms as

inefficiency of repetitive disk access for fetching and
merging data over iterations. Several new frameworks
designed for iterative MapReduce are proposed to solve this
problem, including Twister [4] and HaLoop [5].

Twister, developed by our group, is an iterative
MapReduce framework. It categorizes data to be static and
variable. Static data is loaded from disk and cached into
memory in the configuration stage before the MapReduce
job execution. Worker daemons are under the control of
driver node and execute MapReduce jobs by spawning Map
and Reduce task threads. The early version of Twister
iterative MapReduce is targeted for optimizing data flow and
reducing data transfer between iterations by caching
invariant data in local memory or disk of compute nodes.
The scheduling mechanism assigns tasks to the node where
relevant invariant data is located.

In this paper, we propose three Map-collective methods:
Multi-Chain, Scatter-Allgather-BKT (bucket) and Scatter-
Allgather-MST (minimum spanning tree) to accelerate data
transfers in Twister. They improve the performance of two
key data transfer operations: broadcasting and shuffling. For
broadcasting, we develop parallel methods based on the
traditional deterministic broadcasting algorithms in MPI [7].
Multi-Chain creates multiple chains to transfer data in a
pipeline style [8]. Scatter-Allgather-BKT and Scatter-
Allgather-MST both follow the style of “divide, distribute
and gather” [9]. The difference is that the former sets a
barrier between Scatter and Allgather stage and uses bucket
algorithm [10] for Allgather while the latter broadcasts each
data piece scatted in a minimum spanning tree (MST)
without waiting for a barrier. These Map-collective methods
provide important capabilities of our new iterative
MapReduce framework for date intensive applications. We
show improved performance of transferring 8 Terabytes of
intermediate data with 1000 Map tasks on 125 nodes
enabling large-scale image classification.

A network topology commonly used in HPC or cloud
environment is a Fat-Tree topology [12] where the cost of
inter-switch connection is high. Instead of applying Multi-
Chain, MST and BKT algorithm simplistically, we add the
topology information into the algorithms.

Although Twister has already achieved better
performance than Hadoop by leveraging in memory
shuffling, the cost of shuffling is still high for applications
like K-means Clustering [6] with intensive intermediate data
transfer. We propose an extra step of local reduction before

shuffling to reduce data size by utilizing shared memory as
Map tasks and Reduce tasks run on threads. Another
optimization is to serialize data objects in memory
efficiently. Instead of serializing data objects to byte arrays
and then merge them into a byte stream at each iteration step,
we provide new messaging interfaces and mechanisms to
minimize the cost of data serialization. We also overlap data
serialization and communication to reduce data broadcasting
time.

We evaluate our new methods using a real application of
image identification on 125 compute nodes of the PolarGrid
[13] cluster at IU. K-means Clustering produces 1 GB data
output per Map task with a total of 1000 Map tasks. We
show that the new Multi-Chain method reduces the
broadcasting time to 44% of the original broker based
method and to 54% of standard MPI Scatter-Allgather-BKT
algorithm. Shuffling operation with local reduction is about
10% of the original time and the total cost per iteration is
reduced 50%.

The rest of paper is organized as follows. Section 2
discusses the basic Twister MapReduce framework and K-
means Clustering algorithm. Section 3 presents the design of
broadcasting algorithm. Section 4 presents how the new
shuffling mechanism works. Section 5 shows the
experiments and results. Section 6 gives related work And
Section 7 the conclusion and discussion about future work.

II. BACKGROUNDS
Twister is a framework which can accelerate iterative

MapReduce job execution by caching the invariant data into
the local memory of the compute nodes. In this section, we
provide an overview of Twister and discuss about the current
problems. We also give the background knowledge of K-
means Clustering algorithm with related applications and
show how it works in Twister. Finally we give a brief
discussion of the Fat-Tree topology in IU PolarGrid.

A. Twister Iterative MapReduce Framework
Twister has several components, a single driver to drive

MapReduce jobs, and daemon nodes to handle requests from
the driver and execute iterative MapReduce jobs (See Fig. 1).
These components are connected through messaging brokers
via a publish/subscribe mechanism. Currently Twister
supports two different kinds of brokers. One is ActiveMQ
[13], another is NaradaBrokering [14].

The Twister driver program allows users to configure an
iterative MapReduce job with static data cached in Map tasks
or Reduce tasks before the start of job execution and to drive
the job iteratively with loop control. It can also send the
variable data to work nodes at the beginning iteration and
collected back at the end of the iteration. In this model, fault
tolerance is provided through setting checkpoints between
iterations.

On daemon nodes, during the configuration stage, Map
and Reduce workers are created and static data is loaded
from the local disk and cached into memory. Later in the
execution stage, daemons start to execute MapReduce tasks

with threads. Twister uses static scheduling for workers in
order to leveraging the local data cache.

In current released version, there is no support for a
distributed file system. Files and replicas are stored on local
disks of each compute node and recorded in a partition file.
The Max Flow algorithm [15] is used to decide the mapping
between workers and the files in job execution. Since our
current solution lacks reliability and scalability, we are
moving toward using distributed file systems such as HDFS
[16].

Early Twister work used messaging brokers to do data
transfers and the first Twister prototypes use only one
broker, which is sufficient for small messages transfers.
However for large data transfers, it becomes a hot spot and
stops Twister from scaling. Then we switched to use a
network of brokers, but we still find the following issues:

• Unnecessary communication hops are added in data
transfers. It is especially bad for big messages which
usually need significant time to transfer from one
point to another point.

