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1 Introduction 
We are in the data deluge when progress in science requires the processing of large amounts of scientific data 
[1]. One important approach is to apply new languages and runtimes to new data-intensive applications [2] to 
enable the preservation, movement, access, and analysis of massive data sets. Systems such as MapReduce 
and Hadoop allow developers to write applications for distributing tasks to remote environments containing 
the desired data, which instantiates the paradigm of “moving the computation to data”. The MapReduce 
programming model has been applied to a wide range of applications and attracts enthusiasm from 
distributed computing communities due to its ease of use and efficiency in processing large-scale distributed 
data.   

MapReduce, however, has its limitations. For instance, its rigid and flat data-processing paradigm does not 
directly support relational operations that have multiple related inhomogeneous data sets. This causes 
difficulties and inefficiency when using MapReduce to simulate relational operations such as join, which is 
very common in database systems. For example, the classic implementation of PageRank is notably inefficient 
since the simulation of joins with MapReduce causes a lot of network traffic during the computation. Further 
optimization of PageRank requires developers to have sophisticated knowledge of web graph structure.   

Dryad [3] is a general-purpose runtime for supporting data-intensive applications on a Windows platform. It 
models programs as a directed, acyclic graph of the data flowing between operations and addresses some 
limitations existing in MapReduce. DryadLINQ [4] is the declarative programming interface for Dryad, and it 
automatically translates LINQ programs written by the .NET language into distributed computations 
executing on top of the Dryad system. For some applications, writing DryadLINQ distributed programs is as 
simple as writing sequential programs. DryadLINQ and Dryad runtime optimize job execution planning. This 
optimization is handled by the runtime and is transparent to users. For example, when implementing 
PageRank with the GroupAndAggregate() operator, DryadLINQ can dynamically constructs a partial 
aggregation tree based on data locality to reduce network traffic over cluster nodes.  

The overall performance issues of data parallel programing models like MapReduce are well understood. 
Dryad simplifies usage by leaving the details of scheduling, communication, and data access to underlying 
runtime systems that hide the low-level complexity of parallel programming. However, such an abstraction 
may come at a price in terms of performance when applied to a wide range of applications that port to multi-
core and heterogeneous systems. We have conducted extensive experiments on DryadLINQ/Dryad CTP and 
its usage in a recent publication [5] to identify the classes of applications that fit well. It is based on our 
evaluation of DryadLINQ, which was published as a Community Technology Preview (CTP) in December 2010. 

Let us explain how this new report fits with earlier results.This report extends significantly the results 
presented in our earlier DryadLINQ evaluation [2] and we have not repeated discussions given earlier. The 
first report in particular focused on comparing Dryad with Hadoop and MPI and covered multiple pleasing 
parallel (essentially independent) applications. Further it covered K-means clustering as an example of an 
important iterative algorithm and used this to motivate the Iterative MapReduce runtime. The original report 
had an analysis of applications suitable for MapReduce and its iterative extensions which is still accurate but 
not repeated here. 

In this report we use a newer version of DryadLINQ (CTP) programming models and can be applied to 
three different types of classic scientific applications including pleasingly parallel, hybrid distributed 
and shared memory, and distributed grouped aggregation.  Our focus was on novel features of this run 
time and particularly challenging applications. We cover a single pleasing parallel application consisting of 
Map and Reduce steps, the Smith Waterman Gotoh (SWG) [6] algorithm for dissimilarity computation in 
bioinformatics. In this case, we study in detail load balancing with inhomogeneity in cluster and application 
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characteristics. We implement SWG with ApplyPerPartition operator, which can be considered as a 
distributed version of “Apply” in SQL. We cover the use of hybrid programming to combine inter-node 
distributed memory with intra-node shared memory parallelization, using multicore threading and 
DryadLINQ for the case of matrix multiplication which was covered briefly in the first report. We port 
multicore technologies including PLINQ and TPL into a user-defined function within DryadLINQ queries. Our 
new discussion is much more comprehensive than the first paper and has an extensive discussion of the 
performance of different parallel algorithms on different programming models for threads. The other major 
application we look at is Pagerank which like matrix multiplication has an iterative algorithm. Here we 
compare several of the sophisticated LINQ models for data access. PageRank is a communication-intensive 
application that requires joining two input data streams and performing the grouped aggregation over partial 
results. We implemented the PageRank application with three distributed grouped aggregation approaches. 
The new paper has comments on usability and use of DryadLINQ in education, which were not in the original 
report [2]. 

Now we finish the introduction with the highlights of following sections as Table 1. 

Table 1. Highlights of the DryadLINQ CTP Evaluation 
 Key Features Applications Selected Findings 

1 Task scheduling Smith-Waterman 
Gotoh (SWG) 

Compared with Dryad (2009,11), DryadLINQ CTP 
provides better task scheduling strategy, data model, 
and interface to solve the workload balance issue for 
pleasingly parallel applications. (Section 3.4) 

2 Hybrid Parallel 
programming models Matrix multiplication 

Porting multi-core technologies like PLINQ and TPL 
to DryadLINQ tasks can increase system utilization. 
(Section 4.5) 

3 Distributed grouped 
aggregation PageRank 

The choice of distributed grouped aggregation with 
DryadLINQ CTP has a substantial impact on the 
performance of data aggregation/reduction 
applications. (Section 5.4) 

 
Additional observations: 

1) We found a bug in AsDistributed() interface, namely a mismatch between partitions and 
compute nodes in the default setting of Dryad CTP. (section 3.2.1) 

2) DryadLINQ supports iterative tasks by chaining the execution of LINQ queries. However, for BSP-style 
applications that need to explicitly evaluate LINQ query in each synchronization step, 
DryadLINQ requires resubmission of a Dryad job to the HPC scheduler at each synchronization 
step, which limits its overall performance.  (section 5.3.3) 

3) When Dryad tasks invoke a third party executable binary file as process, Dryad process is not aware 
of the class path that the Dryad vertex maintains, and it throws out an error : “required file 
cannot be found.” (section 6.1) 

4) When applying late evaluation in chained queries, DryadLINQ only evaluates the iterations 
parameter at the last iteration and uses that value for further execution of all the queries 
including previous iterations. This imposes an ambiguous variable scope issue. (section 6.2) 

5) When using a two dimensional array, objects in matrix multiplication, and PageRank applications, 
Dryad program will throw out an error message when a Dryad task tries to access 
unserializedilized two dimensional array objects on remote compute nodes. (section 6.3) 

6) DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a 
single point failure that has no fault tolerance support from Dryad. (section 6.4.1) 
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7) It is critical to run multiple Dryad jobs simultaneously on a HPC cluster. However, this feature is 
not mentioned in either Programming or Guides. Every Dryad job requires an extra node acting as a 
job manager causing low CPU usage on this particular node. (section 7.2) 

The report is organized as follows. Section 1 introduces key features of DryadLINQ CTP. Section 2 studies the 
task scheduling in DryadLINQ CTP with a SWG application. Section 3 explores hybrid parallel programing 
models with Matrix Multiplication. Section 4 introduces distributed grouped aggregation exemplified by 
PageRank. Section 5 investigates the programming issues of DryadLINQ CTP. Section 6 illustrates how 
Dryad/DryadLINQ has been used in class projects for computer science graduate students of Professor Qiu’s 
courses at Indiana University.  

Note that in the report: “Dryad/DryadLINQ CTP” refers to the Dryad/DryadLINQ community technical 
preview released in 2010.12; “Dryad/DryadLINQ (2009.11)” refers to the version released in 2009.11.11; 
“Dryad/DryadLINQ” refers to all Dryad/DryadLINQ versions. Experiments are conducted on three Windows 
HPC clusters: STORM, TEMPEST, and MADRID [Appendix A, B, and C]. STORM consists of heterogeneous 
multicore nodes while TEMPEST and MADRID are homogeneous production systems of 768 and 128 cores 
each.   

2 Overview 
Dryad, DryadLINQ, and the Distributed Storage Catalog (DSC) [7] are sets of technologies that support the 
processing of data-intensive applications on a Windows HPC cluster. The software stack of these technologies 
is shown in Figure 1. Dryad is a general-purpose distributed runtime designed to execute data-intensive 
applications on a Windows cluster. A Dryad job is represented as a directed acyclic graph (DAG), which is 
called a “Dryad” graph. The Dryad graph consists of vertices and channels. A vertex in the graph represents an 
independent instance of the data processing for a particular stage. Graph edges represent channels 
transferring data between vertices. A DSC component works with the NTFS to provide the data management 
functionalities, such as file replication and load balancing for Dryad and DryadLINQ. 

DryadLINQ is a library for translating .NET written Language-Integrated Query (LINQ) programs into 
distributed computations executing on top of the Dryad system. The DryadLINQ API takes advantage of 
standard query operators and adds query extensions specific to Dryad. Developers can apply LINQ operators 
such as join and groupby to a set of .NET objects. Specifically, DryadLINQ supports a unified data and 
programming model in the representation and processing of data. DryadLINQ data objects are collections 
of.NET type objects, which can be split into partitions and distributed across the computer nodes of a cluster. 
These DryadLINQ data objects are represented as either DistributedQuery <T> or DistributedData <T> 
objects and can be used by LINQ operators. In summary, DryadLINQ greatly simplifies the development of 
data parallel applications. 

 

Figure1: Software Stack for DryadLINQ CTP 
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2.1 Task Scheduling 
Task scheduling for DryadLINQ CTP is a key feature investigated in this report. A DryadLINQ provider 
translates LINQ queries into distributed computation and automatically dispatches tasks to a cluster. This 
process is handled by the runtime and is transparent to users. The task scheduling component also 
automatically handles fault tolerance and workload balance issues.   

We have studied DryadLINQ CTP’s load balance issue and investigated its relationship to task granularity 
along with its impact on performance. In batch job scheduling systems, like PBS, programmers manually 
group/ungroup (or partition/combine) input and output data for the purpose of controlling task granularity. 
Hadoop provides a user interface to define task granularity as the size of input records in HDFS. Similarly, 
Dryad (2009,11) allows developers to create a partition file. DryadLINQ CTP has a simplified data model and 
flexible interface in which AsDistributed, Select, and ApplyPerPartition operators (which can be considered as 
the distributed versions of Select and Apply in SQL) enable developers to tune the granularity of data 
partitions and run pleasingly parallel applications like sequential ones.  

2.2 Parallel Programming Model 
Dryad is designed to process coarse granularity tasks for large-scale distributed data and schedules tasks to 
computing resources over compute nodes rather than cores. To achieve high utilization of the multi-core 
resources of a HPC cluster for DryadLINQ jobs, one approach is to explore inner-node parallelism using 
PLINQ since DryadLINQ can automatically transfer a PLINQ query to parallel computations. Another 
approach is to apply multi-core technologies in .NET, such as Task Parallel Library (TPL) or thread pool for 
user-defined functions within the lambda expression of DryadLINQ query.  

