

Applicability of DryadLINQ to Scientific

Applications

Salsa Group, Pervasive Technology Institute, Indiana University

http://salsaweb.ads.iu.edu/salsa/

Jan 30th 2010

Contents
1. Introduction .. 4

2. Overview ... 4

2.1 Microsoft DryadLINQ .. 4

2.2 Apache Hadoop ... 5

2.3 Twister: Iterate MapReduce ... 5

2.4 MPI .. 5

3. Performance and Usability of Applications using DryadLINQ ... 7

3.1 EST (Expressed Sequence Tag) sequence assembly program using DNA sequence assembly

program software CAP3. ... 7

3.1.1 Evaluations and Findings ... 8

3.1.2 Inhomogeneity of data partitions and scheduling partitions to nodes 9

3.1.3 Threads vs. Processes (Issue No. 2) .. 11

3.2 Pairwise Alu sequence alignment using Smith Waterman GOTOH .. 12

3.2.1 ALU Clustering ... 12

3.2.2 Smith Waterman Dissimilarities .. 12

3.2.3 The O(N2) Factor of 2 and structure of processing algorithm ... 13

3.2.4 DryadLINQ Implementation ... 13

3.2.5 MPI Implementation ... 14

3.2.6 Performance of Smith Waterman Gotoh SW-G Algorithm ... 14

3.2.7 Apache Hadoop Implementation .. 15

3.2.8 Performance comparison of DryadLINQ and Hadoop SW-G implementations 16

3.2.9 Inhomogeneous data study .. 17

3.3 PhyloD Application .. 19

3.3.1 PhyloD Algorithm .. 19

3.3.2 DryadLINQ Implementation .. 19

3.3.3 DryadLINQ PhyloD Performance ... 21

3.4 HEP Processing large column of physics data using software Root and produce histogram

results for data analysis. ... 23

3.4.1 Evaluations and Findings ... 24

3.5 K-means Clustering ... 26

3.5.1 Evaluations and Findings ... 26

3.5.2 Another Relevant Application - Matrix Multiplication .. 27

4. Analysis ... 29

4.1 DryadLINQ vs. Other Runtimes ... 29

4.1.1 Handling Data .. 29

4.1.2 Parallel Topologies .. 29

4.1.3 Twister: Iterate MapReduce ... 31

4.2 Performance and Usability of Dryad ... 31

4.2.1 Installation and Cluster Access ... 32

4.2.2 Developing and Deployment of Applications .. 32

4.2.3 Debugging ... 32

4.2.4 Fault Tolerance.. 33

4.2.5 Monitoring .. 33

5. Summary of key features of applications that suitable and not suitable for Dryad 34

References .. 36

Appendix A .. 38

Appendix B .. 38

1. Introduction

 Applying high level parallel runtimes to data/compute intensive applications is becoming

increasingly common. The simplicity of the MapReduce programming model and the availability of

open source MapReduce runtimes such as Hadoop, are attracting more users to the MapReduce

programming model. Recently, Microsoft has released DryadLINQ for academic use, allowing users

to experience a new programming model and a runtime that is capable of performing large scale

data/compute intensive analyses.

 The goal of our study is to explore the applicability of DryadLINQ to real scientific applications

and compare its performance with other relevant parallel runtimes such as Hadoop. To achieve this

goal we have developed a series of scientific applications using DryadLINQ, namely, CAP3 DNA

sequence assembly program [1], Pairwise ALU sequence alignment, High Energy Physics(HEP)data

analysis, and K-means Clustering [2]. Each of these applications has unique requirements for

parallel runtimes. For example, the HEP data analysis application requires ROOT [3] data analysis

framework to be available in all the compute nodes and in Pairwise ALU sequence alignment the

framework must handle computing of distance matrix with hundreds of millions of points. We have

implemented all these applications using DryadLINQ and Hadoop, and used them to compare the

performance of these two runtimes. Twister and MPI are used in applications where the contrast in

performance needs to be highlighted.

 In the sections that follow, we first present an overview of the different parallel runtimes we use

in this analysis followed by a detailed discussion of the data analysis applications we developed.

Here we discuss the mappings of parallel algorithms to the DryadLINQ programming model and

present performance comparisons with Hadoop implementations of the same applications. In

section 4 we analyze DryadLINQ’s programming model comparing it with other relevant

technologies such as Hadoop and Twister. We also include a set of usability requirements for

DryadLINQ. We present our conclusions in section 5.

2. Overview

 This section presents a brief introduction to a set of parallel runtimes we use our evaluations.

2.1 Microsoft DryadLINQ

 Dryad [4] is a distributed execution engine for coarse grain data parallel applications. Dryad

considers computation tasks as directed acyclic graphs (DAG) where the vertices represent

computation tasks and while the edges acting as communication channels over which the data flow

from one vertex to another. In the HPC version of Dryad the data is stored in (or partitioned to)

Windows shared directories in local compute nodes and a meta-data file is use to produce a

description of the data distribution and replication. Dryad schedules the execution of vertices

depending on the data locality. Dryad also stores the output of vertices in local disks, and the other

vertices which depend on these results, access them via the shared directories. This enables Dryad

to re-execute failed vertices, a step which improves the fault tolerance in the programming model.

 DryadLINQ[5] is a higher level language layer for Dryad aimed at distributed data processing.

DryadLINQ has the ability to translate LINQ programs written using existing .NET programming

language constructs in to distributed Dryad computations. The academic release of Dryad only

exposes the DryadLINQ API for programmers. Therefore, all our implementations are written using

DryadLINQ although it uses Dryad as the underlying runtime.

2.2 Apache Hadoop

 Apache Hadoop [6] has a similar architecture to Google’s MapReduce runtime [8], where it

accesses data via HDFS, which maps all the local disks of the compute nodes to a single file system

hierarchy, allowing the data to be dispersed across all the data/computing nodes. HDFS also

replicates the data on multiple nodes so that failures of any nodes containing a portion of the data

will not affect the computations which use that data. Hadoop schedules the MapReduce

computation tasks depending on the data locality, improving the overall I/O bandwidth. The

outputs of the map tasks are first stored in local disks until later, when the reduce tasks access them

(pull) via HTTP connections. Although this approach simplifies the fault handling mechanism in

Hadoop, it adds a significant communication overhead to the intermediate data transfers, especially

for applications that produce small intermediate results frequently.

 Apache Hadoop Pig [7] project with its Pig Latin higher level language layer for data analysis is

the DryadLINQ counterpart for Hadoop. However, all our implementations are currently written

only using Hadoop Map Reduce.

2.3 Twister: Iterate MapReduce

 Twister [9][10] is a light-weight MapReduce runtime (earlier called CGL-MapReduce) that

incorporates several improvements to the MapReduce programming model such as (i) faster

intermediate data transfer via a pub/sub broker network; (ii) support for long running map/reduce

tasks; and (iii) efficient support for iterative MapReduce computations. The use of streaming

enables Twister to send the intermediate results directly from its producers to its consumers, and

eliminates the overhead of the file based communication mechanisms adopted by both Hadoop and

DryadLINQ. The support for long running map/reduce tasks enables configuring and re-using of

map/reduce tasks in the case of iterative MapReduce computations, and eliminates the need for the

re-configuring or the re-loading of static data in each iteration.

2.4 MPI

 MPI [11], the de-facto standard for parallel programming, is a language-independent

communications protocol that uses a message-passing paradigm to share the data and state among

a set of cooperative processes running on a distributed memory system. MPI specification (F

defines a set of routines to support various parallel programming models such as point-to-point

communication, collective communication, derived data types, and parallel I/O operations. Most

MPI runtimes are deployed in computation clusters where a set of compute nodes are connected via

a high-speed network connection yielding very low communication latencies (typically in

microseconds). MPI processes typically have a direct mapping to the available processors in a

compute cluster or to the processor cores in the case of multi-core systems.. We use MPI as the

baseline performance measure for the various algorithms that are used to evaluate the different

parallel programming runtimes. Table 1 summarizes the different characteristics of Hadoop,

Dryad, Twister, and MPI.

Table 1. Comparison of features supported by different parallel programming runtimes.

Feature Hadoop DryadLINQ Twister MPI

Programming
Model

MapReduce DAG based execution
flows

MapReduce with a
Combine phase

Variety of
topologies
constructed
using the rich
set of parallel
constructs

Data Handling HDFS Shared directories/
Local disks

Shared file system /
Local disks

Shared file
systems

Intermediate
Data
Communication

HDFS/
Point-to-point via
HTTP

Files/TCP pipes/
Shared memory FIFO

Content Distribution
Network
(NaradaBrokering
(Pallickara and Fox
2003))

Low latency
communication
channels

Scheduling Data locality/
Rack aware

Data locality/
Network
topology based run
time graph
optimizations

Data locality Available
processing
capabilities

Failure
Handling

Persistence via
HDFS
Re-execution of map
and reduce tasks

Re-execution of
vertices

Currently not
implemented
(Re-executing map
tasks, redundant
reduce tasks)

Program level
Check pointing
OpenMPI ,
FT MPI

Monitoring Monitoring support
of HDFS, Monitoring
MapReduce
computations

Monitoring support
for execution graphs

Programming interface
to monitor the progress
of jobs

Minimal
support for task
level
monitoring

Language
Support

Implemented using
Java. Other
languages are
supported via
Hadoop Streaming

Programmable via C#
DryadLINQ provides
LINQ programming
API for Dryad

Implemented using
Java
Other languages are
supported via Java
wrappers

C, C++, Fortran,
Java, C#

3. Performance and Usability of Applications using DryadLINQ

 In this section, we present the details of the DryadLINQ applications that we developed, the

techniques we adopted in optimizing the applications, and their performance characteristics

compared with Hadoop implementations. For our benchmarks, we used three clusters with almost

identical hardware configurations with 256 CPU cores in each and a large cluster with 768 cores as

shown in Table 2.

