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1. Introduction 

 Applying high level parallel runtimes to data/compute intensive applications is becoming 

increasingly common. The simplicity of the MapReduce programming model and the availability of 

open source MapReduce runtimes such as Hadoop, are attracting more users to the MapReduce 

programming model. Recently, Microsoft has released DryadLINQ for academic use, allowing users 

to experience a new programming model and a runtime that is capable of performing large scale 

data/compute intensive analyses. 

 The goal of our study is to explore the applicability of DryadLINQ to real scientific applications 

and compare its performance with other relevant parallel runtimes such as Hadoop. To achieve this 

goal we have developed a series of scientific applications using DryadLINQ, namely, CAP3 DNA 

sequence assembly program [1], Pairwise ALU sequence  alignment, High Energy Physics(HEP)data 

analysis, and K-means Clustering [2]. Each of these applications has unique requirements for 

parallel runtimes. For example, the HEP data analysis application requires ROOT [3] data analysis 

framework to be available in all the compute nodes and in Pairwise ALU sequence alignment the 

framework must handle computing of distance matrix with hundreds of millions of points. We have 

implemented all these applications using DryadLINQ and Hadoop, and used them to compare the 

performance of these two runtimes. Twister and MPI are used in applications where the contrast in 

performance needs to be highlighted.  

 In the sections that follow, we first present an overview of the different parallel runtimes we use 

in this analysis followed by a detailed discussion of the data analysis applications we developed. 

Here we discuss the mappings of parallel algorithms to the DryadLINQ programming model and 

present performance comparisons with Hadoop implementations of the same applications. In 

section 4 we analyze DryadLINQ’s programming model comparing it with other relevant 

technologies such as Hadoop and Twister. We also include a set of usability requirements for 

DryadLINQ. We present our conclusions in section 5. 

 

2. Overview 

 This section presents a brief introduction to a set of parallel runtimes we use our evaluations. 

2.1 Microsoft DryadLINQ 

 Dryad [4] is a distributed execution engine for coarse grain data parallel applications. Dryad 

considers computation tasks as directed acyclic graphs (DAG) where the vertices represent 

computation tasks and while the edges acting as communication channels over which the data flow 

from one vertex to another. In the HPC version of Dryad the data is stored in (or partitioned to) 

Windows shared directories in local compute nodes and a meta-data file is use to produce a 

description of the data distribution and replication. Dryad schedules the execution of vertices 

depending on the data locality. Dryad also stores the output of vertices in local disks, and the other 

vertices which depend on these results, access them via the shared directories. This enables Dryad 

to re-execute failed vertices, a step which improves the fault tolerance in the programming model.  

 DryadLINQ[5] is a higher level language layer for Dryad aimed at distributed data processing. 

DryadLINQ has the ability to translate LINQ programs written using existing .NET programming 

language constructs in to distributed Dryad computations. The academic release of Dryad only 



exposes the DryadLINQ API for programmers. Therefore, all our implementations are written using 

DryadLINQ although it uses Dryad as the underlying runtime.  

2.2 Apache Hadoop  

 Apache Hadoop [6] has a similar architecture to Google’s MapReduce runtime [8], where it 

accesses data via HDFS, which maps all the local disks of the compute nodes to a single file system 

hierarchy, allowing the data to be dispersed across all the data/computing nodes. HDFS also 

replicates the data on multiple nodes so that failures of any nodes containing a portion of the data 

will not affect the computations which use that data. Hadoop schedules the MapReduce 

computation tasks depending on the data locality, improving the overall I/O bandwidth. The 

outputs of the map tasks are first stored in local disks until later, when the reduce tasks access them 

(pull) via HTTP connections. Although this approach simplifies the fault handling mechanism in 

Hadoop, it adds a significant communication overhead to the intermediate data transfers, especially 

for applications that produce small intermediate results frequently.  

 Apache Hadoop Pig [7] project with its Pig Latin higher level language layer for data analysis is 

the DryadLINQ counterpart for Hadoop. However, all our implementations are currently written 

only using Hadoop Map Reduce.  

2.3 Twister: Iterate MapReduce 

 Twister [9][10] is a light-weight MapReduce runtime (earlier called CGL-MapReduce)  that 

incorporates several improvements to the MapReduce programming model such as (i) faster 

intermediate data transfer via a pub/sub broker network; (ii) support for long running map/reduce 

tasks; and (iii) efficient support for iterative MapReduce computations. The use of streaming 

enables Twister to send the intermediate results directly from its producers to its consumers, and 

eliminates the overhead of the file based communication mechanisms adopted by both Hadoop and 

DryadLINQ. The support for long running map/reduce tasks enables configuring and re-using of 

map/reduce tasks in the case of iterative MapReduce computations, and eliminates the need for the 

re-configuring or the re-loading of static data in each iteration.  

2.4 MPI 

 MPI [11], the de-facto standard for parallel programming, is a language-independent 

communications protocol that uses a message-passing paradigm to share the data and state among 

a set of cooperative processes running on a distributed memory system. MPI specification (F 

defines a set of routines to support various parallel programming models such as point-to-point 

communication, collective communication, derived data types, and parallel I/O operations.  Most 

MPI runtimes are deployed in computation clusters where a set of compute nodes are connected via 

a high-speed network connection yielding very low communication latencies (typically in 

microseconds). MPI processes typically have a direct mapping to the available processors in a 

compute cluster or to the processor cores in the case of multi-core systems.. We use MPI as the 

baseline performance measure for the various algorithms that are used to evaluate the different 

parallel programming runtimes.  Table 1 summarizes the different characteristics of Hadoop, 

Dryad, Twister, and MPI. 

 

 



Table 1. Comparison of features supported by different parallel programming runtimes. 

Feature Hadoop DryadLINQ Twister MPI 

Programming 
Model 

MapReduce DAG based execution 
flows 

MapReduce with a 
Combine phase 

Variety of 
topologies 
constructed 
using the rich 
set of parallel 
constructs 

Data Handling HDFS  Shared directories/ 
Local disks 

Shared file system / 
Local disks 

Shared file 
systems 

Intermediate 
Data 
Communication 

HDFS/ 
Point-to-point via 
HTTP 

Files/TCP pipes/ 
Shared memory FIFO 

Content Distribution 
Network 
(NaradaBrokering 
(Pallickara and Fox 
2003) ) 

Low latency 
communication 
channels  

Scheduling Data locality/ 
Rack aware  

Data locality/ 
Network 
topology based run 
time graph 
optimizations 

Data locality Available 
processing 
capabilities 

Failure 
Handling 

Persistence via 
HDFS 
Re-execution of map 
and reduce tasks 

Re-execution of 
vertices 

Currently not 
implemented 
(Re-executing map 
tasks, redundant 
reduce tasks) 

Program level 
Check pointing 
OpenMPI , 
FT MPI 

Monitoring Monitoring support 
of HDFS, Monitoring 
MapReduce 
computations 

Monitoring support 
for execution graphs 

Programming interface 
to monitor the progress 
of jobs 

Minimal 
support for task 
level 
monitoring 

Language 
Support 

Implemented using 
Java. Other 
languages are 
supported via 
Hadoop Streaming 

Programmable via C#  
DryadLINQ provides 
LINQ programming 
API for Dryad 

Implemented using 
Java 
Other languages are 
supported via Java 
wrappers 

C, C++, Fortran, 
Java, C# 

 

  



3. Performance and Usability of Applications using DryadLINQ 

 In this section, we present the details of the DryadLINQ applications that we developed, the 

techniques we adopted in optimizing the applications, and their performance characteristics 

compared with Hadoop implementations. For our benchmarks, we used three clusters with almost 

identical hardware configurations with 256 CPU cores in each and a large cluster with 768 cores as 

shown in Table 2. 

Table 2. Different computation clusters used for this analysis. 

Feature 
Linux Cluster 

(Ref A) 
Windows Cluster 

(Ref B) 
Windows Cluster 

(Ref C) 
Windows Cluster 

(Ref D) 
CPU Intel(R) Xeon(R) 

CPU L5420  2.50GHz 
Intel(R) Xeon(R) 
CPU L5420  2.50GHz 

Intel(R) Xeon(R) 
CPU L5420  2.40GHz 

Intel(R) Xeon(R) 
CPU L5420  2.50GHz 

# CPU 
# Cores 

2 
8 

2 
8 

4 
6 

2 
8 

Memory 32GB 16 GB 48 GB 32 GB 

# Disk 1 2 1 1 

Network Giga bit Ethernet Giga bit Ethernet Giga bit Ethernet Giga bit Ethernet 

Operatin
g System 

Red Hat Enterprise 
Linux Server release 
5.3 -64 bit 

Microsoft Window 
HPC Server 2008 
(Service Pack 1) - 
64 bit 

Microsoft Window 
HPC Server 2008 
(Service Pack 1) - 
64 bit 

Microsoft Window 
HPC Server 2008 
(Service Pack 1) - 
64 bit 

# Cores 256 256 768 256 
 

3.1 EST (Expressed Sequence Tag) sequence assembly using CAP3 DNA sequence assembly 

software 

 CAP3[1] is a DNA sequence assembly program, developed by Huang and Madan [4], which 

performs several major assembly steps such as computation of overlaps, construction of contigs, 

construction of multiple sequence alignments and generation of consensus sequences, to a given set 

of gene sequences. The program reads a collection of gene sequences from an input file (FASTA file 

format) and writes its output to several output files and to the standard output as shown below. 

