
1

DRYADLINQ CTP EVALUATION

Performance of Key Features and Interfaces in
DryadLINQ CTP

Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu

November 15, 2011

SALSA Group, Pervasive Technology Institute, Indiana University
http://salsahpc.indiana.edu/

http://salsahpc.indiana.edu/

2

Table of Contents
1 Introduction .. 4

2 Overview .. 6

2.1 Task Scheduling ... 7

2.2 Parallel Programming Model .. 7

2.3 Distributed Grouped Aggregation ... 7

3 Pleasingly Parallel Application in DryadLINQ CTP .. 8

3.1 Introduction .. 8

3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh .. 8

3.1.2 DryadLINQ Implementation ... 9

3.2 Task Granularity Study .. 9

3.2.1 Workload Balancing ... 10

3.2.2 Scalability Study ... 12

3.3 Scheduling on an Inhomogeneous Cluster ... 13

3.3.1 Workload Balance with Different Partition Granularities .. 14

3.4 Evaluation and Findings .. 15

4 Hybrid Parallel Programming Model .. 16

4.1 Introduction .. 16

4.2 Parallel Matrix-Matrix Multiplication Algorithms ... 16

4.2.1 Row-Partition Algorithm .. 16

4.2.2 Row-Column Partition Algorithm ... 17

4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm .. 17

4.3 Performance Analysis in Hybrid Parallel Model .. 19

4.3.1 Performance on Multi Core ... 19

4.3.2 Performance on a Cluster .. 20

4.3.3 Performance of a Hybrid Model with Dryad and PLINQ .. 21

4.3.4 Performance Comparison of Three Hybrid Parallel Models .. 21

4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster .. 23

3

4.5 Evaluation and Findings .. 25

5 Distributed Grouped Aggregation .. 25

5.1 Introduction .. 25

5.2 Distributed Grouped Aggregation Approaches .. 25

5.2.1 Hash Partition... 26

5.2.2 Hierarchical Aggregation .. 27

5.3.3 Aggregation Tree .. 27

5.3 Performance Analysis.. 28

5.3.1 Performance in Different Aggregation Strategies.. 28

5.3.2 Comparison With Other Implementations .. 30

5.3.3 Chaining Tasks Within BSP Jobs ... 30

5.4 Evaluation and Findings .. 31

6 Programming Issues in DryadLINQ CTP ... 31

6.1 Class Path in Working Directory .. 31

6.2 Late Evaluation in Chained Queries within One Job ... 31

6.3 Serialization for a Two Dimensional Array .. 32

6.4 Fault tolerant in DryadLINQ CTP ... 32

6.4.1 Failures and Fault Tolerance ... 32

7 Classroom Experience with Dryad ... 34

7.1 Dryad in Eduction .. 34

7.2 Concurrent Dryad jobs .. 35

Acknowledgements ... 36

References .. 36

Appendix ... 37

4

1 Introduction
We are in the data deluge when progress in science requires the processing of large amounts of scientific data
[1]. One important approach is to apply new languages and runtimes to new data-intensive applications [2] to
enable the preservation, movement, access, and analysis of massive data sets. Systems such as MapReduce
and Hadoop allow developers to write applications for distributing tasks to remote environments containing
the desired data, which instantiates the paradigm of “moving the computation to data”. The MapReduce
programming model has been applied to a wide range of applications and attracts enthusiasm from
distributed computing communities due to its ease of use and efficiency in processing large-scale distributed
data.

MapReduce, however, has its limitations. For instance, its rigid and flat data-processing paradigm does not
directly support relational operations that have multiple related inhomogeneous data sets. This causes
difficulties and inefficiency when using MapReduce to simulate relational operations such as join, which is
very common in database systems. For example, the classic implementation of PageRank is notably inefficient
since the simulation of joins with MapReduce causes a lot of network traffic during the computation. Further
optimization of PageRank requires developers to have sophisticated knowledge of web graph structure.

Dryad [3] is a general-purpose runtime for supporting data-intensive applications on a Windows platform. It
models programs as a directed, acyclic graph of the data flowing between operations and addresses some
limitations existing in MapReduce. DryadLINQ [4] is the declarative programming interface for Dryad, and it
automatically translates LINQ programs written by the .NET language into distributed computations
executing on top of the Dryad system. For some applications, writing DryadLINQ distributed programs is as
simple as writing sequential programs. DryadLINQ and Dryad runtime optimize job execution planning. This
optimization is handled by the runtime and is transparent to users. For example, when implementing
PageRank with the GroupAndAggregate() operator, DryadLINQ can dynamically constructs a partial
aggregation tree based on data locality to reduce network traffic over cluster nodes.

The overall performance issues of data parallel programing models like MapReduce are well understood.
Dryad simplifies usage by leaving the details of scheduling, communication, and data access to underlying
runtime systems that hide the low-level complexity of parallel programming. However, such an abstraction
may come at a price in terms of performance when applied to a wide range of applications that port to multi-
core and heterogeneous systems. We have conducted extensive experiments on DryadLINQ/Dryad CTP and
its usage in a recent publication [5] to identify the classes of applications that fit well. It is based on our
evaluation of DryadLINQ, which was published as a Community Technology Preview (CTP) in December 2010.

Let us explain how this new report fits with earlier results.This report extends significantly the results
presented in our earlier DryadLINQ evaluation [2] and we have not repeated discussions given earlier. The
first report in particular focused on comparing Dryad with Hadoop and MPI and covered multiple pleasing
parallel (essentially independent) applications. Further it covered K-means clustering as an example of an
important iterative algorithm and used this to motivate the Iterative MapReduce runtime. The original report
had an analysis of applications suitable for MapReduce and its iterative extensions which is still accurate but
not repeated here.

In this report we use a newer version of DryadLINQ (CTP) programming models and can be applied to
three different types of classic scientific applications including pleasingly parallel, hybrid distributed
and shared memory, and distributed grouped aggregation. Our focus was on novel features of this run
time and particularly challenging applications. We cover a single pleasing parallel application consisting of
Map and Reduce steps, the Smith Waterman Gotoh (SWG) [6] algorithm for dissimilarity computation in
bioinformatics. In this case, we study in detail load balancing with inhomogeneity in cluster and application

5

characteristics. We implement SWG with ApplyPerPartition operator, which can be considered as a
distributed version of “Apply” in SQL. We cover the use of hybrid programming to combine inter-node
distributed memory with intra-node shared memory parallelization, using multicore threading and
DryadLINQ for the case of matrix multiplication which was covered briefly in the first report. We port
multicore technologies including PLINQ and TPL into a user-defined function within DryadLINQ queries. Our
new discussion is much more comprehensive than the first paper and has an extensive discussion of the
performance of different parallel algorithms on different programming models for threads. The other major
application we look at is Pagerank which like matrix multiplication has an iterative algorithm. Here we
compare several of the sophisticated LINQ models for data access. PageRank is a communication-intensive
application that requires joining two input data streams and performing the grouped aggregation over partial
results. We implemented the PageRank application with three distributed grouped aggregation approaches.
The new paper has comments on usability and use of DryadLINQ in education, which were not in the original
report [2].

Now we finish the introduction with the highlights of following sections as Table 1.

Table 1. Highlights of the DryadLINQ CTP Evaluation
 Key Features Applications Selected Findings

1 Task scheduling Smith-Waterman
Gotoh (SWG)

Compared with Dryad (2009,11), DryadLINQ CTP
provides better task scheduling strategy, data model,
and interface to solve the workload balance issue for
pleasingly parallel applications. (Section 3.4)

2 Hybrid Parallel
programming models Matrix multiplication

Porting multi-core technologies like PLINQ and TPL
to DryadLINQ tasks can increase system utilization.
(Section 4.5)

3 Distributed grouped
aggregation PageRank

The choice of distributed grouped aggregation with
DryadLINQ CTP has a substantial impact on the
performance of data aggregation/reduction
applications. (Section 5.4)

Additional observations:

1) We found a bug in AsDistributed() interface, namely a mismatch between partitions and
compute nodes in the default setting of Dryad CTP. (section 3.2.1)

2) DryadLINQ supports iterative tasks by chaining the execution of LINQ queries. However, for BSP-style
applications that need to explicitly evaluate LINQ query in each synchronization step,
DryadLINQ requires resubmission of a Dryad job to the HPC scheduler at each synchronization
step, which limits its overall performance. (section 5.3.3)

3) When Dryad tasks invoke a third party executable binary file as process, Dryad process is not aware
of the class path that the Dryad vertex maintains, and it throws out an error : “required file
cannot be found.” (section 6.1)

4) When applying late evaluation in chained queries, DryadLINQ only evaluates the iterations
parameter at the last iteration and uses that value for further execution of all the queries
including previous iterations. This imposes an ambiguous variable scope issue. (section 6.2)

5) When using a two dimensional array, objects in matrix multiplication, and PageRank applications,
Dryad program will throw out an error message when a Dryad task tries to access
unserializedilized two dimensional array objects on remote compute nodes. (section 6.3)

6) DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a
single point failure that has no fault tolerance support from Dryad. (section 6.4.1)

6

7) It is critical to run multiple Dryad jobs simultaneously on a HPC cluster. However, this feature is
not mentioned in either Programming or Guides. Every Dryad job requires an extra node acting as a
job manager causing low CPU usage on this particular node. (section 7.2)

The report is organized as follows. Section 1 introduces key features of DryadLINQ CTP. Section 2 studies the
task scheduling in DryadLINQ CTP with a SWG application. Section 3 explores hybrid parallel programing
models with Matrix Multiplication. Section 4 introduces distributed grouped aggregation exemplified by
PageRank. Section 5 investigates the programming issues of DryadLINQ CTP. Section 6 illustrates how
Dryad/DryadLINQ has been used in class projects for computer science graduate students of Professor Qiu’s
courses at Indiana University.

Note that in the report: “Dryad/DryadLINQ CTP” refers to the Dryad/DryadLINQ community technical
preview released in 2010.12; “Dryad/DryadLINQ (2009.11)” refers to the version released in 2009.11.11;
“Dryad/DryadLINQ” refers to all Dryad/DryadLINQ versions. Experiments are conducted on three Windows
HPC clusters: STORM, TEMPEST, and MADRID [Appendix A, B, and C]. STORM consists of heterogeneous
multicore nodes while TEMPEST and MADRID are homogeneous production systems of 768 and 128 cores
each.

2 Overview
Dryad, DryadLINQ, and the Distributed Storage Catalog (DSC) [7] are sets of technologies that support the
processing of data-intensive applications on a Windows HPC cluster. The software stack of these technologies
is shown in Figure 1. Dryad is a general-purpose distributed runtime designed to execute data-intensive
applications on a Windows cluster. A Dryad job is represented as a directed acyclic graph (DAG), which is
called a “Dryad” graph. The Dryad graph consists of vertices and channels. A vertex in the graph represents an
independent instance of the data processing for a particular stage. Graph edges represent channels
transferring data between vertices. A DSC component works with the NTFS to provide the data management
functionalities, such as file replication and load balancing for Dryad and DryadLINQ.

DryadLINQ is a library for translating .NET written Language-Integrated Query (LINQ) programs into
distributed computations executing on top of the Dryad system. The DryadLINQ API takes advantage of
standard query operators and adds query extensions specific to Dryad. Developers can apply LINQ operators
such as join and groupby to a set of .NET objects. Specifically, DryadLINQ supports a unified data and
programming model in the representation and processing of data. DryadLINQ data objects are collections
of.NET type objects, which can be split into partitions and distributed across the computer nodes of a cluster.
These DryadLINQ data objects are represented as either DistributedQuery <T> or DistributedData <T>
objects and can be used by LINQ operators. In summary, DryadLINQ greatly simplifies the development of
data parallel applications.

Figure1: Software Stack for DryadLINQ CTP

7

2.1 Task Scheduling
Task scheduling for DryadLINQ CTP is a key feature investigated in this report. A DryadLINQ provider
translates LINQ queries into distributed computation and automatically dispatches tasks to a cluster. This
process is handled by the runtime and is transparent to users. The task scheduling component also
automatically handles fault tolerance and workload balance issues.