Table 2. Different computation clusters used for this analysis.

Feature
Linux Cluster

(Ref A)
Windows Cluster

(Ref B)
Windows Cluster

(Ref C)
Windows Cluster

(Ref D)
CPU Intel(R) Xeon(R)

CPU L5420 2.50GHz
Intel(R) Xeon(R)
CPU L5420 2.50GHz

Intel(R) Xeon(R)
CPU L5420 2.40GHz

Intel(R) Xeon(R)
CPU L5420 2.50GHz

CPU
Cores

2
8

2
8

4
6

2
8

Memory 32GB 16 GB 48 GB 32 GB

Disk 1 2 1 1

Network Giga bit Ethernet Giga bit Ethernet Giga bit Ethernet Giga bit Ethernet

Operatin
g System

Red Hat Enterprise
Linux Server release
5.3 -64 bit

Microsoft Window
HPC Server 2008
(Service Pack 1) -
64 bit

Microsoft Window
HPC Server 2008
(Service Pack 1) -
64 bit

Microsoft Window
HPC Server 2008
(Service Pack 1) -
64 bit

Cores 256 256 768 256

3.1 EST (Expressed Sequence Tag) sequence assembly using CAP3 DNA sequence assembly

software

 CAP3[1] is a DNA sequence assembly program, developed by Huang and Madan [4], which

performs several major assembly steps such as computation of overlaps, construction of contigs,

construction of multiple sequence alignments and generation of consensus sequences, to a given set

of gene sequences. The program reads a collection of gene sequences from an input file (FASTA file

format) and writes its output to several output files and to the standard output as shown below.

During an actual analysis, the CAP3 program is invoked repeatedly to process a large collection of

input FASTA file.

Input.fasta -> Cap3.exe -> Stdout + Other output files

 We developed a DryadLINQ application to perform the above data analysis in parallel. This

application takes as input a PartitionedTable defining the complete list of FASTA files to process.

For each file, the CAP3 executable is invoked by starting a process. The input collection of file

locations is built as follows: (i) the input data files are distributed among the nodes of the cluster so

that each node of the cluster stores roughly the same number of input data files; (ii) a “data

partition” (A text file for this application) is created in each node containing the file paths of the

original data files available in that node; (iii) a DryadLINQ “partitioned file” (a meta-data file

understood by DryadLINQ) is created to point to the individual data partitions located in the nodes

of the cluster.

 Following the above steps, a DryadLINQ program can be developed to read the data file paths

from the provided partitioned-file, and execute the CAP3 program using the following two lines of

code.

IQueryable<Line Record> filenames = PartitionedTable.Get<LineRecord>(uri);

IQueryable<int> exitCodes= filenames.Select(s => ExecuteCAP3(s.line));

 Although we use this program specifically for the CAP3 application, the same pattern can be used

to execute other programs, scripts, and analysis functions written using the frameworks such as R

and Matlab, on a collection of data files. (Note: In this application, we rely on DryadLINQ to process

the input data files on the same compute nodes where they are located. If the nodes containing the

data are free during the execution of the program, the DryadLINQ runtime will schedule the parallel

tasks to the appropriate nodes to ensure co-location of process and data; otherwise, the data will be

accessed via the shared directories.)

3.1.1 Evaluations and Findings

 We developed CAP3 data analysis applications for Hadoop using only the map stage of the

MapReduce programming model. In these implementations, the map function simply calls the CAP3

executable passing the input data file names. We evaluated DryadLINQ and Hadoop for the CAP3

application and evaluated its scalability by measuring the program execution times varying the

number of data files. Figure 1 shows comparisons of performance and the scalability of the

DryadLINQ CAP3 application, with the Hadoop CAP3 application. For these evaluations we ran

DryadLINQ applications in cluster ref D and Hadoop applications in cluster ref A, which essentially

are the same cluster booted to different operating systems. It should be noted that the standalone

CAP3 program ran approximately 12.5% slower on the Linux environment than on the windows

environment

Figure 1. Performance of different implementations of CAP3 application.[35]

0

500

1000

1500

2000

2500

0 500000 1000000 1500000 2000000 2500000

A
ve

ra
ge

 T
im

e
 (

se
co

n
d

s)

Number of Reads Processed

DryadLINQ Cap3

Hadoop Cap3

 The performance and the scalability graphs shows that both runtimes work almost equally well

for the CAP3 program, and we would expect them to behave in the same way for similar

applications with simple parallel topologies. Except for the manual data partitioning requirement,

implementing this type of applications using DryadLINQ is extremely simple and straightforward.

During this analysis we identified two issues related to DryadLINQ and the software it uses, which

we will discuss in the coming sections. They are:

Issue No. 1 DryadLINQ schedule jobs to nodes rather than cores – idle cores when
the data is inhomogeneous.

Issue No. 2 Performance of threads is extremely low for memory intensive
operations compared to processes.

3.1.2 Inhomogeneity of data partitions and scheduling partitions to nodes

 DryadLINQ schedules vertices of the DAG (corresponding to data partitions) to compute nodes

rather than individual CPU cores (Issue No. 1). This may also produce suboptimal CPU utilizations

of Dryad programs depending on the data partition strategy. As in MapReduce programming model,

Dryad also assumes that the vertices corresponding to a given phase of the computation partitions

data so that the data is distributed evenly across the computation nodes. Although this is possible in

some computations such as sorting and histogramming where the data can be divisible arbitrary, it

is not always possible when there are inhomogeneous data products at the lowest level of the data

items such as gene sequences, binary data files etc.. For example, CAP3 process sequence data as a

collection of FASTA files and the number of sequences containing in each of these files may differ

significantly causing imbalanced workloads.

 Since DryadLINQ schedules vertices to nodes, it is possible that a vertex which processes few

large FASTA files using few CPU cores of a compute node will keep all the other CPU cores of that

machine idle. In Hadoop, the map/reduce tasks are scheduled to individual CPU cores (customized

by the user) and hence it is able to utilize all the CPU cores to execute map/reduce tasks in a given

time.

Figure 2. Number of active tasks/CPU cores along the running times of two runs of CAP3.

 The collection of input files we used for the benchmarks contained different number of gene

sequences in each, and hence it did not represent a uniform workload across the concurrent

vertices of the DryadLINQ application, because the time the CAP3 takes to process an input file

varies depending on the number of sequences available in the input file. The above characteristics

of the data produces lower efficiencies at higher number of CPU cores as more CPU cores become

idle towards the end of the computation waiting for vertices that takes longer time to complete.

 To verify the above observation we measured the utilization of vertices during two runs of the

CAP3 program. In our first run we used 768 input files so that Dryad schedules 768 vertices on 768

CPU cores, while in the second Dryad schedules 1536 vertices on 768 CPU cores. The result of this

benchmark is shown in figure 2. The first graph in figure 3 corresponding to 768 files indicates that

although DryadLINQ starts all the 768 vertices at the same time they finish at different times with

long running tasks taking roughly 40% of the overall time. The second graph (1536 files) shows

that the above effect has caused lower utilization of vertices when Dryad schedules 1536 vertices to

768 CPU cores.

 For our next experiment, we created data sets with different standard deviations to further

study the effects of inhomogeneous data to our CAP3 applications. CAP3 program execution time

depends mainly on the content of the sequences. When generating the data sets, we first calculated

the standalone CAP3 execution time for each of the files in our real data set. Then, based on those

timings, we created data sets that have approximately similar mean times, while the standard

deviation of the standalone running times is different in each data set. We performed the

performance testing for randomly distributed as well as skewed distributed (sorted according to

individual file running time) data sets. The speedup is taken by dividing the sum of standalone

running times of the files in the data set on the respective environments by the parallel

implementation running time.

Figure 3. Cap3 DryadLINQ implementation performance against inhomogeneous data.[35]

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Sp
e

e
d

u
p

Standard Deviation of Standlone Running Times

DryadLINQ Random Distributed DryadLINQ Skewed Distributed

Hadoop Random Distributed Hadoop Skewed Distributed

 In the figure Figure 3 we can notice that both the applications perform well when the files in a

data set are randomly distributed. The reason for the above behavior is, when a data set is

randomly distributed it provides a natural load balancing among the data partitions.

 The DryadLINQ application performance degrades when the files in the data set are skew

distributed, while the Hadoop CAP3 application performance is much better. Hadoop performs

better as a result of its’ dynamic global pipeline scheduling of map tasks providing a run time global

load balancing. The DryadLINQ skew distributed results further confirm the issue no 1. One

possible remedy for this issue is to distribute the data among the partitions randomly without

following any order.

3.1.3 Threads vs. Processes (Issue No. 2)

 When we develop CAP3 and similar applications, we noticed that the applications perform far

better when the functions/programs which are executed using Select or Apply constructs are

executed as processes than just as functions in the same program. i.e. executed using threads via

PLINQ. Consider the following simple PLINQ program segment.

IEnumerable<int> inputs = indices.AsEnumerable();

IEnumerable<int> outputs =

 ParallelEnumerable.Select(inputs.AsParallel(), x => Func_X (x));

 Variations of Func_X are:

1. Func_ComputeIntensive()
2. Func_ComputeIntensiveProcesses()
3. Func_MemoryIntensive()
4. Func_MemoryIntensiveProcesses()

 The difference between the Func_ComputeIntensive() and

Func_ComputeIntensiveProcesses() is that the second function calls the first function as a
separate executable (process). Similarly the Func_MemoryIntensiveProcesses () calls
Func_MemoryIntensive() as a separate process.

