

INTELLIGENT	SYSTEMS	ENGENEERING

Geoffrey	C.	Fox	Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019

INTELLIGENT	SYSTEMS	ENGENEERING

1	PREFACE
1.1	Disclaimer	☁�
1.1.1	Acknowledgment
1.1.2	Extensions

1.2	Contributors	☁�
2	SYLLABUS
2.1	e222:	Intelligent	Systems	Engeneering	II	☁�
2.1.1	Teaching	and	learning	methods
2.1.2	Representative	bibliography
2.1.3	Grading
2.1.4	Incomplete
2.1.5	Other	classes	I423,	I523,	I524,	B649,	E516,	E616
2.1.6	Communication
2.1.6.1	How	to	take	this	class

2.1.7	Covered	Topics
2.1.7.1	Week	1.	Overview	of	this	Class
2.1.7.2	 Week	 1	 and	 2.	 Review	 of	 Python	 for	 Intelligent	 Systems
Engineering
2.1.7.3	Week	2.	Review	of	Linux	shell	for	OSX,	Linux,	and	Windows
2.1.7.4	Week	3.	Introduction	to	REST
2.1.7.5	Week	4.	Introduction	to	Scientific	Writing
2.1.7.6	Week	5	to	9.	Introduction	to	Cloud	Computing
2.1.7.7	Week	10:	Lecture	Free	Time
2.1.7.8	Week	11.	Introduction	to	Cloud	Platforms
2.1.7.9	 Week	 12	 to	 16.	 Review	 of	 AI	 for	 AI-Cloud	 Computing
Integration
2.1.7.10	Cloud	Edge	Computing
2.1.7.11	Alternative	Projects

2.2	Assignments	☁�
2.2.1	Account	Creation
2.2.2	Sections,	Chapters,	Examples
2.2.3	Project
2.2.3.1	Project	Deliverables
2.2.3.2	Project	Topic

2.2.4	Alternate	Project:	Virtual	Cluster
2.2.5	Alternative	Project:	100	node	Raspberry	Pi	cluster
2.2.6	Submission	of	sections	and	chapters	and	projects

3	PYTHON
3.1	Introduction	to	Python	☁�
3.1.1	References

3.2	Python	3.7.4	Installation	☁�
3.2.1	Hardware
3.2.2	Prerequisits	Ubuntu	19.04
3.2.3	Prerequisits	macOS
3.2.3.1	Installation	from	Apple	App	Store
3.2.3.2	Installation	from	python.org
3.2.3.3	Installation	from	Hoembrew

3.2.4	Prerequisits	Ubuntu	18.04
3.2.5	Prerequisite	Windows	10
3.2.5.1	Linux	Subsystem	Install

3.2.6	Prerequisit	venv
3.2.7	Install	Python	3.7	via	Anaconda
3.2.7.1	Download	conda	installer
3.2.7.2	Install	conda
3.2.7.3	Install	Python	3.7.4	via	conda

3.3	Interactive	Python	☁�
3.3.1	REPL	(Read	Eval	Print	Loop)
3.3.2	Interpreter
3.3.3	Python	3	Features	in	Python	2

3.4	Editors	☁�
3.4.1	Pycharm
3.4.2	Python	in	45	minutes

3.5	Language	☁�
3.5.1	Statements	and	Strings
3.5.2	Comments
3.5.3	Variables
3.5.4	Data	Types
3.5.4.1	Booleans
3.5.4.2	Numbers

3.5.5	Module	Management
3.5.5.1	Import	Statement

3.5.5.2	The	from	…	import	Statement
3.5.6	Date	Time	in	Python
3.5.7	Control	Statements
3.5.7.1	Comparison
3.5.7.2	Iteration

3.5.8	Datatypes
3.5.8.1	Lists
3.5.8.2	Sets
3.5.8.3	Removal	and	Testing	for	Membership	in	Sets
3.5.8.4	Dictionaries
3.5.8.5	Dictionary	Keys	and	Values
3.5.8.6	Counting	with	Dictionaries

3.5.9	Functions
3.5.10	Classes
3.5.11	Modules
3.5.12	Lambda	Expressions
3.5.12.1	map
3.5.12.2	dictionary

3.5.13	Iterators
3.5.14	Generators
3.5.14.1	Generators	with	function
3.5.14.2	Generators	using	for	loop
3.5.14.3	Generators	with	List	Comprehension
3.5.14.4	Why	to	use	Generators?