We have studied DryadLINQ CTP’s load balance issue and investigated its relationship to task granularity
along with its impact on performance. In batch job scheduling systems, like PBS, programmers manually
group/ungroup (or partition/combine) input and output data for the purpose of controlling task granularity.
Hadoop provides a user interface to define task granularity as the size of input records in HDFS. Similarly,
Dryad (2009,11) allows developers to create a partition file. DryadLINQ CTP has a simplified data model and
flexible interface in which AsDistributed, Select, and ApplyPerPartition operators (which can be considered as
the distributed versions of Select and Apply in SQL) enable developers to tune the granularity of data
partitions and run pleasingly parallel applications like sequential ones.

2.2 Parallel Programming Model
Dryad is designed to process coarse granularity tasks for large-scale distributed data and schedules tasks to
computing resources over compute nodes rather than cores. To achieve high utilization of the multi-core
resources of a HPC cluster for DryadLINQ jobs, one approach is to explore inner-node parallelism using
PLINQ since DryadLINQ can automatically transfer a PLINQ query to parallel computations. Another
approach is to apply multi-core technologies in .NET, such as Task Parallel Library (TPL) or thread pool for
user-defined functions within the lambda expression of DryadLINQ query.

In a hybrid parallel programming model, Dryad handles inter-node parallelism while PLINQ, TPL, and thread
pool technologies leverage inner-node parallelism on multi-cores. Dryad/DryadLINQ has been successful in
executing as a hybrid model and applied to data clustering applications, such as General Topographical
Mapping (GTM) interpolation and Multi-Dimensional Scaling (MDS) interpolation [8]. Most of the pleasingly
parallel applications can be implemented in a straightforward fashion using this model with increased overall
utilization of cluster resources. However, more compelling machine learning or data analysis applications
usually have either squared or quadratic computation complexity, which has high requirements of system
design for scalability.

2.3 Distributed Grouped Aggregation
The groupby operator in parallel databases is often followed by aggregate functions, which groups input
records into partitions by keys and merges the records for each group by certain attribute values; this
computing pattern is called Distributed Grouped Aggregation. Example applications include sales data
summarizations, log data analysis, and social network influence analysis.

MapReduce and SQL for databases are two programming models to perform distributed grouped aggregation.
MapReduce has been applied to the process of a wide range of flat distributed data, but is inefficient in
processing relational operations, which have multiple inhomogeneous input data stream such as join.
However, a full-featured SQL database has extra overhead and constraints that prevent it from processing
large-scale input data.

DryadLINQ is between SQL and MapReduce and addresses some of their limitations. DryadLINQ provides
SQL-like queries for processing efficient aggregation for homogenous input data streams and multiple
inhomogeneous input streams and does not have sufficient overhead since SQL eliminates some of the
functionalities of a database (transactions, data lockers, etc.). Further, DryadLINQ can build an aggregation
tree (some databases also provides this kind of optimization) to decrease data transformation in the hash

8

partitioning stage. In this report, we investigated the usability and performance of three programming
models using Dyrad/DryadLINQ as illustrated in Figure 2: a) the pleasingly parallel mode, b) the hybrid
programming model, and d) distributed grouped aggregation.

Figure 2: Three Programming Models for Scientific Applications in DryadLINQ CTP

3 Pleasingly Parallel Application in DryadLINQ CTP

3.1 Introduction
A pleasingly parallel application can be partitioned into parallel tasks since there is neither essential data
dependency nor communication between those parallel tasks. Task scheduling and granularity have a great
impact on performance and are evaluated in Dryad CTP using the Pairwise Alu Sequence Alignment
application. Furthermore, many pleasingly parallel applications share a similar execution pattern. The
observation and conclusion drawn from this work applies to a large class of similar applications.

3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh
The Alu clustering problem [9] is one of the most challenging problems for sequencing clustering because
Alus represent the largest repeat families in human genome. There are approximately 1 million copies of Alu
sequences in the human genome in which most insertions can be found in other primates and only a small
fraction (~ 7000) are human-specific. This indicates that the classification of Alu repeats can be deduced
solely from the 1 million human Alu elements. Notably, Alu clustering can be viewed as a classic case study for
the capacity of computational infrastructure because it is not only of great intrinsic biological interests, but
also a problem of a scale that will remain as the upper limit of many other clustering problems in
bioinformatics for the next few years, e.g. the automated protein family classification for a few millions
proteins predicted from large meta-genomics projects.

An open source version, NAligner [10], of the Smith Waterman-Gotoh algorithm (SWG) [11] was used to
ensure low start-up effects by each task process for large numbers (more than a few hundred) at a time. The
needed memory bandwidth is reduced by storing half of the data items for symmetric features.

9

Figure 3: Task Decomposition (left) and the Dryad Vertex Hierarchy (right) of the DryadLINQ Implementation
of SWG Pairwise Distance Calculation Application

3.1.2 DryadLINQ Implementation
The SWG program runs in two steps. In the map stage input data is divided into partitions being assigned to
vertices. A vertex calls external pair-wise distance calculations on each block and runs independently. In the
reduce stage, this vertex starts a few merge threads to collect output from the map stage, merges them into
one file, and then sends meta data of the file back to the head node. To clarify our algorithm, let’s consider an
example of 10,000 gene sequences that produces a pairwise distance matrix of size 10,000 × 10,000. The
computation is partitioned into 8 × 8 blocks as a resultant matrix D, where each sub-block contains 1250 ×
1250 sequences. Due to the symmetry feature of pairwise distance matrix D(i, j) and D(j, i), only 36 blocks
need to be calculated as shown in the upper triangle matrix of Figure 3 (left).

Dryad divides the total workload of 36 blocks into 6 partitions, each of which contains 6 blocks. After the
partitions are distributed to available compute nodes an ApplyPerPartition() operation is executed on each
vertex. A user-defined PerformAlignments() function processes multiple SWG blocks within a partition, where
concurrent threads utilize multicore internal to a compute node. Each thread launches an operating system
process to calculate a SWG block in order. Finally, a function calculates the transpose matrix corresponding to
the lower triangle matrix and writes both matrices into two output files on local file system. The main
program performs another ApplyPerPartition() operation to combine the metadata of files as shown in Figure
3. The pseudo code for our implementation is provided as below:

Map stage:
DistributedQuery<OutputInfo> outputInfo = swgInputBlocks.AsDistributedFromPartitions()
ApplyPerPartition(blocks => PerformAlignments(blocks, swgInputFile, swgSharePath,
outputFilePrefix, outFileExtension, seqAlignerExecName, swgExecName));

Reduce stage:
var finalOutputFiles = swgOutputFiles.AsDistributed().ApplyPerPartition(files =>
PerformMerge(files, dimOfBlockMatrix, sharepath, mergedFilePrefix, outFileExtension));

3.2 Task Granularity Study
This section examines the performance of different task granularities. As mentioned above, SWG is a
pleasingly parallel application for dividing the input data into partitions. The task granularity was tuned by
saving all SWG blocks into two-dimensional arrays and converting to distributed partitions using
AsDistributedFromPartitions operator.

10

Figure 4: Execution Time for Various SWG Partitions
Executed on Tempest Cluster, with input of 10,000 sequences, and a 128×128 block matrix

The experiment was performed on a 768 core (32 nodes with 24 cores per node) Windows cluster called
“TEMPEST” [Appendix B]. The input data of SWG has a length of 8192, which requires about 67 million
distance calculations. The sub-block matrix size is set to 128 × 128 while we used
AsDistributedFromPartitions() to divide input data into various partition sets {31, 62, 93, 124, 248, 372, 496,
620, 744, 992}. The mean sequence length of input data is 200 with a standard deviation as 10, which gives
essentially homogeneous distribution ensuring a good load balance. On a cluster of 32 compute nodes, Dryad
job manager takes one node for its dedicated usage and leaves 31 nodes for actual computations. As shown in
Figure 4 and Table 1 (in Appendix F), smaller number of partitions delivered better performance. Further, the
best overall performance is achieved at the least scheduling cost derived from 31 partitions for this
experiment. The job turnaround time increases as the number of partition increases for two reasons: 1)
scheduling cost increases as the number of tasks increases, 2) partition granularity becomes finer with
increasing number of partitions. When the number of partitions reaches over 372, each partition has less than
24 blocks making resources underutilized on a compute node of 24 cores. For pleasingly parallel applications,
partition granularity and data homogeneity are major factors that impact performance.

3.2.1 Workload Balancing
The SWG application handled input data by gathering sequences into block partitions. Although gene
sequences were evenly partitioned in sub-blocks, the length of each sequence may vary. This causes
imbalanced workload distribution among computing tasks. Dryad (2009.11) used a static scheduling strategy
binding its task execution plan with partition files, which gave poor performance for skewed/imbalanced
input data [2]. We studied the scheduling issue in Dryad CTP using the same application.

Figure 5: SWG Execution Time for Skewed and Figure 6: SWG Execution Time for Skewed Data with

1000

1500

2000

2500

3000

3500

31 62 93 124 248 372 496 620 744 992
Ex

ec
tu

tio
n

Ti
m

e
(s

ec
on

d)

Number of Partitions

2000

2500

3000

3500

4000

4500

5000

1 50 100 150 200 250

Ex
ec

tu
io

n
Ti

m
e

(S
ec

on
ds

)

Standard Deviation

Skewed
Randomized

2000

3000

4000

5000

6000

7000

8000

9000

31 62 124 186 248

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Partitions

Std. Dev. = 50
Std. Dev. = 100
Std. Dev. = 250

11

Randomized Distributed Input Data Different Partition Amount

A set of SWG jobs was executed on the TEMPEST cluster with input size of 10000 sequences. The data were
randomly generated with an average sequence length of 400, corresponding to a normal distribution with
varied standard deviations. We constructed the SWG sub-blocks by randomly selecting sequences from the
above data set in contrast to selecting sorted sequences based on their length. Figure 5 has line charts labeled
with error bars, where randomized data shows better performance than skewed input data. Similar results
were presented in the Dryad (2009.11) report as well. Since sequences were sorted by length for a skewed
sample, computational workload in each sub-block was hugely variable, especially when the standard
deviation was large. On the other hand, randomized sequences gave a balanced distribution of workload that
contributed to better overall performance. Dryad CTP provides an interface for developers to tune partition
granularity. The load imbalance issue can be addressed by splitting the skewed distributed input data into
many finer partitions.
Figure 6 shows the relationship between number of partitions and performance. In particular, a parabolic
chart suggests an initial overhead that drops as partitions and CPU utilization increase. Fine-grained
partitions enable load balancing as SWG jobs start with sending small tasks to idle resources. Note that 124
partitions gives best performance in this experiment. With increasing partitions, the scheduling cost
outweighs the gains of workload balancing. Figures 5 and 6 imply that the optimal number of partitions also
depends on heterogeneity of input data.

DryadLINQ CTP divides input data into partitions by default with twice the number of compute nodes. It does
not achieve good load balance for some applications, such as inhomogeneous SWG data. We have shown how
to address the load imbalance issue. Firstly, the input data can be randomized and partitioned to increase
load balance. However, it depends on the nature of randomness and good performance is not guaranteed.
Secondly, a fine-grained partition can help tuning load balance among compute nodes. There’s a trade off in
drastically increasing partitions, as the scheduling cost becomes a dominant factor of performance.

We found a bug in AsDistributed() interface, namely a mismatch between partitions and compute
nodes in the default setting of Dryad CTP. Dryad provides two APIs to handle data partition, AsDistributed()
and AsDistributedFromPartitions(). In our test on 8 nodes (1 head node and 7 compute nodes), Dryad chose
one dedicated compute node for the graph manager which left only 6 nodes for computation. Since Dryad
assigns each compute node 2 partitions, AsDistributed() divides data into 14 partitions disregarding the fact
that the node for the graph manager does no computation. This causes 2 dangling partitions. In the following
experiment, input data of 2000 sequences were partitioned into sub blocks of size 128×128 and 8 computing
nodes were used from the TEMPEST cluster.

Figure 7: Mismatch between Partitions and Compute Nodes in Default Settings of Dryad CTP

0

100

200

300

400

500

CN25 CN27 CN28 CN29 CN30 CN31

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Node Name (Left)
CN25 CN27 CN28 CN29 CN30 CN31

Node Name (Right)

12

Figure 7 shows the execution time for 12 customized partitions on the left and the default partitions by
AsDistributed() on the right. It is observed that input data are divided into 14 partitions over 6 compute nodes.
The 2 dangling partitions colored in green slow down the whole calculation by almost 30%.