 The Func_ComputeIntensive()simply multiply double value pi in a loop to produce an

artificial compute intensive task. The Func_MemoryIntensive() function allocates and de-

allocates small 2D arrays (about 300 by 300 elements) with floating point computations in-between

resembling a function in many gene analyses such as Smith Waterman or CAP3. The

Func_MemoryIntensive()does not try to utilize all the memory or let the computer in to the

thrashing mode. (Note: these functions are shown in Appendix A and Appendix B of this document.)

 We ran the above simple program with four different functions mentioned above to understand

the effect of threads vs. processes for compute intensive and memory intensive functions. In this

analysis we directly used PLINQ without using DryadLINQ to perform the above query in a multi-

core computer with 24 CPU cores. This helped us to isolate the performance issue in threads vs.

processes better.

 We made the following observations:

1. For compute intensive workloads, threads and processes did not show any significant

performance difference.

2. For memory intensive workloads, processes perform about 20 times faster than threads.

 The main reason for the extremely poor performance of threads is due to the large number of

context switches occur when a memory intensive operation is used with threads. (Note: We

verified this behavior with both the latest version of PLINQ and the previous version of

PLINQ). Following table (Table 3) shows the results.

Table 3. Performance of threads and processes.

Test Type Total Time
(Seconds)

Context Switches Hard Page
Faults

CPU
utilization

Func_MemoryIntensive() 133.62 100000-110000 2000-3000 76%

Func_MemoryIntensiveProcesses() 5.93 5000-6000 100-300 100%

Func_ComputeIntensive() 15.7 <6000 <110 100%

Func_ComputeIntensiveProcesses() 15.73 <6000 <110 100%

 From table 3, it is evident that although we noticed a 76% CPU utilization in the case of

Func_MemoryIntensive(), most of the time the program is doing context switches rather than

useful work. On the other hand, when the same function is executed as separate processes; all the CPU

cores were used to perform the real application.

 We observed these lower CPU utilizations in most of the applications we developed, and

hence we made the functions that perform scientific analysis into separate programs and

executed as processes using DryadLINQ.

3.2 Pairwise Alu sequence alignment using Smith Waterman GOTOH

3.2.1 ALU Clustering

 The ALU clustering problem [26] is one of the most challenging problems for sequencing

clustering because ALUs represent the largest repeat families in human genome. There are about 1

million copies of ALU sequences in human genome, in which most insertions can be found in other

primates and only a small fraction (~ 7000) are human-specific. This indicates that the

classification of ALU repeats can be deduced solely from the 1 million human ALU elements.

Notable, ALU clustering can be viewed as a classical case study for the capacity of computational

infrastructures because it is not only of great intrinsic biological interests, but also a problem of a

scale that will remain as the upper limit of many other clustering problem in bioinformatics for the

next few years, e.g. the automated protein family classification for a few millions of proteins

predicted from large metagenomics projects.

3.2.2 Smith Waterman Dissimilarities

 We identified samples of the human and Chimpanzee ALU gene sequences using Repeatmasker

[27] with Repbase Update [28]. We have been gradually increasing the size of our projects with the

current largest samples having 35339 and 50000 sequences and these require a modest cluster

such as ref C in table 2 (768 cores) for processing in a reasonable time (a few hours as shown in

table 4). We are aiming at supporting problems with a million sequences -- quite practical today on

TeraGrid and equivalent facilities given basic analysis steps scale like O(N2).

 We used open source version NAligner [29] of the Smith Waterman – Gotoh algorithm SW-G

[30][31] modified to ensure low start up effects by each thread/processing large numbers (above a

few hundred) at a time. Memory bandwidth needed was reduced by storing data items in as few

bytes as possible.

3.2.3 The O(N2) Factor of 2 and structure of processing algorithm

 The ALU sequencing problem shows a well known factor of 2 issue present in many O(N2)

parallel algorithms such as those in direct simulations of astrophysical stems. We initially calculate

in parallel the Distance D(i,j) between points (sequences) i and j. This is done in parallel over all

processor nodes selecting criteria i < j (or j > i for upper triangular case) to avoid calculating both

D(i,j) and the identical D(j,i). This can require substantial file transfer as it is unlikely that nodes

requiring D(i,j) in a later step will find that it was calculated on nodes where it is needed.

 For example the MDS and PW (PairWise) Clustering algorithms described in [10], require a

parallel decomposition where each of N processes (MPI processes, threads) has 1/N of sequences

and for this subset {i} of sequences stores in memory D({i},j) for all sequences j and the subset {i}

of sequences for which this node is responsible. This implies that we need D (i,j) and D (j,i) (which

are equal) stored in different processors/disks. This is a well known collective operation in MPI

called either gather or scatter.

3.2.4 DryadLINQ Implementation

We developed a DryadLINQ application to perform the calculation of pairwise SW-G distances

for a given set of genes by adopting a coarse grain task decomposition approach which requires

minimum inter-process communicational requirements to ameliorate the higher communication

and synchronization costs of the parallel runtime. To clarify our algorithm, let’s consider an

example where N gene sequences produces a pairwise distance matrix of size NxN. We decompose

the computation task by considering the resultant matrix and groups the overall computation into a

block matrix of size DxD where D is a multiple (>2) of the available computation nodes. Due to the

symmetry of the distances D(i,j) and D(j,i) we only calculate the distances in the blocks of the upper

triangle of the block matrix as shown in figure 5 (left). The blocks in the upper triangle are

partitioned (assigned) to the available compute nodes and an “Apply” operation is used to execute a

function to calculate (N/D)x(N/D) distances in each block. After computing the distances in each

block, the function calculates the transpose matrix of the result matrix which corresponds to a

block in the lower triangle, and writes both these matrices into two output files in the local file

system. The names of these files and their block numbers are communicated back to the main

program. The main program sort the files based on their block number s and perform another

“Apply” operation to combine the files corresponding to a row of blocks in a single large row block

as shown in the figure 4 (right).

Figure 4. Task decomposition (left) and the Dryad vertex hierarchy (right) of the DryadLINQ

implementation of SW-G pairwise distance calculation application.

3.2.5 MPI Implementation

 The MPI version of SW-G calculates pairwise distances using a set of either single or multi-

threaded processes. For N gene sequences, we need to compute half of the values (in the lower

triangular matrix), which is a total of M = N x (N-1) /2 distances. At a high level, computation tasks

are evenly divided among P processes and execute in parallel. Namely, computation workload per

process is M/P. At a low level, each computation task can be further divided into subgroups and

run in T concurrent threads. Our implementation is designed for flexible use of shared memory

multicore system and distributed memory clusters (tight to medium tight coupled communication

technologies such threading and MPI).

3.2.6 Performance of Smith Waterman Gotoh SW-G Algorithm

 We performed the DryadLINQ and MPI implementations of ALU SW-G distance calculations on

two large data sets and obtained the following results. Both these tests were performed in cluster

ref C.

Table 4. Comparison of DryadLINQ and MPI technologies on ALU sequencing application with

SW-G algorithm

Technology Total
Time
(seconds)

Time per Pair
(milliseconds)

Partition
Data
(seconds)

Calculate and
Output
Distance(seconds)

Merge
files
(seconds)

DryadLINQ 50,000
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339
sequences

8138.314 0.0065 N/A 6909.214 1229.10

 There is a short partitioning phase for DryadLINQ application and then both approaches

calculate the distances and write out these to intermediate files as discussed in section 3.2.4. We

note that merge time is currently much longer for MPI than DryadLINQ while the initial steps are

significantly faster for MPI. However the total times in table 4 indicates that both MPI and

DryadLINQ implementations perform well for this application with MPI a few percent faster with

current implementations. As expected, the times scale proportionally to the square of the number

of distances. On 744 cores the average time of 0.0067 milliseconds per pair that corresponds to

roughly 5 milliseconds per pair calculated per core used. The coarse grained DryadLINQ application

performs competitively with the tightly synchronized MPI application.

3.2.7 Apache Hadoop Implementation

 We developed an Apache Hadoop version of the pairwise distance calculation program based on

the JAligner[26] program, the java implementation of the NAligner. Similar to the other

implementations, the computation is partitioned in to blocks based on the resultant matrix. Each of

the blocks would get computed as a map task. The block size (D) can be specified via an argument

to the program. The block size needs to specified in such a way that there will be much more map

tasks than the map task capacity of the system, so that the Apache Hadoop scheduling will happen

as a pipeline of map tasks resulting in global load balancing of the application. The input data is

distributed to the worker nodes through the Hadoop distributed cache, which makes them available

in the local disk of each compute node.

 A load balanced task partitioning strategy according to the following rules is used to identify the

blocks that need to be computed (green) through map tasks as shown in the figure 5(a). In addition

all the blocks in the diagonal (blue) are computed. Even though the task partitioning mechanisms

are different, both Dryad-SWG and Hadoop SW-G ends up with essentially identical computation

blocks, if the same block size is given to both the programs.

If β >= α, we only calculate D(α,β) if α+β is even,

 If β < α, we only calculate D(α,β) if α+β is odd.