During an actual analysis, the CAP3 program is invoked repeatedly to process a large collection of 

input FASTA file.  

Input.fasta -> Cap3.exe -> Stdout + Other output files 

 We developed a DryadLINQ application to perform the above data analysis in parallel. This 

application takes as input a PartitionedTable defining the complete list of FASTA files to process. 

For each file, the CAP3 executable is invoked by starting a process. The input collection of file 

locations is built as follows: (i) the input data files are distributed among the nodes of the cluster so 

that each node of the cluster stores roughly the same number of input data files; (ii) a “data 

partition” (A text file for this application) is created in each node containing the file paths of the 

original data files available in that node; (iii) a DryadLINQ “partitioned file” (a meta-data file 

understood by DryadLINQ) is created to point to the individual data partitions located in the nodes 

of the cluster. 



 Following the above steps, a DryadLINQ program can be developed to read the data file paths 

from the provided partitioned-file, and execute the CAP3 program using the following two lines of 

code. 
 

IQueryable<Line Record> filenames = PartitionedTable.Get<LineRecord>(uri); 

IQueryable<int> exitCodes= filenames.Select(s => ExecuteCAP3(s.line)); 
 

 Although we use this program specifically for the CAP3 application, the same pattern can be used 

to execute other programs, scripts, and analysis functions written using the frameworks such as R 

and Matlab, on a collection of data files. (Note: In this application, we rely on DryadLINQ to process 

the input data files on the same compute nodes where they are located. If the nodes containing the 

data are free during the execution of the program, the DryadLINQ runtime will schedule the parallel 

tasks to the appropriate nodes to ensure co-location of process and data; otherwise, the data will be 

accessed via the shared directories.) 

 

3.1.1 Evaluations and Findings 

 We developed CAP3 data analysis applications for Hadoop using only the map stage of the 

MapReduce programming model. In these implementations, the map function simply calls the CAP3 

executable passing the input data file names. We evaluated DryadLINQ and Hadoop for the CAP3 

application and evaluated its scalability by measuring the program execution times varying the 

number of data files. Figure 1 shows comparisons of performance and the scalability of the 

DryadLINQ CAP3 application, with the Hadoop CAP3 application. For these evaluations we ran 

DryadLINQ applications in cluster ref D and Hadoop applications in cluster ref A, which essentially 

are the same cluster booted to different operating systems. It should be noted that the standalone 

CAP3 program ran approximately 12.5% slower on the Linux environment than on the windows 

environment   

 

 
Figure 1. Performance of different implementations of CAP3 application.[35] 
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 The performance and the scalability graphs shows that both runtimes work almost equally well 

for the CAP3 program, and we would expect them to behave in the same way for similar 

applications with simple parallel topologies. Except for the manual data partitioning requirement, 

implementing this type of applications using DryadLINQ is extremely simple and straightforward.  

 

During this analysis we identified two issues related to DryadLINQ and the software it uses, which 

we will discuss in the coming sections. They are: 

 

Issue No. 1 DryadLINQ schedule jobs to nodes rather than cores – idle cores when 
the data is inhomogeneous. 

  

Issue No. 2 Performance of threads is extremely low for memory intensive 
operations compared to processes. 

 

3.1.2 Inhomogeneity of data partitions and scheduling partitions to nodes 

 DryadLINQ schedules vertices of the DAG (corresponding to data partitions) to compute nodes 

rather than individual CPU cores (Issue No. 1). This may also produce suboptimal CPU utilizations 

of Dryad programs depending on the data partition strategy. As in MapReduce programming model, 

Dryad also assumes that the vertices corresponding to a given phase of the computation partitions 

data so that the data is distributed evenly across the computation nodes. Although this is possible in 

some computations such as sorting and histogramming where the data can be divisible arbitrary, it 

is not always possible when there are inhomogeneous data products  at the lowest level of the data 

items such as gene sequences, binary data files etc.. For example, CAP3 process sequence data as a 

collection of FASTA files and the number of sequences containing in each of these files may differ 

significantly causing imbalanced workloads.   

 Since DryadLINQ schedules vertices to nodes, it is possible that a vertex which processes few 

large FASTA files using few CPU cores of a compute node will keep all the other CPU cores of that 

machine idle. In Hadoop, the map/reduce tasks are scheduled to individual CPU cores (customized 

by the user) and hence it is able to utilize all the CPU cores to execute map/reduce tasks in a given 

time. 

 

Figure 2. Number of active tasks/CPU cores along the running times of two runs of CAP3. 



 The collection of input files we used for the benchmarks contained different number of gene 

sequences in each, and hence it did not represent a uniform workload across the concurrent 

vertices of the DryadLINQ application, because the time the CAP3 takes to process an input file 

varies depending on the number of sequences available in the input file. The above characteristics 

of the data produces lower efficiencies at higher number of CPU cores as more CPU cores become 

idle towards the end of the computation waiting for vertices that takes longer time to complete. 

 To verify the above observation we measured the utilization of vertices during two runs of the 

CAP3 program. In our first run we used 768 input files so that Dryad schedules 768 vertices on 768 

CPU cores, while in the second Dryad schedules 1536 vertices on 768 CPU cores. The result of this 

benchmark is shown in figure 2. The first graph in figure 3 corresponding to 768 files indicates that 

although DryadLINQ starts all the 768 vertices at the same time they finish at different times with 

long running tasks taking roughly 40% of the overall time. The second graph (1536 files) shows 

that the above effect has caused lower utilization of vertices when Dryad schedules 1536 vertices to 

768 CPU cores.  

 For our next experiment, we created data sets with different standard deviations to further 

study the effects of inhomogeneous data to our CAP3 applications. CAP3 program execution time 

depends mainly on the content of the sequences. When generating the data sets, we first calculated 

the standalone CAP3 execution time for each of the files in our real data set. Then, based on those 

timings, we created data sets that have approximately similar mean times, while the standard 

deviation of the standalone running times is different in each data set. We performed the 

performance testing for randomly distributed as well as skewed distributed (sorted according to 

individual file running time) data sets. The speedup is taken by dividing the sum of standalone 

running times of the files in the data set on the respective environments by the parallel 

implementation running time.  

 

 

Figure 3. Cap3 DryadLINQ implementation performance against inhomogeneous data.[35] 
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 In the figure Figure 3 we can notice that both the applications perform well when the files in a 

data set are randomly distributed. The reason for the above behavior is, when a data set is 

randomly distributed it provides a natural load balancing among the data partitions.  

 The DryadLINQ application performance degrades when the files in the data set are skew 

distributed, while the Hadoop CAP3 application performance is much better. Hadoop performs 

better as a result of its’ dynamic global pipeline scheduling of map tasks providing a run time global 

load balancing. The DryadLINQ skew distributed results further confirm the issue no 1. One 

possible remedy for this issue is to distribute the data among the partitions randomly without 

following any order.  

3.1.3 Threads vs. Processes (Issue No. 2) 

 When we develop CAP3 and similar applications, we noticed that the applications perform far 

better when the functions/programs which are executed using Select or Apply constructs are 

executed as processes than just as functions in the same program. i.e. executed using threads via 

PLINQ. Consider the following simple PLINQ program segment.  
 

IEnumerable<int> inputs = indices.AsEnumerable(); 

IEnumerable<int> outputs =  

  ParallelEnumerable.Select(inputs.AsParallel(), x => Func_X (x)); 

 

 Variations of Func_X are: 
 

1. Func_ComputeIntensive() 
2. Func_ComputeIntensiveProcesses() 
3. Func_MemoryIntensive() 
4. Func_MemoryIntensiveProcesses() 

 

 The difference between the Func_ComputeIntensive() and 

Func_ComputeIntensiveProcesses() is that the second function calls the first function as a 
separate executable (process). Similarly the Func_MemoryIntensiveProcesses () calls 
Func_MemoryIntensive() as a separate process. 
 

 The Func_ComputeIntensive()simply multiply double value pi in a loop to produce an 

artificial compute intensive task. The Func_MemoryIntensive() function allocates and de-

allocates small 2D arrays (about 300 by 300 elements) with floating point computations in-between 

resembling a function in many gene analyses such as Smith Waterman or CAP3. The 

Func_MemoryIntensive()does not try to utilize all the memory or let the computer in to the 

thrashing mode. (Note: these functions are shown in Appendix A and Appendix B of this document.) 

