
Design Pattern for Typical Scientific Applications in DryadLINQ CTP
Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu, Geoffrey Fox

School of Informatics and Computing, Pervasive Technology Institute

Indiana University Bloomington
{lihui, yangruan, yuduo, xqiu, gcf}@indiana.com

Abstract— the design and implementation of higher level
language interfaces are becoming increasingly important for
data intensive computation. DryadLINQ is a runtime with a
set of language extensions that enables programmers to
develop applications processing large scale distributed data. It
has been successfully used in a wide range of applications for
the last five years. The latest release of DryadLINQ was
published as a Community Technology Preview (CTP) in
December 2010, and it contains new features and interfaces
that can be customized to achieve better performances for
applications and usability for developers. This paper presents
three design patterns in DryadLINQ CTP that are applicable
for a large class of scientific applications, exemplified by SW-
G, Matrix-Matrix Multiplication and PageRank with real data.

Keywords-component; Dryad; DryadLINQ; MapReduce;
Design Pattern;

I. INTRODUCTION
Applying high level parallel runtimes to data intensive

applications is becoming increasingly common [1]. Systems
such as MapReduce and Hadoop allow developers to write
applications that distribute tasks to remote environment
where contains the data, which following the paradigm
“moving the computation to data”. The MapReduce
programming model has been applied to a wide range of
applications, and attracts a lot of enthusiasm among
distributed computing communities due to its easiness and
efficiency to process large scale distributed data.

However, its rigid and flat data processing paradigm does
not directly support relational operations that have multiple
related inhomogeneous input data stream. This limitation
causes the difficulties and inefficiency when using Map-
Reduce to simulate relational operations like Join which is
very common in database. For example, the classic
implementation of PageRank is very inefficient due to the
simulating of Join with MapReduce causing lots of network
traffic for the computation. Further optimization of
PageRank requires developers to have sophisticated
knowledge on web graph structure.

Dryad [2] is a general purpose runtime that supports data
intensive applications on Windows platform. Dryad lies
between MapReduce and database, which addresses some of
the limitations of MapReduce systems. DryadLINQ [3] is the
programming interface for Dryad that aims to enable
developers make a wide range of data parallel applications in
an easy and efficient way. It automatically translates LINQ
programs written by .NET language into distributed
computations run on top of Dryad system. For some
applications, writing DryadLINQ programs are as simple as

writing sequential programs. DryadLINQ and Dryad runtime
optimizes the job execution plan and dynamically makes
changes during the computation. All this process is handled
by DryadLINQ/Dryad but transparent to users. For example,
when implementing PageRank with DryadLINQ
GroupAndAggregate() operator because it can dynamically
construct a partial aggregation tree to reduce the number of
intermediate records that transferring across the compute
nodes during the computation.

In this paper, we will explore the easiness and
efficiency of using DryadLINQ with three classic scientific
applications and further classify them into three design
patterns. The contributions of this paper are:

1) We studied the task granularity that improve
LINQ’s support for coarse-grain parallelization
with DryadLINQ CTP data model and interface.

2) We demonstrated a hybrid parallel programming
model not only utilizes parallelism in multiple
nodes but also in multiple cores.

3) We evaluated different distributed grouped
aggregation strategies in DryadLINQ CTP and
studied the feature of input data that affect the
efficiency of partial preaggregation.

The structure of this paper is as follows: section 2
illustrates DryadLINQ basic programming model. Section 3
describes implementation of three classic scientific
applications (SW-G, Matrix-Matrix Multiplication and
PageRank) with DryadLINQ CTP. Section 4 discusses
related work, and section 5 concludes this paper. We note
that as the latest LINQ to HPC has published in June 2011
and its interface changes much from DryadLINQ CTP, we
will describe programming models in pseudo code.

II. DRYADLINQ PROGRAMMING MODEL
Dryad, DryadLINQ and DSC [5] are a set of technologies

support the processing of data intensive applications on
Windows HPC cluster. The software stack of these
technologies is shown in Fig 1.

Dryad is a general purpose distributed runtime designed
to execute data intensive applications on Windows clusters.
A Dryad job is represented as a directed acyclic graph
(DAG), which is called Dryad graph. The Dryad graph
consists of some vertices and channels. A graph vertex is an
independent instance of the data processing code in certain
stage. Graph edges are channels transferring data between
vertices. The Distributed Storage Catalog (DSC) is the
component that works with NTFS to provide the data

management functionality such as file replication and load
balancing for Dryad and DryadLINQ.

DryadLINQ is a library that translates Language-
Integrated Query (LINQ) programs written by .NET
language into distributed computations run on top of Dryad
system. The DryadLINQ API is based on LINQ
programming model. It takes the advantage of standard
query operators and adds query extensions specific to Dryad.
The developers can apply LINQ operators such as Join,
GroupBy to a set of .NET objects, which greatly simplify the
developing of data parallel applications.