 The figure 5 (b) depicts the run time behavior of the Hadoop SW-G program. In the given

example the map task capacity of the system is “k” and the number of blocks is “N”. The solid black

lines represent the starting state, where “k” map tasks (blocks) will get scheduled in the compute

nodes. The solid red lines represent the state at t1 , when 2 map tasks, m2 & m6, get completed and

two map tasks from the pipeline gets scheduled for the placeholders emptied by the completed map

tasks. The dotted lines represent the future.

 1
(1-

100)

2
(101-
200)

3
(201-
300)

4
(301-
400)

 N

1
(1-100)

M1 M2
from
M6

M3 …. M#
Reduce 1

hdfs://.../rowblock_1.out

2
(101-200)

from
M2

M4 M5
from
M9

….
Reduce 2

hdfs://.../rowblock_2.out

3
(201-300)

M6
from
M5

M7 M8 ….
Reduce 3

hdfs://.../rowblock_3.out

4
(301-400)

from
M3

M9
from
M8

M10 ….
Reduce 4

hdfs://.../rowblock_4.out

 .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

….
….
….
….

.

.

.

.

N

From
M#

 M(N*
(N+1)/2)

Reduce N
hdfs://.../rowblock_N.out

Figure 5. (a)Task (Map) decomposition and the reduce task data collection (b) Application
run time

 Map tasks use custom Hadoop writable objects as the map task output values to store the

calculated pairwise distance matrices for the respective blocks. In addition, non-diagonal map tasks

output the inverse distances matrix as a separate output value. Hadoop uses local files and http

transfers underneath to transfer the map task output key value pairs to the reduce tasks.

 The outputs of the map tasks are collected by the reduce tasks. Since the reduce tasks start

collecting the outputs as soon as the first map task finishes and continue to do so while other map

tasks are executing, the data transfers from the map tasks to reduce tasks do not present a

significant performance overhead to the program. The program currently creates a single reduce

task per each row block resulting in total of (no. of sequences/block size) Reduce tasks. Each reduce

task to accumulate the output distances for a row block and writes the collected output to a single

file in Hadoop Distributed File System (HDFS). This results in N number of output files

corresponding to each row block, similar to the output we produce in the DryadLINQ version.

3.2.8 Performance comparison of DryadLINQ and Hadoop SW-G implementations

 We compared the DryadLINQ and Hadoop implementations on the same data sets we used for

the DryadLINQ and MPI comparisons, but on a different cluster. These tests were run on cluster ref

A for Hadoop SW-G and on ref D for DryadLINQ SW-G, which are two identical Linux and Windows

clusters. The DryadLINQ-adjusted results row represents the performance timings adjusted for the

performance difference of the base programs, NAligner and the JAligner. In here we do not present

separate times for the merge step as the Hadoop implementation performs the merging with

reduce tasks even when the map tasks are running. Table 5 shows the results of this comparison.

Table 5. Comparison of DryadLINQ and Hadoop technologies on ALU sequencing application

with SW-G algorithm

Technology No. of
Sequences

Total
Time
(seconds)

Time
per
Pair
(ms)

No of
actual
Alignments

Sequential
Time
(seconds)

Speedup

Speedup
per core

DryadLINQ 50,000
Sequences

30881.74 0.0124 1259765625 4884111.33 158.16 61.78%

35,339 14654.41 0.0117 634179061 2458712.22 167.78 65.54%

DryadLINQ
–adjusted

50,000 24202.4 0.0097 1259765625 3827736.66 158.16 61.78%

35,339 11484.84 0.0092 634179061 1926922.27 167.78 65.54%

Hadoop 50,000 17798.59 0.0071 1262500000 4260937.50 239.40 93.51%

35,339 8974.638 0.0072 629716021 2125291.57 236.81 92.50%

 We can notice that the Hadoop implementation shows more speedup per core than the

DryadLINQ implementation. In an alternate ongoing testing we are noticing that the block size plays

a larger role with regards to the DryadLINQ implementation performance, where relatively smaller

block sizes are performing better. This led us to speculate that the lower speedup of DryadLINQ

implementation is related to the memory usage. We are currently pursuing this issue more deeply

to understand the reasons for this behavior.

3.2.9 Inhomogeneous data study

 The time complexity to align and obtain distances for two genome sequences with lengths ‘m’

and ‘n’ using SW-G algorithm is proportional to the product of the lengths of two sequences, O(mn).

This makes the sequence length distribution of a block to determine the execution time for that

particular execution block. Frameworks like Dryad and Hadoop work optimally when the work is

equally partitioned among the tasks, striving for equal length sequences in the case of pairwise

distance calculations. Depending on the scheduling strategy of the framework, blocks with different

execution times can have an adverse effect on the performance of the applications, unless proper

load balancing measures have been taken in the task partitioning steps. For an example, in

DryadLINQ vertices are scheduled at the node level, making it possible for a node to have blocks

with varying execution times. In this case if a single block inside a vertex takes a larger amount of

time than other blocks to execute, then the whole node have to wait till the large task completes,

which utilizes only a fraction of the node resources.

 Sequence sets that we encounter in the real data sets are inhomogeneous in length. In this

section we study the effect of inhomogeneous gene sequence lengths for our pairwise distance

calculation applications. The data sets used were randomly generated with a given mean sequence

length (400) with varying standard deviations following a normal distribution of the sequence

lengths. Each data set contained a set of 10000 sequences, 100 million pairwise distance

calculations to perform. We performed this experiment by distributing the sequences of varying

lengths randomly across the data set as well as by distributing them in a sorted order based on the

sequence length.

Figure 6. Performance of SW-G pairwise distance calculation application for inhomogeneous data.[35]

 The DryadLINQ-adjusted results depict the raw DryadLINQ results adjusted for the

performance difference of the NAligner and JAligner base programs. As we notice from the figure 6,

both DryadLINQ implementation as well as the Hadoop implementation performed satisfactorily

for the randomly distributed data, without showing significant performance degradations. In fact

Hadoop implementation showed minor improvements in the execution times. The acceptable

performance can be attributed to the fact that the sequences with varying lengths are randomly

distributed across the data set, giving a natural load balancing to the sequence blocks. Similar to the

results we noticed in the DryadLINQ CAP3 application, the DryadLINQ SW-G performance degrades

when the data is skew distributed, due to a result of Dryad static scheduling of data partitions.

 The Hadoop implementations’ better performance can be attributed to the global pipeline

scheduling of map tasks that Hadoop performs. In Hadoop administrator can specify the map task

capacity of a particular worker node and then Hadoop global scheduler schedules the map tasks

directly on to those placeholders in a much finer granularity than in Dryad as and when individual

tasks finish. This allows the Hadoop implementation to perform natural global level load balancing.

In this case it might even be advantageous to have varying task execution times to iron out the

effect of any trailing map tasks towards the end.

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

0 50 100 150 200 250

To
ta

l T
im

e
 (

s)

Standard Deviation

Dryad - Skewed Distributed

Dryad - Random Distributed

Hadoop - Skewed Distributed

Hadoop - Random Distributed

3.3 PhyloD Application

 The Human Leukocyte Antigen can help to eliminate the HIV virus. However, the HIV virus can

avoid the elimination by evolution of escape mutation. HIV mutations can be considered as HIV

codons changing or evolution. The PhyloD[33] application uses statistical method to identify HLA-

associated viral evolution from the sample data of HIV-infected individuals.

3.3.1 PhyloD Algorithm

 PhyloD is a new statistical package to derive the association among HLA and HIV by counting

given sample data. The PhyloD package have three kinds of input data: (i) the phylogenic tree

information of the codons, (ii) the information about HLA alleles, and (iii) the information about

HIV codons. A run of PhyloD job have three main steps. First, it computes a cross product of input

files to produce all allele-codon pairs. Second, it computes the p-value for each pair, which is used to

measure the association between allele-codon pair. Third, it computes a q-value per p-value, which

is an indicative measure of the significance of the p-value.

 The running time of PhyloD algorithm is a function of the number of different HLA alleles -|X|,

the number of different HIV codons -|Y|, and the number of individuals in the study -N, which is

equal to the number of leaves of the phylogenic tree. To calculate p-value of one allele-codon pair, it

will cost O(NlogN) and there are |X|*|Y| allele-codon pairs. So the PhyloD algorithm runs in time

O(|X|*|Y|*NlogN). The computation of the p-value of one pair can be done independently of other p-

value computations. This makes it easy to implement a parallel version of PhyloD using DryadLINQ.

 PhyloD executable allows user to divide the PhyloD job into a set of tasks each of which works on

the assigned part of the HLA allele file and the HIV codon file. Assuming the set of HLA alleles is

{A[0],A[1],..A[|X|-1]}, and the set of HIV codons is {C[0],C[1],…C[|Y|-1]}, then the set of HLA and HIV

pairs is stored in the order of {(A[0],C[0]),(A[1],C[0]),(A2,C[0]),..(A[|X|-1],C[0]); (A[0],C[1]),

(A[1],C[1]),(A[2],C[1]),.. (A[|X|-2],C[|Y|-1]),(A[|X|-1],C[|Y|-1])}. Accordingly, PhyloD executable

divides the PhyloD job into N tasks (divide the set of all pairs into N partitions) in the same order.

The index bounds of set of pairs of the Kth task can be calculated by following formulas.