In summary, Dryad and Hadoop control task granularity by partitioning input data. DryadLINQ CTP has a
default partition number twice that of the compute nodes. Hadoop partitions input data into chunks, each of
which has a default size of 64MB. Hadoop implements a high-throughput model for dynamic scheduling and is
insensitive to load imbalance issues. Dryad and Hadoop provide an interface allowing developers to tune
partition and chunk granularity, with Dryad providing a simplified data model and interface on the .NET
platform.

3.2.2 Scalability Study
Scalability is another key feature for parallel runtimes. The DryadLINQ CTP scalability test includes two sets
of experiments conducted on the TEMPEST Cluster of 768 cores. A comparison of parallel efficiency for
DryadLINQ CTP and DryadLINQ 2009 are discussed below.

The first experiment has an input size between 5,000 and 15,000 sequences with an average length of 2,500.
The sub-block matrix size is 128 × 128 and there are 31 partitions, which is the optimal value found in
previous experiments. Figure 8 shows performance results, where the red line represents execution time on
31 compute nodes, the green line represents execution time on a single compute node, and the blue line is
parallel efficiency defined as the following:

Parallel Efficiency =
Execution Time on One Node

Execution Time on Multinodes × Number of Nodes
 (Eq. 1)

Parallel efficiency is above 90% for most cases. An input size of 5000 sequences over a 32-node cluster shows
a sign of underutilization for a slightly low start. When input data increases from 5000 to 15000, parallel
efficiency jumps from 81.23% to 96.65%, as scheduling cost becomes less critical to the overall execution
time as the input size increases.

Figure 8: Performances and Parallel Efficiency on TEMPEST

The SWG jobs were also performed on 8 nodes of the MADRID cluster [Appendix D] using Dryad 2009 and 8
nodes on the TEMPEST cluster [Appendix C] using Dryad CTP. The input data is identical for both tests, which
are 5,000 to 15,000 gene sequences partitioned into 128×128 sub blocks. Parallel efficiency (Eq. 1) is used as
a metric for comparison. By computing 225 million pairwise distances both Dryad CTP and Dryad 2009
showed high utilization of CPUs with parallel efficiency of over 95% as displayed in Figure 9.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

20

40

60

80

100

120

140

5000 7500 10000 12500 15000

Pa
ra

lle
l E

ffi
ci

en
cy

Ex
ec

ut
io

n
Ti

m
e

(T
ho

us
an

d
Se

co
nd

)

Input Size

31
Nodes

13

Figure 9: Parallel Efficiency on Dryad CTP and Dryad 2009

In the second set of experiments we calculated speed up to 10,000 input sequences (31 partitions with
128×128 sub block size) but varied the number of compute nodes in input sequence numbers 2, 4, 8, 16, and
31 (due to the cluster limitation of 31 compute nodes). The SWG application scaled up well on a 768-core HPC
cluster. These results are presented in Table 4 of Appendix F. The execution time ranges between 40 minutes
to 2 days. The speedup, as defined in equation 2, is almost linear with respect to the number of compute
nodes as shown in Figure 10, which suggests that pleasingly parallel applications perform well on DryadLINQ
CTP.

Speedup =
Execution time on one node

Execution Time on multiple nodes
 (Eq. 2)

Figure 10: Speedup for SWG on Tempest with Varied Number of Compute Nodes

3.3 Scheduling on an Inhomogeneous Cluster
Adding a new hardware or integrating distributed hardware resources is common but may cause
inhomogeneous issues for scheduling. In Dryad 2009, the default execution plan is based on an assumption of
a homogeneous computing environment. This motived us to investigate performance issues on an
inhomogeneous cluster for Dryad CTP. Task scheduling with attention to load balance is studied in this
section.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

5000 7500 10000 12500 15000
Input Size

Dryad2009
DryadCTP

1

2

4

8

16

32

1 2 4 8 16 31

Sp
ee

d
up

Number of Computer Nodes

Speed up

14

3.3.1 Workload Balance with Different Partition Granularities
An optimal job-scheduling plan needs awareness of resource requirements and CPU time for each task, which
is not practical in many applications. One approach is to split the input data set into small pieces and keep
dispatching them to available resources.

This experiment was performed on STORM [Appendix A], an inhomogeneous HPC cluster. A set of SWG jobs is
scheduled with different partition sizes, where input data contain 2048 sequences being divided into 64×64
sub blocks. These sub blocks are divided by AsDistributedFromPartitions() to form a set of partitions : {6, 12,
24, 48, 96, 192}. A smaller number of partitions implies a large number of sub blocks in each partition. As
Dryad job manager keeps dispatching data to available nodes, the node with higher computation capability
can process more SWG blocks. The distribution of partitions over compute nodes is shown in Table 5 of
Appendix F; when the partition granularity is large, the distribution of SWG blocks among the nodes is
proportional to the computational capacity of the nodes.

Dryad CTP assigns a vertex to a compute node and each vertex contains one or more partitions. To study the
relationship between partition granularity and load balance, the computation and scheduling time on 6
compute nodes for 3 sample SWG jobs were recorded separately. Results are presented in Figure 11 with
compute nodes along the X-axis (e.g. cn01 ~ cn06) and elapsed time from the start of computation along the
Y-axis. A red bar marks the time frame of a particular compute node doing computation, and a blue bar refers
to the time frame for scheduling a new partition. Here are a few observations:

• When the number of partitions is small, workload is not well balanced, leading to significant
variation in computation time on each node. Note that faster nodes stay idle and wait for slower ones
to finish, as shown on the left graph in Figure 11.

• When the number of partitions is large, workload is distributed in proportion to the capacity of
compute nodes. Too many small partitions cause high scheduling costs, thus slowing down overall
computation, as illustrated on the right graph in Figure 11.

• Load balance favors a small number of partitions while scheduling costs favor a large number of jobs.
An optimal performance is observed in the center graph in Figure 11.

Figure 11: Scheduling Time vs. Computation Time of the SWG Application on Dryad CTP

The optimal partition is a moderate number with respect to both load balance and scheduling cost. As shown
in Figure 12 (middle), the optimal number of partitions is 24. Note that 24 partitions performed better than
the default partition number, 14.

0

200

400

600

800

1000

1200

cn01 cn02 cn03 cn04 cn05 cn06

El
ap

se
d

Ti
m

e
(in

 se
co

nd
)

cn01 cn02 cn03 cn04 cn05 cn06 cn01 cn02 cn03 cn04 cn05 cn06

6 Partitions 24 Partitions 192 Partitions

15

Figure 12: SWG Job Turnaround Time for Different Partition Granularities

Figure 13 shows that overall CPU usage drops as the number of partitions increases, due to increasing
scheduling and data movement, which do not demand high CPU usage.

Figure 13: Cluster CPU Usage for Different SWG Partition Numbers

3.4 Evaluation and Findings
SWG is a pleasingly parallel application used to evaluate the performance of Dryad CTP.

a) The scalability test shows that if input data is homogeneous and the workload is balanced, then
the optimal setting with low scheduling costs has the same number of partitions as compute
nodes.

b) In the partition granularity test where data is inhomogeneous and causes an imbalanced workload, the
default Dryad CTP setting of 62 partitions gave better results due to a finer balance between workload
distribution and scheduling.

c) A comparison between Dryad CTP and Dryad 2009 shows that Dryad CTP has achieved over 95%
parallel efficiency in scale-up tests. Compared to the 2009 version Dryad CTP also presents an improved
load balance with a dynamic scheduling function.

d) Our evaluation demonstrates that load balance, task granularity, and data homogeneity are
major factors that impact the performance of pleasingly parallel applications using Dryad.

e) Further, we found a bug involving mismatched partitions vs. compute nodes in the default setting of
Dryad CTP.

600

700

800

900

1000

1100

1200

1300

6 12 24 48 96 192
Ex

ec
ut

io
n

Ti
m

e
(S

ec
on

d)

Number of Partitions

16

4 Hybrid Parallel Programming Model

4.1 Introduction
Matrix-matrix multiplication is a fundamental kernel [12], which can achieve high efficiency in both theory
and practice. The computation can be partitioned into subtasks, which makes it an ideal candidate application
in hybrid parallel programming studies using Dryad/DryadLINQ. However, there is not one optimal solution
that fits all scenarios. Different trade-offs of partition granularity largely correspond to computation and
communication costs and are affected by memory/cache usage and network bandwidth/latency. We
investigated the performance of three matrix multiplication algorithms and three multi-core technologies
in .NET, which run on both single and multiple cores of HPC clusters. The three matrix multiplication
decomposition approaches are: 1) row decomposition, 2) row/column decomposition, and 3) block/block
decomposition (Fox-Hey algorithm [13][14]). The multi-core technologies include: PLINQ, TPL [15], and
Thread Pool, which correspond to three multithreaded programming models. In a hybrid parallel
programming model, Dryad invokes inter-node parallelism while TPL, Threading, and PLINQ support inner-
node parallelism. It is imperative to utilize new parallel programming paradigms that may potentially scale
up to thousands or millions of multicore processors.

Matrix multiplication is defined as A * B = C (Eq. 3) where Matrix A and Matrix B are input matrices and
Matrix C is the result matrix. The p in Equation 3 represents the number of columns in Matrix A and number
of rows in Matrix B. Matrices in the experiments are square matrices with double precision elements.

∑
=

=
p

k
kjikij BAC

1
 (Eq. 3)

4.2 Parallel Matrix-Matrix Multiplication Algorithms

4.2.1 Row-Partition Algorithm
The row-partition algorithm divides Matrix A into row blocks and distributes them onto compute nodes.
Matrix B is copied to every compute node. Each Dryad task multiplies row blocks of Matrix A by all of matrix
B and the main program aggregates a complete matrix C. The data flow of the Row Partition Algorithm is
shown in Figure 14.

Figure 14: Row-Partition Algorithm

17

The blocks of Matrices A and B are first stored using DistributedQuery and DistributedData objects defined in
DryadLINQ. Then an ApplyPerPartition operator invokes a user-defined function rowsXcolumnsMultiCoreTech
to perform subtask computations. Compute nodes read file names for each input block and get the matrix
remotely. As the row partition algorithm has a balanced distribution of workload over compute nodes, an
ideal partition number equals the number of compute nodes. The pseudo code is in Appendix G, 1):

4.2.2 Row-Column Partition Algorithm
The Row-Column partition algorithm [16] divides Matrix A by rows and Matrix B by columns. The column
blocks of Matrix B are distributed across the cluster in advance. The whole computation is divided into
several iterations. In each iteration one row block of Matrix A is broadcast to all compute nodes and
multiplies by the one-column blocks of Matrix B. The output of each compute node is sent to the main
program to form a row block of Matrix C. The main program then collects the results of multiple iterations to
generate the complete output of Matrix C.

Figure 15: Row-Column Partition Algorithm

The column blocks of Matrix B are distributed by the AsDistributed() operator across the compute nodes. In
each iteration an ApplyPerPartition operator invokes a user-defined function aPartitionMultiplybPartition to
multiply one column block of Matrix B by one row block of Matrix A. The pseudo code is provided in Appendix
G.2):

4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm
The block-block decomposition in the Fox-Hey algorithm divides Matrix A and Matrix B into squared sub-
blocks. These sub-blocks are dispatched to a virtual topology on a grid with the same dimensions for the
simplest case. For example, to run the algorithm on a 2X2 processes mesh, Matrices A and B are split along
both rows and columns to construct a matching 2X2 block data mesh. In each step of computation, every
process holds a current block of Matrix A by broadcasting and a current block of Matrix B by shifting upwards
and then computing a block of Matrix C. The algorithm is as follows:

18

For k = 0: s-1

1) The process in row I with A(I, (i+k)mod s) broadcasts it to all other processes I the same row i.
2) Processes in row I receive A(I, (i+k) mod s) in local array T.
3) For I =0;s-1 and j=0:s-1 in parallel

 C(I,j) = c(I,j)+T*B(I,j)
End

4) Upward circular shift each column of B by 1:
 B(I,j)  B((i+1)mod s, j)

End

Figure 16 shows the case where Matrices A and B are both divided into a block mesh of 2x2.
Correspondingly, 4 compute nodes are divided into a grid labeled C(0,0), C(0,1), C(1,0), C(1,1). In step
0, Matrix A broadcasts the active blocks in column 0 to compute nodes in the same row of the virtual
grid of compute nodes (or processes), i.e. A(0,0) to C(0,0), C(0,1) and A(1,0) to C(1,0), C(1,1). The
blocks in Matrix B will be scattered onto each compute node. The algorithm computes Cij = AB on each
compute node. In Step 1, Matrix A will broadcast the blocks in column 1 to the compute nodes, i.e.
A(0,1) to C(0,0), C(0,1) and A(1,1) to C(1,0), C(1,1). Matrix B distributes each block to its target
compute node and performs an upward circular shift along each column, i.e. B(0,0) to C(1,0), B(0,1) to
C(1,1), B(1,0) to C(0,0), B(1,1) to C(0,1). Then a summation operation on the results of each iteration
forms the final result in Cij += AB.