In a hybrid parallel programming model, Dryad handles inter-node parallelism while PLINQ, TPL, and thread 
pool technologies leverage inner-node parallelism on multi-cores. Dryad/DryadLINQ has been successful in 
executing as a hybrid model and applied to data clustering applications, such as General Topographical 
Mapping (GTM) interpolation and Multi-Dimensional Scaling (MDS) interpolation [8]. Most of the pleasingly 
parallel applications can be implemented in a straightforward fashion using this model with increased overall 
utilization of cluster resources. However, more compelling machine learning or data analysis applications 
usually have either squared or quadratic computation complexity, which has high requirements of system 
design for scalability.   

2.3 Distributed Grouped Aggregation 
The groupby operator in parallel databases is often followed by aggregate functions, which groups input 
records into partitions by keys and merges the records for each group by certain attribute values; this 
computing pattern is called Distributed Grouped Aggregation. Example applications include sales data 
summarizations, log data analysis, and social network influence analysis.  

MapReduce and SQL for databases are two programming models to perform distributed grouped aggregation. 
MapReduce has been applied to the process of a wide range of flat distributed data, but is inefficient in 
processing relational operations, which have multiple inhomogeneous input data stream such as join. 
However, a full-featured SQL database has extra overhead and constraints that prevent it from processing 
large-scale input data. 

DryadLINQ is between SQL and MapReduce and addresses some of their limitations. DryadLINQ provides 
SQL-like queries for processing efficient aggregation for homogenous input data streams and multiple 
inhomogeneous input streams and does not have sufficient overhead since SQL eliminates some of the 
functionalities of a database (transactions, data lockers, etc.). Further, DryadLINQ can build an aggregation 
tree (some databases also provides this kind of optimization) to decrease data transformation in the hash 
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partitioning stage. In this report, we investigated the usability and performance of three programming 
models using Dyrad/DryadLINQ as illustrated in Figure 2: a) the pleasingly parallel mode, b) the hybrid 
programming model, and d) distributed grouped aggregation. 

 

Figure 2: Three Programming Models for Scientific Applications in DryadLINQ CTP 

3 Pleasingly Parallel Application in DryadLINQ CTP 

3.1 Introduction 
A pleasingly parallel application can be partitioned into parallel tasks since there is neither essential data 
dependency nor communication between those parallel tasks. Task scheduling and granularity have a great 
impact on performance and are evaluated in Dryad CTP using the Pairwise Alu Sequence Alignment 
application. Furthermore, many pleasingly parallel applications share a similar execution pattern. The 
observation and conclusion drawn from this work applies to a large class of similar applications. 

3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh 
The Alu clustering problem [9] is one of the most challenging problems for sequencing clustering because 
Alus represent the largest repeat families in human genome. There are approximately 1 million copies of Alu 
sequences in the human genome in which most insertions can be found in other primates and only a small 
fraction (~ 7000) are human-specific. This indicates that the classification of Alu repeats can be deduced 
solely from the 1 million human Alu elements. Notably, Alu clustering can be viewed as a classic case study for 
the capacity of computational infrastructure because it is not only of great intrinsic biological interests, but 
also a problem of a scale that will remain as the upper limit of many other clustering problems in 
bioinformatics for the next few years, e.g. the automated protein family classification for a few millions 
proteins predicted from large meta-genomics projects. 

An open source version, NAligner [10], of the Smith Waterman-Gotoh algorithm (SWG) [11] was used to 
ensure low start-up effects by each task process for large numbers (more than a few hundred) at a time. The 
needed memory bandwidth is reduced by storing half of the data items for symmetric features.  
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Figure 3: Task Decomposition (left) and the Dryad Vertex Hierarchy (right) of the DryadLINQ Implementation 
of SWG Pairwise Distance Calculation Application 

3.1.2 DryadLINQ Implementation 
The SWG program runs in two steps. In the map stage input data is divided into partitions being assigned to 
vertices. A vertex calls external pair-wise distance calculations on each block and runs independently. In the 
reduce stage, this vertex starts a few merge threads to collect output from the map stage, merges them into 
one file, and then sends meta data of the file back to the head node. To clarify our algorithm, let’s consider an 
example of 10,000 gene sequences that produces a pairwise distance matrix of size 10,000 × 10,000. The 
computation is partitioned into 8 × 8 blocks as a resultant matrix D, where each sub-block contains 1250 × 
1250 sequences. Due to the symmetry feature of pairwise distance matrix D(i, j) and D(j, i), only 36 blocks 
need to be calculated as shown in the upper triangle matrix of Figure 3 (left).   

Dryad divides the total workload of 36 blocks into 6 partitions, each of which contains 6 blocks. After the 
partitions are distributed to available compute nodes an ApplyPerPartition() operation is executed on each 
vertex. A user-defined PerformAlignments() function processes multiple SWG blocks within a partition, where 
concurrent threads utilize multicore internal to a compute node. Each thread launches an operating system 
process to calculate a SWG block in order. Finally, a function calculates the transpose matrix corresponding to 
the lower triangle matrix and writes both matrices into two output files on local file system. The main 
program performs another ApplyPerPartition() operation to combine the metadata of files as shown in Figure 
3. The pseudo code for our implementation is provided as below: 

Map stage: 
DistributedQuery<OutputInfo> outputInfo = swgInputBlocks.AsDistributedFromPartitions() 
ApplyPerPartition(blocks => PerformAlignments(blocks, swgInputFile, swgSharePath, 
outputFilePrefix, outFileExtension, seqAlignerExecName, swgExecName)); 

Reduce stage: 
var finalOutputFiles = swgOutputFiles.AsDistributed().ApplyPerPartition(files => 
PerformMerge(files, dimOfBlockMatrix, sharepath, mergedFilePrefix, outFileExtension)); 

3.2 Task Granularity Study 
This section examines the performance of different task granularities. As mentioned above, SWG is a 
pleasingly parallel application for dividing the input data into partitions. The task granularity was tuned by 
saving all SWG blocks into two-dimensional arrays and converting to distributed partitions using 
AsDistributedFromPartitions operator.   
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Figure 4: Execution Time for Various SWG Partitions 
Executed on Tempest Cluster, with input of 10,000 sequences, and a 128×128 block matrix 

The experiment was performed on a 768 core (32 nodes with 24 cores per node) Windows cluster called 
“TEMPEST” [Appendix B]. The input data of SWG has a length of 8192, which requires about 67 million 
distance calculations. The sub-block matrix size is set to 128 × 128 while we used 
AsDistributedFromPartitions() to divide  input data into various partition sets {31, 62, 93, 124, 248, 372, 496, 
620, 744, 992}. The mean sequence length of input data is 200 with a standard deviation as 10, which gives 
essentially homogeneous distribution ensuring a good load balance. On a cluster of 32 compute nodes, Dryad 
job manager takes one node for its dedicated usage and leaves 31 nodes for actual computations. As shown in 
Figure 4 and Table 1 (in Appendix F), smaller number of partitions delivered better performance. Further, the 
best overall performance is achieved at the least scheduling cost derived from 31 partitions for this 
experiment. The job turnaround time increases as the number of partition increases for two reasons: 1) 
scheduling cost increases as the number of tasks increases, 2) partition granularity becomes finer with 
increasing number of partitions. When the number of partitions reaches over 372, each partition has less than 
24 blocks making resources underutilized on a compute node of 24 cores. For pleasingly parallel applications, 
partition granularity and data homogeneity are major factors that impact performance. 

3.2.1 Workload Balancing 
The SWG application handled input data by gathering sequences into block partitions. Although gene 
sequences were evenly partitioned in sub-blocks, the length of each sequence may vary. This causes 
imbalanced workload distribution among computing tasks. Dryad (2009.11) used a static scheduling strategy 
binding its task execution plan with partition files, which gave poor performance for skewed/imbalanced 
input data [2]. We studied the scheduling issue in Dryad CTP using the same application.  

  

Figure 5: SWG Execution Time for Skewed and Figure 6: SWG Execution Time for Skewed Data with 
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Randomized Distributed Input Data Different Partition Amount 

A set of SWG jobs was executed on the TEMPEST cluster with input size of 10000 sequences. The data were 
randomly generated with an average sequence length of 400, corresponding to a normal distribution with 
varied standard deviations. We constructed the SWG sub-blocks by randomly selecting sequences from the 
above data set in contrast to selecting sorted sequences based on their length. Figure 5 has line charts labeled 
with error bars, where randomized data shows better performance than skewed input data. Similar results 
were presented in the Dryad (2009.11) report as well. Since sequences were sorted by length for a skewed 
sample, computational workload in each sub-block was hugely variable, especially when the standard 
deviation was large. On the other hand, randomized sequences gave a balanced distribution of workload that 
contributed to better overall performance.  Dryad CTP provides an interface for developers to tune partition 
granularity. The load imbalance issue can be addressed by splitting the skewed distributed input data into 
many finer partitions.  
Figure 6 shows the relationship between number of partitions and performance. In particular, a parabolic 
chart suggests an initial overhead that drops as partitions and CPU utilization increase.  Fine-grained 
partitions enable load balancing as SWG jobs start with sending small tasks to idle resources. Note that 124 
partitions gives best performance in this experiment. With increasing partitions, the scheduling cost 
outweighs the gains of workload balancing. Figures 5 and 6 imply that the optimal number of partitions also 
depends on heterogeneity of input data.  

DryadLINQ CTP divides input data into partitions by default with twice the number of compute nodes. It does 
not achieve good load balance for some applications, such as inhomogeneous SWG data. We have shown how 
to address the load imbalance issue. Firstly, the input data can be randomized and partitioned to increase 
load balance. However, it depends on the nature of randomness and good performance is not guaranteed. 
Secondly, a fine-grained partition can help tuning load balance among compute nodes. There’s a trade off in 
drastically increasing partitions, as the scheduling cost becomes a dominant factor of performance.  

We found a bug in AsDistributed() interface, namely a mismatch between partitions and compute 
nodes in the default setting of Dryad CTP. Dryad provides two APIs to handle data partition, AsDistributed() 
and AsDistributedFromPartitions(). In our test on 8 nodes (1 head node and 7 compute nodes), Dryad chose 
one dedicated compute node for the graph manager which left only 6 nodes for computation. Since Dryad 
assigns each compute node 2 partitions, AsDistributed() divides data into 14 partitions disregarding the fact 
that the node for the graph manager does no computation. This causes 2 dangling partitions. In the following 
experiment, input data of 2000 sequences were partitioned into sub blocks of size 128×128 and 8 computing 
nodes were used from the TEMPEST cluster. 