 Set B = (|X|*|Y|+N-1)/N;

 If 0<=K<=N-2

 Start index: (Ai,Ci) A[i] = A[K*B%|X|]; C[i] = C[K*B/|X|]

 End index: (Aj,Cj) A[j] = A[((K+1)*B – 1)%|X|]; C[j] = C[(K+1)*B/|X|]

 If K=N-1

 Start index: (Ai,Ci) A[i] = A[K*B%|X|]; C[i] = C[K*B/|X|];

 End index: (Aj,Cj) A[j] = A[|X|-1]; C[j] = C[|Y|-1];

3.3.2 DryadLINQ Implementation

 We implemented a parallel version of the PhyloD application using DryadLINQ and the

standalone PhyloD runtime available from Microsoft Research [33][34]. As mentioned above the

first phase of the PhyloD computation requires calculation of p-values for each HLA alleles and HIV

codons. To increase the granularity of the parallel tasks, we group the individual computations into

computation blocks containing a number of HLA alleles and HIV codons. Next these groups of

computations are performed as a set of independent computations using DryadLINQ’s “Select”

construct. As the number of patients samples in each pair are quite different, the PhyloD tasks are

inhomogeneous in running time. To ameliorate this effect we partitioned the data (computation

blocks) randomly so that the assignment of blocks to nodes will happen randomly.

 After completion of the first step of PhyloD, we get one output file for each task (computation

block). The second step will merge the K*M output files together to get one final output file with the

q-values of all pairs. The DryadLINQ PhyloD task decomposition and Dryad vertex hierarchy of the

DryadLINQ PhyloD are shown in the Figure 7.

Figure 7. PhyloD task decompostion (left) and the Dryad vertex hierarchy (right) of the DryadLINQ
implementation of PhyloD application

Figure 8. Part PhyloD DryadLINQ result about HIV Gag p17 and p24 protein codons

 To explore the results of HLA-codon and codon-codon associations, Microsoft Research

developed PhyloD viewer. Figure 8 is a PhyloDv[36] picture of part of PhyloD results for HIV Gag

p17 and p24 protein codons with the DryadLINQ implementation. HLA-codon associations are

drawn as external edges, whereas codon-codon associations are drawn as arcs within the circle.

Colors indicate p-values of the associations. Some associations showed on this figure have already

been well-studied by scientists before. For example, the B57 allele has been proved to be strongly

associated with effective HIV control [32].

3.3.3 DryadLINQ PhyloD Performance

 We investigated the scalability and speed up of DrayLINQ PhyloD implementation. The data set

includes 136 distinct HLA alleles and 841 distinct HIV codons, resulting in 114376 HIL-HIV pairs.

The cluster Ref C is used for these studies. Figure 9 depicts the speedup of running 114376 pairs on

increasing number of cores. As the number of cores increase from 192 to 384, the speed up is not as

good as cases with smaller number of cores. This increasing of overhead is due to the granularity

becoming smaller with the increase of number of cores. The speed up would have been better on a

larger data set.

Figure 9. DryadLINQ PhyloD speedup on different number of cores for 114376 pairs of computation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Sp
e

e
d

u
p

 p
e

r
co

re

Sp
e

e
d

u
p

Number of cores

Speedup Speedup per core

Figure 10. DryadLINQ PhyloD scalability with increase of dataset size

 In the scalability experiment, we used data sets with increasing number of similar length tasks

on a fixed number of cores (2 nodes* 24 cores). As shown in figure 10 the DryadLINQ PhyloD

implementation scales well with the increase of data size.

 The current data set we have is too small for a definitive study. We intend further study of the

DryadLINQ PhyloD application behavior with larger data sets.

0

5

10

15

20

25

30

35

40

45

50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000 120000 140000

A
vg

.
Ti

m
e

 t
o

 C
al

cu
la

te
 a

 P
ai

r
(m

s)

A
vg

. t
im

e
 o

n
 2

 n
o

d
e

s
(s

)

Number of HLA&HIV Pairs

Avg. Time

Time per Pair

3.4 HEP Processing large column of physics data using software Root and produce histogram

results for data analysis.

 HEP data analysis application has a typical MapReduce application in which the map phase is

used process a large collection of input files containing events (features) generated by HEP

experiments. The output of the map phase is a collection of partial histograms containing identified

features. During the reduction phase these partial histograms are merged to produce a single

histogram representing the overall data analysis. Figure 11 shows the data flow of the HEP data

analysis application.

Figure 11. Program/data flow of the HEP data analysis application

 Although the structure of this application is simple and fits perfectly well with the MapReduce

programming model, it has a set of highly specific requirements such as:

1. All data processing functions are written using an interpreted language supported by ROOT

[3] data analysis framework

2. All the data products are in binary format and passed as files to the processing scripts

3. Large input data sets (Large Hadron Collider will produce 15 petabytes of data per year).

 We manually partitioned the input data to the compute nodes of the cluster and generated data-

partitions containing only the file names available in a given node. The first step of the analysis

requires applying a function coded in ROOT to all the input files. The analysis script we used can

process multiple input files at once, therefore we used a homomorphic Apply (shown below)

operation in DryadLINQ to perform the first stage (corresponding to the map() stage in

MapReduce) of the analysis.

[Homomorphic]

ApplyROOT(string fileName){..}

IQueryable<HistoFile> histograms = dataFileNames.Apply(s => ApplyROOT (s));

 Unlike the Select operation that processes records one by one, the Apply operation allows a

function to be applied to an entire data set, and produce multiple output values. Therefore, in each

vertex the program can access a data partition available in that node (provided that the node is

available for executing this application – please refer to the “Note” under CAP3 section). Inside the

ApplyROOT() method, the program iterates over the data set and groups the input data files, and

execute the ROOT script passing these files names along with other necessary parameters. The

output of this operation is a binary file containing a histogram of identified features of the input

data. The ApplyROOT() method saves the output histograms in a predefined shared directory and

produces its location as the return value.

 In the next step of the program, we perform a combining operation of these partial histograms.

Again, we use a homomorphic Apply operation to combine partial histograms. Inside the function

that is applied to the collection of histograms, we use another ROOT script to combine collections of

histograms in a given data partition. (Before this step, the main program generates the data-

partitions containing the histogram file names). The output partial histograms produced by the

previous step will be combined by the main program to produce the final histogram of identified

features.

3.4.1 Evaluations and Findings

 The first task we had to tackle in the DryadLINQ implementation of this application is the

distribution of data across the computation cluster. We used a data set of one terabytes (1TB) and

hence storing and distributing this data set poses challenges. Typically these large data sets are

stored in shared file systems and then get distributed to the computation nodes before the analysis.

In this application the input data is organized in a large number of binary files each of which

roughly occupy 33MB of disk space. Distributing a collection of data files across a computation

cluster is a typical requirement in many scientific applications and we have already experienced

this in CAP3 data analysis as well.

 Current release of DryadLINQ does not provide any tools to do such data distribution. However,

it provides two partitioning constructs which can be use to develop an application to perform this

data distribution. One possible approach is to develop a DryadLINQ application to copy input files

from its shared repository to individual computation units. This may saturate the shared repository

infrastructure as all the compute nodes try to copy data from this shared location. We developed a

standalone application to perform the above distribution as it can be used for many similar

situations.

Hadoop provides and optimized solution to distributing data across computation nodes of a

cluster via HDFS [6] and a client tool. The above data distribution reduces to the following simple

command in the Hadoop environment.

bin/Hadoop –dfs put shared_repository_path destination_in_hdfs

 We think that a similar tool for DryadLINQ would help users to partition data (available in files)

more easily than developing custom solution for each application.

 The second challenge we faced in implementing the above application is the use of ROOT data

analysis framework to process data. This is also a common requirement in scientific analysis as

many data analysis functions are written using specific analysis software such as ROOT, R, Matlab

etc. To use these specific software at DryadLINQ vertices, they need to be installed in each and

every compute node of the cluster. Some of these applications only require copying a collection of

libraries to the compute nodes while some requires complete installations. Clusrun is a possible

solution to handle both types of installations, however providing another simple tool to perform the

first type of installations would benefit the users. (Note: we could ship few shared libraries or other

necessary resources using DryadLINQ.Resources.Add(resource_name) method. However, this

does not allow user to add a folder of libraries or a collection of folders. The ROOT installation

requires copying few folders to every compute node)

 After tackling the above two problems we were able to develop a DryadLINQ application for the

HEP data analysis.

 We measure the performance of this application with different input sizes up to 1TB of data and

compare the results with Hadoop and Twister implementations that we have developed previously.

The results of this analysis are shown in Figure 12.

Figure 12. Performance of different implementations of HEP data analysis applications.

 The results in Figure 12 highlight that Hadoop implementation has a considerable overhead

compared to DraydLINQ and Twister implementations. This is mainly due to differences in the

storage mechanisms used in these frameworks. DryadLINQ and Twister access the input from local

disks where the data is partitioned and distributed before the computation. Currently, HDFS can

only be accessed using Java or C++ clients, and the ROOT – data analysis framework is not capable

of accessing the input from HDFS. Therefore, we placed the input data in IU Data Capacitor – a high

performance parallel file system based on Lustre file system, and allowed each map task in Hadoop

to directly access the input from this file system. This dynamic data movement in the Hadoop

implementation incurred considerable overhead to the computation. In contrast, the ability of

reading input from the local disks gives significant performance improvements to both Dryad and

Twister implementations.

 Additionally, in the DryadLINQ implementation, we stored the intermediate partial histograms

in a shared directory and combined them during the second phase as a separate analysis. In Hadoop

and Twister implementations, the partial histograms are directly transferred to the reducers where

they are saved in local file systems and combined. These differences can explain the performance

difference between the Twister version and the DryadLINQ version of the program. We are planning

to develop a better version of this application for DryadLINQ in the future.