Figure 16: Different Stages of the Fox-Hey Algorithm in 2x2 Block Decompositions

Figure 17 illustrates a one-to-one mapping scenario for Dryad implementation where each compute node has
one sub-block of Matrix A and one sub-block of Matrix B. In each step, the sub-blocks of Matrix A and Matrix B
will be distributed onto compute nodes. Namely, the Fox-Hey algorithm achieves much better memory usage
compared to the Row Partition algorithm which requires one row block of Matrix A and all of Matrix B for
multiplication. In our future work, the Fox-Hey algorithm will be implemented in a general and powerful
mapping schema to maximize cache usage, where the relationship between sub-blocks and the virtual grid of
compute nodes will be many to one.

19

Figure 17: Structure of the 2D Decomposition Algorithm on Iteration I with n+1 Nodes

The pseudo code of basic Fox-Hey algorithm is given in Appendix G.3.1).
The Fox-Hey algorithm was originally implemented with MPI [17], which maintained intermediate status and
data in processes during parallel computation. However, Dryad uses a data-flow runtime that does not
support intermediate status of tasks during computation. To work around this, new values are assigned to
DistributedQuery<T> objects by an updating operation as shown in the following pseudo code in Appendix
G.3.2).

The sequential code of Matrix Multiplication is given in Appendix G. In addition, we provide three
implementations to illustrate three multithreaded programming models.

4.3 Performance Analysis in Hybrid Parallel Model

4.3.1 Performance on Multi Core
The baseline test of Matrix Multiplication was executed on the TEMPEST cluster [Appendix B] with the three
multithreaded programming models: Task Parallel Library (TPL), Thread Pool and PLINQ. The comparison of
these 3 technologies is shown in Table 2 below:

Table 2. Comparison of three Multicore Technologies
Technology Name API in use Optimization Description

Thread Pool ThreadPool.Queu
eUserWorkItem User define

A common setting to use a group of threads. It is
already been optimized in .NET 4, however, to
further optimize the usage requires more user
programming.

TPL Parallel.For Moderate
Optimized

Parallel.For is a light weighted API to use maximum
number of cores on the target machine using in a
given application. It is more optimized than thread
pool inside .NET 4. However, the experienced user
can still optimize the usage of Parallel.For.

20

PLINQ AsParallel() Highly
Optimized

Parallel LINQ (PLINQ) is a parallel implementation
of LINQ to Objects. It is highly optimized and can be
used on any LINQ queries which make it suitable for
DryadLINQ program. It doesn’t require any
optimization from user and it is most light weighted
to user compare with thread and TPL.

Figure 18 shows performance results on a 24-core compute node with matrix size between 2,400 and 19,200
dimensions. The speed-up charts were calculated using Equation 3. T(P) standards for job turnaround time
for Matrix Multiplication using multi-core technologies, where P is the number of cores across the cluster. T(S)
refers to the job turnaround time of sequential Matrix Multiplication on one core.

Speed-Up = T(S)/T(P) (Eq. 4)

Figure 18: Speedup Charts for TPL, Thread Pool, and PLINQ Implementations of

Matrix Multiplication on One Node
The parallel efficiency remains around 17 to 18 for TPL and Thread Pool. However, TPL outperforms Thread
Pool as data size increases. PLINQ consistently achieves the best speed-up with values larger than 22, making
parallel efficiency over 90% on 24 cores. We conclude that the main reason is due to PLINQ’s memory/cache
usage being optimized for large data size on multicore systems by observing metrics of context switches and
system calls of the heat map from the HPC cluster manager.

4.3.2 Performance on a Cluster
We evaluated 3 different matrix multiplication algorithms implemented with Dryad CTP on 16 compute
nodes of the TEMPEST cluster using one core per node. The data size of input matrix ranges from 2400 x
2400 to 19200 x 19200. A variance of the speed-up definition is given in Equation 5 where T(P) stands for job
turnaround time on P compute nodes. T(S’) is an approximation of job turnaround time for the sequential
matrix multiplication program where a fitting function [Appendix E] is used to calculate CPU time for large
input data.

Speed-up = T(S’)/T(P) (Eq. 5)

As shown in Figure 19, the performance of the Fox-Hey algorithm is similar to that of the Row Partition
algorithm, increasing quickly as the input data size increases. The Row-Column Partition Algorithm performs
the worst since it is an iterative algorithm that needs explicit evaluation of DryadLINQ queries in each
iteration to collect an intermediate result. In particular, it invokes resubmission of a Dryad task to the HPC job
manager during each iteration.

0

5

10

15

20

25

2400 4800 7200 9600 12000 14400 16800 19200

Sp
ee

d-
up

Scale of Square Matrix

TPL Thread PLINQ

21

4.3.3 Performance of a Hybrid Model with Dryad and PLINQ
Porting multi-core technologies into Dryad tasks can potentially increase the overall performance due to
extra processor cores. The hybrid model invokes Dryad for inter-node tasks and spawns concurrent threads
through PLINQ. Three matrix multiplication algorithms were executed on 16 compute nodes of the TEMPEST
cluster [Appendix B]. Compared to Figure 19, the speed-up charts of Figure 20 show significant performance
gains by utilizing multicore technologies like PLINQ, where a factor of 9 is ultimately achieved as data size
increases.

Figure 19: Speedup of Three Matrix Multiplication
Algorithms Using Dryad on a Cluster

Figure 20: Speedup of Three Matrix Multiplication
Algorithms Using a Hybrid Model with Dryad and

PLINQ

Since the computational complexity in matrix multiplication is O(n3), which increases faster than that of the
growth of communication cost O(n2), Figures 19 and 20 show that the speed-up increases with the size of
input data. The Row Partition algorithm delivers the best performance for a hybrid model, as shown in Figure
20. Compared to the other 2 iterative algorithms, job submission occurs only once with the Row Partition
algorithm. The Row-Column partition algorithm and the Fox-Hey algorithm both have 4 iterations and finer
task granularity, leading to extra scheduling and communication overhead.

4.3.4 Performance Comparison of Three Hybrid Parallel Models
We studied three matrix multiplication algorithms in hybrid parallel programming models with Task Parallel
Library (TPL), Thread, and PLINQ on multicore processors. Figure 21 shows the performance results of a
19200 by 19200 matrix on 16 nodes of the TEMPEST cluster with 24 cores on each node. In all 3 matrix
multiplication algorithms PLINQ achieves better speed-up than TPL and Thread, which supports earlier
performance results shown in Figure 18.

Figure 21: The Speedup Chart of TPL, Thread, and PLINQ for Three Matrix Multiplication Algorithms

0

5

10

15

20

2400 4800 7200 9600 12000 14400 16800 19200

RowPartition
RowColumnPartition
Fox-Hey

Dimension of Matrix

Sp
ee

d-
up

0

20

40

60

80

100

120

140

160

180

2400 4800 7200 9600 12000 14400 16800 19200

RowPartition
RowColumnPartition
Fox-Hey

Dimension of Matrix
Sp

ee
d-

up

0
20
40
60
80

100
120
140
160
180

RowPartition RowColumnPartition Fox-Hey

Sp
ee

d-
up

Different Input Model

TPL
Thread

22

When a problem size is fixed, parallel efficiency drops when multicore parallelism is used. This can be
illustrated by the Row Partition algorithm running with or without PLINQ on 16 nodes (each has 24 cores),
where the parallel efficiency is 17.3/16 = 108.1% when using one core per node (Figure 19), but becomes
156.2/384 = 40.68% over 384 cores (Figure 21). This is because the task granularity of Dryad on each core
becomes finer and the node execution time decreases, while the overhead of scheduling, communication, and
disk I/O remains the same or even increases.

Figure 22: The CPU Usage and Network Activity on One Compute Node for Multiple Algorithms

Figure 22 shows charts of CPU utilization and network activity on one node of the TEMPEST cluster for three
19200 x 19200 matrix multiplication jobs using PLINQ. It is observed that the Row Partition Algorithm with
PLINQ can reach a CPU utilization rate of 100% for a longer time than the other two approaches. Further, its
aggregated network overhead is less than that of the other two approaches as well. Thus, the Row Partition
algorithm with PLINQ has the shortest job turnaround time. The Fox-Hey algorithm delivers good
performance in the sequential implementation due to its cache and paging advantage with finer task
granularity.

Figure 23 shows the CPU and network utilization of the Fox-Hey algorithm on square matrices of 19,200 and
28,800 dimensions. Not only do they CPU and Network utilization increase with size of input data, but the
rate of increase in CPU utilization is faster than that of network utilization, which follows the ratio of
computation complexity O(n^3) vs. communication complexity O(n^2). The overall speed-up will continue to
increase as we increase the data size. It suggests that when problem size grows large, the For-Hey algorithm
will achieve high performance on low latency runtime environments.

23

Figure 23: The CPU Usage and Network Activity for the Fox-Hey Algorithm-DSC with Different Data Sizes

4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster
We designed a timing model for the Fox-Hey algorithm to conduct detailed evaluation. Tcomm/Tflops
represents the communication overhead per double point operation using Dryad on the TEMPEST cluster.
Assume the M*M matrix multiplication jobs are partitioned to run on a mesh of √𝑁 ∗ √𝑁 compute nodes. The
size of sub-blocks in each node is m*m, where 𝑚 = 𝑀/√𝑁. The “broadcast-multiply-roll” cycle of the
algorithm, as shown in Figure 16, is repeated √𝑁 times.

For each such cycle in our initial implementation it takes √𝑁 − 1 steps to broadcast subblocks of matrix A to
the other √𝑁 − 1 nodes in the same row of mesh processors, as the network topology of TEMPEST is simply a
star rather than a mesh. In each step the overhead of transferring data between two processors includes: 1)
the startup time (latency 𝑇𝑙𝑎𝑡), 2) the network time 𝑇𝑐𝑜𝑚𝑚 to transfer m*m data, and 3) the disk IO time 𝑇𝑖𝑜for
writing data onto the local disk and reloading data from disk to memory. The extra disk IO overhead is
common in cloud runtimes, such as Hadoop [18]. In Dryad, the data transfer usually goes through a file pipe
over NTFS. Therefore, the time for broadcasting a sub-block is:

�√N − 1� ∗ (𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚)).

Note that in an optimized implementation of pipelining it is possible to remove factor �√N − 1� of broadcast
time.

Since the process to “roll” sub-blocks of Matrix B can be parallelized to complete within one step, the
overhead is:

0

50

100

150

200

19200 28800

Sp
ee

d
up

Input Size

Fox-Hey Algorithm

24

𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚).

The actual time required to compute the sub-matrix product (include the multiplication and addition) is:

 2*𝑚3 ∗ 𝑇𝑓𝑙𝑜𝑝𝑠.

Therefore, the total computation time of the Fox-Hey matrix multiplication is defined as the following:

𝑇 = √𝑁 ∗ �√𝑁 ∗ �𝑇𝑙𝑎𝑡 + 𝑚2 ∗ (𝑇𝑖𝑜 + 𝑇𝑐𝑜𝑚𝑚)� + 2 ∗ 𝑚3 ∗ 𝑇𝑓𝑙𝑜𝑝𝑠� . (1)

By substituting 𝑚 with 𝑀
√𝑁

, the equation becomes

𝑇 = 𝑁 ∗ 𝑇𝑙𝑎𝑡 + 𝑀2 ∗ (𝑇𝑖𝑜+𝑇𝑐𝑜𝑚𝑚) + 2 ∗ (𝑀3/𝑁) ∗ 𝑇𝑓𝑙𝑜𝑝𝑠 (2)

The last term in equation (2) is the expected “perfect linear speedup” while the other terms represent
communication overheads. In the following paragraph we investigate 𝑇𝑓𝑙𝑜𝑝𝑠 and 𝑇𝑖𝑜+𝑇𝑐𝑜𝑚𝑚 by fitting
measured performance as a function of matrix size.