 

Figure 7: Mismatch between Partitions and Compute Nodes in Default Settings of Dryad CTP  
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Figure 7 shows the execution time for 12 customized partitions on the left and the default partitions by 
AsDistributed() on the right. It is observed that input data are divided into 14 partitions over 6 compute nodes. 
The 2 dangling partitions colored in green slow down the whole calculation by almost 30%.   

In summary, Dryad and Hadoop control task granularity by partitioning input data. DryadLINQ CTP has a 
default partition number twice that of the compute nodes. Hadoop partitions input data into chunks, each of 
which has a default size of 64MB. Hadoop implements a high-throughput model for dynamic scheduling and is 
insensitive to load imbalance issues. Dryad and Hadoop provide an interface allowing developers to tune 
partition and chunk granularity, with Dryad providing a simplified data model and interface on the .NET 
platform. 

3.2.2 Scalability Study 
Scalability is another key feature for parallel runtimes. The DryadLINQ CTP scalability test includes two sets 
of experiments conducted on the TEMPEST Cluster of 768 cores. A comparison of parallel efficiency for 
DryadLINQ CTP and DryadLINQ 2009 are discussed below. 

The first experiment has an input size between 5,000 and 15,000 sequences with an average length of 2,500. 
The sub-block matrix size is 128 × 128 and there are 31 partitions, which is the optimal value found in 
previous experiments. Figure 8 shows performance results, where the red line represents execution time on 
31 compute nodes, the green line represents execution time on a single compute node, and the blue line is 
parallel efficiency defined as the following: 

Parallel Efficiency =  
Execution Time on One Node

Execution Time on Multinodes × Number of Nodes
    (Eq. 1) 

Parallel efficiency is above 90% for most cases. An input size of 5000 sequences over a 32-node cluster shows 
a sign of underutilization for a slightly low start. When input data increases from 5000 to 15000, parallel 
efficiency jumps from 81.23% to 96.65%, as scheduling cost becomes less critical to the overall execution 
time as the input size increases.  

 

Figure 8: Performances and Parallel Efficiency on TEMPEST 

The SWG jobs were also performed on 8 nodes of the MADRID cluster [Appendix D] using Dryad 2009 and 8 
nodes on the TEMPEST cluster [Appendix C] using Dryad CTP. The input data is identical for both tests, which 
are 5,000 to 15,000 gene sequences partitioned into 128×128 sub blocks. Parallel efficiency (Eq. 1) is used as 
a metric for comparison. By computing 225 million pairwise distances both Dryad CTP and Dryad 2009 
showed high utilization of CPUs with parallel efficiency of over 95% as displayed in Figure 9. 
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Figure 9: Parallel Efficiency on Dryad CTP and Dryad 2009 

In the second set of experiments we calculated speed up to 10,000 input sequences (31 partitions with 
128×128 sub block size) but varied the number of compute nodes in input sequence numbers 2, 4, 8, 16, and 
31 (due to the cluster limitation of 31 compute nodes). The SWG application scaled up well on a 768-core HPC 
cluster. These results are presented in Table 4 of Appendix F. The execution time ranges between 40 minutes 
to 2 days. The speedup, as defined in equation 2, is almost linear with respect to the number of compute 
nodes as shown in Figure 10, which suggests that pleasingly parallel applications perform well on DryadLINQ 
CTP. 

Speedup =  
Execution time on one node

Execution Time on multiple nodes
      (Eq. 2) 

 

Figure 10: Speedup for SWG on Tempest with Varied Number of Compute Nodes 

3.3 Scheduling on an Inhomogeneous Cluster 
Adding a new hardware or integrating distributed hardware resources is common but may cause 
inhomogeneous issues for scheduling. In Dryad 2009, the default execution plan is based on an assumption of 
a homogeneous computing environment. This motived us to investigate performance issues on an 
inhomogeneous cluster for Dryad CTP. Task scheduling with attention to load balance is studied in this 
section.   
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3.3.1 Workload Balance with Different Partition Granularities 
An optimal job-scheduling plan needs awareness of resource requirements and CPU time for each task, which 
is not practical in many applications.  One approach is to split the input data set into small pieces and keep 
dispatching them to available resources.  

This experiment was performed on STORM [Appendix A], an inhomogeneous HPC cluster. A set of SWG jobs is 
scheduled with different partition sizes, where input data contain 2048 sequences being divided into 64×64 
sub blocks. These sub blocks are divided by AsDistributedFromPartitions() to form a set of partitions : {6, 12, 
24, 48, 96, 192}. A smaller number of partitions implies a large number of sub blocks in each partition. As 
Dryad job manager keeps dispatching data to available nodes, the node with higher computation capability 
can process more SWG blocks. The distribution of partitions over compute nodes is shown in Table 5 of 
Appendix F; when the partition granularity is large, the distribution of SWG blocks among the nodes is 
proportional to the computational capacity of the nodes.    

Dryad CTP assigns a vertex to a compute node and each vertex contains one or more partitions. To study the 
relationship between partition granularity and load balance, the computation and scheduling time on 6 
compute nodes for 3 sample SWG jobs were recorded separately. Results are presented in Figure 11 with 
compute nodes along the X-axis (e.g. cn01 ~ cn06) and elapsed time from the start of computation along the 
Y-axis. A red bar marks the time frame of a particular compute node doing computation, and a blue bar refers 
to the time frame for scheduling a new partition. Here are a few observations: 

• When the number of partitions is small, workload is not well balanced, leading to significant 
variation in computation time on each node. Note that faster nodes stay idle and wait for slower ones 
to finish, as shown on the left graph in Figure 11. 

• When the number of partitions is large, workload is distributed in proportion to the capacity of 
compute nodes. Too many small partitions cause high scheduling costs, thus slowing down overall 
computation, as illustrated on the right graph in Figure 11. 

• Load balance favors a small number of partitions while scheduling costs favor a large number of jobs. 
An optimal performance is observed in the center graph in Figure 11. 

 

Figure 11: Scheduling Time vs. Computation Time of the SWG Application on Dryad CTP 

The optimal partition is a moderate number with respect to both load balance and scheduling cost. As shown 
in Figure 12 (middle), the optimal number of partitions is 24. Note that 24 partitions performed better than 
the default partition number, 14. 
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Figure 12: SWG Job Turnaround Time for Different Partition Granularities  
 

Figure 13 shows that overall CPU usage drops as the number of partitions increases, due to increasing 
scheduling and data movement, which do not demand high CPU usage.  

 

Figure 13: Cluster CPU Usage for Different SWG Partition Numbers 

3.4 Evaluation and Findings 
SWG is a pleasingly parallel application used to evaluate the performance of Dryad CTP.  

a) The scalability test shows that if input data is homogeneous and the workload is balanced, then 
the optimal setting with low scheduling costs has the same number of partitions as compute 
nodes.  

b) In the partition granularity test where data is inhomogeneous and causes an imbalanced workload, the 
default Dryad CTP setting of 62 partitions gave better results due to a finer balance between workload 
distribution and scheduling.  

c) A comparison between Dryad CTP and Dryad 2009 shows that Dryad CTP has achieved over 95% 
parallel efficiency in scale-up tests. Compared to the 2009 version Dryad CTP also presents an improved 
load balance with a dynamic scheduling function.  

d) Our evaluation demonstrates that load balance, task granularity, and data homogeneity are 
major factors that impact the performance of pleasingly parallel applications using Dryad. 

e) Further, we found a bug involving mismatched partitions vs. compute nodes in the default setting of 
Dryad CTP. 
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4 Hybrid Parallel Programming Model 

4.1 Introduction 
Matrix-matrix multiplication is a fundamental kernel [12], which can achieve high efficiency in both theory 
and practice. The computation can be partitioned into subtasks, which makes it an ideal candidate application 
in hybrid parallel programming studies using Dryad/DryadLINQ. However, there is not one optimal solution 
that fits all scenarios. Different trade-offs of partition granularity largely correspond to computation and 
communication costs and are affected by memory/cache usage and network bandwidth/latency. We 
investigated the performance of three matrix multiplication algorithms and three multi-core technologies 
in .NET, which run on both single and multiple cores of HPC clusters. The three matrix multiplication 
decomposition approaches are: 1) row decomposition, 2) row/column decomposition, and 3) block/block 
decomposition (Fox-Hey algorithm [13][14]). The multi-core technologies include: PLINQ, TPL [15], and 
Thread Pool, which correspond to three multithreaded programming models. In a hybrid parallel 
programming model, Dryad invokes inter-node parallelism while TPL, Threading, and PLINQ support inner-
node parallelism.  It is imperative to utilize new parallel programming paradigms that may potentially scale 
up to thousands or millions of multicore processors.  
 
Matrix multiplication is defined as A * B = C (Eq. 3) where Matrix A and Matrix B are input matrices and 
Matrix C is the result matrix. The p in Equation 3 represents the number of columns in Matrix A and number 
of rows in Matrix B. Matrices in the experiments are square matrices with double precision elements.  

∑
=

=
p

k
kjikij BAC

1
               (Eq. 3) 

4.2 Parallel Matrix-Matrix Multiplication Algorithms  

4.2.1 Row-Partition Algorithm  
The row-partition algorithm divides Matrix A into row blocks and distributes them onto compute nodes. 
Matrix B is copied to every compute node. Each Dryad task multiplies row blocks of Matrix A by all of matrix 
B and the main program aggregates a complete matrix C. The data flow of the Row Partition Algorithm is 
shown in Figure 14. 

 
Figure 14: Row-Partition Algorithm 
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The blocks of Matrices A and B are first stored using DistributedQuery and DistributedData objects defined in 
DryadLINQ. Then an ApplyPerPartition operator invokes a user-defined function rowsXcolumnsMultiCoreTech 
to perform subtask computations. Compute nodes read file names for each input block and get the matrix 
remotely. As the row partition algorithm has a balanced distribution of workload over compute nodes, an 
ideal partition number equals the number of compute nodes. The pseudo code is in Appendix G, 1): 

4.2.2 Row-Column Partition Algorithm 
The Row-Column partition algorithm [16] divides Matrix A by rows and Matrix B by columns. The column 
blocks of Matrix B are distributed across the cluster in advance. The whole computation is divided into 
several iterations. In each iteration one row block of Matrix A is broadcast to all compute nodes and 
multiplies by the one-column blocks of Matrix B. The output of each compute node is sent to the main 
program to form a row block of Matrix C. The main program then collects the results of multiple iterations to 
generate the complete output of Matrix C.    