• The Broker network doesn’t provide optimal route to
transfer data between a set of brokers and nodes.
Every broker gets the message and forwards it
directly.

• Reliability issues are found in maintaining brokers.
Brokers are not always reliable in message
transmission. Messages can get lost without
notification and the broker could also fail. Then the
potential failure points in the system increase as the
number of brokers increase. This brings additional
work to manage distributed brokers.

For these reasons, in current released version of Twister,
we already transfer intermediate data in shuffling through
TCP sockets. Though some broker based methods can
improve broadcasting, they are far from the optimal, and so
we no longer use brokers.

Figure 1. Twister achitecture

B. K-means Clustering and Image Clustering Application
K-means Clustering is an iterative algorithm to partition

data points into a given number of clusters. At the beginning,
a set of centroid points are randomly generated or randomly
picked from the data points. To assign a point to a cluster,
the algorithm lets each data point go through the whole list of
centroid points to find the closest centroid by calculating the
Euclidean distances. Once all the data points are assigned,
the new centroids of clusters are recalculated by calculating
the mean of all the coordination values of the points in each
cluster. After several iterations, the positions of centroids
reach a local optimization.

We observe that the positions of data points are static
over iterations. So for Twister K-means Clustering, the data
points are partitioned and each cached to a Map task. We
broadcast centroid data to all the Map tasks. Then we let
each Map task assign the data points it owns to the clusters
and output the partial sum of coordination values of data
points in each cluster. We use one reducer or multiple
reducers to collect the partial sum of data points assigned to
each cluster from the Map tasks and calculate the mean after
getting the total sum. By combining these new centroids
from Reduce tasks and the driver gets the update and goes to
the next iteration (See Fig. 2).

In a real application, we use K-means Clustering
algorithm to cluster images. In this application, each image is
presented as a vector with 500 feature values so that it can be
treated as a point with 500 dimensions. We use K-means
clustering algorithm to partition images to clusters with each
of which contains images with similar features.

However, there is difficulty to scale this application. As
each point has high dimensions, the total size of centroids
can be very large and go to MB or GB level. Because the
time required for broadcasting and shuffling is proportional
to the number of compute nodes and the data size of
centroids, the cost of broadcasting and shuffling is extremely
high.

C. IU PolarGrid
IU PolarGrid uses Fat-Tree topology to connect nodes.

The nodes are split into sections of 42 nodes which are then
tied together with 10 GigE into a Cisco Nexus core switch.
For each section, nodes are connected with 1 GigE to an
IBM System Networking Rack Switch G8000. So it is a 2-
level Fat-Tree structure with first level 10 GigE connection
and second level 1 GigE connection (See Fig. 3).

This kind of topology can easily cause contention when
there are many inter-switch communication pairs. It is not
only because inter-switch communication has more delay
than intra-switch communication, but also because a 10 GigE
connection limits the number of parallel communication
pairs across switches. Assuming that every 1 GigE link to
each node is fully utilized, a 10 GigE connection can only
support 10 parallel communication pairs across rack switches
in maximum. Otherwise the inter-switch communication
pairs could affect each other in performance. As a result,
reducing the times of inter-switch communication is the first
thing to be considered in the design of efficient collective
communication algorithms on this fat-tree topology,

For computing capacity, each compute node in PolarGrid
uses a 4-core 8-thread Intel Xeon CPU E5410 2.33 GHz
processor. The L2 cache size per core is 12 MB. The total
memory per node is 16 GB.

III. BROADCASTING TRANSFERS
To solve the performance problems of broadcasting, we

investigated several approaches. Initially we tried to use
multiple brokers to replace original single broker only
solution to improve broadcasting speed. However those
methods still have performance issue because message routes
between brokers or between brokers and clients are far from
optimal. Thus we moved to other methods which uses TCP
sockets directly. The broker systems can only achieve good
performance if they are optimized for the structured
communication patterns we need; this could be an interesting
research area.

Figure 2. K-means Clustering execution flow in Twister

Figure 3. Fat-Tree Topology in IU PolarGrid

With utilizing bucket algorithm and minimum-spanning-
tree algorithm, we develop two methods: Scatter-AllGather-
BKT and Scatter-AllGather-MST. Then to fully utilize the
bandwidth per link, we develop Multi-Chain method based
on pipelined broadcasting. We also embed topology
awareness in algorithm design and make the time used on
message serialization overlap with the time used on
broadcasting. To illustrate the performance model, we use 𝑝
as the number of daemon nodes (each node is controlled by
one daemon process), 𝑏 as the number of brokers, 𝑘 as the
number of data chunks, 𝑛 as the data size, 𝛼 as
communication startup time and 𝛽 as data transfer time per
unit.

A. Broker-Based Methods
Two methods are used to remedy the one broker only

method. One is a full mesh broker network for tree based
broadcasting and another is a set of brokers for broadcasting
in “scatter and allgather”.