3.5 K-means Clustering

 We implemented a K-means Clustering [2] application using DryadLINQ to evaluate its

performance under iterative computations. Algorithms such as clustering, matrix multiplication,

Multi Dimensional Scaling [12] are some examples that performs iterative computations. We used

K-means clustering to cluster a collection of 2D data points (vectors) to a given number of cluster

centers. The MapReduce algorithm we used is shown below. (Assume that the input is already

partitioned and available in the compute nodes). In this algorithm, Vi refers to the ith vector, Cn,j

refers to the jth cluster center in nth iteration, Dij refers to the Euclidian distance between ith vector

and jth cluster center, and K is the number of cluster centers.

The DryadLINQ implementation uses an Apply

operation, which executes in parallel in terms of the

data vectors, to calculate the partial cluster centers.

Another Apply operation, which runs sequentially,

calculates the new cluster centers for the nth

iteration. Finally, we calculate the distance between

the previous cluster centers and the new cluster

centers using a Join operation to compute the

Euclidian distance between the corresponding

cluster centers. DryadLINQ support “loop

unrolling”, using which multiple iterations of the

computation can be performed as a single DryadLINQ query. Deferred query evaluation is a feature

of LINQ, whereby a query is not evaluated until the program accesses the query results.. Thus, in the

K-means program, we accumulate the computations performed in several iterations (we used 4 as

our unrolling factor) into one query and only “materialize” the value of the new cluster centers

every 4th iteration. In Hadoop’s MapReduce model, each iteration is represented as a separate

MapReduce computation. Notice that without the loop unrolling feature in DryadLINQ, each

iteration would be represented by a separate execution graph as well.

3.5.1 Evaluations and Findings

 When implementing K-means algorithm using DryadLINQ we noticed that the trivial MapReduce

style implementation of this algorithm perform extremely slow. We had to make several

optimizations to the data structures and how we perform the calculations. One of the key changes is

the use of Apply operation instead of Select to compare each data point with the current set of

cluster centers. This enables DryadLINQ to consume an entire data partition at once and perform

the comparisons. Figure 13 shows a comparison of performances of different implementations of K-

means clustering.

K-means Clustering Algorithm for MapReduce

Do

Broadcast Cn
[Perform in parallel] –the map() operation

for each Vi

 for each Cn,j
Dij <= Euclidian (Vi,Cn,j)

Assign point Vi to Cn,j with minimum Dij

for each Cn,j

 Cn,j <=Cn,j/K

[Perform Sequentially] –the reduce() operation

Collect all Cn

Calculate new cluster centers Cn+1
Diff<= Euclidian (Cn, Cn+1)

while (Diff <THRESHOLD)

Figure 13. Performance of different implementations of clustering algorithm.

 The performance graph shows that although DryadLINQ performs better than Hadoop for K-

means application, still the average time taken by DryadLINQ and Hadoop implementations is

extremely large compared to the MPI and the Twister implementations.

 Although we used a fixed number of iterations, we changed the number of data points from 500k

to 20 millions. Increase in the number of data points triggers the amount of computation. However,

it was not sufficient to ameliorate the overheads introduced by Hadoop and DryadLINQ runtimes.

As a result, the graph in Figure 13 mainly shows the overhead of the different runtimes. With its

loop unrolling feature, DryadLINQ does not need to materialize the outputs of the queries used in

the program in every iteration. In the Hadoop implementation each iteration produces a new

MapReduce computation increasing the total overhead of the implementation. The use of file

system based communication mechanisms and the loading of static input data at each iteration (in

Hadoop) and in each unrolled loop (in DryadLINQ) results in higher overheads compared to Twister

and MPI. Iterative applications which perform more computations or access larger volumes of data

may produce better results for Hadoop and DryadLINQ as the higher overhead induced by these

runtimes becomes relatively less significant. Currently the academic release uses file system based

communication mechanism. However, according to the architecture discussed in Dryad paper [1],

Dryad is capable of communicating via TCP pipes and therefore we expect better performances for

this type of applications once it is supported by DryadLINQ as well.

3.5.2 Another Relevant Application - Matrix Multiplication

 Parallel applications that are implemented using message passing runtimes can utilize various

communication constructs to build diverse communication topologies. For example, a matrix

multiplication application that implements Fox's Algorithm [13] and Cannon’s Algorithm [14]

assumes parallel processes to be in a rectangular grid. Each parallel process in the grid

communicates with its left and top neighbors as shown in figure 14 (left). The current cloud

runtimes, which are based on data flow models such as MapReduce and Dryad, do not support this

behavior, in which the peer nodes communicate with each other. Therefore, implementing the

above type of parallel applications using MapReduce or Dryad requires adopting different

algorithms.

Figure 14. (Left) The communication topology of Cannon’s Algorithm implemented using MPI,
(middle) Communication topology of matrix multiplication application based on MapReduce, and
(right) Communication topology of K-means Clustering implemented as a MapReduce application.

 We have implemented matrix multiplication applications using Hadoop and Twister by adopting

a row/column decomposition approach to split the matrices. To clarify our algorithm, let’s consider

an example where two input matrices, A and B, produce matrix C, as the result of the multiplication

process. We split the matrix B into a set of column blocks and the matrix A into a set of row blocks.

In each iteration, all the map tasks process two inputs: (i) a column block of matrix B, and (ii) a row

block of matrix A; collectively, they produce a row block of the resultant matrix C. The column block

associated with a particular map task is fixed throughout the computation, while the row blocks are

changed in each iteration. However, in Hadoop’s programming model (a typical MapReduce model),

there is no way to specify this behavior. Hence, it loads both the column block and the row block in

each iteration of the computation. Twister supports the notion of long running map/reduce tasks

where these tasks are allowed to retain static data in the memory across invocations, yielding

better performance for “Iterative MapReduce” computations. The communication pattern of this

application is shown in figure 14 (middle). We haven’t implemented a Matrix multiplication

application using DryadLINQ yet and plan to do so in the future.

4. Analysis

4.1 DryadLINQ vs. Other Runtimes

4.1.1 Handling Data

 Cloud technologies adopts a more data centered approach to parallel programming compared to

the traditional parallel runtimes such as MPI, Workflow runtimes, and individual job scheduling

runtimes in which the scheduling decisions are made mainly by the availability of the computation

resources. DryadLINQ starts its computation from a partition table adapting the same data centered

approach and try to schedule computations where the data is available.

 In DryadLINQ the data is partitioned to the shared directories of the computation nodes of the

HPC cluster where all the nodes have access to these common directories. With the support from a

partitioned file DryadLINQ builds the necessary meta-data to access these data partitions and it also

supports replicated data partitions to improve the fault tolerance. As we have discussed under

sections 3.1 and 3.3.1 with the current release of DryadLINQ the partitioning of the existing data

(either in individual files or in large data items) needs to be handled by the user manually.

Comparatively, Apache Hadoop comes with a distributed file system that can be deployed on top of

a set of heterogeneous resources, and a set of client tools to perform necessary file system

operations. With this the user is completely shielded from the locations where the data is stored

and its fault tolerance functionalities. Twister also adopts a DryadLINQ style meta-data model to

handle data partitions and currently supports file based data types.

 Although the use of a distributed file system in Hadoop makes the data partitioning and

managing much easier, not all the applications benefit from this approach. For example, in HEP data

analysis, the data is processed via a specialized software framework named ROOT which needs to

access data files directly from the file system, but Hadoop provides only Java and C++ API to access

HDFS. We used a shared parallel file system (Lustre) deployed at Indiana University to store HEP

data and this resulted higher overheads in the Hadoop implementation. Apache subprojects such as

FUSE [15] allows HDFS to be mounted as a shared file system but these approaches do not support

the concept of “moving computation to data” rather use HDFS as a just another distributed file

system. Sector/Sphere [16] is a parallel runtime developed by Y. Gu, and R. L. Grossman that can be

used to implement MapReduce style applications. Sphere uses Sector distributed files system

resembling an architecture similar to Hadoop.

4.1.2 Parallel Topologies

 Parallel topologies supported by various parallel runtimes and the problems that can be

implemented using these parallel topologies determine the applicability of many parallel runtimes

to the problems in hand. For example, many job scheduling infrastructures such as TORQUE [17]

and SWARM [18] can be used to execute parallel applications such as CAP3 consisting of a simple

parallel topology of a collection of large number of independent tasks. Applications that perform

parametric sweeps, document conversions, and brute-force searches are few other examples of this

category. DryadLINQ, Hadoop, and Twister can all handle this class of applications well. Except for

the manual data partitioning requirement, programming such problems using DryadLINQ is

considerably easier than Hadoop or Twister implementations. With the debugging support from

visual studio and the automatic deployment mechanism, the users can develop applications faster

with DryadLINQ. The CAP3 program we developed using DryadLINQ can be used as a model for

many similar problems which has the simple parallel topology of collection of independent tasks.

 MapReduce programming model provides more parallel topologies than the simple independent

tasks with its support for the “reduction” phase. In typical MapReduce model, the outputs of the

map tasks are partitioned using a hash function and assigned to a collection of reduce tasks. With

the support of overloaded “key selectors” or hashes and by selecting the appropriate key selector

function, this simple process can be extended to support additional models producing customized

topologies under the umbrella of MapReduce model. For example, in the MapReduce version of

tera-sort [16] application, Hadoop uses a customized hashing function to model the bucket sort

algorithm. In DryadLINQ we can use the programming flows of Apply -> GroupBy -> Apply or

Select -> GroupBy -> Apply to simulate MapReduce style computations by using an

appropriate GroupBy function.