 

Figure 15: Row-Column Partition Algorithm 

The column blocks of Matrix B are distributed by the AsDistributed() operator across the compute nodes. In 
each iteration an ApplyPerPartition operator invokes a user-defined function aPartitionMultiplybPartition to 
multiply one column block of Matrix B by one row block of Matrix A. The pseudo code is provided in Appendix 
G.2): 

4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm  
The block-block decomposition in the Fox-Hey algorithm divides Matrix A and Matrix B into squared sub-
blocks. These sub-blocks are dispatched to a virtual topology on a grid with the same dimensions for the 
simplest case. For example, to run the algorithm on a 2X2 processes mesh, Matrices A and B are split along 
both rows and columns to construct a matching 2X2 block data mesh. In each step of computation, every 
process holds a current block of Matrix A by broadcasting and a current block of Matrix B by shifting upwards 
and then computing a block of Matrix C. The algorithm is as follows: 
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For k = 0: s-1 

1) The process in row I with A(I, (i+k)mod s) broadcasts it to all other processes I the same row i. 
2) Processes in row I receive A(I, (i+k) mod s) in local array T. 
3) For I =0;s-1 and j=0:s-1 in parallel  

       C(I,j) = c(I,j)+T*B(I,j) 
End 

4) Upward circular shift each column of B by 1: 
      B(I,j)  B((i+1)mod s, j) 

End 

 

Figure 16 shows the case where Matrices A and B are both divided into a block mesh of 2x2.  
Correspondingly, 4 compute nodes are divided into a grid labeled C(0,0), C(0,1), C(1,0), C(1,1). In step 
0, Matrix A broadcasts the active blocks in column 0 to compute nodes in the same row of the virtual 
grid of compute nodes (or processes), i.e. A(0,0) to C(0,0), C(0,1) and A(1,0) to C(1,0), C(1,1). The 
blocks in Matrix B will be scattered onto each compute node. The algorithm computes Cij = AB on each 
compute node. In Step 1, Matrix A will broadcast the blocks in column 1 to the compute nodes, i.e. 
A(0,1) to C(0,0), C(0,1) and A(1,1) to C(1,0), C(1,1). Matrix B distributes each block to its target 
compute node and performs an upward circular shift along each column, i.e. B(0,0) to C(1,0), B(0,1) to 
C(1,1), B(1,0) to C(0,0), B(1,1) to C(0,1). Then a summation operation on the results of each iteration 
forms the final result in Cij  += AB. 
 

 

Figure 16: Different Stages of the Fox-Hey Algorithm in 2x2 Block Decompositions 

Figure 17 illustrates a one-to-one mapping scenario for Dryad implementation where each compute node has 
one sub-block of Matrix A and one sub-block of Matrix B. In each step, the sub-blocks of Matrix A and Matrix B 
will be distributed onto compute nodes. Namely, the Fox-Hey algorithm achieves much better memory usage 
compared to the Row Partition algorithm which requires one row block of Matrix A and all of Matrix B for 
multiplication. In our future work, the Fox-Hey algorithm will be implemented in a general and powerful 
mapping schema to maximize cache usage, where the relationship between sub-blocks and the virtual grid of 
compute nodes will be many to one.   
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Figure 17: Structure of the 2D Decomposition Algorithm on Iteration I with n+1 Nodes 
 
The pseudo code of basic Fox-Hey algorithm is given in Appendix G.3.1). 
The Fox-Hey algorithm was originally implemented with MPI [17], which maintained intermediate status and 
data in processes during parallel computation. However, Dryad uses a data-flow runtime that does not 
support intermediate status of tasks during computation. To work around this, new values are assigned to 
DistributedQuery<T> objects by an updating operation as shown in the following pseudo code in Appendix 
G.3.2). 

The sequential code of Matrix Multiplication is given in Appendix G. In addition, we provide three 
implementations to illustrate three multithreaded programming models. 

4.3 Performance Analysis in Hybrid Parallel Model 

4.3.1 Performance on Multi Core 
The baseline test of Matrix Multiplication was executed on the TEMPEST cluster [Appendix B] with the three 
multithreaded programming models: Task Parallel Library (TPL), Thread Pool and PLINQ. The comparison of 
these 3 technologies is shown in Table 2 below: 

Table 2. Comparison of three Multicore Technologies 
Technology Name API in use Optimization Description 

Thread Pool ThreadPool.Queu
eUserWorkItem User define 

A common setting to use a group of threads. It is 
already been optimized in .NET 4, however, to 
further optimize the usage requires more user 
programming. 

TPL Parallel.For Moderate 
Optimized 

Parallel.For is a light weighted API to use maximum 
number of cores on the target machine using in a 
given application. It is more optimized than thread 
pool inside .NET 4. However, the experienced user 
can still optimize the usage of Parallel.For. 
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PLINQ AsParallel() Highly 
Optimized 

Parallel LINQ (PLINQ) is a parallel implementation 
of LINQ to Objects. It is highly optimized and can be 
used on any LINQ queries which make it suitable for 
DryadLINQ program. It doesn’t require any 
optimization from user and it is most light weighted 
to user compare with thread and TPL. 

 

Figure 18 shows performance results on a 24-core compute node with matrix size between 2,400 and 19,200 
dimensions. The speed-up charts were calculated using Equation 3. T(P) standards for job turnaround time 
for Matrix Multiplication using multi-core technologies, where P is the number of cores across the cluster. T(S) 
refers to the job turnaround time of sequential Matrix Multiplication on one core.  

Speed-Up = T(S)/T(P)  (Eq. 4) 

 
Figure 18: Speedup Charts for TPL, Thread Pool, and PLINQ Implementations of  

Matrix Multiplication on One Node 
The parallel efficiency remains around 17 to 18 for TPL and Thread Pool. However, TPL outperforms Thread 
Pool as data size increases. PLINQ consistently achieves the best speed-up with values larger than 22, making 
parallel efficiency over 90% on 24 cores. We conclude that the main reason is due to PLINQ’s memory/cache 
usage being optimized for large data size on multicore systems by observing metrics of context switches and 
system calls of the heat map from the HPC cluster manager. 

4.3.2 Performance on a Cluster 
We evaluated 3 different matrix multiplication algorithms implemented with Dryad CTP on 16 compute 
nodes of the TEMPEST cluster using one core per node. The data size of input matrix ranges from 2400 x 
2400 to 19200 x 19200. A variance of the speed-up definition is given in Equation 5 where T(P) stands for job 
turnaround time on P compute nodes. T(S’) is an approximation of job turnaround time for the sequential 
matrix multiplication program where a fitting function [Appendix E] is used to calculate CPU time for large 
input data.   

Speed-up = T(S’)/T(P)    (Eq. 5) 

As shown in Figure 19, the performance of the Fox-Hey algorithm is similar to that of the Row Partition 
algorithm, increasing quickly as the input data size increases. The Row-Column Partition Algorithm performs 
the worst since it is an iterative algorithm that needs explicit evaluation of DryadLINQ queries in each 
iteration to collect an intermediate result. In particular, it invokes resubmission of a Dryad task to the HPC job 
manager during each iteration.  
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4.3.3 Performance of a Hybrid Model with Dryad and PLINQ 
Porting multi-core technologies into Dryad tasks can potentially increase the overall performance due to 
extra processor cores. The hybrid model invokes Dryad for inter-node tasks and spawns concurrent threads 
through PLINQ. Three matrix multiplication algorithms were executed on 16 compute nodes of the TEMPEST 
cluster [Appendix B]. Compared to Figure 19, the speed-up charts of Figure 20 show significant performance 
gains by utilizing multicore technologies like PLINQ, where a factor of 9 is ultimately achieved as data size 
increases.  

  

Figure 19: Speedup of Three Matrix Multiplication 
Algorithms Using Dryad on a Cluster 

Figure 20: Speedup of Three Matrix Multiplication 
Algorithms Using a Hybrid Model with Dryad and 

PLINQ 

Since the computational complexity in matrix multiplication is O(n3), which increases faster than that of the 
growth of communication cost O(n2), Figures 19 and 20 show that the speed-up increases with the size of 
input data. The Row Partition algorithm delivers the best performance for a hybrid model, as shown in Figure 
20. Compared to the other 2 iterative algorithms, job submission occurs only once with the Row Partition 
algorithm. The Row-Column partition algorithm and the Fox-Hey algorithm both have 4 iterations and finer 
task granularity, leading to extra scheduling and communication overhead.  

4.3.4 Performance Comparison of Three Hybrid Parallel Models 
We studied three matrix multiplication algorithms in hybrid parallel programming models with Task Parallel 
Library (TPL), Thread, and PLINQ on multicore processors. Figure 21 shows the performance results of a 
19200 by 19200 matrix on 16 nodes of the TEMPEST cluster with 24 cores on each node. In all 3 matrix 
multiplication algorithms PLINQ achieves better speed-up than TPL and Thread, which supports earlier 
performance results shown in Figure 18.  

 

Figure 21: The Speedup Chart of TPL, Thread, and PLINQ for Three Matrix Multiplication Algorithms 
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When a problem size is fixed, parallel efficiency drops when multicore parallelism is used. This can be 
illustrated by the Row Partition algorithm running with or without PLINQ on 16 nodes (each has 24 cores), 
where the parallel efficiency is 17.3/16 = 108.1% when using one core per node (Figure 19), but becomes 
156.2/384 = 40.68% over 384 cores (Figure 21). This is because the task granularity of Dryad on each core 
becomes finer and the node execution time decreases, while the overhead of scheduling, communication, and 
disk I/O remains the same or even increases.  

 

Figure 22: The CPU Usage and Network Activity on One Compute Node for Multiple Algorithms 

Figure 22 shows charts of CPU utilization and network activity on one node of the TEMPEST cluster for three 
19200 x 19200 matrix multiplication jobs using PLINQ. It is observed that the Row Partition Algorithm with 
PLINQ can reach a CPU utilization rate of 100% for a longer time than the other two approaches. Further, its 
aggregated network overhead is less than that of the other two approaches as well. Thus, the Row Partition 
algorithm with PLINQ has the shortest job turnaround time. The Fox-Hey algorithm delivers good 
performance in the sequential implementation due to its cache and paging advantage with finer task 
granularity.  

Figure 23 shows the CPU and network utilization of the Fox-Hey algorithm on square matrices of 19,200 and 
28,800 dimensions. Not only do they CPU and Network utilization increase with size of input data, but the 
rate of increase in CPU utilization is faster than that of network utilization, which follows the ratio of 
computation complexity O(n^3) vs. communication complexity O(n^2).  The overall speed-up will continue to 
increase as we increase the data size. It suggests that when problem size grows large, the For-Hey algorithm 
will achieve high performance on low latency runtime environments.  
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Figure 23: The CPU Usage and Network Activity for the Fox-Hey Algorithm-DSC with Different Data Sizes 

4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster 
We designed a timing model for the Fox-Hey algorithm to conduct detailed evaluation. Tcomm/Tflops 
represents the communication overhead per double point operation using Dryad on the TEMPEST cluster. 
Assume the M*M matrix multiplication jobs are partitioned to run on a mesh of √𝑁 ∗ √𝑁 compute nodes. The 
size of sub-blocks in each node is m*m, where 𝑚 = 𝑀/√𝑁. The “broadcast-multiply-roll” cycle of the 
algorithm, as shown in Figure 16, is repeated √𝑁 times.  