 We ran the above simple program with four different functions mentioned above to understand 

the effect of threads vs. processes for compute intensive and memory intensive functions. In this 

analysis we directly used PLINQ without using DryadLINQ to perform the above query in a multi-

core computer with 24 CPU cores. This helped us to isolate the performance issue in threads vs. 

processes better. 

 

  We made the following observations: 

1. For compute intensive workloads, threads and processes did not show any significant 

performance difference. 



2. For memory intensive workloads, processes perform about 20 times faster than threads. 

 

 The main reason for the extremely poor performance of threads is due to the large number of 

context switches occur when a memory intensive operation is used with threads. (Note: We 

verified this behavior with both the latest version of PLINQ and the previous version of 

PLINQ). Following table (Table 3) shows the results. 

Table 3. Performance of threads and processes. 

Test Type Total Time 
(Seconds) 

Context Switches Hard Page 
Faults 

CPU 
utilization 

Func_MemoryIntensive() 133.62 100000-110000 2000-3000 76% 

Func_MemoryIntensiveProcesses() 5.93 5000-6000 100-300 100% 

Func_ComputeIntensive() 15.7 <6000 <110 100% 

Func_ComputeIntensiveProcesses() 15.73 <6000 <110 100% 

  

 From table 3, it is evident that although we noticed a 76% CPU utilization in the case of 

Func_MemoryIntensive(), most of the time the program is doing context switches rather than 

useful work. On the other hand, when the same function is executed as separate processes; all the CPU 

cores were used to perform the real application. 

 We observed these lower CPU utilizations in most of the applications we developed, and 

hence we made the functions that perform scientific analysis into separate programs and 

executed as processes using DryadLINQ. 

 

3.2 Pairwise Alu sequence alignment using Smith Waterman GOTOH 

3.2.1 ALU Clustering 

 The ALU clustering problem [26] is one of the most challenging problems for sequencing 

clustering because ALUs represent the largest repeat families in human genome. There are about 1 

million copies of ALU sequences in human genome, in which most insertions can be found in other 

primates and only a small fraction (~ 7000) are human-specific. This indicates that the 

classification of ALU repeats can be deduced solely from the 1 million human ALU elements. 

Notable, ALU clustering can be viewed as a classical case study for the capacity of computational 

infrastructures because it is not only of great intrinsic biological interests, but also a problem of a 

scale that will remain as the upper limit of many other clustering problem in bioinformatics for the 

next few years, e.g. the automated protein family classification for a few millions of proteins 

predicted from large metagenomics projects.  

3.2.2 Smith Waterman Dissimilarities 

 We identified samples of the human and Chimpanzee ALU gene sequences using Repeatmasker 

[27] with Repbase Update [28]. We have been gradually increasing the size of our projects with the 

current largest samples having 35339 and 50000 sequences and these require a modest cluster 

such as ref C in table 2 (768 cores) for processing in a reasonable time (a few hours as shown in 



table 4). We are aiming at supporting problems with a million sequences  -- quite practical today on 

TeraGrid and equivalent facilities given basic analysis steps scale like O(N2). 

 We used open source version NAligner [29] of the Smith Waterman – Gotoh algorithm SW-G 

[30][31] modified to ensure low start up effects by each thread/processing large numbers (above a 

few hundred) at a time. Memory bandwidth needed was reduced by storing data items in as few 

bytes as possible. 

3.2.3 The O(N2) Factor of 2 and structure of processing algorithm 

     The ALU sequencing problem shows a well known factor of 2 issue present in many O(N2) 

parallel algorithms such as those in direct simulations of astrophysical stems. We initially calculate 

in parallel the Distance D(i,j) between points (sequences) i and j. This is done in parallel over all 

processor nodes selecting criteria i < j (or j > i for upper triangular case) to avoid calculating both 

D(i,j) and the identical D(j,i). This can require substantial file transfer as it is unlikely that nodes 

requiring D(i,j) in a later step will find that it was calculated on nodes where it is needed.    

 For example the MDS and PW (PairWise) Clustering algorithms described in [10], require a 

parallel decomposition where each of N processes (MPI processes, threads) has 1/N of sequences 

and for this subset {i} of sequences stores in memory D({i},j) for all sequences  j and the subset {i} 

of sequences for which this node is responsible. This implies that we need D (i,j) and D (j,i) (which 

are equal) stored in different processors/disks. This is a well known collective operation in MPI 

called either gather or scatter. 

3.2.4 DryadLINQ  Implementation 

We developed a DryadLINQ application to perform the calculation of pairwise SW-G distances 

for a given set of genes by adopting a coarse grain task decomposition approach which requires 

minimum inter-process communicational requirements to ameliorate the higher communication 

and synchronization costs of the parallel runtime. To clarify our algorithm, let’s consider an 

example where N gene sequences produces a pairwise distance matrix of size NxN. We decompose 

the computation task by considering the resultant matrix and groups the overall computation into a 

block matrix of size DxD where D is a multiple (>2) of the available computation nodes. Due to the 

symmetry of the distances D(i,j) and D(j,i) we only calculate the distances in the blocks of the upper 

triangle of the block matrix as shown in figure 5 (left). The blocks in the upper triangle are 

partitioned (assigned) to the available compute nodes and an “Apply” operation is used to execute a 

function to calculate (N/D)x(N/D) distances in each block. After computing the distances in each 

block, the function calculates the transpose matrix of the result matrix which corresponds to a 

block in the lower triangle, and writes both these matrices into two output files in the local file 

system. The names of these files and their block numbers are communicated back to the main 

program. The main program sort the files based on their block number s and perform another 

“Apply” operation to combine the files corresponding to a row of blocks in a single large row block 

as shown in the figure 4 (right). 



 
Figure 4. Task decomposition (left) and the Dryad vertex hierarchy (right) of the DryadLINQ 

implementation of SW-G pairwise distance calculation application. 

3.2.5 MPI Implementation 

 The MPI version of SW-G calculates pairwise distances using a set of either single or multi-

threaded processes. For N gene sequences, we need to compute half of the values (in the lower 

triangular matrix), which is a total of M = N x (N-1) /2 distances. At a high level, computation tasks 

are evenly divided among P processes and execute in parallel. Namely, computation workload per 

process is M/P.  At a low level, each computation task can be further divided into subgroups and 

run in T concurrent threads.  Our implementation is designed for flexible use of shared memory 

multicore system and distributed memory clusters (tight to medium tight coupled communication 

technologies such threading and MPI).  

3.2.6 Performance of Smith Waterman Gotoh SW-G Algorithm 

 We performed the DryadLINQ and MPI implementations of ALU SW-G distance calculations on 

two large data sets and obtained the following results. Both these tests were performed in cluster 

ref C. 

Table 4.  Comparison of DryadLINQ and MPI technologies on ALU sequencing application with 

SW-G algorithm 

Technology Total 
Time 
(seconds) 

Time per Pair 
(milliseconds) 

Partition 
Data 
(seconds) 

Calculate and 
Output 
Distance(seconds) 
 

Merge 
files 
(seconds) 

DryadLINQ 50,000 
sequences 

17200.413  0.0069 2.118  17104.979  93.316  

35,339 
sequences 

8510.475  0.0068 2.716 8429.429  78.33 

MPI 50,000 
sequences 

16588.741 0.0066 N/A 13997.681 2591.06 

35,339 
sequences 

8138.314 0.0065 N/A 6909.214 1229.10 



 

 There is a short partitioning phase for DryadLINQ application and then both approaches 

calculate the distances and write out these to intermediate files as discussed in section 3.2.4. We 

note that merge time is currently much longer for MPI than DryadLINQ while the initial steps are 

significantly faster for MPI. However the total times in table 4 indicates that both MPI and 

DryadLINQ implementations perform well for this application with MPI a few percent faster with 

current implementations. As expected, the times scale proportionally to the square of the number 

of distances. On 744 cores the average time of 0.0067 milliseconds per pair that corresponds to 

roughly 5 milliseconds per pair calculated per core used. The coarse grained DryadLINQ application 

performs competitively with the tightly synchronized MPI application.  

3.2.7 Apache Hadoop Implementation 

       We developed an Apache Hadoop version of the pairwise distance calculation program based on 

the JAligner[26] program, the java implementation of the NAligner.  Similar to the other 

implementations, the computation is partitioned in to blocks based on the resultant matrix.  Each of 

the blocks would get computed as a map task.  The block size (D) can be specified via an argument 

to the program. The block size needs to specified in such a way that there will be much more map 

tasks than the map task capacity of the system, so that the Apache Hadoop scheduling will happen 

as a pipeline of map tasks resulting in  global load balancing of the application.  The input data is 

distributed to the worker nodes through the Hadoop distributed cache, which makes them available 

in the local disk of each compute node. 