Figure 24: Execution Time of Sequential and PLINQ Execution of the Fox-Hey Algorithm

𝑇1𝑛𝑜𝑑𝑒_1𝑐𝑜𝑟𝑒 = 5.3𝑠 + 5.8𝑢𝑠 ∗ 𝑀2 + 35.78 ∗ 10−3𝑢𝑠 ∗ 𝑀3 (3)

𝑇16𝑛𝑜𝑑𝑒𝑠_1𝑐𝑜𝑟𝑒 = 21𝑠 + 3.24𝑢𝑠 ∗ 𝑀2 + 1.33 ∗ 10−3𝑢𝑠 ∗ 𝑀3 (4)

𝑇16𝑛𝑜𝑑𝑒𝑠_24𝑐𝑜𝑟𝑒𝑠 = 61𝑠 + 1.55𝑢𝑠 ∗ 𝑀2 + 4.96 ∗ 10−5𝑢𝑠 ∗ 𝑀3 (5)

The timing equation for the sequential algorithm running on a one-core single node is shown in equation (3).
Figure 24 and equation (4) represent the timing of the Fox-Hey algorithm running with one core per node on
16 nodes. Figure 24 and equation (5) represent the timing of the Fox-Hey/PLINQ algorithm that executes
with 24 cores per node on 16 nodes. Equation (6) is the value of

𝑇𝑓𝑙𝑜𝑝𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

𝑇𝑓𝑙𝑜𝑝𝑠−24 𝑐𝑜𝑟𝑒𝑠
 for large matrices. As 26.8 is

close to 24, i.e. the number of cores per node, it approximately verifies the correctness of the cubic term

coefficient of equation (4) & (5). Equation (7) is the value of
(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)24 𝑐𝑜𝑟𝑒𝑠
 for large matrices. The value

is 2.08, while the ideal value is expected to be 1.0. We have investigated the differences between the ideal
values and the measurements of equations (6) and (7), and find that a dominant issue is the effect of the
cache, which improves performance in the parallel 24-core case and is not included in above formulae. The
constant term in equation (3), (4), and (5) accounts for the cost of initialization of the computation, such as
runtime startup and the allocation of memory for matrices.

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000 25000 30000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
d)

Matrix Size

Seq

PLINQ

25

𝑇𝑓𝑙𝑜𝑝𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

𝑇𝑓𝑙𝑜𝑝𝑠−24 𝑐𝑜𝑟𝑒𝑠
= 1.33∗10^−3

4.96∗10^−5
≈ 26.8 (6)

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒

(𝑇𝑐𝑜𝑚𝑚+𝑇𝑖𝑜)24 𝑐𝑜𝑟𝑒𝑠
= 3.24

1.55
≈ 2.08 (7)

𝑇𝑖𝑜
𝑇𝑐𝑜𝑚𝑚

≈ 5 (8)

Equation (8) represents the value of Tio
Tcomm

 for large submatrix sizes. The value illustrates that though the disk
IO cost has more effect on communication overhead than does network cost, they are of the same order for
large sub-matrix sizes, thus we assign the sum of them as the coefficient of the quadratic term in equation (2).
Besides, one must bear in mind that the so-called communication and IO overhead actually include other
overheads, such as string parsing and index initialization, which are dependent upon how one writes the code.

4.5 Evaluation and Findings
We investigated hybrid parallel programming models with three kernel matrix multiplication applications.

f) We showed how integrating multicore technologies into Dryad tasks can increase the overall
utilization of a cluster.

g) Further, different combinations of multicore technologies and parallel algorithms perform differently
due to task granularity, caching, and paging issues.

h) We also find that the parallel efficiency of jobs decreases dramatically after integrating these multicore
technologies given that the task granularity becomes too small per core. Increasing the scale of input
data can alleviate this issue.

5 Distributed Grouped Aggregation

5.1 Introduction
Distributed Grouped Aggregation is a core primitive operator in many data mining applications, such as sales
data summarizations, log data analysis, and social network influence analysis. We investigated the usability
and performance of a programming interface for a distributed grouped aggregation in DryadLINQ CTP. Three
distributed grouped aggregation approaches were implemented: Hash Partition, Hierarchical Aggregation,
and Aggregation Tree.

PageRank is a well-known web graph ranking algorithm. It calculates the numerical value of a hyperlinked set
of web pages, which reflects the probability of a random surfer accessing those pages. The process of
PageRank can be understood as a Markov Chain that needs recursive calculation to converge. In each
iteration the algorithm calculates a new access probability for each web page based on values calculated in
the previous computation. The iterations will not stop until the values between two subsequent rank vectors
are smaller than a predefined threshold. Our DryadLINQ PageRank implementation uses the ClueWeb09 data
set [22], which contains 50 million web pages.

We used the PageRank application to study the features of input data that affect the performance of
distributed grouped aggregation implementations. In the end, the performance of Dryad distributed grouped
aggregation was compared with four other execution engines: MPI, Hadoop, Haloop [19], and Twister
[20][21].

5.2 Distributed Grouped Aggregation Approaches
Figure 26 shows the workflow of the three distributed grouped aggregation approaches implemented with
DryadLINQ.

26

The Hash Partition approach uses a hash partition operator to redistribute records to compute nodes so that
identical records are stored on the same node and form the group. Then the operator usually aggregates
certain values of the records in each group. The hash partition approach is simple in implementation, but
causes a lot of network traffic when the number of input records becomes very large.

A common way to optimize this approach is to apply partial pre-aggregation, which first aggregates the
records on local compute nodes and then redistributes aggregated partial results across a cluster based on
their keys. The optimized approach is better than a direct hash partition because the number of records
transferring across a cluster is drastically reduced after the local aggregation operation. Further, there are
two ways to implement partial aggregation: hierarchical aggregation and tree aggregation. A hierarchical
aggregation usually consists of two or three synchronized aggregation stages. An aggregation tree is a tree
graph that guides a job manager to perform partial aggregation for many subsets of input records.

Figure 26: Three Distributed Grouped Aggregation Approaches

DryadLINQ can automatically translate a distributed grouped aggregation query into an optimized
aggregation tree based on data locality information. Further, Dryad can adaptively change the structure of the
aggregation tree, which greatly simplifies the programming model and enhances its performance.

5.2.1 Hash Partition
The implementation of PageRank in Appendix H used GroupBy and Join operators in DyradLINQ.

Page objects are used to store the structure of a web graph. Each element Page <url_id, <destination_url_list>>
contains a unique identifier number page.key and a list of identifiers specifying all pages in the web graph
that page links to. We construct the DistributedQuery<Page> pages objects from adjacency matrix files with
function BuildPagesFromAMFile(). The rank object <url_id, rank_value> is a pair containing the identifier
number of a page and its current estimated rank value. In each iteration the program joins the pages with
ranks to calculate the partial rank values. Basically, it combines records from pages and ranks tables using a
common keyword url_id. Then GroupBy() operator redistributes the calculated partial rank values across
cluster nodes and returns the IGrouping objects, DistributedQuery<IGrouping<url_id, rank_value>>, where
each IGroup represents a group of partial rank objects with all destination urls from one source URLs. The

27

grouped partial rank values are summed up as the final rank values and are used as input rank values for the
next iteration [23].In the above implementation, GroupBy() operator can be replaced by HashPartition() and
ApplyPerPartition() as follows[24]:

5.2.2 Hierarchical Aggregation
The PageRank implementation using hash partition would not be efficient when the number of output tuples
is much less than that of input tuples. In this scenario, we implemented PageRank with hierarchical
aggregation, which consists of three synchronized aggregation stages: 1) user-defined Map tasks, 2)
DryadLINQ partitions, and 3) final PageRank values. In stage one, each user-defined Map task calculates the
partial results of some pages that belong to the sub-web graph represented by the adjacency matrix file. The
output of a Map task is a partial rank value table, which is merged into the global rank value table in a later
stage.

Figure 27: Hierarchical Aggregation in DryadLINQ PageRank

5.3.3 Aggregation Tree

The hierarchical aggregation implementation may not perform well in an inhomogeneous computation
environment, which varies in network bandwidth, CPU, and memory capacities. As hierarchical aggregation
has several global synchronization stages, the overall performance was determined by the slowest task. In
this scenario, the aggregation tree approach is a better choice. It can construct a tree graph to guide the
aggregation operations for many subsets of input tuples, which reduces intermediate data transfer. In the
ClueWeb data set, URLs are stored in alphabetical order. Web pages that belonged to the same domain were
likely being saved within one adjacency matrix file. By applying partial grouped aggregation to each
adjacency matrix file in the hash partition stage, intermediate data transfer can be greatly reduced. The
following implementation of PageRank uses the GroupAndAggregate() operator.

The GroupAndAggregate operator supports optimization of the aggregation tree. To analyze partial
aggregation in detail, we simulated GroupAndAggregate with the HashPartition and ApplyPerPartition
operators. There are two steps of ApplyPerPartition: one is to perform pre-partial aggregation on each sub-
web graph; the other is to aggregate the partially aggregated results for global results.

28

5.3 Performance Analysis

5.3.1 Performance in Different Aggregation Strategies
We conducted performance measurements of PageRank with three aggregation approaches: hash partition,
hierarchical aggregation, and tree aggregation. In the experiments, we split the entire ClueWeb09 graph into
1,280 partitions, each of which was processed and saved as an adjacency matrix (AM) file. The characteristics
of input data are described below:

No of AM Files File Size No of Web Pages No of Links Ave Out-degree

1,280 9.7 GB 49.5 million 1.40 billion 29.3

The program ran on 17 compute nodes from the TEMPEST cluster. Figure 28 shows that tree aggregation is
faster than hash partition due to the optimization of partial aggregation. Hierarchical aggregation
outperforms the other two approaches because of coarse task granularity.

Figure 28: Time to Compute PageRank per Iteration by Three Aggregation Approaches

Using Clue-web09 Data on 17 Compute Nodes of TEMPEST

Figure 29 provides CPU utilization and network utilization information of the three aggregation approaches
obtained from the HPC cluster manager. It is apparent that hierarchical aggregation requires much less
network bandwidth than the other two.

Figure 29 CPU (left) and Network Utilization (right) of Different Aggregation Strategies

0

50

100

150

200

250

320 480 640 800 960 1120 1280

Aggregation Tree
Hash Partition
Hierarchical Aggregation

Number of AM files

Se
co

nd
/I

te
ra

tio
n

29

The hierarchical aggregation and aggregation tree approaches work well when the number of output tuples
was much smaller than input tuples. The hash partition worked well when the number of output tuples was
larger than input tuples. To describe how the ratio between input and output tuples affects the performance
of different aggregation approaches, we define the data reduction proportion (DRP).

𝐷𝑅𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠

 (Eq. 6)

Figure 30: Time required for PageRank Jobs for Two
Aggregation Approaches with Different DRP

Figure 31: Time Per Iteration for Two Aggregation
Approaches with Different Numbers of Output Tuples
(from 100,000 to 1,000,000) When the Number of
Input Tuples is 4.3 Billion

Assume M input tuples are evenly distributed among N compute nodes. In a hash partition approach, tuples
with the same key are hashed into one group, which requires M aggregation operations. In a partial
aggregation approach, the average number of input tuples with the same key is about M/N on each node,
which requires M/N aggregation operations on each node and generates N partial aggregated tuples in total.
Further, it needs N more aggregation operations to form the final aggregated tuple. Thus, the total number of
aggregation operations for the M tuples is (M/N)*N+N. The average number of aggregation operations of each
tuple from the two approaches is as follows:

�
𝑂 �𝑀

𝑀
� = 𝑂(1)

𝑂 �𝑀+𝑁
𝑀
� = 𝑂(1 + 𝑁 ∗ 𝐷𝑅𝑃)

 (Eq. 7)

In many applications, DRP is much smaller than the number of compute nodes, which suggests that the
overhead of applying partial aggregation is small compared to the hash partition. Taking the word count
application as an example, documents with millions of words may consist of only several thousand words that
occur frequently. Word count is very suitable for applying partial aggregation. In PageRank, as the web graph
structure obeys Zipf’s law, DRP is higher. Thus, the partial aggregation approach may not deliver good
performance when applied to PageRank [23].