Fig.1 Software Stack for DryadLINQ CTP

A. Pleasingly Parallel Programming Model
Many pleasingly parallel applications are of the (Single

Program Multiple Data) SPMD model. DryadLINQ
supports a unified data and programming model in
representation and processing of data. DryadLINQ data
objects are collections of strong .NET type objects, which
can be split into some partitions and distributed across the
computers of cluster. These DryadLINQ data objects are
represented as DistributedQuery<T> or DistributedData<T>
objects to which the LINQ operators can apply. DryadLINQ
applications can create the DistributeData<T> objects from
existing data stored in DSC or convert from
IEnumerable<T> objects with AsDistributed(),
AsDistributedFromPartitions() operators. Then, these
DryadLINQ data objects are partitioned and distributed to
compute nodes. They can be processed by invoking the user
defined function within Select() or ApplyPerPartition()
operators. The sample code of this programming model is as
follows:
Var inputs= inputDataSet.AsDistributedFromPartitions();
//construct DryadLINQ data objects
Var outputs= inputs.Select(distributedObject =>
UserDefinedAppFunction(distributedObject));
//execute DryadLINQ data objects

A wide range of pleasingly parallel applications can be
implemented with the above DryadLINQ primitives which
include CAP3 DNA sequence assembly application, High
Energy Physics data analysis application [21] and the all
pair gene sequences SW-G computation.

B. Hybrid Parallel Programming Model
Dryad is supposed to process coarse-granularity tasks for

large scale distributed data. And it schedules tasks to the
resources in the unit of compute nodes rather than cores. To
make high utilization of multi-core resources of a HPC
cluster, one approach is to perform the parallel computation
with PLINQ on each node. The DryadLINQ provider can
automatically transfer PLINQ query to parallel computation.
The other approach is to apply the multi-core technologies
in .NET like TPL, thread pool to the user-defined function
within in the lambda expression of DryadLINQ query.

In above hybrid model, Dryad handles the parallelism
between the cluster nodes while the PLINQ, TPL, and
thread pool technologies deal with the parallelism on multi-
core of each node. This hybrid parallel programing model in
Dryad/DryadLINQ has been proved to be successful and
applied to data clustering applications like GTM
interpolation, MDS interpolation [21]. Most of the
pleasingly parallel application can be implemented with this
model to increase the overall utilization of cluster. The
sample code of this programming model is provided as
follows:
Var inputs= inputDataSet.AsDistributedFromPartitions();
Var outputs =
inputs.ApplyPerPartition(distributedPartitions =>
MultiCoreProcessingFunction(distributedPartitions));
Further, the performance of applications with hybrid

model can be affected not only by the parallel algorithm in
node level, but also by the factors in core level like cache
and memory bandwidth [17]. This paper will study the
hybrid parallel programming model using matrix
multiplication with different combinations of algorithms and
multi-core technologies.

C. Distributed Grouped Aggregation:
The GROUP BY operator in parallel database is often

followed by the Aggregate functions. It groups the input
records into some partitions by keys, and then merges the
records for each group by certain attribute values. This
common pattern is called Distributed Grouped Aggregation.
Sample applications of this pattern include the sales data
summarizations, the log data analysis, and social network
influence analysis [30].

There are several approaches to implement distributed
grouped aggregation. A direct one is to use the hash
partition. It uses hash partition operator to redistributes the
records to compute nodes so that identical records store on
the same node. Then it merges the records of each group on
each node. The sample code is as follows:
Var groups = source.GroupBy(KeySelect);
//redistribute records to some groups by keys
Var reduced = groups.SelectMany(Reduce);
//aggregate records for each group

The hash partition is of simple implementation but will
cause lots of network traffic when the number of input
records is very large. A common way to optimize this
approach is to apply partial preaggregation. It aggregates the

local records of each node, and then hash partition
aggregated partial results across cluster based on their key.
This approach is better than directly hash partition because
the number of records transferring across the cluster
becomes much fewer after local aggregation operation.
Further, there are two ways to implement the partial
aggregation: 1) hierarchical aggregation 2) aggregation tree
[4]. The hierarchical aggregation is usually of two or three
aggregation layers each of which has the explicitly
synchronization phase. The aggregation tree is the tree
graph that guides job manager to perform the partial
aggregation for many subsets of input records.

DryadLINQ can automatically translate the distributed
grouped aggregation query and its combine functions satisfy
the associative and commutative rules into optimized
aggregation tree. During processing, Dryad can adaptively
change the structure of aggregation tree without additional
code from developer side. This mechanism greatly
simplifies the programming model and enhances the
efficiency of grouped aggregation applications.