In full mesh broker network, every broker connects with
the rest of brokers (See Fig. 4). Each broker serves several
Twister daemons which are evenly distributed except one
broker serves Twister driver exclusively. By this way, we
can maintain the reachability of connections between every
two Twister components and do broadcasting in a two level
tree structure. Once the exclusive broker gets the data sent
from the driver, it forwards the data to each of the rest of
brokers. Then these brokers continue forwarding the data to
the clients it connects to. The performance improvement is
gained from the second level where each broker can do data
forwarding in parallel. Network contention can be avoided if
the nodes served by one broker are in the same switch. The
performance model can be established as follow:

𝑇𝐹𝑢𝑙𝑙𝑀𝑒𝑠ℎ𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑝, 𝑏,𝑛) ≈ (𝑏 + 𝑝 𝑏⁄)(𝛼 + 𝑛𝛽) (1)

When 𝜕𝑇 𝜕𝑏⁄ = 0, we can get 𝑏𝑜𝑝𝑡 ≈ �𝑝. Though it is
much better than naïve broadcasting in performance, it is still
very slow. Considering 1GB broadcasting on 100 nodes
using 1Gbps links, this method needs 10 brokers and use
about 200 seconds to finish! Besides we found that messages
could be lost in this algorithm..

Another broker topology is an unconnected broker array.
In this method, each broker connects to all Twister
components and each client also connects to all the brokers
and tries to balance the workload of data sending among
broker connections (See Fig. 5). Broadcasting is done in a
style of “scatter and allgather”. In Scatter phase, data is split
and sent to brokers first. Then in Allgather phase, each
broker broadcasts the data chunk it owns to all the client
processes. Ideally, assuming there is no contention, we can
derive:

𝑇𝑆𝑐𝑎𝑡𝑡𝑒𝑟−𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟−𝐵𝑟𝑜𝑘𝑒𝑟(𝑝, 𝑏,𝑛) ≈ (𝑏 + 𝑝)(𝛼 + 𝑛𝛽 𝑏⁄) =
(𝑏 + 𝑝)𝛼 + 𝑛𝛽 + 𝑝𝑛𝛽 𝑏⁄ (2)

Since 𝛼 can be ignored in large data transferring, we
conclude that 𝑏𝑜𝑝𝑡 ≈ 𝑝 . However, this is not verified in
experiments. The problem is that we cannot control the
routes of messages in broker based communication and
congestion can happen on some links. As a result, Allgather
overlaps Scatter and they affect each other and the
performance degrades and is variable. There is also a
reliability issue in deploying this kind of topology in large
scale. Because the number of connections each node can
support is limited, the number of connections on each node
cannot grow as 𝑝 grows. As 𝑝 goes to a large number,
failures can happen on some broker connections. Despite of
seeing these shortcomings, we still see the method achieves
better performance than the full mesh broker network.

B. Scatter-Allgather Methods
Well known successes with MPI collective

communication algorithms makes us turn to use TCP socket
connection directly in order to control the message routes in
broadcasting ourselves. As Scatter-Allgather-Broker
method, the following two methods are also called Scatter-
Allgather methods because they all follow the principle of
“divide, distribute and gather”. The difference is that in
Allgather phase, one uses bucket algorithm but the other uses
minimum-spanning-tree algorithm. We call them Scatter-
Allgather-BKT and Scatter-Allgather-MST separately.

Scatter-Allgather-BKT algorithm is an algorithm used in
MPI for long vectors broadcasting. It first scatters the data to
all the nodes. To do this, it can use MST algorithm or a

Figure 4. Full mesh broker network topology with 5 brokers and 16
daemon nodes

Figure 5. Unconnected broker array with 5 brokers and 4 daemon nodes

straightforward algorithm. Then in Allgather phase, it views
the nodes as a chain. At each step, each node sends data to its
right neighbor. By taking advantage of the fact that messages
traversing a link in opposite direction do not conflict, we can
do Allgather in parallel without any network contention (See
Fig. 6). The performance model can be established as follow:

𝑇𝑆𝑐𝑎𝑡𝑡𝑒𝑟−𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟−𝐵𝐾𝑇(𝑝,𝑛) ≈ 𝑝(𝛼 + 𝑛𝛽 𝑝⁄) + (𝑝 −
1)(𝛼 + 𝑛𝛽 𝑝⁄) = (2𝑝 − 1)(𝛼 + 𝑛𝛽 𝑝⁄) (3)

Since we can control every step in the algorithm, we set a
barrier between Scatter and Allgather to prevent them from
affecting each other. We also make the communication in
Allgather be topology-aware, i.e. nodes in the same rack are
close to each other in the chain and each data only travel on
any inter-switch link once. This makes its performance much
better than broker based methods. But in experiments, we see
the performance is still slightly slower than the theoretical
value. Since it is impossible to enable all the nodes to do
Allgather at the same global time through sending control
messages from the driver, some links have more load than
the others and thus it causes network contention.

An alternative method is Scatter-Allgather-MST which
uses MST algorithm in Allgather phase Since MST is good
at broadcasting small messages [10], we scatter small data
chunks to nodes and let each node broadcast the data chunk
in a MST (See Fig. 7).

To reduce the conflict, each node builds its own MST
with itself as root. In each MST, each node in the tree is
assigned with a rank for calculating the sending topology in
the tree. The root node is always assigned with rank 0.
Assuming the real ID of the root node is 𝑖 (0 ≤ 𝑖 ≤ 𝑝 − 1),
then rank 𝑗 in the MST is the node with (𝑖 + 𝑗) 𝑚𝑜𝑑 𝑝. So
every node has a different rank in each tree. Due to the
difficulty of mapping a set of MSTs to the physical topology,
the contention still exists in this algorithm, but the total
workload on each node in data sending is balanced and the
link contention between trees is also reduced by rearranging
ranks for each tree.