For each such cycle in our initial implementation it takes √𝑁 − 1 steps to broadcast subblocks of matrix A to 
the other √𝑁 − 1 nodes in the same row of mesh processors, as the network topology of TEMPEST is simply a 
star rather than a mesh. In each step the overhead of transferring data between two processors includes: 1) 
the startup time (latency 𝑇𝑙𝑎𝑡), 2) the network time 𝑇𝑐𝑜𝑚𝑚  to transfer m*m data, and 3) the disk IO time 𝑇𝑖𝑜for 
writing data onto the local disk and reloading data from disk to memory. The extra disk IO overhead is 
common in cloud runtimes, such as Hadoop [18]. In Dryad, the data transfer usually goes through a file pipe 
over NTFS. Therefore, the time for broadcasting a sub-block is: 

�√N − 1� ∗ (𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚)). 

Note that in an optimized implementation of pipelining it is possible to remove factor �√N − 1� of broadcast 
time. 

Since the process to “roll” sub-blocks of Matrix B can be parallelized to complete within one step, the 
overhead is: 
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𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚). 

The actual time required to compute the sub-matrix product (include the multiplication and addition) is: 

               2*𝑚3 ∗ 𝑇𝑓𝑙𝑜𝑝𝑠. 

Therefore, the total computation time of the Fox-Hey matrix multiplication is defined as the following: 

𝑇 = √𝑁 ∗ �√𝑁 ∗ �𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚)� + 2 ∗ 𝑚3 ∗ 𝑇𝑓𝑙𝑜𝑝𝑠� . (1) 

By substituting 𝑚 with 𝑀
√𝑁

, the equation becomes 

𝑇 = 𝑁 ∗ 𝑇𝑙𝑎𝑡 + 𝑀2 ∗ (𝑇𝑖𝑜+𝑇𝑐𝑜𝑚𝑚) + 2 ∗ (𝑀3/𝑁) ∗ 𝑇𝑓𝑙𝑜𝑝𝑠   (2) 

The last term in equation (2) is the expected “perfect linear speedup” while the other terms represent 
communication overheads.  In the following paragraph we investigate 𝑇𝑓𝑙𝑜𝑝𝑠  and 𝑇𝑖𝑜+𝑇𝑐𝑜𝑚𝑚  by fitting 
measured performance as a function of matrix size.  

 

Figure 24: Execution Time of Sequential and PLINQ Execution of the Fox-Hey Algorithm 

𝑇1𝑛𝑜𝑑𝑒_1𝑐𝑜𝑟𝑒 = 5.3𝑠 + 5.8𝑢𝑠 ∗ 𝑀2 + 35.78 ∗ 10−3𝑢𝑠 ∗ 𝑀3    (3) 

𝑇16𝑛𝑜𝑑𝑒𝑠_1𝑐𝑜𝑟𝑒 = 21𝑠 + 3.24𝑢𝑠 ∗ 𝑀2 + 1.33 ∗ 10−3𝑢𝑠 ∗ 𝑀3    (4) 

𝑇16𝑛𝑜𝑑𝑒𝑠_24𝑐𝑜𝑟𝑒𝑠 = 61𝑠 + 1.55𝑢𝑠 ∗ 𝑀2 + 4.96 ∗ 10−5𝑢𝑠 ∗ 𝑀3    (5) 

The timing equation for the sequential algorithm running on a one-core single node is shown in equation (3). 
Figure 24 and equation (4) represent the timing of the Fox-Hey algorithm running with one core per node on 
16 nodes. Figure 24 and equation (5) represent the timing of the Fox-Hey/PLINQ algorithm that executes 
with 24 cores per node on 16 nodes. Equation (6) is the value of 

𝑇𝑓𝑙𝑜𝑝𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

𝑇𝑓𝑙𝑜𝑝𝑠−24 𝑐𝑜𝑟𝑒𝑠
 for large matrices. As 26.8 is 

close to 24, i.e. the number of cores per node, it approximately verifies the correctness of the cubic term 

coefficient of equation (4) & (5). Equation (7) is the value of 
(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)24 𝑐𝑜𝑟𝑒𝑠
 for large matrices. The value 

is 2.08, while the ideal value is expected to be 1.0. We have investigated the differences between the ideal 
values and the measurements of equations (6) and (7), and find that a dominant issue is the effect of the 
cache, which improves performance in the parallel 24-core case and is not included in above formulae. The 
constant term in equation (3), (4), and (5) accounts for the cost of initialization of the computation, such as 
runtime startup and the allocation of memory for matrices.  
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𝑇𝑓𝑙𝑜𝑝𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

𝑇𝑓𝑙𝑜𝑝𝑠−24 𝑐𝑜𝑟𝑒𝑠
= 1.33∗10^−3

4.96∗10^−5
≈ 26.8     (6) 

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)24 𝑐𝑜𝑟𝑒𝑠
= 3.24

1.55
≈ 2.08     (7) 

𝑇𝑖𝑜
𝑇𝑐𝑜𝑚𝑚

≈ 5        (8) 

Equation (8) represents the value of Tio
Tcomm

 for large submatrix sizes. The value illustrates that though the disk 
IO cost has more effect on communication overhead than does network cost, they are of the same order for 
large sub-matrix sizes, thus we assign the sum of them as the coefficient of the quadratic term in equation (2).  
Besides, one must bear in mind that the so-called communication and IO overhead actually include other 
overheads, such as string parsing and index initialization, which are dependent upon how one writes the code.  

4.5 Evaluation and Findings 
We investigated hybrid parallel programming models with three kernel matrix multiplication applications.  

f) We showed how integrating multicore technologies into Dryad tasks can increase the overall 
utilization of a cluster.  

g) Further, different combinations of multicore technologies and parallel algorithms perform differently 
due to task granularity, caching, and paging issues.  

h) We also find that the parallel efficiency of jobs decreases dramatically after integrating these multicore 
technologies given that the task granularity becomes too small per core. Increasing the scale of input 
data can alleviate this issue.  

5 Distributed Grouped Aggregation 

5.1 Introduction 
Distributed Grouped Aggregation is a core primitive operator in many data mining applications, such as sales 
data summarizations, log data analysis, and social network influence analysis. We investigated the usability 
and performance of a programming interface for a distributed grouped aggregation in DryadLINQ CTP. Three 
distributed grouped aggregation approaches were implemented: Hash Partition, Hierarchical Aggregation, 
and Aggregation Tree.  

PageRank is a well-known web graph ranking algorithm. It calculates the numerical value of a hyperlinked set 
of web pages, which reflects the probability of a random surfer accessing those pages. The process of 
PageRank can be understood as a Markov Chain that needs recursive calculation to converge. In each 
iteration the algorithm calculates a new access probability for each web page based on values calculated in 
the previous computation. The iterations will not stop until the values between two subsequent rank vectors 
are smaller than a predefined threshold. Our DryadLINQ PageRank implementation uses the ClueWeb09 data 
set [22], which contains 50 million web pages.   

We used the PageRank application to study the features of input data that affect the performance of 
distributed grouped aggregation implementations. In the end, the performance of Dryad distributed grouped 
aggregation was compared with four other execution engines: MPI, Hadoop, Haloop [19], and Twister 
[20][21].  

5.2 Distributed Grouped Aggregation Approaches 
Figure 26 shows the workflow of the three distributed grouped aggregation approaches implemented with 
DryadLINQ. 
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The Hash Partition approach uses a hash partition operator to redistribute records to compute nodes so that 
identical records are stored on the same node and form the group. Then the operator usually aggregates 
certain values of the records in each group. The hash partition approach is simple in implementation, but 
causes a lot of network traffic when the number of input records becomes very large.  

A common way to optimize this approach is to apply partial pre-aggregation, which first aggregates the 
records on local compute nodes and then redistributes aggregated partial results across a cluster based on 
their keys. The optimized approach is better than a direct hash partition because the number of records 
transferring across a cluster is drastically reduced after the local aggregation operation. Further, there are 
two ways to implement partial aggregation: hierarchical aggregation and tree aggregation. A hierarchical 
aggregation usually consists of two or three synchronized aggregation stages. An aggregation tree is a tree 
graph that guides a job manager to perform partial aggregation for many subsets of input records. 
 

  
Figure 26: Three Distributed Grouped Aggregation Approaches 

DryadLINQ can automatically translate a distributed grouped aggregation query into an optimized 
aggregation tree based on data locality information. Further, Dryad can adaptively change the structure of the 
aggregation tree, which greatly simplifies the programming model and enhances its performance.   

5.2.1 Hash Partition   
The implementation of PageRank in Appendix H used GroupBy and Join operators in DyradLINQ. 

Page objects are used to store the structure of a web graph. Each element Page <url_id, <destination_url_list>> 
contains a unique identifier number page.key and a list of identifiers specifying all pages in the web graph 
that page links to. We construct the DistributedQuery<Page> pages objects from adjacency matrix files with 
function BuildPagesFromAMFile(). The rank object <url_id, rank_value> is a pair containing the identifier 
number of a page and its current estimated rank value. In each iteration the program joins the pages with 
ranks to calculate the partial rank values. Basically, it combines records from pages and ranks tables using a 
common keyword url_id. Then GroupBy() operator redistributes the calculated partial rank values across 
cluster nodes and returns the IGrouping objects, DistributedQuery<IGrouping<url_id, rank_value>>, where 
each IGroup represents a group of partial rank objects with all destination urls from one source URLs. The 
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grouped partial rank values are summed up as the final rank values and are used as input rank values for the 
next iteration [23].In the above implementation, GroupBy() operator can be replaced by HashPartition() and 
ApplyPerPartition() as follows[24]: 

5.2.2 Hierarchical Aggregation 
The PageRank implementation using hash partition would not be efficient when the number of output tuples 
is much less than that of input tuples. In this scenario, we implemented PageRank with hierarchical 
aggregation, which consists of three synchronized aggregation stages: 1) user-defined Map tasks, 2) 
DryadLINQ partitions, and 3) final PageRank values. In stage one, each user-defined Map task calculates the 
partial results of some pages that belong to the sub-web graph represented by the adjacency matrix file. The 
output of a Map task is a partial rank value table, which is merged into the global rank value table in a later 
stage.  

 

Figure 27: Hierarchical Aggregation in DryadLINQ PageRank 

5.3.3 Aggregation Tree 

The hierarchical aggregation implementation may not perform well in an inhomogeneous computation 
environment, which varies in network bandwidth, CPU, and memory capacities. As hierarchical aggregation 
has several global synchronization stages, the overall performance was determined by the slowest task. In 
this scenario, the aggregation tree approach is a better choice. It can construct a tree graph to guide the 
aggregation operations for many subsets of input tuples, which reduces intermediate data transfer. In the 
ClueWeb data set, URLs are stored in alphabetical order. Web pages that belonged to the same domain were 
likely being saved within one adjacency matrix file. By applying partial grouped aggregation to each 
adjacency matrix file in the hash partition stage, intermediate data transfer can be greatly reduced. The 
following implementation of PageRank uses the GroupAndAggregate() operator. 