To quantify the impact of DRP on different aggregation approaches, we ran PageRank with web graphs of
different DRP values. As shown in Figure 30, when DRP is smaller than 0.017, the partial aggregation
performs better than hash partition aggregation. When DRP is bigger than 0.017, there is not much difference
between these two aggregation approaches. The results of Figures 30 and 31 indicate the changes in
performance when the input tuples are fixed with varying output tuples.

0

2000

4000

6000

8000

10000

12000

14000

16000

0.068 0.034 0.017 0.0017 8.4E-05

Hash Partition…
Partial Aggregation

Data Reduction Proportion

Ti
m

e
(s

ec
on

ds
)

300

400

500

600

700

800

900

1000

1100

1200

100000 400000 700000 1000000

Hash Partition
Aggregation Tree

number of output tuples

se
co

nd
 p

er
 it

re
at

io
n

30

5.3.2 Comparison With Other Implementations
We implemented a PageRank application with five runtimes: DryadLINQ, Twister, Hadoop, Haloop, and MPI
using ClueWeb data, which is listed in Table 8 of Appendix F. Parallel efficiency T(S)/(P*T(P)) (refer to Eq.
1) is used to compare the performance of five implementations. T(P) stands for job turnaround time of
parallel PageRank, where P represents the number of cores. T(S) is the time of sequential PageRank on one
core.

Figure 32 shows that all parallel efficiency charts are noticeably smaller than 5%. PageRank is a
communication-intensive application, where the computation complexity of PageRank is O(N2) while its
communication complexity is O(N2). As the communication overhead per float point calculation of PageRank
is high, the bottlenecks of PageRank applications are network, memory, and CPU. Therefore, a major
challenge is to reduce synchronization cost among tasks.

MPI, Twister, and Haloop outperform Dryad and Hadoop implementations for the following reasons: 1) MPI,
Twister, and Haloop cache static data in memory between iterations; and 2) Haloop uses chained tasks
without the need to restart task daemons for each iteration. Dryad is faster than Hadoop, but is slower than
MPI and Twister. Dryad can chain DryadLINQ queries together and thereby save in communication cost, but it
has higher scheduling overhead for each Dryad vertex. Hadoop has the lowest performance in writing
intermediate data to HDFS between interactions.

Figure 32: Parallel Efficiency of Five PageRank Implementations

5.3.3 Chaining Tasks Within BSP Jobs
Dryad can chain the execution of multiple DryadLINQ queries together using late evaluation technology. The
chained DryadLINQ queries will not get evaluated until the program explicitly accesses queries. Figure 33
shows that after chaining DryadLINQ queries, performance increases by 30% for 1280 adjacency matrix files
of PageRank over 10 iterations.

0%

1%

2%

3%

4%

5%

6%

MPI

Twister

Haloop

Dryad

Hadoop

Pa
ra

lle
l e

ffi
ci

en
cy

PageRank with 5 different runtimes

0

500

1000

1500

2000

2500

3000

GroupAndAggregate TwoApplyPerPartition ApplyPerPartition GroupBy

not chained…
chained execution

Ti
m

e
(s

ec
on

ds
)

31

Figure 33: Performance Difference Between Chained and Unchained DryadLINQ Queries

Although DryadLINQ chains the execution of queries, it does not support the execution of jobs that consist of
Bulk Synchronous Parallel [26] (BSP) style tasks very well. For example, in DryadLINQ hierarchical
aggregation PageRank, the program has to be resubmitted to a Dryad job on the HPC scheduler for every
synchronization step that calculates the global PageRank value table.

5.4 Evaluation and Findings
We investigated three distributed grouped aggregation approaches with DryadLINQ CTP. Programmability
and performance of these approaches were studied using the PageRank application. The results show
correlations with different ratio of data reduction proportion (DRP).

i) Partial pre-aggregation requires more memory than hash partition.
j) Hash partition has larger communication overhead than partial pre-aggregation.
k) Detailed implementation of partial pre-aggregation such as accumulator fullhash and iterator

fullhash/fullsort, has different requirements for memory and network bandwidth.

6 Programming Issues in DryadLINQ CTP

6.1 Class Path in Working Directory
We found the following issue when running DryadLINQ CTP SWG jobs: Dryad can automatically transfer files
required by a user program to remote working directories on each compute node. In order to save storage
space in compute nodes, Dryad does not copy all DLL and shared libraries to working directory for each task.
Instead, it stores only one copy of shared libraries in the job working directory shared by all Dryad tasks.
When running jobs, the Dryad vertex can add the job working directory into the class path of DryadLINQ
program. So all Dryad tasks can refer to DLLs and shared libraries without a problem. However, when Dryad
tasks invoke a third party executable binary file as process, Dryad process is not aware of the class
path that the Dryad vertex maintains, and it throws out an error : “required file cannot be found.”

6.2 Late Evaluation in Chained Queries within One Job
DryadLINQ can chain the execution of multiple queries by applying late evaluation technology. This
mechanism allows further optimization of the execution plan of DryadLINQ queries. As shown in the
following code, DryadLINQ queries within different iterations are chained together and will not get evaluated
until the Execute() operator is invoked explicitly. The integer parameter “iterations” is supposed to increase
by one at each iteration. However, when applying late evaluation, DryadLINQ only evaluates the
iterations parameter at the last iteration (which is nProcess -1 in this case) and uses that value for
further execution of all the queries including previous iterations. This imposes an ambiguous variable
scope issue, which should be mentioned in the DryadLINQ programming guide.

for (int iterations = 0; iterations < nProcesses; iterations++)
{
 inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock =>
acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci], iterations,nProcesses)));

 inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) =>
x.taskMultiplyBBlock(y.bMatrix));

 inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses));
}
inputACquery.Execute();

32

6.3 Serialization for a Two Dimensional Array
DryadLINQ and Dryad Vertex can automatically serialize and unserialize the standard .NET objects. However,
when using a two dimensional array, objects in matrix multiplication, and PageRank applications, the
program will throw out an error message when a Dryad task tries to access unserialized two
dimensional array objects on remote compute nodes. We investigated the serialization code being
automatically generated by DryadLINQ and found it may not be able to unserialize two dimensional array
objects correctly. The reason for this needs further investigation.

private void SerializeArray_2(Transport transport, double[][]value)
{
 if ((value == null)){
 transport.Write(((byte)(0)));
 return;
 }
 transport.Write(((byte)(1)));
 int count = value.Length;
 transport.Write(count);
 for (int i=0; (i<count);i=(i+1)){
 SerializeArray_4(transport, value[i]);
 }
}

6.4 Fault tolerant in DryadLINQ CTP

6.4.1 Failures and Fault Tolerance

DryadLINQ supports fault tolerance as it is a major advantage of new parallel frameworks like MapReduce
over the traditional parallel runtimes like MPI. We examine Dryad fault tolerance with respects to following
types of failure: process level failure, operating system (OS) level failure, node level failure, and multiple node
failure as shown in Figure 34. These tests were executed on 7 nodes of TEMPEST Cluster [Appendix B] using
SWG application. The input data consists of 2,000 gene sequences that were partitioned into 12 blocks with
64×64 for each sub-block.

Figure 34: SWG Execution Timeline for Different Failure Types

In Figure 34, X-axis labels compute node (e.g. cn25 ~ cn31) and Y-axis is the elapsed time from the start of
computation. A failed note is marked by “x”. A red bar marks the time frame of a particular compute node doing
computation, a blue bar refers to the time frame for scheduling a new partition, and a green bar means this is a
partition shifted to this node due to the failure.

0

100

200

300

400

500

600

700

CN25 CN28 CN30

El
ap

se
d

TI
m

e
(s

ec
on

ds
)

Process Level Failure

CN25 CN28 CN30

 OS level failure

CN25 CN28 CN30

 Node Level Failure

CN25 CN28 CN30

Multi Node Failure

x x x

× × ×

× Failure Point

33

Dryad usually handles a failure by re-scheduling the failed vertex job to other available compute nodes. Once
a failed node is excluded from the list of available nodes, it will not be used again during this job execution,
even after the failure is fixed. There are two special node failures − HPC head node and Dryad Job Manager
node. Although both are a single point failure, the former doesn’t not have impact current job’s completion
while the latter currently has no fault tolerance support from Dryad. A summary of the fault tolerance
features for Dryad is listed in Table 3.

Table 3: Fault Tolerance Features of Dryad

 Failure types Failure Description Fault Tolerance Strategy

1 Process Process HPCDryadVertex.exe
failed
Operating system crashed

The job manager will re-schedule the
failed vertex job on this compute node to
other available compute nodes.
No new vertexes assignment to this
compute node after it is brought back
online or the operating system resumes.

2 Compute Node Compute node offline or
crashed

The job manager will have the same fault
tolerance strategy as the Process failure.

3 HPC Head Node HPC head node offline or
crashed

Once the job is submitted, the status of
head node makes no impact on current
running Dryad job.

4 Dryad Job Manger
Node

Dryad job manager node
offline or
HPCLinqToDryadJM.exe
crashed

The Dryad job manager is a single point
of failure. Currently there is no fault
tolerance support for this scenario.

5 Multi-Node Multiple compute node offline
or crashed

Dryad can handle multi nodes failure by
assigning all the failed vertices to other
available compute nodes. Figure 1
(rightmost) shows the recovery of 3 out of
6 compute nodes failure

6.4.2 Partition Granularity and Fault Tolerance

Unlike static scheduling used in Dryad 2009, Dryad CTP divides data into a predefined number of partitions,
which is twice the number of compute nodes by default. This number is customizable by users. Dryad CTP
dispatches the partitions across compute nodes dynamically. We’ve shown in our earlier work [2] that
partition granularity has huge impact on load re-balancing in fault tolerance of Dryad. To evaluate the
performance of recovery from a failure, we used the same SWG experiment but selected a set of partitions
from {6, 12, 24, 48, 96} instead of the default partition. CN-28 was taken offline after 50% workload has been
processed to simulate a node failure. The result in Figure 35 (left) suggests that when the partition
granularity is large, the shifted workload (colored in green) was re-scheduled to a limited number of node
leaving most nodes idle. When the partition granularity is small, the distribution of shifted workload is well
balanced. However, fine partition granularity may cause extra scheduling cost that slows down overall
computation as in Figure 35 (right).

34

Figure 35: SWG Execution Timeline with Varied Partition Numbers with One Node Failure

The optimal number of partitions is a moderate number with respect to both load balance and scheduling
cost. Figure 36 shows that the optimal number of partitions is 24, in between the minimal number of 6 and
the maximum number of 96

Figure 36: Average SWG Turnaround Time Different Partition Granularities

6.4.3 Evaluation and Findings

DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a
single point failure that has no fault tolerance support from Dryad. The recovery speed of a failure is in
favor of small granularity of partition.

7 Classroom Experience with Dryad

7.1 Dryad in Eduction
Dryad/DryadLINQ has applicability in a wide range of applications in both industry and academia, which
include: image processing in WorldWideTeleScope, data mining in Xbox, High Energy Physics (HEP), SWG,
CAP3, and PhyloD in bioinformatics applications. An increasing number of graduate students in the computer

0

100

200

300

400

500

600

700

CN25 CN27 CN28 Cn29 CN30 CN31

El
ap

se
d

Ti
m

e
(s

ec
on

d)

Compute Nodes

6 Partitions

×

CN25 CN27 CN28 CN29 CN30 CN31

Compute Nodes

24 Partitions

CN25 CN27 CN28 CN29 CN30 CN31

Compute Nodes

96 Partitions
x Fail Point

387 393 406
430

500

701

586

476 493
521

0

100

200

300

400

500

600

700

800

6 12 24 48 96

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Number of Partitions

Without Failure

1 Node Failure

×

×

35

science department, especially masters students, have shown interest and a willingness to learn
Dryad/DryadLINQ in classes taught by Professor Judy Qiu at Indiana University.