III. IMPLEMENTATIONS
We implemented SW-G, Matrix-Matrix Multiplication

and PageRank with DryadLINQ CTP and evaluated their
performance on two Windows cluster (HPC R2 SP1). The
hardware resources used in this paper are as follow:
Table 1. 32 nodes homogeneous HPC cluster TEMPEST

 TEMPEST TEMPEST-CNXX
CPU Intel E7450 Intel E7450

Cores 24 24

Memory 24.0GB 50.0 GB

Mem/Core 1 GB 2 GB

Table 2. 7 nodes inhomogeneous HPC cluster STORM
 STORM-

CN01,CN02,
CN03

STORM-
CN04,CN05

STORM-
CN06,CN07

CPU AMD 2356 AMD 8356 Intel E7450
Cores 8 16 24
Memory 16GB 16GB 48GB
Mem/Core 2GB 1GB 2GB

A. SW-G Application
The Alu clustering problem [6] [7] is one of the most

challenging problems for sequencing clustering because Alus
represent the largest repeat families in human genome. There
are about 1 million copies of Alu sequences in human
genome, in which most insertions can be found in other
primates and only a small fraction (~ 7000) are human-
specific. This indicates that the classification of Alu repeats
can be deduced solely from the 1 million human Alu
elements. Notably, Alu clustering can be viewed as a
classical case study for the capacity of computational
infrastructures because it is not only of intrinsic biological
interests, but also a problem of a scale that will remain as the
upper limit of many other clustering problems in

bioinformatics for the next few years, e.g. the automated
protein family classification for a few millions of proteins
predicted from large meta-genomics projects.

Fig. 2 DryadLINQ implementation of SW-G Application

We implemented the DryadLINQ application to calculate

the pairwise SW-G distances in parallel for a given set of
gene sequences. To clarify our algorithm, let’s consider an
example with 10,000 gene sequences, which produces a
pairwise distance matrix of size 10,000 × 10,000. We
decompose the overall computation into a block matrix D of
size 8 × 8, each block contains 1250 × 1250 sequences in this
case. Due to the symmetry of the distances D(i,j) and D(j,i),
we only calculate the distances in the 36 blocks of the upper
triangle of the block matrix as shown in Fig 2. Assuming
there are 6 compute nodes, and we split the 36 blocks into 6
partitions each of which contains 6 blocks. Each Dryad tasks
invokes the user defined function PerformAlignments() via
ApplyPerPartition to apply Alu clustering computation to the
6 blocks that dispatched to them. The main component of
DryadLINQ SW-G code is as follows:
DistributedQuery<OutputInfo> outputInfo =
inputBlocks.AsDistributed().ApplyPerPartition(subBlocks
Set => PerformAlignments4(subBlockSet,
values,_inputFile, _sharepath, _outputFilePrefix,
_outFileExtension, _seqAlignerExecName, _swgExecName))

1) Scheduling for inhomogeneous tasks

The SW-G is pleasingly parallel application, but
pairwise SW-G computations are inhomogeneous in CPU
time. That task of splitting all SW-G blocks into partitions
with even number of blocks still has the workload balance
issue when processing those partitions on homogeneous
computational resources. We adopt two approaches to
address this issue.

One approach is to construct SW-G blocks of input data
by randomly selecting sequences. To verify this strategy, we
manually generate a set of gene sequences with a given mean
sequence length (400) with a variety of standard deviations
following a normal distribution of the sequence lengths. We
construct the SW-G blocks input data by randomly selecting
sequences from above data set as well as by selecting in a
sorted order based on the sequence length. As shown in Fig
3, the randomly distributed input data can deliver a better
performance than skew distributed one [1]. Note: there is a
small performance increase of randomized distributed data

when standard deviation increases from 0 to 150 which are
due to nature randomness of SW-G program.

Fig. 3 Performance Comparison for Skewed Distributed and

Randomized Distributed Data

The above approach in Fig 3 requires additional work
from developer side. Another approach for this issue is to
split the skewed distributed input data into many finer
granularity tasks. To verify this, we constructed a set of gene
sequence with a given mean sequence length (400) with
varying standard deviations (50, 150, 250) and run these
SW-G data set on our TEMPEST cluster with different
number of partitions. As it shows in Fig 4, as the number of
partitions increase the overall job turnaround time decrease
for the three skewed distributed input data set. This is
because the finer granularity tasks can achieve better
workload balance among nodes by keeping dispatching
available tasks to idle resources. However, when the number
of partitions keeps increasing, the scheduling cost becomes
the dominant factor on overall performance.

Fig 4. Performance Comparison for Skewed Distributed Data

with Different Task Granularity.
2) Scheduling for inhomogeneous cluster

Clustering or extending existing hardware resources
may lead to the problem of scheduling tasks on an
inhomogeneous cluster with different CPU, memory,

network capability between nodes [8]. Allocating work load
to resources according to their computational capability is a
solution, but it requires the runtimes to know the resources
requirement of each job and availability of hardware
resources. One other solution is to split the entire job into
many finer granularity tasks and keep dispatching available
tasks to idle computational resources.