The GroupAndAggregate operator supports optimization of the aggregation tree. To analyze partial 
aggregation in detail, we simulated GroupAndAggregate with the HashPartition and ApplyPerPartition 
operators. There are two steps of ApplyPerPartition: one is to perform pre-partial aggregation on each sub-
web graph; the other is to aggregate the partially aggregated results for global results.  
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5.3 Performance Analysis 

5.3.1 Performance in Different Aggregation Strategies 
We conducted performance measurements of PageRank with three aggregation approaches: hash partition, 
hierarchical aggregation, and tree aggregation. In the experiments, we split the entire ClueWeb09 graph into 
1,280 partitions, each of which was processed and saved as an adjacency matrix (AM) file. The characteristics 
of input data are described below: 

No of AM Files File Size No of Web Pages No of Links Ave Out-degree 

1,280 9.7 GB 49.5 million 1.40 billion 29.3 

 
The program ran on 17 compute nodes from the TEMPEST cluster. Figure 28 shows that tree aggregation is 
faster than hash partition due to the optimization of partial aggregation. Hierarchical aggregation 
outperforms the other two approaches because of coarse task granularity.  

 
Figure 28: Time to Compute PageRank per Iteration by Three Aggregation Approaches  

Using Clue-web09 Data on 17 Compute Nodes of TEMPEST 
 

Figure 29 provides CPU utilization and network utilization information of the three aggregation approaches 
obtained from the HPC cluster manager. It is apparent that hierarchical aggregation requires much less 
network bandwidth than the other two.  

 

 
Figure 29 CPU (left) and Network Utilization (right) of Different Aggregation Strategies  
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The hierarchical aggregation and aggregation tree approaches work well when the number of output tuples 
was much smaller than input tuples. The hash partition worked well when the number of output tuples was 
larger than input tuples. To describe how the ratio between input and output tuples affects the performance 
of different aggregation approaches, we define the data reduction proportion (DRP). 

𝐷𝑅𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠

  (Eq. 6) 

  

Figure 30: Time required for PageRank Jobs for Two 
Aggregation Approaches with Different DRP 

Figure 31: Time Per Iteration for Two Aggregation 
Approaches with Different Numbers of Output Tuples 
(from 100,000 to 1,000,000) When the Number of 
Input Tuples is 4.3 Billion 

Assume M input tuples are evenly distributed among N compute nodes. In a hash partition approach, tuples 
with the same key are hashed into one group, which requires M aggregation operations. In a partial 
aggregation approach, the average number of input tuples with the same key is about M/N on each node, 
which requires M/N aggregation operations on each node and generates N partial aggregated tuples in total. 
Further, it needs N more aggregation operations to form the final aggregated tuple. Thus, the total number of 
aggregation operations for the M tuples is (M/N)*N+N. The average number of aggregation operations of each 
tuple from the two approaches is as follows: 

�
𝑂 �𝑀

𝑀
� = 𝑂(1) 

𝑂 �𝑀+𝑁
𝑀
� = 𝑂(1 + 𝑁 ∗ 𝐷𝑅𝑃) 

               (Eq. 7) 

In many applications, DRP is much smaller than the number of compute nodes, which suggests that the 
overhead of applying partial aggregation is small compared to the hash partition. Taking the word count 
application as an example, documents with millions of words may consist of only several thousand words that 
occur frequently. Word count is very suitable for applying partial aggregation. In PageRank, as the web graph 
structure obeys Zipf’s law, DRP is higher. Thus, the partial aggregation approach may not deliver good 
performance when applied to PageRank [23].  

To quantify the impact of DRP on different aggregation approaches, we ran PageRank with web graphs of 
different DRP values. As shown in Figure 30, when DRP is smaller than 0.017, the partial aggregation 
performs better than hash partition aggregation. When DRP is bigger than 0.017, there is not much difference 
between these two aggregation approaches. The results of Figures 30 and 31 indicate the changes in 
performance when the input tuples are fixed with varying output tuples.  
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5.3.2 Comparison With Other Implementations 
We implemented a PageRank application with five runtimes: DryadLINQ, Twister, Hadoop, Haloop, and MPI 
using ClueWeb data, which is listed in Table 8 of Appendix F. Parallel efficiency T(S)/(P*T(P)) (refer to Eq. 
1) is used to compare the performance of five implementations. T(P) stands for job turnaround time of 
parallel PageRank, where P represents the number of cores. T(S) is the time of sequential PageRank on one 
core.  

Figure 32 shows that all parallel efficiency charts are noticeably smaller than 5%. PageRank is a 
communication-intensive application, where the computation complexity of PageRank is O(N2) while its 
communication complexity is O(N2). As the communication overhead per float point calculation of PageRank 
is high, the bottlenecks of PageRank applications are network, memory, and CPU. Therefore, a major 
challenge is to reduce synchronization cost among tasks.  

MPI, Twister, and Haloop outperform Dryad and Hadoop implementations for the following reasons: 1) MPI, 
Twister, and Haloop cache static data in memory between iterations; and 2) Haloop uses chained tasks 
without the need to restart task daemons for each iteration. Dryad is faster than Hadoop, but is slower than 
MPI and Twister. Dryad can chain DryadLINQ queries together and thereby save in communication cost, but it 
has higher scheduling overhead for each Dryad vertex. Hadoop has the lowest performance in writing 
intermediate data to HDFS between interactions. 

 

Figure 32:  Parallel Efficiency of Five PageRank Implementations 

5.3.3 Chaining Tasks Within BSP Jobs 
Dryad can chain the execution of multiple DryadLINQ queries together using late evaluation technology. The 
chained DryadLINQ queries will not get evaluated until the program explicitly accesses queries. Figure 33 
shows that after chaining DryadLINQ queries, performance increases by 30% for 1280 adjacency matrix files 
of PageRank over 10 iterations. 
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Figure 33: Performance Difference Between Chained and Unchained DryadLINQ Queries 

Although DryadLINQ chains the execution of queries, it does not support the execution of jobs that consist of 
Bulk Synchronous Parallel [26] (BSP) style tasks very well. For example, in DryadLINQ hierarchical 
aggregation PageRank, the program has to be resubmitted to a Dryad job on the HPC scheduler for every 
synchronization step that calculates the global PageRank value table. 

5.4 Evaluation and Findings 
We investigated three distributed grouped aggregation approaches with DryadLINQ CTP. Programmability 
and performance of these approaches were studied using the PageRank application. The results show 
correlations with different ratio of data reduction proportion (DRP).   

i) Partial pre-aggregation requires more memory than hash partition.  
j) Hash partition has larger communication overhead than partial pre-aggregation. 
k) Detailed implementation of partial pre-aggregation such as accumulator fullhash and iterator 

fullhash/fullsort, has different requirements for memory and network bandwidth.  

6 Programming Issues in DryadLINQ CTP 

6.1 Class Path in Working Directory 
We found the following issue when running DryadLINQ CTP SWG jobs: Dryad can automatically transfer files 
required by a user program to remote working directories on each compute node. In order to save storage 
space in compute nodes, Dryad does not copy all DLL and shared libraries to working directory for each task. 
Instead, it stores only one copy of shared libraries in the job working directory shared by all Dryad tasks. 
When running jobs, the Dryad vertex can add the job working directory into the class path of DryadLINQ 
program. So all Dryad tasks can refer to DLLs and shared libraries without a problem. However, when Dryad 
tasks invoke a third party executable binary file as process, Dryad process is not aware of the class 
path that the Dryad vertex maintains, and it throws out an error : “required file cannot be found.” 

6.2 Late Evaluation in Chained Queries within One Job 
DryadLINQ can chain the execution of multiple queries by applying late evaluation technology. This 
mechanism allows further optimization of the execution plan of DryadLINQ queries. As shown in the 
following code, DryadLINQ queries within different iterations are chained together and will not get evaluated 
until the Execute() operator is invoked explicitly. The integer parameter “iterations” is supposed to increase 
by one at each iteration. However, when applying late evaluation, DryadLINQ only evaluates the 
iterations parameter at the last iteration (which is nProcess -1 in this case) and uses that value for 
further execution of all the queries including previous iterations. This imposes an ambiguous variable 
scope issue, which should be mentioned in the DryadLINQ programming guide.      

for (int iterations = 0; iterations < nProcesses; iterations++) 
{ 
  inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock =>                
acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci],    iterations,nProcesses))); 

  inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) =>    
x.taskMultiplyBBlock(y.bMatrix)); 

  inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses)); 
} 
inputACquery.Execute(); 
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6.3 Serialization for a Two Dimensional Array 
DryadLINQ and Dryad Vertex can automatically serialize and unserialize the standard .NET objects. However, 
when using a two dimensional array, objects in matrix multiplication, and PageRank applications, the 
program will throw out an error message when a Dryad task tries to access unserialized two 
dimensional array objects on remote compute nodes. We investigated the serialization code being 
automatically generated by DryadLINQ and found it may not be able to unserialize two dimensional array 
objects correctly. The reason for this needs further investigation.  

private void SerializeArray_2(Transport transport, double[][]value) 
{ 
   if ((value == null)){ 
      transport.Write(((byte)(0))); 
 return; 
   } 
   transport.Write(((byte)(1))); 
   int count = value.Length; 
   transport.Write(count); 
   for (int i=0; (i<count);i=(i+1)){ 
       SerializeArray_4(transport, value[i]); 
   } 
} 

6.4 Fault tolerant in DryadLINQ CTP 

6.4.1 Failures and Fault Tolerance  

DryadLINQ supports fault tolerance as it is a major advantage of new parallel frameworks like MapReduce 
over the traditional parallel runtimes like MPI. We examine Dryad fault tolerance with respects to following 
types of failure: process level failure, operating system (OS) level failure, node level failure, and multiple node 
failure as shown in Figure 34. These tests were executed on 7 nodes of TEMPEST Cluster [Appendix B] using 
SWG application. The input data consists of 2,000 gene sequences that were partitioned into 12 blocks with 
64×64 for each sub-block. 
 

 
Figure 34: SWG Execution Timeline for Different Failure Types 

In Figure 34, X-axis labels compute node (e.g. cn25 ~ cn31) and Y-axis is the elapsed time from the start of 
computation. A failed note is marked by “x”.  A red bar marks the time frame of a particular compute node doing 
computation, a blue bar refers to the time frame for scheduling a new partition, and a green bar means this is a 
partition shifted to this node due to the failure. 
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Dryad usually handles a failure by re-scheduling the failed vertex job to other available compute nodes. Once 
a failed node is excluded from the list of available nodes, it will not be used again during this job execution, 
even after the failure is fixed. There are two special node failures − HPC head node and Dryad Job Manager 
node.  Although both are a single point failure, the former doesn’t not have impact current job’s completion 
while the latter currently has no fault tolerance support from Dryad. A summary of the fault tolerance 
features for Dryad is listed in Table 3.  
 