3.6	LIBRARIES
3.6.1	Python	Modules	☁�
3.6.1.1	Updating	Pip
3.6.1.2	Using	pip	to	Install	Packages
3.6.1.3	GUI
3.6.1.3.1	GUIZero
3.6.1.3.2	Kivy

3.6.1.4	Formatting	and	Checking	Python	Code
3.6.1.5	Using	autopep8
3.6.1.6	Writing	Python	3	Compatible	Code
3.6.1.7	Using	Python	on	FutureSystems
3.6.1.8	Ecosystem
3.6.1.8.1	pypi

3.6.1.8.2	Alternative	Installations
3.6.1.9	Resources
3.6.1.9.1	Jupyter	Notebook	Tutorials

3.6.1.10	Exercises
3.6.2	Data	Management	☁�
3.6.2.1	Formats
3.6.2.1.1	Pickle
3.6.2.1.2	Text	Files
3.6.2.1.3	CSV	Files
3.6.2.1.4	Excel	spread	sheets
3.6.2.1.5	YAML
3.6.2.1.6	JSON
3.6.2.1.7	XML
3.6.2.1.8	RDF
3.6.2.1.9	PDF
3.6.2.1.10	HTML
3.6.2.1.11	ConfigParser
3.6.2.1.12	ConfigDict

3.6.2.2	Encryption
3.6.2.3	Database	Access
3.6.2.4	SQLite
3.6.2.4.1	Exercises	�

3.6.3	Plotting	with	matplotlib	☁�
3.6.4	DocOpts	☁�
3.6.5	Cloudmesh	Command	Shell	☁�
3.6.5.1	CMD5
3.6.5.1.1	Resources
3.6.5.1.2	Installation	from	source
3.6.5.1.3	Execution
3.6.5.1.4	Create	your	own	Extension
3.6.5.1.5	Bug:	Quotes

3.6.6	cmd	Module	☁�
3.6.6.1	Hello,	World	with	cmd
3.6.6.2	A	More	Involved	Example
3.6.6.3	Help	Messages
3.6.6.4	Useful	Links

3.6.7	OpenCV	☁�

3.6.7.1	Overview
3.6.7.2	Installation
3.6.7.3	A	Simple	Example
3.6.7.3.1	Loading	an	image
3.6.7.3.2	Displaying	the	image
3.6.7.3.3	Scaling	and	Rotation
3.6.7.3.4	Gray-scaling
3.6.7.3.5	Image	Thresholding
3.6.7.3.6	Edge	Detection

3.6.7.4	Additional	Features
3.6.8	Secchi	Disk	☁�
3.6.8.1	Setup	for	OSX
3.6.8.2	Step	1:	Record	the	video
3.6.8.3	Step	2:	Analyse	the	images	from	the	Video
3.6.8.3.1	Image	Thresholding
3.6.8.3.2	Edge	Detection
3.6.8.3.3	Black	and	white

3.7	DATA
3.7.1	Data	Formats	☁�
3.7.1.1	YAML
3.7.1.2	JSON
3.7.1.3	XML

3.7.2	MongoDB	in	Python	☁�
3.7.2.1	Cloudmesh	MongoDB	Usage	Quickstart
3.7.2.2	MongoDB
3.7.2.2.1	Installation
3.7.2.2.1.1	Installation	procedure

3.7.2.2.2	Collections	and	Documents
3.7.2.2.2.1	Collection	example
3.7.2.2.2.2	Document	structure
3.7.2.2.2.3	Collection	Operations

3.7.2.2.3	MongoDB	Querying
3.7.2.2.3.1	Mongo	Queries	examples

3.7.2.2.4	MongoDB	Basic	Functions
3.7.2.2.4.1	Import/Export	functions	examples

3.7.2.2.5	Security	Features
3.7.2.2.5.1	Collection	based	access	control	example

3.7.2.2.6	MongoDB	Cloud	Service
3.7.2.3	PyMongo
3.7.2.3.1	Installation
3.7.2.3.2	Dependencies
3.7.2.3.3	Running	PyMongo	with	Mongo	Deamon
3.7.2.3.4	Connecting	to	a	database	using	MongoClient
3.7.2.3.5	Accessing	Databases
3.7.2.3.6	Creating	a	Database
3.7.2.3.7	Inserting	and	Retrieving	Documents	(Querying)
3.7.2.3.8	Limiting	Results
3.7.2.3.9	Updating	Collection
3.7.2.3.10	Counting	Documents
3.7.2.3.11	Indexing
3.7.2.3.12	Sorting
3.7.2.3.13	Aggregation
3.7.2.3.14	Deleting	Documents	from	a	Collection
3.7.2.3.15	Copying	a	Database
3.7.2.3.16	PyMongo	Strengths