Fig. 5 CPU and scheduling time of same SW-G job with

various partition granularities

We verify the second approach by executing the 4096

sequences SW-G jobs on the inhomogeneous HPC STORM
with different partition granularity. Fig 5 shows the CPU
time and task scheduling time of same SW-G job with
different number of partitions: 6, 24, and 192. In the first
SW-G job, an entire job is split into 6 partitions. The
difference in CPU time for each task is caused by the
difference in computational capability among nodes. It is
clearly illustrated that finer partition granularity can deliver a
better load balance on inhomogeneous computational nodes.
However, it also shows that the task scheduling cost
increases as the number of partitions increases.

B. Hybrid Parallel Programming Model
To explore the hybrid parallel programming model, we

implemented DryadLINQ Matrix-Matrix Multiplication
with three different algorithms and four multi-core
technologies. The three matrix multiplication algorithms
are: 1) row split algorithm, 2) row/column split algorithm,
3) two dimension block decomposition split in Fox
algorithm [9]. The multi-core technologies are: PLINQ,
TPL, thread pool, and parallel for.

In the experiments, we port multi-core technologies to
different algorithms and study their overall performance.
We use square matrix in this section by default, where each
element is double number. The basic equation to calculate
matrix-matrix multiplication is:

∑
=

=
p

k
kjikij BAC

1
1) Matrix-Matrix Multiplication algorithm

The row split algorithm splits matrix A by its rows. It
scatters the rows blocks of matrix A across compute nodes,

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

Skewed Randomized

Standard Deviation

Ex
ec

tu
io

n
Ti

m
e

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

31 62 124 186 248

Std. Dev. = 50 Std. Dev. = 100 Std. Dev. = 250

 number of partitions

Se
co

nd
s

and then copies the whole matrix B to every compute node.
Each Dryad task multiplies some rows blocks of A by entire
B, and retrieves the output results to main program and
combine them into matrix C.

The row/column split algorithm [18] splits matrix A by
rows and split matrix B by columns. The column blocks of
B are scattered across the cluster in advance. Then the
whole computation is divided into several iterations, each of
which multiplies the one row block of A to all the column
blocks of B on compute nodes. The output of tasks within
the same iteration will be retrieved to the main program to
aggregate one row block of matrix C. The main program
collects results in multiple iterations to generate the final
output of matrix C.

 The two dimensional block decomposition in Fox
algorithm splits matrix A and matrix B into squared sub-
blocks. These sub-blocks are dispatched to a squared
process mesh with same scale. For example, let’s assume to
run the algorithm on a 2X2 processes mesh. Accordingly,
matrix A and matrix B are split by both rows and columns
and construct a 2X2 block mesh respectively. In each
computation step, every process holds a block of matrix A
and a block of matrix B and computes a block of matrix C.
The data flow of the algorithm is shown in Fig 6.

Fig. 6 Program Flow for DryadLINQ Matrix-Matrix

Multiplication in Fox Algorithm

The Fox algorithm is originally implemented with MPI,
which requires maintaining intermediate status and data
within processes during the computation. The Dryad
implementation uses a data flow runtime which does not
support status of tasks during computation. In order to keep
the intermediate status and data, we apply the update

operation to DistributedQuery<T> objects, and assign new
status and data to themselves where the pseudo code is
included as follows:

DistributedQuery<object> inputData =
inputObjects.AsDistributed();

inputData = inputData.Select(data=>update(data));
We evaluate the three algorithms by running matrix-

matrix multiplication jobs with various input data size from
2400 to 19200 with only one core per node on 16 compute
nodes (4X4 mesh). Fig 7 shows that the Fox and RowSplit
algorithm can achieve the better speed up than
RowColumnSplit. Comparing with the other two
algorithms, the Fox algorithm has finer granularity tasks as
it only calculate one sub-block of matrix A and matrix B.
This will cause the high cache hitting rate during the
computation. The row/column algorithms perform the worst
due to cost to launch Dryad vertex in every iteration.

Fig 7 Speed-up of three algorithms with various sizes of data

2) Parallelism in core level

We evaluated the multi-core technologies in .NET 4 by
running matrix-matrix multiplication jobs with various size
of input data from 2400 * 2400 to 19200 * 19200 on a 24-
core Windows server. Fig 8 shows the performance results of
matrix-matrix multiplication jobs for three different multi-
core technologies. As illustrated in Fig 8, the PLINQ has the
best performance compare with other approaches.

Fig. 8 Speed up for Different Method of Multi-Core

Parallelism on 24 cores Compute Node

3) Port multi-core tech into Dryad task
We port the above multi-core technologies into the three

matrix-matrix multiplication algorithms. Fig 9 shows the

0

5

10

15

20

2400 4800 7200 9600 12000 14400 16800 19200

RowSplit RowColumnSplit Fox

scale of square matrix

re
la

tiv
e

sp
ee

d
up

0

5

10

15

20

25

2400 4800 7200 9600 12000 14400 16800 19200

TPL Thread PLINQ

relative speed up for three algorithms combined with
different multi-core technologies run on 16 compute nodes
with 24 cores per node. Fig 9 shows that the Fox algorithm
does not perform well as RowSplit in Fig 7. In matrix-matrix
multiplication, the computation cost O(n^3) increases faster
than the communication cost O(n^2). Thus after porting
multi-core into Dryad task, the task granularity for the row
split and row/column split algorithm becomes finer as well,
which alleviates the low cache hit rate issue for coarse-
granularity task.