 Among other parallel runtimes that support individual tasks and MapReduce style applications,

Sphere[16] adopts a streaming based computation model used in GPUs which can be used to

develop applications with parallel topologies as a collection of MapReduce style applications. All

Pairs [19] solves the specific problems of comparing elements in two data sets with each other and

several other specific parallel topologies. We have used DryadLINQ to perform a similar

computation to calculate pair-wise distances of a large collection of genes and our algorithm is

explained in details in section 3.2. Swift [20] provides a scripting language and a execution and

management runtime for developing parallel applications with the added support for defining

typed data products via schemas. DryadLINQ allows user to define data types as C# structures or

classes allowing users to handle various data types seamlessly with the runtime with the advantage

of strong typing. Hadoop allows user to define “record readers” depending on the data that needs to

be processed.

 Parallel runtimes that support DAG based execution flows provide more parallel topologies

compared to the mere MapReduce programming model or the models that support scheduling of

large number of individual jobs. Condor DAGMan [21] is a well-known parallel runtime that

supports applications expressible as DAGs and many workflow runtimes supports DAG based

execution flows. However, the granularity of tasks handled at the vertices of Dryad/DryadLINQ and

the tasks handled at map/reduce tasks in MapReduce is more fine grained than the tasks handled in

Condor DAGMan and other workflow runtimes. This distinction become blurred when it comes to

the parallel applications such as CAP3 where the entire application can be viewed as a collection of

independent jobs, but for many other applications the parallel tasks of cloud technologies such as

Hadoop and Dryad are more fine grained than the ones in workflow runtimes. For example, during

the processing of the GroupBy operation used in DryadLINQ, which can be used to group a

collection of records using a user defined key field, a vertex of the DAG generated for this operation

may only process few records. In contrary the vertices in DAGMan may be a complete programs

performing considerable amount of processing.

Although in our analysis we compared DryadLINQ with Hadoop, DryadLINQ provides higher

level language support for data processing than Hadoop. Hadoop’s sub project Pig [7] is a more

natural comparison to DryadLINQ. Our experience suggests that the scientific applications we used

maps more naturally to Hadoop and Dryad (currently not available for public use) programming

models than the high level runtimes such as Pig and DryadLINQ. However, we expect the high level

programming models provided by the runtimes such as DryadLINQ and Pig are to be more suitable

for applications that process structured data that can be fit into tabular structures.

4.1.3 Twister: Iterate MapReduce

Our work on Twister (previously known as CGL-MapReduce) extends capabilities of the

MapReduce programming to applications that perform iterative MapReduce computations. We

differentiate the variable and fixed data items used in MapReduce computation and allow cacheable

map/reduce tasks to hold static data in memory to support faster iterative MapReduce

computations. The use of streaming for communication enables Twister to operate with minimum

overheads. Currently Twister does not provide any fault tolerance support for applications and we

are investigating the mechanisms to support fault tolerance with the streaming based

communication mechanisms we use. The architecture of Twister and a comparison of

synchronization and intercommunication mechanisms used by the parallel runtimes are shown in

figure 12.

Figure 15. (Left) Components of the Twister. (Right) Different synchronization and

intercommunication mechanisms used by the parallel runtimes.

4.2 Performance and Usability of Dryad

 We have applied DryadLINQ to a series of data/compute intensive applications with unique

requirements. The applications range from simple map-only operations such as CAP3 MapReduce

jobs in HEP data analysis and iterative MapReduce in K-means clustering. We showed that all these

applications can be implemented using the DAG based programming model of DryadLINQ, and their

performances are comparable to the MapReduce implementations of the same applications

developed using Hadoop.

 We also observed that cloud technologies such as DryadLINQ and Hadoop work well for many

applications with simple communication topologies. The rich set of programming constructs

available in DryadLINQ allows the users to develop such applications with minimum programming

effort. However, we noticed that higher level of abstractions in DryadLINQ model sometimes make

fine-tuning the applications more challenging.

 Hadoop and DryadLINQ differ in their approach to fully utilize the many cores available on

today’s compute nodes. Hadoop allows scheduling of a worker process per core. On the other hand,

DryadLINQ assigns vertices (i.e. worker processes) to nodes and achieves multi-core parallelism

with PLINQ. The simplicity and flexibility of the Hadoop model proved effective for some of our

benchmarks. Features such as loop unrolling let DryadLINQ perform iterative applications faster,

but still the amount of overheads in DryadLINQ and Hadoop is extremely large for this type of

applications compared to other runtimes such as MPI and Twister.

 Apart from those we would like to highlight the following usability characteristics of DryadLINQ

comparing it with other similar runtimes.

4.2.1 Installation and Cluster Access

 We note a technical issue we encountered using DryadLINQ within our Windows HPC

environment. The HPC clusters at our institution are setup using a network configuration that has

the headnode connected directly to the enterprise network (ADS domain access) and the compute

nodes behind the headnode on a private network. Enterprise network access is provided to the

compute nodes via DHCP and NAT(network address translation) services running on the

headnode. This is our preferred configuration as it isolates the compute nodes from extraneous

network traffic, places the compute nodes on a more secure private network and minimizes the

attack surface of our clusters.

 Using this configuration with DryadLINQ applications has been somewhat cumbersome as this

configuration does not allow direct access to the compute node’s private network from the

enterprise network, while DryadLINQ applications require to access the compute nodes

periodically. In other words, unless we run our DryadLINQ applications directly on the headnode,

DryadLINQ is unable to access the compute node file systems as only the headnode is aware of the

private network.

4.2.2 Developing and Deployment of Applications

 Enabling DryadLINQ for an application simply requires adding DryadLINQ.dll to the project and

pointing to the correct DryadLinqConfig.xml. After this step, the user can develop applications

using Visual Studio and use it to deploy and run DryadLINQ applications directly on the cluster.

With the appropriate cluster configurations, the development teams can test DryadLINQ

applications directly from their workstations. In Hadoop, the user can add Hadoop jar files to the

class path and start developing Hadoop applications using a Java development environment, but to

deploy and run those applications the user need to create jar files packaging all the necessary

programs and then copy them to a particular directory that Hadoop can find. Tools such as IBM’s

eclipse plugin for MapReduce [24] add more flexibility to create MapReduce computations using

Hadoop.

4.2.3 Debugging

 DryadLINQ supports debugging applications via visual studio by setting the property

DryadLinq.LocalDebug=true. This is a significant improvement of usability compared to the other

parallel runtimes such as Hadoop. The user can simply develop the entire application logic in his

workstation and move to the cluster to do the actual data processing. Hadoop also supports single

machine deployments but the user needs to do manual configuration and debugging to test

applications.

4.2.4 Fault Tolerance

 The Dryad publication [4] discusses the fault tolerance features such as re-execution of failed

vertices and duplicate execution of slower running tasks. We expected good fault tolerance support

from Dryad, since better fault tolerance support is noted as major advantage in the new parallel

frameworks like Dryad and Hadoop map reduce over the traditional parallel frameworks, enabling

them to perform reliable computations on commodity unreliable hardware.

 On the contrary, recently we encountered couple of issues regarding Dryad fault tolerance with

respect to duplicate executions and failed vertices. First issue is the failures related to duplicate

task executions. We wanted to perform a larger computation on a fewer number of nodes for

scalability testing purposes. Due to unbalanced task sizes and the longer running times of vertices,

Dryad executed duplicate tasks for the slower running tasks. Eventually the original tasks

succeeded and the duplicated tasks got killed. But upon seen the killed tasks, the window HPC

scheduler terminated the job as a failure. In this case we assume that Dryad behaved as expected by

scheduling the duplicate tasks, but the Dryad windows HPC scheduler integration caused the failure

without understanding the Dryad semantics. We’ve been informed that this issue is fixed in the Nov

2009 release of DryadLINQ, where DryadLINQ application will terminate correctly with the correct

output, even though the HPC job is marked as failed.

 Second issue happened recently when a misbehaving node joined the windows HPC cluster

unexpectedly. A task from a Dryad job got scheduled in this node and that particular task failed due

to the misbehavior of the node. We expected Dryad to schedule the failed task on a different node

and to recover the job, but instead the whole job got terminated as a failed job. We have

encountered both of the above issues in our Hadoop clusters many times and Hadoop was able to

recover all of them successfully.

4.2.5 Monitoring

 DryadLINQ depends on the HCP Cluster Manager and HPC Job Manager’s monitoring capabilities

to monitor the progress and problems of the jobs. Although the HPC Cluster Manager and Job

Manager give better view of the hardware utilization and locations where the job getting executed,

there is no direct way to find the progress of the DryadLINQ applications. Finding an error that

happens only in a cluster deployment is even harder with the current release of DryadLINQ. For

example, the user need to follow the steps below to find the standard output (stdout) and standard

error (stderr) streams related to a particular vertex of the DryadLINQ application.

1. Find the job’s ID using Job Manager
2. Find which vertex (sub job has failed) and find its task number
3. Find where that task was running using Job Manager
4. Navigate to the shared directory where the job outputs are created
5. Open the stdout and stderr files to find any problems.

Note: When the vertex is using an Apply operation won’t give any information because then the

standard outputs printed by the program does not get saved in stdout or stderr files.

 Hadoop provides a simple web interface to monitor the progress of the computations and to

locate these standard output and error files. A simple view of how many map/reduce tasks

completed so far gives a better understanding of the progress of the program in Hadoop. We think

that a simple approach like this would help new users to develop applications easily without

frustration using DryadLINQ.

5. Summary of key features of applications that suitable and not suitable for Dryad

 In the past Fox has discussed the mapping applications to different hardware and software in

terms of 5 “Application Architectures” [22]. These 5 categories are listed in Table 6.