3.7.2.4	MongoEngine
3.7.2.4.1	Installation
3.7.2.4.2	Connecting	to	a	database	using	MongoEngine
3.7.2.4.3	Querying	using	MongoEngine

3.7.2.5	Flask-PyMongo
3.7.2.5.1	Installation
3.7.2.5.2	Configuration
3.7.2.5.3	Connection	to	multiple	databases/servers
3.7.2.5.4	Flask-PyMongo	Methods
3.7.2.5.5	Additional	Libraries
3.7.2.5.6	Classes	and	Wrappers

3.7.3	Mongoengine	☁�
3.7.3.1	Introduction
3.7.3.2	Install	and	connect
3.7.3.3	Basics

3.8	CALCULATION
3.8.1	Word	Count	with	Parallel	Python	☁�
3.8.1.1	Generating	a	Document	Collection
3.8.1.2	Serial	Implementation

3.8.1.3	Serial	Implementation	Using	map	and	reduce
3.8.1.4	Parallel	Implementation
3.8.1.5	Benchmarking
3.8.1.6	Excersises
3.8.1.7	References

3.8.2	NumPy	☁�
3.8.2.1	Installing	NumPy
3.8.2.2	NumPy	Basics
3.8.2.3	Data	Types:	The	Basic	Building	Blocks
3.8.2.4	Arrays:	Stringing	Things	Together
3.8.2.5	Matrices:	An	Array	of	Arrays
3.8.2.6	Slicing	Arrays	and	Matrices
3.8.2.7	Useful	Functions
3.8.2.8	Linear	Algebra
3.8.2.9	NumPy	Resources

3.8.3	Scipy	☁�
3.8.3.1	Introduction
3.8.3.2	References

3.8.4	Scikit-learn	☁�
3.8.4.1	Introduction	to	Scikit-learn
3.8.4.2	Installation
3.8.4.3	Supervised	Learning
3.8.4.4	Unsupervised	Learning
3.8.4.5	Building	a	end	to	end	pipeline	for	Supervised	machine	learning
using	Scikit-learn
3.8.4.6	Steps	for	developing	a	machine	learning	model
3.8.4.7	Exploratory	Data	Analysis
3.8.4.7.1	Bar	plot
3.8.4.7.2	Correlation	between	attributes
3.8.4.7.3	Histogram	Analysis	of	dataset	attributes
3.8.4.7.4	Box	plot	Analysis
3.8.4.7.5	Scatter	plot	Analysis

3.8.4.8	Data	Cleansing	-	Removing	Outliers
3.8.4.9	Pipeline	Creation
3.8.4.9.1	 Defining	 DataFrameSelector	 to	 separate	 Numerical	 and
Categorical	attributes
3.8.4.9.2	Feature	Creation	/	Additional	Feature	Engineering

3.8.4.10	Creating	Training	and	Testing	datasets
3.8.4.11	Creating	pipeline	for	numerical	and	categorical	attributes
3.8.4.12	Selecting	the	algorithm	to	be	applied
3.8.4.12.1	Linear	Regression
3.8.4.12.2	Logistic	Regression
3.8.4.12.3	Decision	trees
3.8.4.12.4	K	Means
3.8.4.12.5	Support	Vector	Machines
3.8.4.12.6	Naive	Bayes
3.8.4.12.7	Random	Forest
3.8.4.12.8	Neural	networks
3.8.4.12.9	Deep	Learning	using	Keras
3.8.4.12.10	XGBoost

3.8.4.13	Scikit	Cheat	Sheet
3.8.4.14	Parameter	Optimization
3.8.4.14.1	Hyperparameter	optimization/tuning	algorithms

3.8.4.15	Experiments	with	Keras	(deep	learning),	XGBoost,	and	SVM
(SVC)	compared	to	Logistic	Regression(Baseline)
3.8.4.15.1	Creating	a	parameter	grid
3.8.4.15.2	Implementing	Grid	search	with	models	and	also	creating
metrics	from	each	of	the	model.
3.8.4.15.3	Results	table	from	the	Model	evaluation	with	metrics.
3.8.4.15.4	ROC	AUC	Score