Fig 9. Relative Speed up for Different Combination of

Algorithms and Multi-core Technologies

Fig 10 is the CPU and network utilization static data of

the three parallel algorithms from HPC resource manager.

Fig 10. CPU & Network Utilization for Different Algorithms

C. Distributed Grouped Aggregation
We have studied the distributed grouped aggregation in

DryadLINQ CTP with PageRank with real data. Specifically,
we investigated the programming interface and evaluate
performance of three distributed grouped aggregation
approaches in DryadLINQ which include: Hash Partition,
Hierarchical Aggregation and Aggregation Tree. Further, we

studied the features of input data that affect the performance
of distributed grouped aggregation implementations.

The PageRank is already a well-studied web graph
ranking algorithm. It calculates the numerical value to each
element of a hyperlinked set of web pages, which reflects the
probability that the random surfer accesses those pages. The
process of PageRank can be understood as a Markov Chain
which needs recursive calculation to converge. An iteration
of the algorithm calculates the new access probability for
each web page based on values calculated in the previous
computation. The iterations will not stop until the Euclidian
distance between two subsequent rank value vectors
becomes less than a predefined threshold. In this paper, we
implemented the DryadLINQ PageRank with the
ClueWeb09 data set [16] which contains 50 million web
pages.

We split the entire ClueWeb graph into 1280 partitions,
each of which is saved as Adjacency Matrix (AM) file. The
characteristics of the input data are described as below:
No of am
files

File size No of web
pages

No of links Ave out-
degree

1280 9.7GB 49.5million 1.40 billion 29.3

1) The Hash Partition Approach
A simple way to implement PageRank with hash

partition approach in DryadLINQ CTP is to use GroupBy()
and Join() as follows:
for (int i = 0; i < maxNumIteration; i++) {
newRanks = pages.Join(ranks, page => page.key, rank =>
rank.key,(page, rank) => page.links.Select(key => new Rank(key,
rank.value / (double)page.links.Length())))
.SelectMany(ranks => ranks).GroupBy(rank => rank.key).

Select(group => new Rank(group.Key, group.Select(rank =>
rank.value).Sum() * 0.85 + 0.15 / (double)numUrls));

 ranks = newRanks; }

The Page objects are used to store the structure of web
graph. Each element Page in collection pages contains a
unique identifier number page.key and a list of identifiers
specifying all the pages in the web graph that page links to.
We construct the DistributedQuery<Page> pages objects
from the AM files with function BuildPagesFromAMFile().
The rank object is a pair specifying the identifier number of
a page and its current estimated rank value. In each iteration
the program JOIN the pages with ranks to calculate the
partial rank values. Then GroupBy() operator hash partition
partial rank values across cluster and return the IGrouping
objects (groups of group), where each group represents a set
of partial ranks with the same source page pointing to them.
The grouped partial rank values are summed up to new final
rank values and updated with power method [20].

2) The Hierarchical Aggregation Approach
The hash partition PageRank is not efficiency when the

number of output tuples is small. Thus we also implemented
PageRank with hierarchical aggregation approach which has
tree fixed aggregation stages: 1) the initial aggregation stage
for each user defined Map task. 2) the second stage for each
DryadLINQ partition. 3) the third stage to calculate the final
PageRank rank values. In stage one, each user-defined Map
task calculates the partial results of some pages that belongs

0

50

100

150

200

2400 4800 7200 9600 12000 14400 16800 19200

RowSplit RowColumn Fox

scale of square matrix

Fig. 12 CPU and Network Utilization for Different Aggregation Strategies

to sub web graph represented by the AM file. The output of
Map task is a partial rank value table, which will be merged
into global rank value table in later stage. Thus the basic
processing unit of our hierarchical aggregation
implementation is a sub web graph rather than one paper in
hash partition implementation. The coarse granularity
processing strategy has a lower cost in task scheduling, but
it requires additional code and the understanding of web
graph from developer side.

3) The Aggregation Tree Approach
The hierarchical aggregation approach may not perform

well for computation environment which is inhomogeneous
in network bandwidth, CPU, memory capability, because it
has several synchronization stages. In this scenario, the
aggregation tree approach is a better choice. It can construct
a tree graph to guide the job manager to make aggregation
operations for many subsets of input tuples so as to decrease
intermediate data transformation. We also implemented
PageRank with GroupAndAggregate() operator that enable
aggregation tree optimization.