Table 3: Fault Tolerance Features of Dryad 
 
 Failure types Failure Description Fault Tolerance Strategy 

1 Process Process HPCDryadVertex.exe 
failed 
Operating system crashed 

The job manager will re-schedule the 
failed vertex job on this compute node to 
other available compute nodes.  
No new vertexes assignment to this 
compute node after it is brought back 
online or the operating system resumes.  

2 Compute Node Compute node offline or 
crashed 

The job manager will have the same fault 
tolerance strategy as the Process failure.  

3 HPC Head Node HPC head node offline or 
crashed 

Once the job is submitted, the status of 
head node makes no impact on current 
running Dryad job. 

4 Dryad Job Manger 
Node 

Dryad job manager node 
offline or 
HPCLinqToDryadJM.exe 
crashed 

The Dryad job manager is a single point 
of failure. Currently there is no fault 
tolerance support for this scenario. 

5 Multi-Node Multiple compute node offline 
or crashed 

Dryad can handle multi nodes failure by 
assigning all the failed vertices to other 
available compute nodes. Figure 1 
(rightmost) shows the recovery of 3 out of 
6 compute nodes failure  

 

6.4.2 Partition Granularity and Fault Tolerance 

Unlike static scheduling used in Dryad 2009, Dryad CTP divides data into a predefined number of partitions, 
which is twice the number of compute nodes by default. This number is customizable by users. Dryad CTP 
dispatches the partitions across compute nodes dynamically. We’ve shown in our earlier work [2] that 
partition granularity has huge impact on load re-balancing in fault tolerance of Dryad. To evaluate the 
performance of recovery from a failure, we used the same SWG experiment but selected a set of partitions 
from {6, 12, 24, 48, 96} instead of the default partition. CN-28 was taken offline after 50% workload has been 
processed to simulate a node failure. The result in Figure 35 (left) suggests that when the partition 
granularity is large, the shifted workload (colored in green) was re-scheduled to a limited number of node 
leaving most nodes idle. When the partition granularity is small, the distribution of shifted workload is well 
balanced. However, fine partition granularity may cause extra scheduling cost that slows down overall 
computation as in Figure 35 (right). 
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Figure 35: SWG Execution Timeline with Varied Partition Numbers with One Node Failure 

The optimal number of partitions is a moderate number with respect to both load balance and scheduling 
cost. Figure 36 shows that the optimal number of partitions is 24, in between the minimal number of 6 and 
the maximum number of 96 

 

Figure 36: Average SWG Turnaround Time Different Partition Granularities  

6.4.3 Evaluation and Findings 

DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a 
single point failure that has no fault tolerance support from Dryad. The recovery speed of a failure is in 
favor of small granularity of partition.  

7 Classroom Experience with Dryad 

7.1 Dryad in Eduction  
Dryad/DryadLINQ has applicability in a wide range of applications in both industry and academia, which 
include:  image processing in WorldWideTeleScope, data mining in Xbox, High Energy Physics (HEP), SWG, 
CAP3, and PhyloD in bioinformatics applications. An increasing number of graduate students in the computer 
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science department, especially masters students, have shown interest and a willingness to learn 
Dryad/DryadLINQ in classes taught by Professor Judy Qiu at Indiana University.  

In the CSCI B649 Cloud Computing for Data Intensive Science course, 8 Master’s students selected topics 
related to Dryad/DryadLINQ as a term-long project. The following are three projects completed by the end of 
the Fall 2010 semester: 

1) Efficiency and Programmability of matrix multiplication with DryadLINQ; 
2) The Study of Implementing PhyloD application with DryadLINQ;  
3) Large Scale PageRank with DryadLINQ 

Projects 2 and 3 were accepted as posters at the CloudCom2010 conference hosted in Indianapolis, IN. 

In the 2011 Spring semester, two students in CSCI B534 Distributed Systems studied Dryad/DryadLINQ as a 
term-long project and contributed small, but solid results for this report.  

7.2 Concurrent Dryad jobs  
These two courses provide an excellent educational setting for us to study how students would utilize a 
cluster to understand the theories and applications of large-scale computing: 

1. Ordinary classes contain 30-40 students, which can form 10 – 15 groups; 
2. Student groups do experiments in a simulation environment where each group runs jobs on 1 to 8 

compute nodes; 
3. Students may not submit jobs until the due date is approaching. In another words, when a deadline is 

forthcoming, there are many jobs in the queue waiting to be executed while at other times the cluster 
may be left idle. 

Based on the above observations, it is critical to run multiple Dryad jobs simultaneously on a HPC 
cluster, especially in an educational setting. In the Dryad CTP, we managed to allow each job to reside in a 
different node group as shown in Figure 37. In this way, a middle-sized cluster with 32 compute nodes can 
sustain up to 16 concurrent jobs. However, this feature is not mentioned in either Programming or 
Guides. 

 

Figure 37: Concurrent Job Execution in the Dryad CTP Version 
 
Although concurrent jobs  are enabled, the overall resource utilization of Dryad is not perfect. Figure 38 
shows the CPU usage on each node while the jobs execution is displayed in Figure 37. Dryad jobs are assigned 
to compute node STORM-CN01 through STORM-CN06. Each compute node group contains 2 compute nodes, 
where only one of the nodes does actual computation. The reason is that every Dryad job requires an extra 
node acting as a job manager. CPU usage of this particular node is low and seldom exceeds 3%. In a 
cluster of 8 nodes, the overall usage of three concurrent jobs is only about 37%.  
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Figure 38: CPU Usage for Concurrent Job Execution 
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Appendix  

Appendix A 
STORM Cluster 
8-node inhomogeneous HPC R2 cluster 
  STORM STORM-

CN01 
STORM-
CN02 

STORM-
CN03 

STORM-
CN04 

STORM-
CN05 

STORM-
CN06 

STORM-
CN07 

CPU  AMD 2356 AMD 2356 AMD 2356 AMD 2356 AMD 8356 AMD 8356 Intel 
E7450 

AMD 8435 

Cores 8 8 8 8 16 16 24 24 
Memory 16G 16G 16G 16G 16G 16G 48G 32G 
Mem/Core 2G 2G 2G 2G 1G 1G 2G 1.33G 
NIC 
(Enterprise
) 

N/a N/a N/a N/a N/a N/a N/a N/a 

NIC 
(Private) 

BCM5708
C 

BCM5708
C 

BCM5708
C 

BCM5708
C 

BCM5708
C 

BCM5708
C 

BCM5708
C 

BCM5708
C 

 

Appendix B 
TEMPEST Cluster 
33-node homogeneous HPC R2 cluster 
 TEMPEST TEMPEST-CNXX 

CPU Intel E7450  Intel E7450 

Cores 24 24 

Memory 24.0GB 50.0 GB 

Mem/Core 1 GB 2 GB 

NIC (Enterprise) HP NC 360T n/a 

http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Bulk_Synchronous_Parallel
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NIC (Private) HP NC373i HP NC373i 

NIC (Application) Mellanox IPolB Mellanox IPoIB 

 

Appendix C 
MADRID Cluster 
9-node homogeneous HPC cluster 
 MADRID-HEADNODE MADRID-10X 

CPU AMD Opteron 2356  2.29GHz AMD Opteron 8356 2.30GHz 

Cores 8 16 

Memory 8GB 16GB 

Memory/Core 1GB 1GB 

NIC BCM5708C BCM5708C 

 

Appendix D 
Binomial fitting function for sequential SWG jobs 

𝑆𝑒𝑞(𝑥) = 0.0201𝑥2 − 0.1828𝑥 + 4.6609 
𝑅2 = 1 

 

Appendix E 
Trinomial fitting chart for sequential matrix multiplication jobs 

y = 0.0201x2 - 0.1828x + 4.6609 
R² = 1 
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Appendix F 
Tables mentioned in the report. 

Table 1: Execution Time for Various SWG Partitions on Tempest Cluster 

Partitio
n 

Number 
31 62 93 124 248 372 496 620 744 992 

Test 1 1324.54 1345.41 1369.01 1379.01 1761.09 1564.79 1866.14 2280.37 2677.57 3578.50 

Test 2 1317.45 1356.68 1386.09 1364.43 1735.46 1588.92 1843.70 2286.76 2736.07 3552.58 

Test 3 1322.01 1348.89 1368.74 1384.87 1730.47 1568.59 1857.00 2258.25 2709.61 3568.21 

Average 
1321.3

3 
1350.3

3 
1374.6

1 
1376.1

0 
1742.3

4 
1574.1

0 
1855.6

1 
2275.1

3 
2707.7

5 
3566.4

3 

 

Table 2: Execution Time for Skewed and Randomized Data 

Std. Dev. 1 50 100 150 200 250 

Skewed 2582 3076 3198 3396 3878 4488 

Randomized 2582 2489 2458 2413 2498 2622 

 

Table 3: Average Execution Time of Tempest 

No. of Nodes 
Input length 

5000 7500 10000 12500 15000 

1 13854.71 31169.03 55734.36 89500.57 131857.4 

32 550.255 1096.925 1927.436 3010.681 4400.221 

Parallel 81.22% 91.66% 93.28% 95.90% 96.66% 
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Efficiency 

 

Table 4: Execution Time and Speed-up for SWG on Tempest with Varied Size of Compute Nodes 

Num. of Nodes 1 2 4 8 16 31 

Average Execution Time 55734.36 27979.78 14068.49 7099.70 3598.99 1927.44 

Relative Speed-up 1 1.99 3.96 7.85 15.49 28.92 

 

Table 5: Blocks Assigned to Each Compute Node 

Node Name 
Partition Number 

6 12 24 48 96 192 

STORM-CN01 687 345 502 502 549 563 

STORM-CN02 681 683 510 423 547 575 

STORM-CN03 685 684 508 511 548 571 

STORM-CN04 688 685 689 775 599 669 

STORM-CN05 667 681 685 679 592 635 

STORM-CN06 688 1018 1202 1206 1261 1083 

 

Table 6 Characteristic of PageRank input data 

No of am files File size No of web pages No of links Ave out-degree 
1280 9.7GB 49.5million 1.40 billion 29.3 

 

Table 7 DRP of different number of AM files of three aggregation approaches 

Input size hash aggregation partial 
aggregation 

hierarchical 
aggregation 

320 files 2.3G 1: 306 1:6.6:306 1:6.6:2.1:306 
640 files 5.1G 1: 389 1:7.9:389 1:7.9:2.3:389 