In the CSCI B649 Cloud Computing for Data Intensive Science course, 8 Master’s students selected topics
related to Dryad/DryadLINQ as a term-long project. The following are three projects completed by the end of
the Fall 2010 semester:

1) Efficiency and Programmability of matrix multiplication with DryadLINQ;
2) The Study of Implementing PhyloD application with DryadLINQ;
3) Large Scale PageRank with DryadLINQ

Projects 2 and 3 were accepted as posters at the CloudCom2010 conference hosted in Indianapolis, IN.

In the 2011 Spring semester, two students in CSCI B534 Distributed Systems studied Dryad/DryadLINQ as a
term-long project and contributed small, but solid results for this report.

7.2 Concurrent Dryad jobs
These two courses provide an excellent educational setting for us to study how students would utilize a
cluster to understand the theories and applications of large-scale computing:

1. Ordinary classes contain 30-40 students, which can form 10 – 15 groups;
2. Student groups do experiments in a simulation environment where each group runs jobs on 1 to 8

compute nodes;
3. Students may not submit jobs until the due date is approaching. In another words, when a deadline is

forthcoming, there are many jobs in the queue waiting to be executed while at other times the cluster
may be left idle.

Based on the above observations, it is critical to run multiple Dryad jobs simultaneously on a HPC
cluster, especially in an educational setting. In the Dryad CTP, we managed to allow each job to reside in a
different node group as shown in Figure 37. In this way, a middle-sized cluster with 32 compute nodes can
sustain up to 16 concurrent jobs. However, this feature is not mentioned in either Programming or
Guides.

Figure 37: Concurrent Job Execution in the Dryad CTP Version

Although concurrent jobs are enabled, the overall resource utilization of Dryad is not perfect. Figure 38
shows the CPU usage on each node while the jobs execution is displayed in Figure 37. Dryad jobs are assigned
to compute node STORM-CN01 through STORM-CN06. Each compute node group contains 2 compute nodes,
where only one of the nodes does actual computation. The reason is that every Dryad job requires an extra
node acting as a job manager. CPU usage of this particular node is low and seldom exceeds 3%. In a
cluster of 8 nodes, the overall usage of three concurrent jobs is only about 37%.

36

Figure 38: CPU Usage for Concurrent Job Execution

Acknowledgements
This work is partially funded by Microsoft. We want to thank John Naab and Ryan Hartman for system
support of the STORM, TEMPEST and MADRID HPC clusters, which were critical for our experiments. Second,
we thank Thilina Gunarathne and Stephen Wu for their generosity in sharing the SWG application and data
for our task scheduling analysis. We would also like to thank Ratul Bhawal and Pradnya Kakodkar, two
Master’s students who enrolled in Professor Qiu’s B534 course in Spring 2011 for their contributions to this
report.

References
[1] G. Bell, T. Hey, and A. Szalay, "Beyond the data deluge," Science, vol. 323, no. 5919, pp. 1297-1298, 2009
[2] Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan, Seung-Hee

Bae, Hui Li. Applicability of DryadLINQ to Scientific Applications, Technical Report. SALSA Group, Indiana University.
October 16, 2009.

[3] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly. (2007). Dryad: distributed data-parallel
programs from sequential building blocks. SIGOPS Oper. Syst. Rev. 41(3): 59-72.

[4] Yu, Y., M. Isard, Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., J., Currey. (2008). DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language. Symposium on Operating System Design
and Implementation (OSDI). San Diego, CA.

[5] Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu and Geoffrey Fox, Design Patterns for Scientific Applications in DryadLINQ
CTP, to appear in Proceedings of The Second International Workshop on Data Intensive Computing in the Clouds
(DataCloud-2) 2011, The International Conference for High Performance Computing, Networking, Storage and
Analysis (SC11), Seattle, WA, November 12-18, 2011

[6] Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular Biology 162: 705-
708.

[7] DryadLINQ and DSC Programmers Guilde. Microsoft Research. 2011
[8] Seung-Hee Bae, Jong Youl Choi, Judy Qiu, Geoffrey C. Fox,. (2010). Dimension reduction and visualization of large

high-dimensional data via interpolation. Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. Chicago, Illinois, ACM: 203-214.

[9] Batzer MA and Deininger PL (2002). Alu repeats and human genomic diversity. Nature Reviews Genetics 3(5): 370-
379.

[10] JAligner. Retrieved December, 2009, from http://jaligner.sourceforge.net.
[11] Smith, T. F. and M. S. Waterman (1981). Identification of common molecular subsequences. Journal of Molecular

Biology 147(1): 195-197.
[12] Johnsson, S. L., T. Harris, K. K. Mathur. 1989, Matrix Multiplication on the connection machine. Proceedings of the

1989 ACM/IEEE conference on Supercomputing. Reno, Nevada, United States, ACM.
[13] Geoffrey Fox, Tony Hey and Steve Otto, Matrix algorithms on a hypercube I: Matrix multiplication, parallel computing,

pp. 17-31, 1987.
[14] Fox, G. C., What Have We Learnt from Using Real Parallel Machines to Solve Real Problems. Third Conference on

Hypercube Concurrent Computers and Applications. G. C. Fox, ACM Press. 2: 897-955. 1988.
[15] Daan Leijen and Judd Hall (2007, October). Parallel Performance: Optimize Managed Code For Multi-Core Machinesl.

Retrieved November 26, 2010, from http://msdn.microsoft.com/en-us/magazine/cc163340.aspx.

37

[16] Jaliya Ekanayake (2010). Architecture and Performance of Runtime Environments for Data Intensive Scalable
Computing. School of Informatics and Computing. Bloomington, Indiana University.

[17] Argonne National Laboratory. MPI Message Passing Interface. Retrieved November 27, 2010, from http://www-
unix.mcs.anl.gov/mpi

[18] Apache Hadoop. Retrieved November 27, 2010, from http://hadoop.apache.org/.
[19] Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst,. (2010). HaLoop: Efficient Iterative Data Processing on

Large Clusters. The 36th International Conference on Very Large Data Bases. Singapore, VLDB Endowment. 3.
[20] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, G.Fox. Twister: A Runtime for iterative MapReduce.

Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010. Chicago, Illinois, ACM.

[21] Ekanayake, J., S. Pallickara, Shrideep, Fox, Geoffrey. MapReduce for Data Intensive Scientific Analyses. Fourth IEEE
International Conference on eScience, IEEE Press: 277-284. 2008.

[22] ClueWeb Data: http://boston.lti.cs.cmu.edu/Data/clueweb09/
[23] PageRank wiki: http://en.wikipedia.org/wiki/PageRank
[24] Y. Yu, M. Isard, D.Fetterly, M. Budiu, U.Erlingsson, P.K. Gunda, J.Currey, F.McSherry, and K. Achan. Technical Report

MSR-TR-2008-74, Microsoft.
[25] Yu, Y., P. K. Gunda, M. Isard. (2009). Distributed aggregation for data-parallel computing: interfaces and

implementations. Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. Big Sky,
Montana, USA, ACM: 247-260.

[26] BSP, Bulk Synchronous Parallel http://en.wikipedia.org/wiki/Bulk_Synchronous_Parallel

Appendix

Appendix A
STORM Cluster
8-node inhomogeneous HPC R2 cluster
 STORM STORM-

CN01
STORM-
CN02

STORM-
CN03

STORM-
CN04

STORM-
CN05

STORM-
CN06

STORM-
CN07

CPU AMD 2356 AMD 2356 AMD 2356 AMD 2356 AMD 8356 AMD 8356 Intel
E7450

AMD 8435

Cores 8 8 8 8 16 16 24 24
Memory 16G 16G 16G 16G 16G 16G 48G 32G
Mem/Core 2G 2G 2G 2G 1G 1G 2G 1.33G
NIC
(Enterprise
)

N/a N/a N/a N/a N/a N/a N/a N/a

NIC
(Private)

BCM5708
C

BCM5708
C

BCM5708
C

BCM5708
C

BCM5708
C

BCM5708
C

BCM5708
C

BCM5708
C

Appendix B
TEMPEST Cluster
33-node homogeneous HPC R2 cluster
 TEMPEST TEMPEST-CNXX

CPU Intel E7450 Intel E7450

Cores 24 24

Memory 24.0GB 50.0 GB

Mem/Core 1 GB 2 GB

NIC (Enterprise) HP NC 360T n/a

http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Bulk_Synchronous_Parallel

38

NIC (Private) HP NC373i HP NC373i

NIC (Application) Mellanox IPolB Mellanox IPoIB

Appendix C
MADRID Cluster
9-node homogeneous HPC cluster
 MADRID-HEADNODE MADRID-10X

CPU AMD Opteron 2356 2.29GHz AMD Opteron 8356 2.30GHz

Cores 8 16

Memory 8GB 16GB

Memory/Core 1GB 1GB

NIC BCM5708C BCM5708C

Appendix D
Binomial fitting function for sequential SWG jobs

𝑆𝑒𝑞(𝑥) = 0.0201𝑥2 − 0.1828𝑥 + 4.6609
𝑅2 = 1

Appendix E
Trinomial fitting chart for sequential matrix multiplication jobs

y = 0.0201x2 - 0.1828x + 4.6609
R² = 1

0

500

1000

1500

2000

0 50 100 150 200 250 300 350

Ex
ec

ut
io

n
Ti

m
e

Input Sequence Number

39

Appendix F
Tables mentioned in the report.

Table 1: Execution Time for Various SWG Partitions on Tempest Cluster

Partitio
n

Number
31 62 93 124 248 372 496 620 744 992

Test 1 1324.54 1345.41 1369.01 1379.01 1761.09 1564.79 1866.14 2280.37 2677.57 3578.50

Test 2 1317.45 1356.68 1386.09 1364.43 1735.46 1588.92 1843.70 2286.76 2736.07 3552.58

Test 3 1322.01 1348.89 1368.74 1384.87 1730.47 1568.59 1857.00 2258.25 2709.61 3568.21

Average
1321.3

3
1350.3

3
1374.6

1
1376.1

0
1742.3

4
1574.1

0
1855.6

1
2275.1

3
2707.7

5
3566.4

3

Table 2: Execution Time for Skewed and Randomized Data

Std. Dev. 1 50 100 150 200 250

Skewed 2582 3076 3198 3396 3878 4488

Randomized 2582 2489 2458 2413 2498 2622

Table 3: Average Execution Time of Tempest

No. of Nodes
Input length

5000 7500 10000 12500 15000

1 13854.71 31169.03 55734.36 89500.57 131857.4

32 550.255 1096.925 1927.436 3010.681 4400.221

Parallel 81.22% 91.66% 93.28% 95.90% 96.66%

0

5000

10000

15000

20000

25000

30000

35000

4800 6000 7200 8400 9600

Ex
ec

ut
io

n
Ti

m
e

trinomial fitting function

40

Efficiency

Table 4: Execution Time and Speed-up for SWG on Tempest with Varied Size of Compute Nodes

Num. of Nodes 1 2 4 8 16 31

Average Execution Time 55734.36 27979.78 14068.49 7099.70 3598.99 1927.44

Relative Speed-up 1 1.99 3.96 7.85 15.49 28.92

Table 5: Blocks Assigned to Each Compute Node

Node Name
Partition Number

6 12 24 48 96 192

STORM-CN01 687 345 502 502 549 563

STORM-CN02 681 683 510 423 547 575

STORM-CN03 685 684 508 511 548 571

STORM-CN04 688 685 689 775 599 669

STORM-CN05 667 681 685 679 592 635

STORM-CN06 688 1018 1202 1206 1261 1083

Table 6 Characteristic of PageRank input data

No of am files File size No of web pages No of links Ave out-degree
1280 9.7GB 49.5million 1.40 billion 29.3

Table 7 DRP of different number of AM files of three aggregation approaches

Input size hash aggregation partial
aggregation

hierarchical
aggregation

320 files 2.3G 1: 306 1:6.6:306 1:6.6:2.1:306
640 files 5.1G 1: 389 1:7.9:389 1:7.9:2.3:389