C. Multi-Chain
Here we present the Multi-Chain method, an algorithm

based on pipelined broadcasting. In this method, compute
nodes in Fat-Tree topology are treated as a linear array and
data is forwarded from one node to its neighbor chunk by
chunk. The performance is gained by dividing the data into
many small chunks and overlapping the transmission stages.
For example, one would send the first chunk of the data to
the next node. Then, while the second node sends the first
piece to the third node, one would send the second piece to
the second node, and so forth [8]. Furthermore, to better
utilize the bandwidth and multi-core, we create multiple
chains. For IU PolarGrid, we create 8 chains with each
thread managing a chain.

Since in Fat-Tree topology each node only has two links,
which is less than the number of links per node in
Mesh/Torus [17] topology, chain broadcasting can maximize
the utilization of the links per node. We also make the chain
be topology-aware by putting nodes within the same rack
close in the chain. If nodes are not evenly distributed among
switches, assuming 𝑁𝑅1 > 𝑁𝑅2 > 𝑁𝑅3 > ⋯, then we put the
nodes in 𝑅1 at the beginning of the chain, then nodes in 𝑅2 at
the second, and then nodes in 𝑅3 ….

In the ideal case, if every transfer can be overlapped
seamlessly, the theoretical performance is as follow:

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄) + (𝑘 − 1)(𝛼 + 𝑛𝛽 𝑘⁄) (4)

Because 𝑛 is large in our transfers, when 𝜕𝑇1𝐷 𝜕𝑘⁄ = 0,
𝑘𝑜𝑝𝑡 = �(𝑝 − 1)𝑛𝛽/𝛼 [8]. However, the speed of data
transfers on each link could not be always at the same speed
in practice so that network congestion could happen at some
time or place in the network when you keep forwarding the
data into the pipeline. So we add barriers inside of the
execution flow to coordinate the pipeline. The data is
partitioned to chunks. Each chunk is broadcasted in a
pipeline called “small pipeline” and the whole data is also
broadcasted in a pipeline called “big pipeline”.

Figure 6. Bucket algorithm in Allgather of Scatter-Allgather-BKT

Figure 7. MST algorithm in Allgather of Scatter-Allgather-MST

In the small pipeline, every node receives partial data
chunk called a block) and forwards it to the next node
directly. No barrier is required to coordinate the behavior of
this pipeline. Chunk 0 sent from Driver is pipelined in this
way. But before sending Chunk 1, Driver needs to wait for
an ACK sent from Daemon 0. For Daemon 0, once it finishes
the action of receiving and forwarding Chunk 0, it sends an
ACK to Driver to let it send Chunk 1 and wait for an ACK
from Daemon 1 to see if it gets Chunk 0 just forwarded by
Daemon 0. Once these two conditions are met, another small
pipeline starts to transfer Chunk 1. This is the coordination in
big pipeline. We present the algorithm steps of this flow in
Fig. 8 and execution flow in Fig. 9. In the experiments, we
set chunk size to 4 MB and block size to 8192 bytes as the
optimal choices.

D. Auxillary Steps in Broadcasting
To start and end broadcasting, auxiliary processes are

required, including topology learning, data serialization,
serialization and transferring overlapping, and mechanisms
to provide resiliency.

Currently automatic topology detection is not
implemented. We put the topology information in a property
file and let each node read it before starting broadcasting.

Broadcast data are abstracted and presented as Key-
Value pairs in memory and they are serialized before sending
and de-serialized after receiving. We find the serialization
time of a single big object is extremely long so that so that
we enable users to divide it into a set of small objects. Using
small data objects also enable us to parallelize the
serialization and let it be overlapped with broadcasting to
improve the overall performance. In Multi-Chain, we use a
producer/consumer model and in Scatter-Allgather methods,
we let each thread serialize a data object and send it.

We also adapt several strategies to make the whole
process fault tolerant. For failures in each node-to-node
sending step, we do retry first otherwise jump to the other
destinations. At the end of the broadcasting, the driver waits
and checks if all the nodes have received all the data blocks.
If driver doesn’t get all the ACK within a time window, it
restarts the process of broadcasting.

IV. SHUFFLING TRANSFERS
During the shuffling phase, the <Key, Value> pairs

generated from Map tasks are regrouped by keys and
processed as <Key, <Value>> by a Reduce task. In original
MapReduce framework, this operation heavily uses the
distributed file system and causes repetitive merges and disk
access. As this could be very inefficient, in Twister, we
leverage memory to do shuffling operation by directly
transferring intermediate data through the network from the
memory of the node where the Map task lives to the memory
of the node where the Reduce task locates, so that the whole
process is different from the one in original MapReduce.

But when the scale goes large, the performance degrades
drastically. For example, in K-means Clustering, the data
required to be transferred in shuffling is about 𝑎𝑝𝑛 bytes, 𝑎
is the number Map task threads per node, 𝑝 is the number of
the node, and 𝑛 is the data size of centroids generated by
each Map task. So even the data of centroids is small, it can
generate large intermediate data and cause the inefficiency of
transferring large amount of data. So we try to reduce the
intermediate data size to minimum by using local reduction
across Map tasks.