3.8.4.16	K-means	in	scikit	learn.
3.8.4.16.1	Import

3.8.4.17	K-means	Algorithm
3.8.4.17.1	Import
3.8.4.17.2	Create	samples
3.8.4.17.3	Create	samples
3.8.4.17.4	Visualize
3.8.4.17.5	Visualize

3.8.5	Parallel	Computing	in	Python	☁�
3.8.5.1	Multi-threading	in	Python
3.8.5.1.1	Thread	vs	Threading
3.8.5.1.2	Locks

3.8.5.2	Multi-processing	in	Python
3.8.5.2.1	Process

3.8.5.2.2	Pool
3.8.5.2.2.1	Synchronous	Pool.map()
3.8.5.2.2.2	Asynchronous	Pool.map_async()

3.8.5.2.3	Locks
3.8.5.2.4	Process	Communication
3.8.5.2.4.1	Value

3.8.6	Dask	-	Random	Forest	Feature	Detection	☁�
3.8.6.1	Setup
3.8.6.2	Dataset
3.8.6.3	Detecting	Features
3.8.6.3.1	Data	Preparation

3.8.6.4	Random	Forest
3.8.6.5	Acknowledgement

4	DEVOPS	TOOLS
4.1	Refcards	☁�
4.2	Virtual	Box	☁�
4.2.1	Installation
4.2.2	Guest	additions
4.2.3	Exercises

4.3	Vagrant	☁�
4.3.1	Installation
4.3.1.1	macOS
4.3.1.2	Windows	�
4.3.1.3	Linux	�

4.3.2	Usage
4.4	Linux	Shell	☁�
4.4.1	History
4.4.2	Shell
4.4.3	The	command	man
4.4.4	Multi-command	execution
4.4.5	Keyboard	Shortcuts
4.4.6	bashrc,	bash_profile	or	zprofile
4.4.7	Makefile
4.4.8	chmod
4.4.9	Exercises

4.5	Secure	Shell	☁�
4.5.1	ssh-keygen

4.5.2	ssh-add
4.5.3	SSH	Add	and	Agent
4.5.3.1	Using	SSH	on	Mac	OS	X
4.5.3.2	Using	SSH	on	Linux
4.5.3.3	Using	SSH	on	Raspberry	Pi	3/4
4.5.3.4	Accessing	a	Remote	Machine

4.5.4	SSH	Port	Forwarding	�
4.5.4.1	Prerequisites
4.5.4.2	How	to	Restart	the	Server
4.5.4.3	Types	of	Port	Forwarding
4.5.4.4	Local	Port	Forwarding
4.5.4.5	Remote	Port	Forwarding
4.5.4.6	Dynamic	Port	Forwarding
4.5.4.7	ssh	config
4.5.4.8	Tips
4.5.4.9	References

4.5.5	SSH	to	FutureSystems	Resources	☁�
4.5.5.1	Testing	your	FutureSystems	ssh	key

4.5.6	Exercises	☁�
4.6	Github	☁�
4.6.1	Overview
4.6.2	Upload	Key
4.6.3	Fork
4.6.4	Rebase
4.6.5	Remote
4.6.6	Pull	Request
4.6.7	Branch
4.6.8	Checkout
4.6.9	Merge
4.6.10	GUI
4.6.11	Windows
4.6.12	Git	from	the	Commandline
4.6.13	Configuration
4.6.14	Upload	your	public	key
4.6.15	Working	with	a	directory	that	will	be	provided	for	you
4.6.16	README.yml	and	notebook.md
4.6.17	Contributing	to	the	Document

4.6.17.1	Stay	up	to	date	with	the	original	repo
4.6.17.2	Resources

4.6.18	Exercises
4.6.19	Github	Issues
4.6.19.1	Git	Issue	Features
4.6.19.2	Github	Markdown
4.6.19.2.1	Task	lists
4.6.19.2.2	Team	integration
4.6.19.2.3	Referencing	Issues	and	Pull	requests
4.6.19.2.4	Emojis