1280 files 9.7G 1: 587 1:11.8:587 1:11.8:3.7:587

Table 8: Job turnaround time for different PageRank implementations

Parallel Implementations Average job turnaround time for 3 runs

41

MPI PageRank on 32 node Linux Cluster (8 cores/node) 101 sec

Twister PageRank on 32 node Linux Cluster (8 cores/node) 271 sec

Haloop PageRank on 32 node Linux Cluster (8 cores/node) 1954 sec

Dryad PageRank on 32 node HPC Cluster (24 cores/node) 1905 sec

Hadoop PageRank on 32 node Linux Cluster (8 cores/node) 3260 sec

Sequential Implementations

C PageRank on Linux OS (use 1 core) 831 sec

Java PageRank on Linux OS (use 1 core) 3360 sec

C# PageRank on Windows Server (use 1 core) 8316 sec

Table 9: Parallel Efficiency of Dryad CTP and Dryad 2009 on same input data

Dryad CTP

of Nodes
Input size

5000 7500 10000 12500 15000

7 Nodes 2051 4540 8070 12992 18923

1 Node 13855 31169 55734 89501 131857

Parallel

Efficiency
96.50% 98.07% 98.66% 98.41% 99.54%

Dryad 2009

of Nodes
Input size

5000 7500 10000 12500 15000

7 2523 5365 9348 14310 20615

1 17010 36702 64141 98709 142455

Parallel

Efficiency
96.31% 97.73% 98.02% 98.54% 98.72%

42

Table 10: Execution Time for SWG with Data Partitions

Number of
Partitions

6 12 24 36 48 60 72 84 96

Execution Time 1 1105 1135 928 981 952 1026 979 1178 1103

Execution Time 2 1026 1063 868 973 933 1047 968 1171 1146

Execution Time 3 1030 1049 861 896 918 1046 996 1185 1134

Execution Time 4 1047 1060 844 970 923 1041 985 1160 1106

Average Time
105

2
1076 875 955 931 1040 982 1173 1122

Speed-Up
79.7

8688
77.952

91
95.899

23
87.890

89
90.108

21
80.707

5
85.474

34
71.526

03
74.7924

3

Appendix G
Implementation of different Matrix Multiplication algorithms

1)The Row Partition Algorithm
results = aMatrixFiles.Select(aFilePath => rowsXcolumns(aFilePath, bMatrixFilePath));

2) The Row Column Partition Algorithm
string[] aMatrixPartitionsFiles = splitInputFile(aMatrixPath, numIterations);
string[] bMatrixPartitionsFiles = splitInputFile(bMatrixPath, numComputeNodes);
DistributedQuery<matrixPartition> bMatrixPartitions =
bMatrixPartitionsFiles.AsDistributed().HashPartition(x => x, numComputeNodes).
Select(file => buildMatrixPartitionFromFile(file));

for (int iterations = 0; iterations<numIterations;iterations++)
{
 DistributedQuery<matrixBlock> outputs = bMatrixPartitions.ApplyPerPartition(bSubPartitions =>
bSubPartitions.Select(bPartition =>
aPartitionMultiplybPartition(aMatrixPartitionsFiles[iterations], bPartition)));
}

3.1)The Fox-Hey Algorithm
string[] aPartitionsFile = splitInputFile(aMatrixPath, nProcesses);
string[] bPartitionsFile = splitInputFile(bMatrixPath, nProcesses);
IEnumerable<aMatrixCMatrixInput> inputAC = buildBlocksInputOfAMatrixCMatrix(rowNum, colNum, 0,
nProcesses);
DistributedQuery<aMatrixCMatrixInput> inputACquery = inputAC.AsDistributed().HashPartition(x =>
x, nProcesses * nProcesses);
DistributedQuery<bMatrixInput> inputBquery = bPartitionsFile.AsDistributed().Select(x =>
buildBMatrixInput(x, 0, nProcesses)).SelectMany(x => x);

for (int iterations = 0; iterations < nProcesses; iterations++){
 inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock =>
acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci], iterations,nProcesses)));

 inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) =>
x.taskMultiplyBBlock(y.bMatrix));

 inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses));
}

43

3.2)
DistributedQuery<Type> inputData = inputObjects.AsDistributed();
inputData = inputData.Select(data=>update(data));

Appendix H
Implementation of the Matrix Multiplication utilizing multi-core technology.

while (localRows.MoveNext())
{

double[] row_result = newdouble[colNum];
for (int i = 0; i < colNum; i++)

 {
 double tmp = 0.0;
 for (int j = 0; j < rowNum; j++)

 tmp += localRows.Current.row[j] * columns[i][j];
 row_result[i] = tmp;
 }

yieldreturn row_result;
}

1) The Parallel.For version of Matrix Multiplication
while (localRows.MoveNext())
{
 blockWrapper rows_result = new blockWrapper(size,colNum,rowNum);
 Parallel.For(0, size, (int k) =>
 {

 for (int i = 0; i < colNum; i++)
 {

 double tmp = 0.0;
 for (int j = 0; j < rowNum; j++)

 tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j];
 rows_result.block[k * colNum + i] = tmp;
 }
 });
 yieldreturn rows_result;
}

2) The ThreadPool version of Matrix Multiplication
while (localRows.MoveNext())
{
 blockWrapper rows_result = new blockWrapper(size, rowNum, colNum);
 ManualResetEvent signal = new ManualResetEvent(false);
 for (int n = 0; n < size; n++)
 {

int k = n;
ThreadPool.QueueUserWorkItem(_ =>

 {
 for (int i = 0; i < colNum; i++)

 {
 double tmp = 0;
 for (int j = 0; j < rowNum; j++)

 tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j];
 rows_result.block[k * colNum + i] = tmp;
 }

 if (Interlocked.Decrement(ref iters) == 0)
 signal.Set();
 });
 }
 signal.WaitOne();
 yieldreturn rows_result;
}

3) The PLINQ version of Matrix Multiplication

44

while (localRows.MoveNext())
{
 double[][] rowsInput = initRows(localRows.Current.block);
 IEnumerable<double[]> results = rowsInput.AsEnumerable().AsParallel().AsOrdered()
 .Select(x => oneRowMultiplyColumns(x, columns));
 blockWrapper outputResult = new blockWrapper(size,rowNum,colNum, results);
 yieldreturn outputResult;
}

Appendix I
PageRank implementation code sample.

GroupBy() and Join()
for (int i = 0; i < iterations; i++)
{
 newRanks = pages.Join(ranks, page => page.source, rank => rank.source,
 //join page objects with rank objects where they have the same source url
 (page, rank) => page.links.Select(dest =>newRank(dest, rank.value / (double)page.numLinks)))
 //calculate the partial rank value for each destination url to which the source url points
.SelectMany(list => list).GroupBy(rank => rank.source)
 //group partial rank objects by their url id across a cluster
.Select(group =>newRank(group.Key, group.Select(rank => rank.value).Sum() * 0.85 + 0.15 /
(double)_numUrls));
 //aggregate partial rank values for each url for final rank values
 ranks = newRanks;
}

HashPartition() and ApplyPerPartition()
for (int i = 0; i < _iteration; i++)
{
 newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,
 // join page objects with rank objects where they have the same source url
 (page, rank) => page.links.Select(dest =>new Vertex(dest, rank.value / (double)page.numLinks)))
 //calculate the partial rank value for each destination url which the source url points to
 .SelectMany(list => list).HashPartition(record => record.source)
 //hash partition partial rank objects so that the objects with same url are sent to same node
 .ApplyPerPartition(list => list.GroupBy(record => record.source))
 //group partial rank objects by their url id on local machine
 .Select(group =>newRank(group.Key, group.Select(rank =>rank.value).Sum() * 0.85 + 0.15 /
(double)_numUrls));
 //aggregate grouped partial rank values for each url for final rank values
 ranks = newRanks.Execute();
}

Hierarchical Aggregation with User Defined Aggregation function
DistributedQuery<amPartition> webgraphPartitions =
Directory.GetFiles(inputDir).AsDistributed().Select(fileName =>
buildWebGraphPartition(fileName));
//construct partial rank values using adjacency matrixfiles stored in inputDir
for (int i = 0; i < numIteration; i++)
{
 DistributedQuery<double[]> partialRVTs = null;
 partialRVTs = webgraphPartitions.ApplyPerPartition(subWebGraphPartitions =>
 calculateMultipleWebgraphPartitionsWithPLINQ(subWebGraphPartitions, rankValueTable,
numUrls));
 //calculate partial rank values with user-defined function
 rankValueTable = mergeResults(partialRVTs);
 //merge calculated parital rank values with user-defined aggregation function
 //synchronized step to merge all partial rank value tables
}

GroupAndAggregate
for (int i = 0; i < numIteration; i++)
{
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,(page, rank) =>
// join page objects with rank objects where they have the same source url

45

page.links.Select(targetPage =>newRank(targetPage, rank.value / (double)page.numLinks)))
// calculate the partial rank value for each destination url which the source url points to
.SelectMany(list => list).GroupAndAggregate(partialRank =>partialRank.source, g =>
newRank(g.Key, g.Sum(x => x.value)*0.85+0.15 / (double)numUrls));
group calculated partial rank values by the url id and aggregate the grouped partial ranks values
ranks = newRanks;
}

Two steps of ApplyPerPartition
for (int i = 0; i < numIteration; i++)
{
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,
// join page objects with rank objects where they have the same source url
(page, rank) => page.links.Select(dest =>newVertex(dest, rank.value / (double)page.numLinks)))
.SelectMany(list => list)
// calculate the partial rank value for each destination url which the source url points to
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.source))
.Select(subGroup =>new Tuple<int, double>(subGroup.Key,subGroup.Select(rank =>rank.value).Sum()))
// group the partial rank objects by their url id on local machine
.HashPartition(e => e.Item1)
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.Item1))
// group the partial rank objects by their url id over the cluster
.Select(subGroup =>newRank(subGroup.Key, subGroup.Select(e => e.Item2).Sum() * 0.85 + 0.15 /
(double)_numUrls));
// aggregate the grouped partial rank value for each url for final rank values
ranks = newRanks.Execute();
}

	1 Introduction
	2 Overview
	2.1 Task Scheduling
	2.2 Parallel Programming Model
	2.3 Distributed Grouped Aggregation

	3 Pleasingly Parallel Application in DryadLINQ CTP
	3.1 Introduction
	3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh
	3.1.2 DryadLINQ Implementation

	3.2 Task Granularity Study
	3.2.1 Workload Balancing
	3.2.2 Scalability Study

	3.3 Scheduling on an Inhomogeneous Cluster
	3.3.1 Workload Balance with Different Partition Granularities

	3.4 Evaluation and Findings

	4 Hybrid Parallel Programming Model
	4.1 Introduction
	4.2 Parallel Matrix-Matrix Multiplication Algorithms
	4.2.1 Row-Partition Algorithm
	4.2.2 Row-Column Partition Algorithm
	4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm

	4.3 Performance Analysis in Hybrid Parallel Model
	4.3.1 Performance on Multi Core
	4.3.2 Performance on a Cluster
	4.3.3 Performance of a Hybrid Model with Dryad and PLINQ
	4.3.4 Performance Comparison of Three Hybrid Parallel Models

	4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster
	4.5 Evaluation and Findings

	5 Distributed Grouped Aggregation
	5.1 Introduction
	5.2 Distributed Grouped Aggregation Approaches
	5.2.1 Hash Partition
	5.2.2 Hierarchical Aggregation
	5.3.3 Aggregation Tree

	5.3 Performance Analysis
	5.3.1 Performance in Different Aggregation Strategies
	5.3.2 Comparison With Other Implementations
	5.3.3 Chaining Tasks Within BSP Jobs

	Although DryadLINQ chains the execution of queries, it does not support the execution of jobs that consist of Bulk Synchronous Parallel [26] (BSP) style tasks very well. For example, in DryadLINQ hierarchical aggregation PageRank, the program has to b...
	5.4 Evaluation and Findings

	6 Programming Issues in DryadLINQ CTP
	6.1 Class Path in Working Directory
	6.2 Late Evaluation in Chained Queries within One Job
	6.3 Serialization for a Two Dimensional Array
	6.4 Fault tolerant in DryadLINQ CTP
	6.4.1 Failures and Fault Tolerance

	7 Classroom Experience with Dryad
	7.1 Dryad in Eduction
	7.2 Concurrent Dryad jobs

	Acknowledgements
	References
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I