To support local reduction, we provide related interface
to help user to define the operation for local reduction. We
also optimize the interface for serialization to reduce its cost.

A. Memory-leveraging Shuffling in Twister
Instead of disk-based repetitive merge in MapReduce

frameworks like Hadoop, the current Twister does shuffling
in memory. Due to the poor reliability and scalability of the
brokers, we turn to use direct TCP transfers instead of
relying on brokers to send intermediate data.

In Twister, each Map task is located in a daemon process
and executed by a thread. Once a Key-Value pair is output
from a Map task, it is hashed according to the key and
regrouped according to the destination, i.e., the location of
the Reduce task which is selected to process this key. The
reduce task selection can be redefined by the user but the
default implementation is based on the key’s hash code and
modulo operation. When a Map task finishes, it sends out all
the Key-Value pairs it collects. There are two different kinds
of routes. If the data size is small, e.g. less than 1MB, they
are sent through the broker network. Otherwise, a small

Figure 8. The algorithm steps per chain Figure 9. The execution flow per chain

control message which contains the metadata information of
the real data is sent through brokers to the daemon process
where the Reduce task resides. Then it processes the message
and fetches the real data by using direct TCP transfers.

Since the intermediate data is large in shuffling, the
program enters the second route in most cases. A thread pool
is used at the receiver side to schedule the data retrieving
activities to prevent it from crashing in heavy workload. The
data received from the remote daemons are de-serialized and
regrouped in a hash map based on the key. Once the data of a
key from all the Map tasks are available, the daemon process
starts the Reduce without delay. So the shuffling and reduce
stages are coupled together and executed in a pipeline style.

B. Local Reduction
The mechanism currently used in Twister is efficient

compared with original disk-based shuffling mechanism.
However, the essence of the problem is that the data
transferred in the shuffling stage is really large and the
number of links is limited. Some solutions try to use
Weighted Shuffle Scheduling (WSS) [18] to balance the data
transfers by making the number of transferring flow to be
proportional to the data size. But for K-means Clustering,
this is not helpful because the data size generated per Map
task is same and then there is no space for optimization.

By observing the computation flow of K-means
Clustering, we find that each Key-Value pair in intermediate
data is a partial sum of the coordination values of data points
in a cluster. Since addition is an operation with both
commutative and associative properties, for any two values
belonging to the same key, we can operate them and merge
them to a single Key-Value pair. This doesn’t change the
final result. This property can be illustrated by the following
formula:

𝑓�𝑘𝑣1,⋯ , 𝑘𝑣𝑖 ,⋯ , 𝑘𝑣𝑗 ,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑖 ⊕
𝑘𝑣𝑗�,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑗 ⊕ 𝑘𝑣𝑖�,⋯ , 𝑘𝑣𝑛� ∀ 𝑖, 𝑗, 1 ≤
𝑖, 𝑗 ≤ 𝑛 (5)

Here ⊕ is the operation defined on any two KeyValue
pairs, 𝑓 is the Reduce function and 𝑛 is the number of Key-
Value pairs belonging to the same key. In K-means
Clustering, it is the addition of two partial sums of
coordination values of data points. In other applications, we
can also find this property. In Word Count [2], the
intermediate data is the partial count of a word. We can
merge two Key-Value pairs together to a single Key-Value
pair with the value as the sum of two count values. And ⊕
can be operations other than addition, such as multiplication
and max/min value selection, or just simple combination of
the two values.

With this property and the fact that Map tasks works as
threads in Twister daemon processes, we do local reduction
in the memory of daemon processes shared by Map tasks.
Once a Map task is finished, it doesn’t send data out
immediately but caches the data to a shared memory pool.
When the key conflict happens, the program invokes user
defined operation to merge two Key-Value pairs into one. A

barrier is set so that the data in the pools are not transferred
until all the Map tasks are finished. By exchanging
communication time with computation time, the data
required to be transferred can be significantly reduced.

C. New Interface Design
To support shuffling and local reduction, we provide new

interfaces to let user define the Key and Value objects. We
abstract data presentation through general interfaces Key and
Value extended from TwisterSerializable Java interface.

Originally we serialize each Key-Value pair into a byte
array and merge them together. However, it is very
inefficient in shuffling stage when a large number of Key-
Value pairs are required to be serialized and merged into a
single byte array because the byte streams have to be created
repeatedly to serialize each Key-Value pair. Now the new
interface is provided to delegate TwisterMessage object to do
serialization. With TwisterMessage object, user can use its
APIs to directly serialize multiple Key-Value pairs into a
single byte stream managed by it.

Based on TwisterSerializable, the interfaces Key and
Value are defined. In the interface Key, an API named
isMergeableInShuffle is defined to check if the current Key-
Value pair can be merged in shuffling. At the same time, an
API mergeInShuffle is defined in Value. It can take a Value
object and merge its contents to the current Value object.