In ClueWeb data set, the urls are stored in alphabet
order, web pages belong to same domain are more likely
saved in one AM file. Thus the intermediate data transfer in
the hash partition stage can be greatly reduced by applying
the partial grouped aggregation to each AM file.

4) Performance Analysis
We evaluate performance of the three approaches by

running PageRank jobs with various sizes of input data on 17
compute nodes on TEMPEST. Fig 11 shows that the
aggregation tree and hierarchical aggregation approaches
outperform hash partition approach. Fig.12 is the CPU
utilization and network utilization statistic data obtained
from HPC cluster manager for the three aggregation
approaches. It shows that the partial aggregation requires less
network traffic than hash partition in the cost of CPU
overhead.

The hierarchical aggregation approach outperforms
aggregation tree because it has the coarser granularity
processing unit. Besides, our experiment environment of
TEMPEST cluster has homogeneous network and CPU
capability.

Fig. 11 Time in sec to compute PageRank per iteration

with three aggregation approaches with clue-web09 data set
on 17 nodes of TEMPEST

In summary, the hierarchical aggregation and

aggregation tree approaches have different trade-offs on
memory and CPU overhead vs. network overhead. And they
work well only when the number of output tuples is much
smaller than that of input tuples; while hash partition works
well only when the number of output tuples is larger than
that of input tuples.

We design a mathematics model to describe how the
ratio between input and output tuples affects the
performance of aggregation approaches. First, we define the
data reduction proportion (DRP) to describe the ratio as
follows:
𝐷𝑅𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠
 (1)

Table 3. Data reduction ratios for different PageRank
approaches with Clue-web09 data set
Input size hash

aggregation
partial
aggregation

hierarchical
aggregation

320 files 2.3G 1: 306 1:6.6:306 1:6.6:2.1:306
640 files 5.1G 1: 389 1:7.9:389 1:7.9:2.3:389
1280 files 9.7G 1: 587 1:11.8:587 1:11.8:3.7:587

0

50

100

150

200

250

320 480 640 800 960 1120 1280

Hash Partition
Aggregation Tree
Hierarchical Aggregation

num of AM files

se
co

nd
 p

er
 it

er
at

io
n

Fig. 13 Time for two aggregation approaches with different
DRP values.

Further, we define a mathematic model to describe how
DRP will affect the efficiency of different aggregation
approaches. Assume the average number of tuples of each
group is M (M=1/DRP); and there are N compute nodes; and
assume the M tuples of each group are evenly distributed on
the N nodes. In hash partition approach, the M tuples with
same key are hashed into same group on one node, which
require M aggregation operations. In partial aggregation
approaches, the number of local aggregation operations is
M/N on each node, which produces N partial aggregated
results and need N more aggregation operations. Thus the
total number of aggregation operations for the M tuples is
(M/N)*N+N. Then the average number of aggregation
operations of each record of the two approaches is as follows:

�
𝑂 �𝑀

𝑀
� = 𝑂(1)

𝑂�𝑀+𝑁

𝑀
� = 𝑂(1 + 𝑁 ∗ 𝐷𝑅𝑃)

 (2)

Usually, DRP is much smaller than the number of
compute nodes. Taking word count as an example, the
documents with millions words may consist of several
thousands common words. In PageRank, as the web graph
structure obeys zipf’s law, DRP is not as small as that in
word count. Thus, the partial aggregation approach may not
deliever performance as well as word count [4].

To quantatively analysis of how DRP affects the
aggregation performance, we compare two aggregation
approraches with a set of web graphes with different DRP by
fixing the number of output tuples and changing that of input
tuples. It is illustrated in Fig. 13 that when the DRP smaller
than 0.017 the partial aggregation perform better than hash
partition aggregation. When DRP bigger than 0.017, there is
not much different between these two aggregation
approaches. Fig. 14 shown the time per iteration of
PageRank jobs of web graphes with different number of
output tuples when that of input tuples fixed. Fig.13 and 14
show that different grouped aggregation approaches fit well
with different DRP range of input data.

IV. RELATED WORK
In this paper, we illustrate three design patterns in
DryadLINQ CTP for classic scientific applications with the

Fig. 14 Time per iteration for two aggregation approaches
with different number of output tuples (from 100000 to
1000000) when number of input tuples is 4.3 billion

focus on easiness of programming and the performance of
applications. To our knowledge, these patterns have covered
a wide range of distributed scientific applications.

A. Pleasingly Parallel Application
We have shown that the developers can easily control the

partition granularity with DryadLINQ interface to solve
work load balance issue. In batch job scheduling systems
like PBS, programmers have to manually group/un-group or
split/combine input data to control task granularity. Hadoop
provides the interface that allows developers to control task
granularity by defining the size of input records in HDFS.
This is a good improvement, but it still requires developers
to know and define the logic format of input data in HDFS.
DryadLINQ provides a simplified data model and interface
for this issue based on existing .NET platform.