       A load balanced task partitioning strategy according to the following rules is used to identify the 

blocks that need to be computed (green) through map tasks as shown in the figure 5(a). In addition 

all the blocks in the diagonal (blue) are computed. Even though the task partitioning mechanisms 

are different, both Dryad-SWG and Hadoop SW-G ends up with essentially identical computation 

blocks, if the same block size is given to both the programs.  

If β >= α, we only calculate D(α,β) if α+β is even, 

 If β < α, we only calculate D(α,β) if α+β is odd. 

       The figure 5 (b) depicts the run time behavior of the Hadoop SW-G program. In the given 

example the map task capacity of the system is “k” and the number of blocks is “N”. The solid black 

lines represent the starting state, where “k” map tasks (blocks) will get scheduled in the compute 

nodes. The solid red lines represent the state at t1 , when 2 map tasks, m2 & m6, get completed and 

two map tasks from the pipeline gets scheduled for the placeholders emptied by the completed map 

tasks. The dotted lines represent the future.  
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Figure 5. (a)Task (Map) decomposition and the reduce task data collection (b) Application 
run time 

      Map tasks use custom Hadoop writable objects as the map task output values to store the 

calculated pairwise distance matrices for the respective blocks. In addition, non-diagonal map tasks 

output the inverse distances matrix as a separate output value. Hadoop uses local files and http 

transfers underneath to transfer the map task output key value pairs to the reduce tasks. 

       The outputs of the map tasks are collected by the reduce tasks. Since the reduce tasks start 

collecting the outputs as soon as the first map task finishes and continue to do so while other map 

tasks are executing, the data transfers from the map tasks to reduce tasks do not present a 

significant performance overhead to the program. The program currently creates a single reduce 

task per each row block resulting in total of (no. of sequences/block size) Reduce tasks. Each reduce 

task to accumulate the output distances for a row block and writes the collected output to a single 

file in Hadoop Distributed File System (HDFS). This results in N number of output files 

corresponding to each row block, similar to the output we produce in the DryadLINQ version. 

3.2.8 Performance comparison of DryadLINQ and Hadoop SW-G implementations 

       We compared the DryadLINQ and Hadoop implementations on the same data sets we used for 

the DryadLINQ and MPI comparisons, but on a different cluster. These tests were run on cluster ref 

A for Hadoop SW-G and on ref D for DryadLINQ SW-G, which are two identical Linux and Windows 

clusters. The DryadLINQ-adjusted results row represents the performance timings adjusted for the 

performance difference of the base programs, NAligner and the JAligner. In here we do not present 

separate times for the merge step as the Hadoop implementation performs the merging with 

reduce tasks even when the map tasks are running.  Table 5 shows the results of this comparison. 

  



Table 5. Comparison of DryadLINQ and Hadoop technologies on ALU sequencing application 

with SW-G algorithm 

Technology No. of 
Sequences 

Total 
Time 
(seconds) 

Time 
per 
Pair 
(ms) 

No of 
actual  
Alignments 

Sequential 
Time 
(seconds) 

Speedup 
  

Speedup  
per core 

DryadLINQ 50,000 
Sequences 

30881.74 0.0124 1259765625 4884111.33 158.16 61.78% 

35,339 14654.41 0.0117 634179061 2458712.22 167.78 65.54% 

DryadLINQ 
–adjusted 

50,000 24202.4 0.0097 1259765625 3827736.66 158.16 61.78% 

35,339 11484.84 0.0092 634179061 1926922.27 167.78 65.54% 

Hadoop 50,000 17798.59 0.0071 1262500000 4260937.50 239.40 93.51% 

35,339 8974.638 0.0072 629716021 2125291.57 236.81 92.50% 

 

       We can notice that the Hadoop implementation shows more speedup per core than the 

DryadLINQ implementation. In an alternate ongoing testing we are noticing that the block size plays 

a larger role with regards to the DryadLINQ implementation performance, where relatively smaller 

block sizes are performing better. This led us to speculate that the lower speedup of DryadLINQ 

implementation is related to the memory usage. We are currently pursuing this issue more deeply 

to understand the reasons for this behavior. 

3.2.9 Inhomogeneous data study 

       The time complexity to align and obtain distances for two genome sequences with lengths ‘m’ 

and ‘n’ using SW-G algorithm is proportional to the product of the lengths of two sequences, O(mn). 

This makes the sequence length distribution of a block to determine the execution time for that 

particular execution block. Frameworks like Dryad and Hadoop work optimally when the work is 

equally partitioned among the tasks, striving for equal length sequences in the case of pairwise 

distance calculations. Depending on the scheduling strategy of the framework, blocks with different 

execution times can have an adverse effect on the performance of the applications, unless proper 

load balancing measures have been taken in the task partitioning steps. For an example, in 

DryadLINQ vertices are scheduled at the node level, making it possible for a node to have blocks 

with varying execution times. In this case if a single block inside a vertex takes a larger amount of 

time than other blocks to execute, then the whole node have to wait till the large task completes, 

which utilizes only a fraction of the node resources.  

       Sequence sets that we encounter in the real data sets are inhomogeneous in length.   In this 

section we study the effect of inhomogeneous gene sequence lengths for our pairwise distance 

calculation applications. The data sets used were randomly generated with a given mean sequence 

length (400) with varying standard deviations following a normal distribution of the sequence 

lengths. Each data set contained a set of 10000 sequences, 100 million pairwise distance 

calculations to perform. We performed this experiment by distributing the sequences of varying 

lengths randomly across the data set as well as by distributing them in a sorted order based on the 

sequence length. 



 

Figure 6. Performance of SW-G pairwise distance calculation application for inhomogeneous data.[35] 

       The DryadLINQ-adjusted results depict the raw DryadLINQ results adjusted for the 

performance difference of the NAligner and JAligner base programs. As we notice from the figure 6, 

both DryadLINQ implementation as well as the Hadoop implementation performed satisfactorily 

for the randomly distributed data, without showing significant performance degradations. In fact 

Hadoop implementation showed minor improvements in the execution times. The acceptable 

performance can be attributed to the fact that the sequences with varying lengths are randomly 

distributed across the data set, giving a natural load balancing to the sequence blocks. Similar to the 

results we noticed in the DryadLINQ CAP3 application, the DryadLINQ SW-G performance degrades 

when the data is skew distributed, due to a result of Dryad static scheduling of data partitions.  

       The Hadoop implementations’ better performance can be attributed to the global pipeline 

scheduling of map tasks that Hadoop performs. In Hadoop administrator can specify the map task 

capacity of a particular worker node and then Hadoop global scheduler schedules the map tasks 

directly on to those placeholders in a much finer granularity than in Dryad as and when individual 

tasks finish. This allows the Hadoop implementation to perform natural global level load balancing. 

In this case it might even be advantageous to have varying task execution times to iron out the 

effect of any trailing map tasks towards the end. 
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3.3 PhyloD Application 

 The Human Leukocyte Antigen can help to eliminate the HIV virus.  However, the HIV virus can 

avoid the elimination by evolution of escape mutation. HIV mutations can be considered as HIV 

codons changing or evolution. The PhyloD[33] application uses statistical method to identify HLA-

associated viral evolution from the sample data of HIV-infected individuals.  

3.3.1 PhyloD Algorithm 

 PhyloD is a new statistical package to derive the association among HLA and HIV by counting 

given sample data. The PhyloD package have three kinds of input data: (i) the phylogenic tree 

information of the codons, (ii) the information about HLA alleles, and (iii) the information about 

HIV codons. A run of PhyloD job have three main steps. First, it computes a cross product of input 

files to produce all allele-codon pairs. Second, it computes the p-value for each pair, which is used to 

measure the association between allele-codon pair. Third, it computes a q-value per p-value, which 

is an indicative measure of the significance of the p-value.  

 The running time of PhyloD algorithm is a function of the number of different HLA alleles -|X|, 

the number of different HIV codons -|Y|, and the number of individuals in the study -N, which is 

equal to the number of leaves of the phylogenic tree. To calculate p-value of one allele-codon pair, it 

will cost O(NlogN) and there are |X|*|Y| allele-codon pairs. So the PhyloD algorithm runs in time 

O(|X|*|Y|*NlogN). The computation of the p-value of one pair can be done independently of other p-

value computations. This makes it easy to implement a parallel version of PhyloD using DryadLINQ. 

 PhyloD executable allows user to divide the PhyloD job into a set of tasks each of which works on 

the assigned part of the HLA allele file and the HIV codon file. Assuming the set of HLA alleles is 

{A[0],A[1],..A[|X|-1]}, and the set of HIV codons is {C[0],C[1],…C[|Y|-1]}, then the set of HLA and HIV 

pairs is stored in the order of {(A[0],C[0]),(A[1],C[0]),(A2,C[0]),..(A[|X|-1],C[0]); (A[0],C[1]), 

(A[1],C[1]),(A[2],C[1]),.. (A[|X|-2],C[|Y|-1]),(A[|X|-1],C[|Y|-1])}. Accordingly, PhyloD executable 

divides the PhyloD job into N tasks (divide the set of all pairs into N partitions) in the same order. 