V. EXPREIMENTS
We do experiments on IU PolarGrid to evaluate the per-

formance of the new methods we propose and compare the
pros and cons of them. We do micro-benchmarking on
broadcasting and shuffling, and full application benchmark-
ing on K-means Clustering. The results show that Multi-
Chain and Scatter-Allgather-BKT are two good choices for
broadcasting and Shuffling with local reduction can out-
perform the original shuffling significantly.

public interface Key extends
TwisterSerializable {

public boolean equals(Object key);

public int hashCode();

public boolean isMergeableInShuffle();
}

public interface Value extends
TwisterSerializable {

public boolean mergeInShuffle(Value value);
}

public interface TwisterSerializable {

 public void
fromTwisterMessage(TwisterMessage
message) throws SerializationException;

 public void toTwisterMessage(TwisterMessage
message) throws SerializationException;

}

A. Broadcasting
Four broadcasting methods are tested in IU PolarGrid:

Scatter-Allgather-BKT/MST/Broker, and Multi-Chain. The
first three are all the methods following the principle of
“divide, distribute and gather” and the final one is a pipeline
based method described above.

The original one-broker and mesh-network solutions are
not included in performance evaluation because they are not
only extreme slow in theoretical performance but also easily
cause failures in real experiment. The action of sending 1 GB
data to a broker often fails. Due to the constraint of 1Gbps
connection, one-broker method uses about 1250 seconds and
mesh-network method uses 240 seconds on 125 nodes from a
theoretical analysis.

For time evaluation, we measure the whole broadcasting
process which starts from serializing message, then sending
data, and ends with getting all the ACK messages from the
receivers. We test the performance of broadcasting from a
small scale to a moderate large scale. The range include 1
node, 25 nodes with 1 switch, 50 nodes under 2 switches, 75
nodes with 3 switches, 100 nodes with 4 switches, and 125
nodes with 5 switches. We also test on different data size,
including 100 MB and 1GB. Each test is done 10 times. The
performance results are given in Fig. 10 and Fig. 11.

We use different data chunking settings on different
algorithms. For Multi-Chain, each chunk is about 4MB. That
means for 1 GB data, there is about 250 chunks and for 100
MB data, there is about 25 chunks. For Scatter-Allgather-
BKT/MST/Broker, we set the number of chunks equal to the
number of nodes. But for 1 node test, because of the absence
of Allgather stage, we can set the number of chunks
comparable to the settings in Multi-Chain.

On 1 GB data broadcast, the performance results show
that Multi-Chain has the best performance for all node
counts. For Scatter-Allgather-BKT/MST, the former is not
only better than the latter in performance but also more
stable with lower deviation. For Scatter-Allgather-Broker, it
only works well on small scale. When the scale goes large,

the performance drops drastically because of the network
contention caused by its route selection in Allgather stage.
Multi-Chain outperforms it by a factor 2.3.

However, on 100 MB data broadcast, the chart tells a
different story. The performance of Multi-Chain is variable
at large node count. Though it can achieve the highest
performance, its average performance is slower than Scatter-
Allgather-BKT. The jitters probably come from the
stragglers in the chain or the nondeterministic behaviors in
the network. At the same time, Scatter-Allgather-MST is
even worse than Scatter-Allgather-Broker in performance
due to the contention on the receivers.

We also present Cumulative Distribution Function (CDF)
chart of completion times of data chunks received in 1 GB
data broadcast on 125 nodes (See Fig. 12) to give a closer
look of the performance. The results show that Multi-Chain
and Scatter-Allgather-BKT have higher data receiving rate
than the rest two. We also see a large delay in MST method
at receiving the final few data chunks. This is probably due
to the contention on receivers for receiving messages from
different MSTs.

Figure 12. CDF of the received data chunks on 125 nodes under different
broadcast methods (TA: Topology-Awareness)

Figure 11. 100 MB data broadcasting Figure 10. 1 GB data broadcasting

Besides, we show the importance of topology in our
algorithm design by comparing the topology–aware Multi-
Chain and the chain without topology-awareness on 125
nodes. By executing each method 30 times, we show that
inter-switch transfers have significant impact compared with
intra-switch transfers. The one with topology-awareness
shows a factor of 2.8 performance increase shown in Fig. 13.
Further, in Fig. 12, we also show that it has the lowest data
chunk receiving rate.

B. Shuffling and K-means Clustering Application
We test shuffling with local reduction by using K-means

Clustering. In order to show the clear difference of shuffling
with local reduction and shuffling without local reduction,
we focus on the case of 125 nodes.

To benchmark the performance of shuffling, we lower
the number of data points each Map task processes to one
point per task in order to shorten the total execution time. To
simulate the image clustering application, we set each point
to 500 dimensions. This application is called K-means
Clustering benchmarking application. We measure the time
from the start of shuffling to the end of Reduce. Time costs
on Reduce tasks are included but can be ignored because
they are very small compared with the data transfer time.

Fig. 14 shows the time difference on shuffling with or
without local reduction on 125 nodes with 1000 Map tasks.
We see that when the data size output per Map task is 1 GB,
the total time used on shuffling with local reduction is one
tenth of the original algorithm as the data is reduced to one
tenth of the original. For 100 MB data per Map task, the
time difference of shuffling is just a factor of two.

We also benchmark the total time cost per iteration by
using the benchmarking application above to see how much
the performance improvement is gained in by changing from
the old data transfer methods to the new ones. We test with 1
GB centroids data. For the old methods we use broker based
method for broadcasting and shuffling without local
reduction. The new methods use Multi-Chain broadcasting
and shuffling with local reduction. We find that the time cost
per iteration is reduced to 20% of the original time (See Fig.
15).