B. Hybrid Parallel Programming
The hybrid parallel programming must combine inter

node distributed memory parallelization with intra node
shared memory parallelization. MPI +
MPI/OpenMP/Threading are the hybrid programming
model utilized in the high performance computing. Paper
[31] discusses the hybrid parallel programming paradigm
using MPI.NET and TPL, CCR (Concurrency and
Coordination Runtime) on Windows HPC server. It shows
that the efficiency of hybrid parallel programming model
have to do with the task granularity, while parallel overhead
is mainly caused by synchronization and communication.
Our paper is focus on Dryad, which is intended for the data
intensive computation.

Twister [14] and Hadoop can also make use of multiple
core system by launching multiple task daemons on each
compute node. Typically the number of task daemons is
equal to that of cores on each compute node, but it can be
less or more than number of cores on each node as well. The
developers do not need to know the difference of underline
hardware resources, because the runtime provide the
identical programming interface to dispatch tasks to task
daemons across cluster automatically.

0
2000
4000
6000
8000

10000
12000
14000
16000

0.068 0.034 0.017 0.0017 8.4E-05

Hash Partition Aggregation Partial Aggregation

Data Reduction Proportion

second

300
400
500
600
700
800
900

1000
1100
1200

Hash Partition Aggregation Tree

num of output tuples

se
co

nd
 p

er
 it

re
at

io
n

C. Distributed Grouped Aggreagtion
MapReduce and SQL in database are two programming

models that can perform grouped aggregation. MapReduce
has been applied to process a wide range of flat distributed
data. However, MapReduce is not efficient to process
relational operations which have multiple inhomogeneous
input data stream like JOIN. The SQL queries are able to
process relational operations of multiple inhomogeneous
input data stream. But, the operations in full-feature SQL
database has lots of extra overhead which prevents
application from processing large scale input data.

DryadLINQ lies between SQL and MapReduce, and it
addresses some limitations of SQL and MapReduce.
DryadLINQ provides developers SQL like queries to
process efficient aggregation for single input data stream
and multiple inhomogeneous input stream, but it does not
have much overhead as SQL by eliminating some
functionality of database (transactions, data lockers, etc.).
Further Dryad can build the aggregation tree (some database
also provide this kind of optimization) so as to decrease the
data transformation in hash partitioning stage.

V. DISCUSSION AND CONCLUSION
We have presented in this paper three typical

programming models, which are applicable to a large class
of applications in science domain using DryadLINQ CTP.
Further, we discussed the issues that affect the performance
of applications implemented with these programming
models.

We investigated the hybrid parallel programming model
with the matrix-matrix multiplication. We have shown that
porting multi-core technology can increase the overall
performance significantly. And we observed that different
combination of parallel algorithm in nodes level and multi-
core technology in core level will affect overall performance
of application. In matrix-matrix multiplication, the CPU cost
O(n^3) increase faster than the memory and bandwidth cost
O(n^2). Thus the CPU cache and memory paging is more
important than network bandwidth to scale up matrix-matrix
multiplication.

At last, we studied the different aggregation approaches
in DryadLINQ CTP. And the experiment results showed that
different approaches fit well with different range of data
reduction proportion (DRP). We designed a simple
mathematics model to describe the overhead of aggregation
approaches. For a complete analysis of the performances of
aggregation approaches, one has to take in consideration
several factors: 1) The size of memory on each node. Partial
preaggregation requires more memory than hash partition. 2)
The bandwidth of network. Hash partition has larger network
traffic overhead than partial preaggregation. 3) The choice of
implementation of partial preaggregation in DryadLINQ, like
the accumulator fullhash, iterator fullhash/fullsort. The
different implementations require different size of memory
and bandwidth. Our future job is to supplement the
mathematics model with above factors to describe the timing
cost of distributed grouped aggregation.

ACKNOWLEDGMENT
We want to thank John Naab and Ryan Hartman from IU

PTI for setting up the Windows HPC cluster, and Thilina
Gunarathne, Stephen Tak-lon Wu from IU CS for providing
the SW-G application and data. This work is partially funded
by Microsoft.

REFERENCES
[1] Salsa Group, Applicability of DryadLINQ to Scientific

Applications. 2010.
[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: Distributed data-parallel programs from
sequential building blocks”, European Conference on
Computer Systems, March 2007.

[3] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsso, P.
Gunda, and J. Currey, “DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computig
Using a High-Level Language”, Symposium o
Operating System Design and Implementation (OSDI),
CA, December 8-10, 2008.

[4] Y. Yuan, P. Gunda, M. Isard, “Distributed Aggregation
for Data-Parallel Computing: Interfaces and
Implementations”, SOSP’09, October 11-14, 2009, Big
Sky, Montana, USA.

[5] Introduction to Dryad, DSC and DryadLINQ. 2010
[6] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P.

Flynn, D. Thain, “All-Pairs: An Abstraction for Data
Intensive Computing on Campus Grids”, IEEE
Transactions on Parallel and Distributed System, 13,
Mar. 2009.