1280 files 9.7G 1: 587 1:11.8:587 1:11.8:3.7:587 
 

Table 8:  Job turnaround time for different PageRank implementations 

Parallel Implementations  Average job turnaround time for 3 runs 
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MPI PageRank on 32 node Linux Cluster (8 cores/node) 101 sec 

Twister PageRank on 32 node Linux Cluster (8 cores/node) 271 sec 

Haloop PageRank on 32 node Linux Cluster (8 cores/node) 1954 sec 

Dryad PageRank on 32 node HPC Cluster (24 cores/node) 1905 sec 

Hadoop PageRank on 32 node Linux Cluster (8 cores/node) 3260 sec 

Sequential Implementations  

C PageRank on Linux OS (use 1 core) 831 sec 

Java PageRank on Linux OS (use 1 core) 3360 sec 

C# PageRank on Windows Server (use 1 core) 8316 sec 

 

Table 9: Parallel Efficiency of Dryad CTP and Dryad 2009 on same input data 

Dryad CTP 

# of Nodes 
Input size 

5000 7500 10000 12500 15000 

7 Nodes 2051 4540 8070 12992 18923 

1 Node 13855 31169 55734 89501 131857 

Parallel 

Efficiency 
96.50% 98.07% 98.66% 98.41% 99.54% 

Dryad 2009 

# of Nodes 
Input size 

5000 7500 10000 12500 15000 

7 2523 5365 9348 14310 20615 

1 17010 36702 64141 98709 142455 

Parallel 

Efficiency 
96.31% 97.73% 98.02% 98.54% 98.72% 
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Table 10: Execution Time for SWG with Data Partitions 

Number of 
Partitions 

6 12 24 36 48 60 72 84 96 

Execution Time 1 1105 1135 928 981 952 1026 979 1178 1103 

Execution Time 2 1026 1063 868 973 933 1047 968 1171 1146 

Execution Time 3 1030 1049 861 896 918 1046 996 1185 1134 

Execution Time 4 1047 1060 844 970 923 1041 985 1160 1106 

Average Time 
105

2 
1076 875 955 931 1040 982 1173 1122 

Speed-Up 
79.7

8688 
77.952

91 
95.899

23 
87.890

89 
90.108

21 
80.707

5 
85.474

34 
71.526

03 
74.7924

3 

Appendix G 
Implementation of different Matrix Multiplication algorithms 

1)The Row Partition Algorithm 
results = aMatrixFiles.Select(aFilePath => rowsXcolumns(aFilePath, bMatrixFilePath)); 

2) The Row Column Partition Algorithm 
string[] aMatrixPartitionsFiles = splitInputFile(aMatrixPath, numIterations); 
string[] bMatrixPartitionsFiles = splitInputFile(bMatrixPath, numComputeNodes); 
DistributedQuery<matrixPartition> bMatrixPartitions = 
bMatrixPartitionsFiles.AsDistributed().HashPartition(x => x, numComputeNodes). 
Select(file => buildMatrixPartitionFromFile(file)); 
 
for (int iterations = 0; iterations<numIterations;iterations++) 
{ 
  DistributedQuery<matrixBlock> outputs = bMatrixPartitions.ApplyPerPartition(bSubPartitions =>   
bSubPartitions.Select(bPartition => 
aPartitionMultiplybPartition(aMatrixPartitionsFiles[iterations], bPartition))); 
} 

3.1)The Fox-Hey Algorithm 
string[] aPartitionsFile = splitInputFile(aMatrixPath, nProcesses); 
string[] bPartitionsFile = splitInputFile(bMatrixPath, nProcesses); 
IEnumerable<aMatrixCMatrixInput> inputAC = buildBlocksInputOfAMatrixCMatrix(rowNum, colNum, 0, 
nProcesses); 
DistributedQuery<aMatrixCMatrixInput> inputACquery = inputAC.AsDistributed().HashPartition(x => 
x, nProcesses * nProcesses); 
DistributedQuery<bMatrixInput> inputBquery = bPartitionsFile.AsDistributed().Select(x => 
buildBMatrixInput(x, 0, nProcesses)).SelectMany(x => x); 
 
for (int iterations = 0; iterations < nProcesses; iterations++){ 
  inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock =>                
acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci], iterations,nProcesses))); 

  inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) =>    
x.taskMultiplyBBlock(y.bMatrix)); 

  inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses)); 
} 
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3.2) 
DistributedQuery<Type> inputData = inputObjects.AsDistributed(); 
inputData = inputData.Select(data=>update(data)); 

 

Appendix H 
Implementation of the Matrix Multiplication utilizing multi-core technology. 

while (localRows.MoveNext()) 
{ 

double[] row_result = newdouble[colNum]; 
for (int i = 0; i < colNum; i++) 

       { 
   double tmp = 0.0; 
   for (int j = 0; j < rowNum; j++) 

               tmp += localRows.Current.row[j] * columns[i][j]; 
           row_result[i] = tmp; 
       } 

yieldreturn row_result; 
} 

 
1) The Parallel.For version of Matrix Multiplication 
while (localRows.MoveNext()) 
{ 
       blockWrapper rows_result = new blockWrapper(size,colNum,rowNum); 
       Parallel.For(0, size, (int k) => 
       { 

   for (int i = 0; i < colNum; i++) 
          { 

       double tmp = 0.0; 
       for (int j = 0; j < rowNum; j++) 

                   tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j]; 
              rows_result.block[k * colNum + i] = tmp; 
          } 
       }); 
       yieldreturn rows_result; 
} 

 
2) The ThreadPool version of Matrix Multiplication 
while (localRows.MoveNext()) 
{ 
   blockWrapper rows_result = new blockWrapper(size, rowNum, colNum); 
   ManualResetEvent signal = new ManualResetEvent(false); 
   for (int n = 0; n < size; n++) 
   { 

int k = n; 
ThreadPool.QueueUserWorkItem(_ => 

       { 
   for (int i = 0; i < colNum; i++) 

          { 
       double tmp = 0; 
       for (int j = 0; j < rowNum; j++) 

                        tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j]; 
              rows_result.block[k * colNum + i] = tmp; 
          } 

   if (Interlocked.Decrement(ref iters) == 0) 
              signal.Set(); 
       }); 
   } 
   signal.WaitOne(); 
   yieldreturn rows_result; 
} 

 
3) The PLINQ version of Matrix Multiplication 
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while (localRows.MoveNext()) 
{ 
   double[][] rowsInput = initRows(localRows.Current.block); 
   IEnumerable<double[]> results = rowsInput.AsEnumerable().AsParallel().AsOrdered() 
              .Select(x => oneRowMultiplyColumns(x, columns)); 
   blockWrapper outputResult = new blockWrapper(size,rowNum,colNum, results); 
   yieldreturn outputResult; 
} 

Appendix I 
PageRank implementation code sample. 

GroupBy() and Join()  
for (int i = 0; i < iterations; i++) 
{ 
 newRanks = pages.Join(ranks, page => page.source, rank => rank.source, 
  //join page objects with rank objects where they have the same source url  
 (page, rank) => page.links.Select(dest =>newRank(dest, rank.value / (double)page.numLinks))) 
  //calculate the partial rank value for each destination url to which the source url points  
.SelectMany(list => list).GroupBy(rank => rank.source) 
  //group partial rank objects by their url id across a cluster 
.Select(group =>newRank(group.Key, group.Select(rank => rank.value).Sum() * 0.85 + 0.15 / 
(double)_numUrls)); 
 //aggregate partial rank values for each url for final rank values 
 ranks = newRanks; 
} 

HashPartition() and ApplyPerPartition() 
for (int i = 0; i < _iteration; i++)             
{ 
 newRanks = pages.Join(ranks, page => page.source, rank =>rank.source, 
 // join page objects with rank objects where they have the same source url 
 (page, rank) => page.links.Select(dest =>new Vertex(dest, rank.value / (double)page.numLinks))) 
 //calculate the partial rank value for each destination url which the source url points to 
 .SelectMany(list => list).HashPartition(record => record.source) 
 //hash partition partial rank objects so that the objects with same url are sent to same node 
 .ApplyPerPartition(list => list.GroupBy(record => record.source)) 
 //group partial rank objects by their url id on local machine 
 .Select(group =>newRank(group.Key, group.Select(rank =>rank.value).Sum() * 0.85 + 0.15 / 
(double)_numUrls)); 
 //aggregate grouped partial rank values for each url for final rank values 
 ranks = newRanks.Execute();            
} 

Hierarchical Aggregation with User Defined Aggregation function 
DistributedQuery<amPartition> webgraphPartitions = 
Directory.GetFiles(inputDir).AsDistributed().Select(fileName => 
buildWebGraphPartition(fileName)); 
//construct partial rank values using adjacency matrixfiles stored in inputDir 
for (int i = 0; i < numIteration; i++) 
{ 
        DistributedQuery<double[]> partialRVTs = null; 
        partialRVTs = webgraphPartitions.ApplyPerPartition(subWebGraphPartitions => 
        calculateMultipleWebgraphPartitionsWithPLINQ(subWebGraphPartitions, rankValueTable, 
numUrls));    
 //calculate partial rank values with user-defined function 
        rankValueTable = mergeResults(partialRVTs);  
 //merge calculated parital rank values with user-defined aggregation function 
        //synchronized step to merge all partial rank value tables 
} 

GroupAndAggregate 
for (int i = 0; i < numIteration; i++)             
{ 
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,(page, rank) => 
// join page objects with rank objects where they have the same source url 
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page.links.Select(targetPage =>newRank(targetPage, rank.value / (double)page.numLinks))) 
// calculate the partial rank value for each destination url which the source url points to 
.SelectMany(list => list).GroupAndAggregate(partialRank =>partialRank.source, g => 
newRank(g.Key, g.Sum(x => x.value)*0.85+0.15 / (double)numUrls)); 
group calculated partial rank values by the url id and aggregate the grouped partial ranks values  
ranks = newRanks;             
} 

Two steps of ApplyPerPartition 
for (int i = 0; i < numIteration; i++)             
{ 
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source, 
// join page objects with rank objects where they have the same source url 
(page, rank) => page.links.Select(dest =>newVertex(dest, rank.value / (double)page.numLinks))) 
.SelectMany(list => list) 
// calculate the partial rank value for each destination url which the source url points to 
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.source)) 
.Select(subGroup =>new Tuple<int, double>(subGroup.Key,subGroup.Select(rank =>rank.value).Sum())) 
// group the partial rank objects by their url id on local machine  
.HashPartition(e => e.Item1) 
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.Item1)) 
// group the partial rank objects by their url id over the cluster 
.Select(subGroup =>newRank(subGroup.Key, subGroup.Select(e => e.Item2).Sum() * 0.85 + 0.15 / 
(double)_numUrls)); 
// aggregate the grouped partial rank value for each url for final rank values 
ranks = newRanks.Execute();            
} 
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