We also test K-means Clustering with real image
clustering data: 10K centroids and 1 million data points. We
test it on a smaller scale with 80 nodes. The old methods still
use Scatter-Allgather-Broker method for broadcasting and
shuffling without local reduction. The new methods use

Figure 15. Comparison of time cost per iteration on 125 nodes with K-
means clustering benchmarking application on 250K 500D centroids (1 GB

data), and 1000 data points

Figure 13. Broadccasting time comparison of Multi-Chain with or without
Topology-Awareness

Figure 14. Shuffling time comparison with or without local reduction on
125 nodes with 1000 Map tasks

Figure 16. Comparison of communication time cost per iteration on 80
nodes with real image clustering application on 10K 500D centroids and 1

million data points

Scatter-Allgather-BKT for broadcasting because of its good
performance on broadcasting small data and shuffling with
local reduction. We show that the communication cost per
iteration of the new method is half that of the old (See Fig.
16).

VI. RELATED WORK
Collective communication algorithms are well studied in

MPI runtime. The communication operations are divided into
two parts, data redistribution operations including Broadcast,
Scatter, Gather, Allgather, and data consolidation operations
including Reduce, Reduce-scatter, Allreduce. Each operation
has several different algorithms based on message size and
network topology such as linear array, mesh and hypercube
[10]. Basic algorithms are pipeline broadcast method [8],
minimum-spanning tree method, bidirectional exchange
algorithm, and bucket algorithm [10]. Since these algorithms
have different advantages, algorithm combination is widely
used to improve the communication performance [10]. And
some solution also provides auto algorithm selection [19].

However, many solutions have a focus which is different
from our work as they study small data transfers up to
megabytes level [10][20]. The data type is typically vectors
and arrays whereas we are considering objects. Many
algorithms such as Allgather algorithms have the assumption
that each node has the same amount of data [9][10] but this is
not common in MapReduce computation model. As a result,
though shuffling can be viewed as Reduce-scatter operation,
its algorithm cannot be applied directly on shuffling because
the data amount generated by each Map task is uneven in
most MapReduce applications.

Furthermore, many past effort work on static topology
such as linear array and mesh. But for Fat-Tree topology,
algorithms have to be topology-aware in order to handle the
differences on speed of heterogeneous links. Several papers
discuss this and developed topology-aware broadcast,
scatter/gather operations to map the logical communication
topology to real network topology. Not only the algorithm
itself is optimized, but also auxiliary services such as
topology detection [21][22] and fault detection and recovery
[23] are also added to these solutions to improve the
performance and resiliency.

In MapReduce domain, there are several solutions to
improve the performance of data transfers. Orchestra [18] is
such a global control service and architecture to manage intra
and inter-transfer activities on Spark [24]. It not only
provides control, scheduling and monitoring on data
transfers, but also provides optimization on broadcasting and
shuffling. For broadcasting, it uses an optimized BitTorrent
[25] like protocol called Cornet, augmented by topology
detection. Though this method achieves similar performance
as our Multi-Chain method, it is still unclear about its
internal design and what kind of communication graph
formed in data transfers. For shuffling, it uses weighted
shuffle Scheduling (WSS) to set the weight of the flow to be
proportional to the data size. But as what we discussed
above, it is not helpful to applications such as K-means
Clustering.

There are also other solutions to improve shuffling
performance. One is Hadoop-A [26] that provides a pipeline
to overlap the shuffle, merge and reduce phases, which is
very similar to the mechanism in Twister. But it uses an
alternative Infiniband RDMA [27] based protocol to leverage
RDMA inter-connects for fast data shuffling. However, due
to the limitation of test environment, we didn’t see how it
performs on 100+ nodes. Another is MATE-EC2 [28], a
MapReduce like framework working on EC2 [29] and S3
[30] with alternate APIs. For shuffling it uses local reduction
and global reduction. The mechanism is similar to what we
did in Twister but it focuses on EC2 cloud environment so
that the design and implementation are totally different.

For iterative MapReduce, there are also other solutions
such as iMapReduce [31] iHadoop [32] to optimize to the
data transfers between iterations by doing iteration asynch-
ronously. That means there is no barrier between any two
iterations. However, this doesn’t work for applications which
need broadcast data in every iteration because all the outputs
from Reduce tasks are needed for every Map task.

VII. CONCLUSION
In this paper, we improved the performance of data

transfers in Twister iterative MapReduce framework. We
removed original broker-based methods and implemented 3
topology-aware algorithms including Multi-Chain, and
Scatter-Allgather-BKT/MST. Among them, Multi-Chain
method can improve broadcasting performance by 60% of
original broker based broadcast method and 50% of Scatter-
Allgather-BKT, a standard broadcasting algorithm for large
vectors in MPI. We also improve shuffling performance to
10% of the original time by using local reduction.

There are number of directions in future work. We try to
apply Twister with new data transfer methods to other
iterative applications [33]. We are also transplanting our
algorithms to Infiniband and test the performance gain from
different methods. The initial observation suggests that the
optimal choice could be different from the situation on
Ethernet. Further we try to extend the methods to a complete
service by building topology and link speed detection service
and utilizing auxiliary service such as ZooKeeper [34] to
provide coordination and fault detection.

ACKNOWLEDGEMENT
This work is supported by National Science Foundation
CAREER Award on “Programming Environments and
Runtime for Data Enabled Science”.

REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Sixth Symp. on Operating System Design and
Implementation, pp. 137–150, December 2004.