[7] M.A. Batzer, P.L. Deininger, 2002. "Alu Repeats And
Human Genomic Diversity." Nature Reviews Genetics
3, no. 5: 370-379. 2002

[8] H. Li, H. Yu, X. Li, “A Lightweight Execution
Framework for Massive Independent Tasks”
MTAGS’08 workshop at SC08, October 2008.

[9] G. Fox, A. Hey, and Otto, S., Matrix Algorithms on the
Hypercube I: Matrix Multiplication, Parallel
Computing,4,17,1987

[10] J. Qiu, G. Fox, H. Yuan, S. Bae, “Parallel Data Mining
on Multicore Clusters”, gcc, pp.41-49, 2008 Seventh
International Conference on Grid and Cooperative
Computing, 2008

[11] Y. Yu, P. Kumar, M. Isard, “Distributed Aggregation
for Data Parallel Computing”, SOSP’ 09, October 11-
14, 2009, Big Sky, Montana, USA.

[12] Haloop, http://code.google.com/p/haloop/
[13] Hadoop, http://hadoop.apache.org/
[14] Twister, http://www.iterativemapreduce.org/
[15] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae,

J. Qiu, G. Fox, “Twister: A Runtime for Iterative
MapReduce”

[16] ClueWeb09:
http://boston.lti.cs.cmu.edu/Data/clueweb09/

[17] J. Qiu, G. Fox, H. Yuan, S. Bae, “Performance of
Multicore Systems on Parallel Dataming Services”
CCGrid 2008.

[18] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh,
“Data cube: A relational aggregation operator geeralizig
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1), 1997.

http://code.google.com/p/haloop/
http://www.iterativemapreduce.org/
http://boston.lti.cs.cmu.edu/Data/clueweb09/

[19] Jaliya Ekanayake, “Architecture and Performance of
Runtime Environments for Data intensive Scalable
Computing”, Dec 2010

[20] PageRank wiki: http://en.wikipedia.org/wiki/PageRank
[21] J. Ekanayake, A. Soner, T. Gunarathen. and G, Fox, C.

Poulain, “DryadLINQ for Scientific Analysis”.
[22] Partial pre-aggregation in relational database queries,

Per-Ake Larson, Redmond, WA (US) Patent No.: US
7,133,858,B1

[23] Y. Yu, M. Isard, D.Fetterly, M. Budiu, U.Erlingsson,
P.K. Gunda, J.Currey, F.McSherry, and K. Achan.
Technical Report MSR-TR-2008-74, Microsoft.

[24] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K.
Talwar and A. Goldberge “Quincy: Fair Scheduling for
Distributed Computing Clusters”

[25] OpenMPI http://www.open-mpi.org/
[26] R. Chen, X. Weng, B. He, M. Yang “Large Graph

Processing in the Cloud” SIDMOD’10 June 6-11,2010,
Inidanapolis, Indiana, USA

[27] S. Hee, J. Choi, J. Qiu and G. Fox “Dimension
Reduction and Visualization of Large High-
dimensional Data via Interpolation” HPDC 2010,
Chicago, Illinois, Jun. 2010.

[28] S. Helmer, T. Neumann, G. Moerkotte, “Estimating the
Output Cardinality of partial Preaggregation with a
Measure of Clusteredness” Proceeding of the 29th
VLDB Conference, Berlin, Germany, 2003

[29] T. Gunarathne, T. Wu, J. Qiu, G. Fox, “Cloud
Computing Paradigms for Pleasingly Parallel
Biomedical Applications” Conference on eScience
(eScience ’08), Indianapolis, IN 2008

[30] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, G. Czajkowski. “Pregel: A System for Large-
Scale Graph Processing” SIGMOD’10, June 6-11,
2010, Indianapolis, Inidana, USA.

[31] J. Qiu, S. Beason, S. Bae, S. Ekanayake, G. Fox,
“Performance of Windows Multicore System on
Threading and MPI” GCC 2010

http://www.open-mpi.org/

	I. Introduction
	II. DryadLINQ Programming Model
	A. Pleasingly Parallel Programming Model
	B. Hybrid Parallel Programming Model
	C. Distributed Grouped Aggregation:

	III. Implementations
	A. SW-G Application
	1) Scheduling for inhomogeneous tasks
	2) Scheduling for inhomogeneous cluster

	B. Hybrid Parallel Programming Model
	1) Matrix-Matrix Multiplication algorithm
	2) Parallelism in core level
	3) Port multi-core tech into Dryad task

	C. Distributed Grouped Aggregation
	1) The Hash Partition Approach
	2) The Hierarchical Aggregation Approach
	3) The Aggregation Tree Approach
	4) Performance Analysis

	IV. Related Work
	A. Pleasingly Parallel Application
	B. Hybrid Parallel Programming
	C. Distributed Grouped Aggreagtion

	V. Discussion and Conclusion
	Acknowledgment
	References