Table 6. Application classification

1 Synchronous The problem can be implemented with instruction level Lockstep Operation

as in SIMD architectures

2 Loosely Synchronous These problems exhibit iterative Compute-Communication stages with

independent compute (map) operations for each CPU that are synchronized

with a communication step. This problem class covers many successful MPI

applications including partial differential equation solution and particle

dynamics applications.

3 Asynchronous Compute Chess and Integer Programming; Combinatorial Search often

supported by dynamic threads. This is rarely important in scientific

computing but at heart of operating systems and concurrency in consumer

applications such as Microsoft Word.

4 Pleasingly Parallel Each component is independent. In 1988, Fox estimated this at 20% of the

total number of applications but that percentage has grown with the use of

Grids and data analysis applications as seen here and for example in the LHC

analysis for particle physics [23].

5 Metaproblems These are coarse grain (asynchronous or dataflow) combinations of classes

1)-4). This area has also grown in importance and is well supported by Grids

and described by workflow.

6 Twister It describes file(database) to file(database) operations which has three
subcategories given below and in table 7.
6a) Pleasingly Parallel Map Only
6b) Map followed by reductions
6c) Iterative “Map followed by reductions” – Extension of Current

Technologies that supports much linear algebra and data mining

 The above classification 1 to 5 largely described simulations and was not aimed directly at data

processing. Now we can use the introduction of MapReduce as a new class which subsumes aspects

of classes 2, 4, 5 above. We generalize MapReduce to include iterative computations and term it

Twister. We have developed a prototype of this extended model and term it currently Twister

[9][10]. Then this new category is summarized as:

 Note overheads in categories 1, 2, 6c go like Communication Time/Calculation Time and basic

MapReduce pays file read/write costs while MPI overhead is measured in microseconds. In Twister

we use data streaming to reduce overheads while retaining the flexibility and fault-tolerance of

MapReduce. Twister supports the Broadcast and Reduce operations in MPI which are all that is

needed for much linear algebra and datamining including the clustering and MDS approaches

described earlier.

Table 7. Comparison of Twister subcategories and Loosely Synchronous category

Map-only Classic
Map-reduce

Iterative Reductions
Twister

Loosely
Synchronous

 Document
conversion
(PDF->HTML)

 Brute force
searches in
cryptography

 Parametric sweeps
 CAP3 Gene

assembly
 PolarGrid Matlab

data analysis

 High Energy
Physics
(HEP)
Histograms

 Distributed
search

 Distributed sort
 Information

retrieval
 Calculation of

Pairwise
Distances for ALU
sequences

 Expectation
maximization
algorithms

 Linear Algebra
 Datamining including
 Clustering

 K-means
 Deterministic

Annealing clustering
 Multidimensional

Scaling (MDS)

 Many MPI scientific
applications
utilizing wide
variety of
communication
constructs including
local interactions

 Solving differential
equations and

 Particle dynamics
with short range
forces

Domain of MapReduce and Iterative Extensions MPI

 From the applications we developed it is trivial that the DryadLINQ can be applied to real

scientific analyses. DryadLINQ performs competitively well with Hadoop for both pleasingly

parallel and MapReduce style applications. However, applicability of DryadLINQ (also Hadoop) for

iterative MapReduce applications is questionable. The file based communication mechanism and

loading of static data again and again causes higher overheads in this class of applications.

However, we expect that these overheads may reduce if DryadLINQ support in memory

communication mechanism such as TCP pipes.

 Additional support for partitioning data (few tools to perform various data partitioning

strategies) and a mechanism to monitoring the progress of applications are two areas that

DryadLINQ needs improvements.

References

[1] X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly Program,” Genome Research, vol. 9, no. 9, pp.
868-877, 1999.

[2] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[3] ROOT Data Analysis Framework, http://root.cern.ch/drupal/

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel programs from
sequential building blocks,” European Conference on Computer Systems, March 2007.

[5] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda, and J. Currey, “DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing Using a High-Level Language,” Symposium on
Operating System Design and Implementation (OSDI), CA, December 8-10, 2008.

[6] Apache Hadoop, http://hadoop.apache.org/core/

[7] Apache Pig project, http://hadoop.apache.org/pig/

[8] J. Dean, and S. Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM
51(1): 107-113.

[9] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for Data Intensive Scientific Analysis,” Fourth IEEE
International Conference on eScience, 2008, pp.277-284.

[10] Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, Xiaohong Qiu, and Huapeng Yuan: Parallel Data Mining
from Multicore to Cloudy Grids. Proceedings of HPC 2008 High Performance Computing and Grids workshop
Cetraro Italy July 3 2008

[11] MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/

[12] J. B. Kruskal and M.Wish. Multidimensional Scaling. Sage Publications Inc., Beverly Hills, CA, U.S.A., 1978.

[13] Fox, G. C., Hey, A. and Otto, S., Matrix Algorithms on the Hypercube I: Matrix Multiplication, Parallel
Computing, 4, 17 (1987)

[14] Johnsson, S. L., T. Harris, et al. 1989. Matrix multiplication on the connection machine. Proc of the 1989
ACM/IEEE conference on Supercomputing. Reno, Nevada, United States, ACM.

[15] Mountable HDFS, http://wiki.apache.org/hadoop/MountableHDFS

[16] Y. Gu, and R. L. Grossman. 2009. Sector and Sphere: the design and implementation of a high-
performance data cloud. Philos Transact A Math Phys Eng Sci 367(1897): 2429-45.

[17] Torque Resource Manager, http://www.clusterresources.com/products/torque-resource-manager.php

[18] S. Pallickara, and M. Pierce. 2008. SWARM: Scheduling Large-Scale Jobs over the Loosely-Coupled HPC
Clusters. Proc of IEEE Fourth International Conference on eScience '08(eScience, 2008).Indianapolis, USA

[19] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D. Thain, "All-Pairs: An Abstraction for Data
Intensive Computing on Campus Grids," IEEE Transactions on Parallel and Distributed Systems, 13 Mar. 2009.

[20] Zhao Y., Hategan, M., Clifford, B., Foster, I., vonLaszewski, G., Raicu, I., Stef-Praun, T. and Wilde, M Swift:
Fast, Reliable, Loosely Coupled Parallel Computation IEEE International Workshop on Scientific Workflows
2007

[21] Codor DAGMan, http://www.cs.wisc.edu/condor/dagman/.

[22] Geoffrey C. Fox, Roy D. Williams, Paul C. Messina, Parallel Computing Works! Morgan Kaufmann (1994).

[23] Enabling Grids for E-science (EGEE): http://www.eu-egee.org/

[24] IBM Eclipse plugin for MapReduce, http://www.alphaworks.ibm.com/tech/mapreducetools

[25] J. Ekanayake, A. S. Balkir, T. Gunarathne, G. Fox, C. Poulain, N. Araujo, R. Barga. "DryadLINQ for Scientific
Analyses", Technical report, Accepted for publication in eScience 2009

http://root.cern.ch/drupal/
http://www-unix.mcs.anl.gov/mpi/
http://www.eu-egee.org/
http://www.alphaworks.ibm.com/tech/mapreducetools

[26] M.A. Batzer, P.L. Deininger, 2002. "Alu Repeats And Human Genomic Diversity." Nature Reviews
Genetics 3, no. 5: 370-379. 2002

[27] A. F. A. Smit, R. Hubley, P. Green, 2004. Repeatmasker. http://www.repeatmasker.org

[28] J. Jurka, 2000. Repbase Update: a database and an electronic journal of repetitive elements. Trends
Genet. 9:418-420 (2000).

[29] Source Code. Smith Waterman Software. http://jaligner.sourceforge.net

[30] T.F. Smith, M.S.Waterman,. Identification of common molecular subsequences. Journal of Molecular
Biology 147:195-197, 1981.

[31] O. Gotoh, An improved algorithm for matching biological sequences. Journal of Molecular Biology
162:705-708 1982.

[32] M, A. M. Altfeld (2003). Influence of HLA-B57 on clinical presentation and viral control during acute HIV-
1 infection. AIDS .

[33] J.M. Carlson, (2008). Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon
Covariation in HIV-1 Gag. PLoS Comput Biol .

[34] PhyloD, http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/.

[35] J. Ekanayake, T. Gunarathne, J. Qiu, Cloud Technologies for Bioinformatics Applications, Technical report.
January 4, 2010. (submitted to the Journal of IEEE Transactions on Parallel and Distributed Systems)

[36] PhyloDView,http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/PhyloDViewer/

Appendix A

//

//Compute intensive function described in section 3.1.3

//

public static int Func_ComputeIntensive(int index) {

 double val = 0;

 for (int i = 0; i < mat_size; i++)

 {

 for (int j = 0; j < mat_size; j++)

 {

 for (int k = 0; k < mat_size; k++)

 {

 val = pi * pi;

 }

 }

 }

 return index;

}

Appendix B

//

//Memory intensive function described in section 3.1.3

//

public static int ExecuteHighMemory(int index)

 {

 Random rand = new Random();

 double val = 0;

 for (int i = 0; i < num_repititions; i++)

 {

 double[] data1 = new double[array_size];

 for (int j = 0; j < array_size; j++)

 {

 data1[j] = pi * rand.Next();

 }

 double[] data2 = new double[array_size];

 for (int j = 0; j < array_size; j++)

 {

 data2[j] = pi * rand.Next();

 }

 for (int j = 0; j < num_compute_loops; j++)

 {

 val = data1[rand.Next(array_size)] *

data2[rand.Next(array_size)];

 }

 }

 return index;

 }