The index bounds of set of pairs of the Kth task can be calculated by following formulas.  

      Set B = (|X|*|Y|+N-1)/N;  

      If 0<=K<=N-2 

  Start index: (Ai,Ci)   A[i] = A[K*B%|X|];    C[i] = C[K*B/|X|] 

  End index:   (Aj,Cj) A[j] = A[((K+1)*B – 1)%|X|];   C[j] = C[(K+1)*B/|X|] 

      If K=N-1 

       Start index: (Ai,Ci)   A[i] = A[K*B%|X|];    C[i] = C[K*B/|X|]; 

  End index:   (Aj,Cj) A[j] = A[|X|-1];     C[j] = C[|Y|-1]; 

 

3.3.2 DryadLINQ Implementation 

 We implemented a parallel version of the PhyloD application using DryadLINQ and the 

standalone PhyloD runtime available from Microsoft Research [33][34].  As mentioned above the 

first phase of the PhyloD computation requires calculation of p-values for each HLA alleles and HIV 

codons. To increase the granularity of the parallel tasks, we group the individual computations into 

computation blocks containing a number of HLA alleles and HIV codons. Next these groups of 

computations are performed as a set of independent computations using DryadLINQ’s “Select” 



construct. As the number of patients samples in each pair are quite different, the PhyloD tasks are 

inhomogeneous in running time.  To ameliorate this effect we partitioned the data (computation 

blocks) randomly so that the assignment of blocks to nodes will happen randomly.  

      After completion of the first step of PhyloD, we get one output file for each task (computation 

block). The second step will merge the K*M output files together to get one final output file with the 

q-values of all pairs. The DryadLINQ PhyloD task decomposition and Dryad vertex hierarchy of the 

DryadLINQ PhyloD are shown in the Figure 7.  

 

Figure 7. PhyloD task decompostion (left) and the Dryad vertex hierarchy (right) of the DryadLINQ 
implementation of PhyloD application 

 

Figure 8. Part PhyloD DryadLINQ result about HIV Gag p17 and p24 protein codons 



 To explore the results of HLA-codon and codon-codon associations, Microsoft Research 

developed PhyloD viewer. Figure 8 is a PhyloDv[36] picture of part of PhyloD results for HIV Gag 

p17 and p24 protein codons with the DryadLINQ implementation. HLA-codon associations are 

drawn as external edges, whereas codon-codon associations are drawn as arcs within the circle. 

Colors indicate p-values of the associations. Some associations showed on this figure have already 

been well-studied by scientists before. For example, the B57 allele has been proved to be strongly 

associated with effective HIV control [32]. 

 

3.3.3 DryadLINQ PhyloD Performance 

 We investigated the scalability and speed up of DrayLINQ PhyloD implementation. The data set 

includes 136 distinct HLA alleles and 841 distinct HIV codons, resulting in 114376 HIL-HIV pairs. 

The cluster Ref C is used for these studies. Figure 9 depicts the speedup of running 114376 pairs on 

increasing number of cores. As the number of cores increase from 192 to 384, the speed up is not as 

good as cases with smaller number of cores. This increasing of overhead is due to the granularity 

becoming smaller with the increase of number of cores. The speed up would have been better on a 

larger data set.  

 

 

Figure 9. DryadLINQ PhyloD speedup on different number of cores for 114376 pairs of computation 
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Figure 10. DryadLINQ PhyloD scalability with increase of dataset size 

 In the scalability experiment, we used data sets with increasing number of similar length tasks 

on a fixed number of cores (2 nodes* 24 cores). As shown in figure 10 the DryadLINQ PhyloD 

implementation scales well with the increase of data size.  

 The current data set we have is too small for a definitive study. We intend further study of the 

DryadLINQ PhyloD application behavior with larger data sets. 
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3.4 HEP Processing large column of physics data using software Root and produce histogram 

results for data analysis. 

 HEP data analysis application has a typical MapReduce application in which the map phase is 

used process a large collection of input files containing events (features) generated by HEP 

experiments. The output of the map phase is a collection of partial histograms containing identified 

features. During the reduction phase these partial histograms are merged to produce a single 

histogram representing the overall data analysis. Figure 11 shows the data flow of the HEP data 

analysis application. 

 
Figure 11. Program/data flow of the HEP data analysis application 

 Although the structure of this application is simple and fits perfectly well with the MapReduce 

programming model, it has a set of highly specific requirements such as: 

1. All data processing functions are written using an interpreted language supported by ROOT 

[3] data analysis framework 

2. All the data products are in binary format and passed as files to the processing scripts 

3. Large input data sets (Large Hadron Collider  will produce 15 petabytes of data per year). 

 We manually partitioned the input data to the compute nodes of the cluster and generated data-

partitions containing only the file names available in a given node. The first step of the analysis 

requires applying a function coded in ROOT to all the input files. The analysis script we used can 

process multiple input files at once, therefore we used a homomorphic Apply (shown below) 

operation in DryadLINQ to perform the first stage (corresponding to the map() stage in 

MapReduce) of the analysis.  
 

[Homomorphic] 

ApplyROOT(string fileName){..} 

IQueryable<HistoFile> histograms = dataFileNames.Apply(s => ApplyROOT (s)); 
 

 

 Unlike the Select operation that processes records one by one, the Apply operation allows a 

function to be applied to an entire data set, and produce multiple output values. Therefore, in each 

vertex the program can access a data partition available in that node (provided that the node is 

available for executing this application – please refer to the “Note” under CAP3 section).  Inside the 

ApplyROOT() method, the program iterates over the data set and groups the input data files, and 

execute the ROOT script passing these files names along with other necessary parameters. The 

output of this operation is a binary file containing a histogram of identified features of the input 

data. The ApplyROOT() method saves the output histograms in a predefined shared directory and 

produces its location as the return value. 



 In the next step of the program, we perform a combining operation of these partial histograms. 

Again, we use a homomorphic Apply operation to combine partial histograms. Inside the function 

that is applied to the collection of histograms, we use another ROOT script to combine collections of 

histograms in a given data partition. (Before this step, the main program generates the data-

partitions containing the histogram file names). The output partial histograms produced by the 

previous step will be combined by the main program to produce the final histogram of identified 

features. 

3.4.1 Evaluations and Findings 

 The first task we had to tackle in the DryadLINQ implementation of this application is the 

distribution of data across the computation cluster. We used a data set of one terabytes (1TB) and 

hence storing and distributing this data set poses challenges. Typically these large data sets are 

stored in shared file systems and then get distributed to the computation nodes before the analysis. 

In this application the input data is organized in a large number of binary files each of which 

roughly occupy 33MB of disk space. Distributing a collection of data files across a computation 

cluster is a typical requirement in many scientific applications and we have already experienced 

this in CAP3 data analysis as well. 

 Current release of DryadLINQ does not provide any tools to do such data distribution. However, 

it provides two partitioning constructs which can be use to develop an application to perform this 

data distribution. One possible approach is to develop a DryadLINQ application to copy input files 

from its shared repository to individual computation units. This may saturate the shared repository 

infrastructure as all the compute nodes try to copy data from this shared location. We developed a 

standalone application to perform the above distribution as it can be used for many similar 

situations. 

Hadoop provides and optimized solution to distributing data across computation nodes of a 

cluster via HDFS [6] and a client tool. The above data distribution reduces to the following simple 

command in the Hadoop environment. 

bin/Hadoop –dfs put shared_repository_path destination_in_hdfs  

 

 We think that a similar tool for DryadLINQ would help users to partition data (available in files) 

more easily than developing custom solution for each application. 

 The second challenge we faced in implementing the above application is the use of ROOT data 

analysis framework to process data. This is also a common requirement in scientific analysis as 

many data analysis functions are written using specific analysis software such as ROOT, R, Matlab 

etc. To use these specific software at DryadLINQ vertices, they need to be installed in each and 

every compute node of the cluster. Some of these applications only require copying a collection of 

libraries to the compute nodes while some requires complete installations. Clusrun is a possible 

solution to handle both types of installations, however providing another simple tool to perform the 

first type of installations would benefit the users.  (Note: we could ship few shared libraries or other 

necessary resources using DryadLINQ.Resources.Add(resource_name) method. However, this 

does not allow user to add a folder of libraries or a collection of folders. The ROOT installation 

requires copying few folders to every compute node) 

 After tackling the above two problems we were able to develop a DryadLINQ application for the 

HEP data analysis.  



 We measure the performance of this application with different input sizes up to 1TB of data and 

compare the results with Hadoop and Twister implementations that we have developed previously. 

The results of this analysis are shown in Figure 12. 