[3] Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and
Synthesis Moves Computers to the Era of Tera. Compute-Intensive,
Highly Parallel Applications and Uses. Volume 09 Issue 02. ISSN
1535-864X. February 2005.

[4] J.Ekanayake et al., Twister: A Runtime for iterative MapReduce, in
Proceedings of the First International Workshop on MapReduce and

its Applications of ACM HPDC 2010 conference June 20-25, 2010.
2010, ACM: Chicago, Illinois.

[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
Haloop: Efficient Iterative Data Processing on Large Clusters.
Proceedings of the VLDB Endowment, 3, September 2010.

[6] J. B. MacQueen, Some Methods for Classification and Analysis of
MultiVariate Observations, in Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability. vol. 1, L. M. L. Cam and
J. Neyman, Eds., ed: University of California Press, 1967.

[7] MPI Forum, “MPI: A Message Passing Interface,” in Proceedings of
Supercomputing, 1993.

[8] Watts J, van de Geijn R. A pipelined broadcast for multidimensional
meshes. Parallel Processing Letters, 1995, vol.5, pp. 281–292.

[9] Nikhil Jain, Yogish Sabharwal, Optimal Bucket Algorithms for Large
MPI Collectives on Torus Interconnects, ICS '10 Proceedings of the
24th ACM International Conference on Supercomputing, 2010

[10] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn.
Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience, 2007, vol
19, pp. 1749–1783.

[11] Charles E. Leiserson, Fat-trees: universal networks for hardware
efficient supercomputing, IEEE Transactions on Computers, vol. 34 ,
no. 10, Oct. 1985, pp. 892-901.

[12] PolarGrid. http://polargrid.org/polargrid.
[13] ActiveMQ. http://activemq.apache.org/
[14] S. Pallickara, G. Fox, NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer to-Peer
Grids, Middleware 2003, 2003.

[15] Ford L.R. Jr., Fulkerson D.R., Maximal Flow through a Network,
Canadian Journal of Mathematics , 1956, pp.399-404.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop
Distributed File System. IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010

[17] S. Kumar, Y. Sabharwal, R. Garg, P. Heidelberger, Optimization of
All-to-all Communication on the Blue Gene/L Supercomputer, 37th
International Conference on Parallel Processing, 2008

[18] Mosharaf Chowdhury et al. Managing Data Transfers in Computer
Clusters with Orchestra, Proceedings of the ACM SIGCOMM 2011
conference, 2011

[19] H. Mamadou T. Nanri, and K. Murakami. A Robust Dynamic
Optimization for MPI AlltoAll Operation, IPDPS’09 Proceedings of
IEEE International Symposium on Parallel & Distributed Processing,
2009

[20] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Toward
message passing for a million processes: Characterizing MPI on a
massive scale Blue Gene/P. Computer Science - Research and
Development, vol. 24, pp. 11-19, 2009.

[21] Krishna Kandalla et al. Designing topology-Aware Collective
Communication Algorithms for Large Scale InfiniBand Clusters:
Case Studies with Scatter and Gather, IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010

[22] H. Subramoni et al. Design and Evaluation of Network Topology-
/Speed-Aware Broadcast Algorithms for InfiniBand Clusters,
Proceedings of the 2011 IEEE International Conference on Cluster
Computing, 2011

[23] M. Koop, P. Shamis, I. Rabinovitz, and D. K. Panda. Designing High
Performance and Resilient Message Passing on Infiniband. In
Proceedings of Workshop on Communication Architecture for
Clusters, 2010.

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In HotCloud, 2010.

[25] BitTorrent. http://www.bittorrent.com.
[26] Yangdong Wang et al. Hadoop Acceleration Through Network

Levitated Merge, International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'11), 2011

[27] Infiniband Trade Association. http://www.infinibandta.org.

[28] T. Bicer, D. Chiu, and G. Agrawal. MATE-EC2: A Middleware for
Processing Data with AWS, Proceedings of the 2011 ACM
international workshop on Many task computing on grids and
supercomputers, 2011

[29] EC2. http://aws.amazon.com/ec2/.
[30] S3. http://aws.amazon.com/s3/.
[31] Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A distributed

computing framework for iterative computation. In DataCloud '11,
2011.

[32] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous
Iterations for MapReduce, Proceedings of the 3rd IEE International
conference on Cloud Computing Technology and Science
(CloudCom), 2011

[33] B. Zhang et al. Applying Twister to Scientific Applications,
Proceedings of the 2nd IEE International conference on Cloud
Computing Technology and Science (CloudCom), 2010

[34] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: wait-
free coordination for internet-scale systems, in USENIXATC’10:
Proceedings of the 2010 USENIX conference on USENIX annual
technical conference, 2010, pp. 11–11.

	I. Introduction
	II. Backgrounds
	A. Twister Iterative MapReduce Framework
	B. K-means Clustering and Image Clustering Application
	C. IU PolarGrid

	III. Broadcasting transfers
	A. Broker-Based Methods
	B. Scatter-Allgather Methods
	C. Multi-Chain
	D. Auxillary Steps in Broadcasting

	IV. Shuffling transfers
	A. Memory-leveraging Shuffling in Twister
	B. Local Reduction
	C. New Interface Design

	V. Expreiments
	A. Broadcasting
	B. Shuffling and K-means Clustering Application

	VI. Related Work
	VII. Conclusion
	Acknowledgement
	References