 
Figure 12. Performance of different implementations of HEP data analysis applications. 

 The results in Figure 12 highlight that Hadoop implementation has a considerable overhead 

compared to DraydLINQ and Twister implementations. This is mainly due to differences in the 

storage mechanisms used in these frameworks. DryadLINQ and Twister access the input from local 

disks where the data is partitioned and distributed before the computation. Currently, HDFS can 

only be accessed using Java or C++ clients, and the ROOT – data analysis framework is not capable 

of accessing the input from HDFS.  Therefore, we placed the input data in IU Data Capacitor – a high 

performance parallel file system based on Lustre file system, and allowed each map task in Hadoop 

to directly access the input from this file system. This dynamic data movement in the Hadoop 

implementation incurred considerable overhead to the computation. In contrast, the ability of 

reading input from the local disks gives significant performance improvements to both Dryad and 

Twister implementations. 

 Additionally, in the DryadLINQ implementation, we stored the intermediate partial histograms 

in a shared directory and combined them during the second phase as a separate analysis. In Hadoop 

and Twister implementations, the partial histograms are directly transferred to the reducers where 

they are saved in local file systems and combined. These differences can explain the performance 

difference between the Twister version and the DryadLINQ version of the program. We are planning 

to develop a better version of this application for DryadLINQ in the future.  

 

  



3.5 K-means Clustering 

 We implemented a K-means Clustering [2] application using DryadLINQ to evaluate its 

performance under iterative computations. Algorithms such as clustering, matrix multiplication, 

Multi Dimensional Scaling [12] are some examples that performs iterative computations. We used 

K-means clustering to cluster a collection of 2D data points (vectors) to a given number of cluster 

centers. The MapReduce algorithm we used is shown below. (Assume that the input is already 

partitioned and available in the compute nodes). In this algorithm, Vi refers to the ith vector, Cn,j 

refers to the jth  cluster center in nth iteration, Dij refers to the Euclidian distance between ith vector 

and jth cluster center, and K is the number of cluster centers.  

The DryadLINQ implementation uses an Apply 

operation, which executes in parallel in terms of the 

data vectors, to calculate the partial cluster centers. 

Another Apply operation, which runs sequentially, 

calculates the new cluster centers for the nth 

iteration. Finally, we calculate the distance between 

the previous cluster centers and the new cluster 

centers using a Join operation to compute the 

Euclidian distance between the corresponding 

cluster centers. DryadLINQ support “loop 

unrolling”, using which multiple iterations of the 

computation can be performed as a single DryadLINQ query. Deferred query evaluation is a feature 

of LINQ, whereby a query is not evaluated until the program accesses the query results.. Thus, in the 

K-means program, we accumulate the computations performed in several iterations (we used 4 as 

our unrolling factor) into one query and only “materialize” the value of the new cluster centers 

every 4th iteration. In Hadoop’s MapReduce model, each iteration is represented as a separate 

MapReduce computation. Notice that without the loop unrolling feature in DryadLINQ, each 

iteration would be represented by a separate execution graph as well.  

3.5.1 Evaluations and Findings 

 When implementing K-means algorithm using DryadLINQ we noticed that the trivial MapReduce 

style implementation of this algorithm perform extremely slow. We had to make several 

optimizations to the data structures and how we perform the calculations. One of the key changes is 

the use of Apply operation instead of Select to compare each data point with the current set of 

cluster centers.  This enables DryadLINQ to consume an entire data partition at once and perform 

the comparisons. Figure 13 shows a comparison of performances of different implementations of K-

means clustering.  

K-means Clustering Algorithm for MapReduce 

Do 

Broadcast Cn  
[Perform in parallel] –the map() operation 

for each Vi 

 for each Cn,j 
Dij <= Euclidian (Vi,Cn,j) 

Assign point Vi to Cn,j with minimum Dij 

 
for each Cn,j 

 Cn,j <=Cn,j/K 

 
[Perform Sequentially] –the reduce() operation 

Collect all Cn 

Calculate new cluster centers Cn+1 
Diff<= Euclidian (Cn, Cn+1) 

while (Diff <THRESHOLD) 



 

Figure 13. Performance of different implementations of  clustering algorithm. 

 The performance graph shows that although DryadLINQ performs better than Hadoop for K-

means application, still the average time taken by DryadLINQ and Hadoop implementations is 

extremely large compared to the MPI and the Twister implementations. 

 Although we used a fixed number of iterations, we changed the number of data points from 500k 

to 20 millions. Increase in the number of data points triggers the amount of computation. However, 

it was not sufficient to ameliorate the overheads introduced by Hadoop and DryadLINQ runtimes. 

As a result, the graph in Figure 13 mainly shows the overhead of the different runtimes. With its 

loop unrolling feature, DryadLINQ does not need to materialize the outputs of the queries used in 

the program in every iteration. In the Hadoop implementation each iteration produces a new 

MapReduce computation increasing the total overhead of the implementation. The use of file 

system based communication mechanisms and the loading of static input data at each iteration (in 

Hadoop) and in each unrolled loop (in DryadLINQ) results in higher overheads compared to Twister 

and MPI. Iterative applications which perform more computations or access larger volumes of data 

may produce better results for Hadoop and DryadLINQ as the higher overhead induced by these 

runtimes becomes relatively less significant. Currently the academic release uses file system based 

communication mechanism. However, according to the architecture discussed in Dryad paper [1], 

Dryad is capable of communicating via TCP pipes and therefore we expect better performances for 

this type of applications once it is supported by DryadLINQ as well.  

3.5.2 Another Relevant Application - Matrix Multiplication 

 Parallel applications that are implemented using message passing runtimes can utilize various 

communication constructs to build diverse communication topologies. For example, a matrix 

multiplication application that implements Fox's Algorithm [13] and Cannon’s Algorithm [14] 

assumes parallel processes to be in a rectangular grid. Each parallel process in the grid 

communicates with its left and top neighbors as shown in figure 14 (left). The current cloud 

runtimes, which are based on data flow models such as MapReduce and Dryad, do not support this 



behavior, in which the peer nodes communicate with each other. Therefore, implementing the 

above type of parallel applications using MapReduce or Dryad requires adopting different 

algorithms.  

 

Figure 14. (Left) The communication topology of Cannon’s Algorithm implemented using MPI, 
(middle) Communication topology of matrix multiplication application based on MapReduce, and 
(right) Communication topology of K-means Clustering implemented as a MapReduce application. 

 We have implemented matrix multiplication applications using Hadoop and Twister by adopting 

a row/column decomposition approach to split the matrices. To clarify our algorithm, let’s consider 

an example where two input matrices, A and B, produce matrix C, as the result of the multiplication 

process. We split the matrix B into a set of column blocks and the matrix A into a set of row blocks. 

In each iteration, all the map tasks process two inputs: (i) a column block of matrix B, and (ii) a row 

block of matrix A; collectively, they produce a row block of the resultant matrix C. The column block 

associated with a particular map task is fixed throughout the computation, while the row blocks are 

changed in each iteration. However, in Hadoop’s programming model (a typical MapReduce model), 

there is no way to specify this behavior.  Hence, it loads both the column block and the row block in 

each iteration of the computation. Twister supports the notion of long running map/reduce tasks 

where these tasks are allowed to retain static data in the memory across invocations, yielding 

better performance for “Iterative MapReduce” computations. The communication pattern of this 

application is shown in figure 14 (middle). We haven’t implemented a Matrix multiplication 

application using DryadLINQ yet and plan to do so in the future. 

  



4. Analysis 

4.1 DryadLINQ vs. Other Runtimes 

4.1.1 Handling Data 

 Cloud technologies adopts a more data centered approach to parallel programming compared to 

the traditional parallel runtimes such as MPI, Workflow runtimes, and individual job scheduling 

runtimes in which the scheduling decisions are made mainly by the availability of the computation 

resources. DryadLINQ starts its computation from a partition table adapting the same data centered 

approach and try to schedule computations where the data is available. 

 In DryadLINQ the data is partitioned to the shared directories of the computation nodes of the 

HPC cluster where all the nodes have access to these common directories. With the support from a 

partitioned file DryadLINQ builds the necessary meta-data to access these data partitions and it also 

supports replicated data partitions to improve the fault tolerance. As we have discussed under 

sections 3.1 and 3.3.1 with the current release of DryadLINQ the partitioning of the existing data 

(either in individual files or in large data items) needs to be handled by the user manually. 

Comparatively, Apache Hadoop comes with a distributed file system that can be deployed on top of 

a set of heterogeneous resources, and a set of client tools to perform necessary file system 

operations. With this the user is completely shielded from the locations where the data is stored 

and its fault tolerance functionalities. Twister also adopts a DryadLINQ style meta-data model to 

handle data partitions and currently supports file based data types. 

 Although the use of a distributed file system in Hadoop makes the data partitioning and 

managing much easier, not all the applications benefit from this approach. For example, in HEP data 

analysis, the data is processed via a specialized software framework named ROOT which needs to 

access data files directly from the file system, but Hadoop provides only Java and C++ API to access 

HDFS. We used a shared parallel file system (Lustre) deployed at Indiana University to store HEP 

data and this resulted higher overheads in the Hadoop implementation. Apache subprojects such as 

FUSE [15] allows HDFS to be mounted as a shared file system but these approaches do not support 

the  concept of “moving computation to data” rather use HDFS as a just another distributed file 

system.  Sector/Sphere [16] is a parallel runtime developed by Y. Gu, and R. L. Grossman that can be 

used to implement MapReduce style applications. Sphere uses Sector distributed files system 

resembling an architecture similar to Hadoop. 

4.1.2 Parallel Topologies 

 Parallel topologies supported by various parallel runtimes and the problems that can be 

implemented using these parallel topologies determine the applicability of many parallel runtimes 

to the problems in hand. For example, many job scheduling infrastructures such as TORQUE [17] 

and SWARM [18] can be used to execute parallel applications such as CAP3 consisting of a simple 

parallel topology of a collection of large number of independent tasks. Applications that perform 

parametric sweeps, document conversions, and brute-force searches are few other examples of this 

category. DryadLINQ, Hadoop, and Twister can all handle this class of applications well.  Except for 

the manual data partitioning requirement, programming such problems using DryadLINQ is 

considerably easier than Hadoop or Twister implementations. With the debugging support from 

visual studio and the automatic deployment mechanism, the users can develop applications faster 



with DryadLINQ. The CAP3 program we developed using DryadLINQ can be used as a model for 

many similar problems which has the simple parallel topology of collection of independent tasks. 

 MapReduce programming model provides more parallel topologies than the simple independent 

tasks with its support for the “reduction” phase. In typical MapReduce model, the outputs of the 

map tasks are partitioned using a hash function and assigned to a collection of reduce tasks. With 

the support of overloaded “key selectors” or hashes and by selecting the appropriate key selector 

function, this simple process can be extended to support additional models producing customized 

topologies under the umbrella of MapReduce model. For example, in the MapReduce version of 

tera-sort [16] application, Hadoop uses a customized hashing function to model the bucket sort 

algorithm.  In DryadLINQ we can use the programming flows of Apply -> GroupBy -> Apply or 

Select -> GroupBy -> Apply to simulate MapReduce style computations by using an 

appropriate GroupBy function. 

 Among other parallel runtimes that support individual tasks and MapReduce style applications, 

Sphere[16] adopts a streaming based computation model used in GPUs which can be used to 

develop applications with parallel topologies as a collection of MapReduce style applications. All 

Pairs [19] solves the specific problems of comparing elements in two data sets with each other and 

several other specific parallel topologies. We have used DryadLINQ to perform a similar 

computation to calculate pair-wise distances of a large collection of genes and our algorithm is 

explained in details in section 3.2. Swift [20]  provides a scripting language and a execution and 

management runtime for developing parallel applications with the added support for defining 

typed data products via schemas. DryadLINQ allows user to define data types as C# structures or 

classes allowing users to handle various data types seamlessly with the runtime with the advantage 

of strong typing. Hadoop allows user to define “record readers” depending on the data that needs to 

be processed. 

 Parallel runtimes that support DAG based execution flows provide more parallel topologies 

compared to the mere MapReduce programming model or the models that support scheduling of 

large number of individual jobs. Condor DAGMan [21] is a well-known parallel runtime that 

supports applications expressible as DAGs and many workflow runtimes supports DAG based 

execution flows. However, the granularity of tasks handled at the vertices of Dryad/DryadLINQ and 

the tasks handled at map/reduce tasks in MapReduce is more fine grained than the tasks handled in 

Condor DAGMan and other workflow runtimes. This distinction become blurred when it comes to 

the parallel applications such as CAP3 where the entire application can be viewed as a collection of 

independent jobs, but for many other applications the parallel tasks of cloud technologies such as 

Hadoop and Dryad are more fine grained than the ones in workflow runtimes. For example, during 

the processing of the GroupBy operation used in DryadLINQ, which can be used to group a 

collection of records using a user defined key field, a vertex of the DAG generated for this operation 

may only process few records. In contrary the vertices in DAGMan may be a complete programs 

performing considerable amount of processing. 

Although in our analysis we compared DryadLINQ with Hadoop, DryadLINQ provides higher 

level language support for data processing than Hadoop. Hadoop’s sub project Pig [7] is a more 

natural comparison to DryadLINQ. Our experience suggests that the scientific applications we used 

maps more naturally to Hadoop and Dryad (currently not available for public use) programming 

models than the high level runtimes such as Pig and DryadLINQ. However, we expect the high level 



programming models provided by the runtimes such as DryadLINQ and Pig are to be more suitable 

for applications that process structured data that can be fit into tabular structures.  

4.1.3 Twister: Iterate MapReduce 

Our work on Twister (previously known as CGL-MapReduce) extends capabilities of the 

MapReduce programming to applications that perform iterative MapReduce computations. We 

differentiate the variable and fixed data items used in MapReduce computation and allow cacheable 

map/reduce tasks to hold static data in memory to support faster iterative MapReduce 

computations.  The use of streaming for communication enables Twister to operate with minimum 

overheads. Currently Twister does not provide any fault tolerance support for applications and we 

are investigating the mechanisms to support fault tolerance with the streaming based 

communication mechanisms we use. The architecture of Twister and a comparison of 

synchronization and intercommunication mechanisms used by the parallel runtimes are shown in 

figure 12. 

 
Figure 15.  (Left) Components of the Twister.  (Right) Different synchronization and 

intercommunication mechanisms used by the parallel runtimes. 

 

4.2 Performance and Usability of Dryad 

 We have applied DryadLINQ to a series of data/compute intensive applications with unique 

requirements. The applications range from simple map-only operations such as CAP3 MapReduce 

jobs in HEP data analysis and iterative MapReduce in K-means clustering. We showed that all these 

applications can be implemented using the DAG based programming model of DryadLINQ, and their 

performances are comparable to the MapReduce implementations of the same applications 

developed using Hadoop.  

 We also observed that cloud technologies such as DryadLINQ and Hadoop work well for many 

applications with simple communication topologies. The rich set of programming constructs 

available in DryadLINQ allows the users to develop such applications with minimum programming 

effort. However, we noticed that higher level of abstractions in DryadLINQ model sometimes make 

fine-tuning the applications more challenging. 



 Hadoop and DryadLINQ differ in their approach to fully utilize the many cores available on 

today’s compute nodes. Hadoop allows scheduling of a worker process per core. On the other hand, 

DryadLINQ assigns vertices (i.e. worker processes) to nodes and achieves multi-core parallelism 

with PLINQ. The simplicity and flexibility of the Hadoop model proved effective for some of our 

benchmarks. Features such as loop unrolling let DryadLINQ perform iterative applications faster, 

but still the amount of overheads in DryadLINQ and Hadoop is extremely large for this type of 

applications compared to other runtimes such as MPI and Twister. 

 Apart from those we would like to highlight the following usability characteristics of DryadLINQ 

comparing it with other similar runtimes. 

4.2.1 Installation and Cluster Access 

 We note a technical issue we encountered using DryadLINQ within our Windows HPC 

environment.  The HPC clusters at our institution are setup using a network configuration that has 

the headnode connected directly to the enterprise network (ADS domain access) and the compute 

nodes behind the headnode on a private network.  Enterprise network access is provided to the 

compute nodes via DHCP and NAT(network address translation) services running on the 

headnode.  This is our preferred configuration as it isolates the compute nodes from extraneous 

network traffic, places the compute nodes on a more secure private network and minimizes the 

attack surface of our clusters.   

 Using this configuration with DryadLINQ applications has been somewhat cumbersome as this 

configuration does not allow direct access to the compute node’s private network from the 

enterprise network, while DryadLINQ applications require to access the compute nodes 

periodically.  In other words, unless we run our DryadLINQ applications directly on the headnode, 

DryadLINQ is unable to access the compute node file systems as only the headnode is aware of the 

private network.   

4.2.2 Developing  and Deployment  of Applications 

 Enabling DryadLINQ for an application simply requires adding DryadLINQ.dll to the project and 

pointing to the correct DryadLinqConfig.xml. After this step, the user can develop applications 

using Visual Studio and use it to deploy and run DryadLINQ applications directly on the cluster.  

With the appropriate cluster configurations, the development teams can test DryadLINQ 

applications directly from their workstations. In Hadoop, the user can add Hadoop jar files to the 

class path and start developing Hadoop applications using a Java development environment, but to 

deploy and run those applications the user need to create jar files packaging all the necessary 

programs and then copy them to a particular directory that Hadoop can find. Tools such as IBM’s 

eclipse plugin for MapReduce [24] add more flexibility to create MapReduce computations using 

Hadoop. 

4.2.3 Debugging 

 DryadLINQ supports debugging applications via visual studio by setting the property 

DryadLinq.LocalDebug=true. This is a significant improvement of usability compared to the other 

parallel runtimes such as Hadoop. The user can simply develop the entire application logic in his 

workstation and move to the cluster to do the actual data processing. Hadoop also supports single 



machine deployments but the user needs to do manual configuration and debugging to test 

applications.  

4.2.4 Fault Tolerance 

 The Dryad publication [4] discusses the fault tolerance features such as re-execution of failed 

vertices and duplicate execution of slower running tasks.  We expected good fault tolerance support 

from Dryad, since better fault tolerance support is noted as major advantage in the new parallel 

frameworks like Dryad and Hadoop map reduce over the traditional parallel frameworks, enabling 

them to perform reliable computations on commodity unreliable hardware. 

  On the contrary, recently we encountered couple of issues regarding Dryad fault tolerance with 

respect to duplicate executions and failed vertices. First issue is the failures related to duplicate 

task executions. We wanted to perform a larger computation on a fewer number of nodes for 

scalability testing purposes. Due to unbalanced task sizes and the longer running times of vertices, 

Dryad executed duplicate tasks for the slower running tasks. Eventually the original tasks 

succeeded and the duplicated tasks got killed. But upon seen the killed tasks, the window HPC 

scheduler terminated the job as a failure. In this case we assume that Dryad behaved as expected by 

scheduling the duplicate tasks, but the Dryad windows HPC scheduler integration caused the failure 

without understanding the Dryad semantics.  We’ve been informed that this issue is fixed in the Nov 

2009 release of DryadLINQ, where DryadLINQ application will terminate correctly with the correct 

output, even though the HPC job is marked as failed. 

 Second issue happened recently when a misbehaving node joined the windows HPC cluster 

unexpectedly. A task from a Dryad job got scheduled in this node and that particular task failed due 

to the misbehavior of the node. We expected Dryad to schedule the failed task on a different node 

and to recover the job, but instead the whole job got terminated as a failed job.  We have 

encountered both of the above issues in our Hadoop clusters many times and Hadoop was able to 

recover all of them successfully.  

4.2.5 Monitoring 

  DryadLINQ depends on the HCP Cluster Manager and HPC Job Manager’s monitoring capabilities 

to monitor the progress and problems of the jobs. Although the HPC Cluster Manager and Job 

Manager give better view of the hardware utilization and locations where the job getting executed, 

there is no direct way to find the progress of the DryadLINQ applications. Finding an error that 

happens only in a cluster deployment is even harder with the current release of DryadLINQ. For 

example, the user need to follow the steps below to find the standard output (stdout) and standard 

error (stderr) streams related to a particular vertex of the DryadLINQ application. 

1. Find the job’s ID using Job Manager 
2. Find which vertex (sub job has failed) and find its task number 
3. Find where that task was running using Job Manager 
4. Navigate to the shared directory where the job outputs are created 
5. Open the stdout and stderr files to find any problems. 

 
Note: When the vertex is using an Apply operation won’t give any information because then the 

standard outputs printed by the program does not get saved in stdout or stderr files. 

 Hadoop provides a simple web interface to monitor the progress of the computations and to 

locate these standard output and error files. A simple view of how many map/reduce tasks 



completed so far gives a better understanding of the progress of the program in Hadoop. We think 

that a simple approach like this would help new users to develop applications easily without 

frustration using DryadLINQ. 

 

5. Summary of key features of applications that suitable and not suitable for Dryad  

 In the past Fox has discussed the mapping applications to different hardware and software in 

terms of 5 “Application Architectures” [22]. These 5 categories are listed in Table 6. 

 

Table 6. Application classification 

1 Synchronous The problem can be implemented with instruction level Lockstep Operation 

as in SIMD architectures 

 

2 Loosely Synchronous These problems exhibit iterative Compute-Communication stages with 

independent compute (map) operations for each CPU that are synchronized 

with a communication step. This problem class covers many successful MPI 

applications including partial differential equation solution and particle 

dynamics applications. 

 

3 Asynchronous Compute Chess and Integer Programming; Combinatorial Search often 

supported by dynamic threads. This is rarely important in scientific 

computing but at heart of operating systems and concurrency in consumer 

applications such as Microsoft Word. 

 

4 Pleasingly Parallel Each component is independent. In 1988, Fox estimated this at 20% of the 

total number of applications but that percentage has grown with the use of 

Grids and data analysis applications as seen here and for example in the LHC 

analysis for particle physics [23]. 

 

5 Metaproblems These are coarse grain (asynchronous or dataflow) combinations of classes 

1)-4). This area has also grown in importance and is well supported by Grids 

and described by workflow. 

 

6 Twister It describes file(database) to file(database) operations which has three 
subcategories given below and in table 7. 
6a) Pleasingly Parallel Map Only 
6b) Map followed by reductions 
6c) Iterative “Map followed by reductions” – Extension of Current 

Technologies that supports much linear algebra and data mining 
 

 

 The above classification 1 to 5 largely described simulations and was not aimed directly at data 

processing. Now we can use the introduction of MapReduce as a new class which subsumes aspects 

of classes 2, 4, 5 above. We generalize MapReduce to include iterative computations and term it 

Twister. We have developed a prototype of this extended model and term it currently Twister 

[9][10]. Then this new category is summarized as: 



 Note overheads in categories 1, 2, 6c go like Communication Time/Calculation Time and basic 

MapReduce pays file read/write costs while MPI overhead is measured in microseconds. In Twister 

we use data streaming to reduce overheads while retaining the flexibility and fault-tolerance of 

MapReduce. Twister supports the Broadcast and Reduce operations in MPI which are all that is 

needed for much linear algebra and datamining including the clustering and MDS approaches 

described earlier.  

 

Table 7. Comparison of Twister subcategories and Loosely Synchronous category 

Map-only Classic 
Map-reduce 

Iterative Reductions 
Twister 

Loosely  
Synchronous 

 

 
 

 
 

 Document 
conversion  
(PDF->HTML) 

 Brute force 
searches in 
cryptography 

 Parametric sweeps 
 CAP3 Gene 

assembly 
 PolarGrid Matlab 

data analysis 

 High Energy 
Physics 
(HEP) 
Histograms 

 Distributed 
search 

 Distributed sort 
 Information 

retrieval 
 Calculation of 

Pairwise 
Distances for ALU 
sequences 

 Expectation 
maximization 
algorithms 

 Linear Algebra 
 Datamining including 
 Clustering 

 K-means 
 Deterministic 

Annealing clustering 
 Multidimensional 

Scaling (MDS) 
 

 Many MPI scientific 
applications 
utilizing wide 
variety of 
communication 
constructs including 
local interactions 

 Solving differential 
equations and  

 Particle dynamics 
with short range 
forces 

Domain of MapReduce and Iterative Extensions MPI 

 

 From the applications we developed it is trivial that the DryadLINQ can be applied to real 

scientific analyses. DryadLINQ performs competitively well with Hadoop for both pleasingly 

parallel and MapReduce style applications.  However, applicability of DryadLINQ (also Hadoop) for 

iterative MapReduce applications is questionable. The file based communication mechanism and 

loading of static data again and again causes higher overheads in this class of applications. 

However, we expect that these overheads may reduce if DryadLINQ support in memory 

communication mechanism such as TCP pipes. 

 Additional support for partitioning data (few tools to perform various data partitioning 

strategies) and a mechanism to monitoring the progress of applications are two areas that 

DryadLINQ needs improvements. 
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Appendix A 

// 

//Compute intensive function described in section 3.1.3 

// 

public static int Func_ComputeIntensive(int index) { 

     double val = 0; 

     for (int i = 0; i < mat_size; i++) 

     { 

          for (int j = 0; j < mat_size; j++) 

          { 

                for (int k = 0; k < mat_size; k++) 

                { 

                        val = pi * pi;                         

                } 

          } 

     } 

     return index; 

} 

 

Appendix B 

// 

//Memory intensive function described in section 3.1.3 

// 

public static int ExecuteHighMemory(int index) 

        { 

            Random rand = new Random(); 

            double val = 0; 

 

            for (int i = 0; i < num_repititions; i++) 

            { 

                double[] data1 = new double[array_size]; 

                for (int j = 0; j < array_size; j++) 

                { 

                    data1[j] = pi * rand.Next(); 

                } 

 

                double[] data2 = new double[array_size]; 

                for (int j = 0; j < array_size; j++) 

                { 

                    data2[j] = pi * rand.Next(); 

                } 

 

                for (int j = 0; j < num_compute_loops; j++) 

                { 

                    val = data1[rand.Next(array_size)] * 

data2[rand.Next(array_size)]; 

                } 

            } 

            return index;  

        } 

 