4.6.19.3	Notifications
4.6.19.4	cc
4.6.19.5	Interacting	with	issues

4.6.20	Glossary
4.6.21	Example	commands
4.6.21.1	Local	commands	to	version	contril	your	files
4.6.21.2	Interacting	with	the	remote

4.7	Git	Pull	Request	☁�
4.7.1	Introduction
4.7.2	How	to	create	a	pull	request
4.7.3	Fork	the	original	repository
4.7.4	Clone	your	copy
4.7.5	Adding	an	upstream
4.7.6	Making	changes
4.7.7	Creating	a	pull	request

4.8	Tig	☁�
5	 Introduction	 to	 Cloud	 Computing	 and	 Data	 Engineering	 for	 Cloud
Computing	and	Machine	Learning	☁�
5.1	A.	Summary	of	Introduction	to	Cloud	Computing	&	Data	Engineering
5.2	B.	Defining	Clouds	I
5.3	C.	Defining	Clouds	II
5.4	D.	Defining	Clouds	III
5.5	E.	Virtualization
5.6	F.	Technology	Hypecycle	I
5.7	G.	Technology	Hypecycle	II
5.8	H.	Cloud	Infrastructure	I
5.9	I.	Cloud	Infrastructure	II

5.10	J	Cloud	Software
5.11	K.	Cloud	Applications	I
5.12	L	Cloud	Applications	II
5.13	M	Cloud	Applications	III
5.14	N.	Clouds	and	Parallel	Computing
5.15	O.	Storage
5.16	P.	HPC	and	Clouds
5.17	Q.	Comparison	of	Data	Analytics	with	Simulation
5.18	R.	Jobs
5.19	S.	The	Future	I
5.20	T.	The	Future	and	other	Issues	II
5.21	U.	The	Future	and	other	Issues	III

6	REST
6.1	Introduction	to	REST	☁�
6.1.0.1	Collection	of	Resources
6.1.0.2	Single	Resource
6.1.0.3	REST	Tool	Classification

6.2	OpenAPI	REST	Services	with	Swagger	☁�
6.2.1	Swagger	Tools
6.2.2	Swagger	Community	Tools
6.2.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

6.3	OpenAPI	2.0	Specification	☁�
6.3.1	The	Virtual	Cluster	example	API	Definition
6.3.1.1	Terminology
6.3.1.2	Specification

6.3.2	References
6.4	OpenAPI	3.0	REST	Service	via	Introspection	☁�
6.4.1	Verification
6.4.2	Swagger-UI
6.4.3	Mock	service
6.4.4	Exercise

6.5	OpenAPI	REST	Service	via	Codegen	☁�
6.5.1	Step	1:	Define	Your	REST	Service
6.5.2	Step	2:	Server	Side	Stub	Code	Generation	and	Implementation
6.5.2.1	Setup	the	Codegen	Environment
6.5.2.2	Generate	Server	Stub	Code
6.5.2.3	Fill	in	the	actual	implementation

6.5.3	Step	3:	Install	and	Run	the	REST	Service:
6.5.3.1	Start	a	virtualenv:
6.5.3.2	Make	sure	you	have	the	latest	pip:
6.5.3.3	Install	the	requirements	of	the	server	side	code:
6.5.3.4	Install	the	server	side	code	package:
6.5.3.5	Run	the	service
6.5.3.6	Verify	the	service	using	a	web	browser:

6.5.4	Step	4:	Generate	Client	Side	Code	and	Verify
6.5.4.1	Client	side	code	generation:
6.5.4.2	Install	the	client	side	code	package:
6.5.4.3	Using	the	client	API	to	interact	with	the	REST	service

6.5.5	Towards	a	Distributed	Client	Server
6.6	Flask	RESTful	Services	☁�
6.7	Rest	Services	with	Eve	☁�
6.7.1	Ubuntu	install	of	MongoDB
6.7.2	macOS	install	of	MongoDB
6.7.3	Windows	10	Installation	of	MongoDB
6.7.4	Database	Location
6.7.5	Verification
6.7.6	Building	a	simple	REST	Service
6.7.7	Interacting	with	the	REST	service
6.7.8	Creating	REST	API	Endpoints
6.7.9	REST	API	Output	Formats	and	Request	Processing
6.7.10	REST	API	Using	a	Client	Application
6.7.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	�

6.8	HATEOAS	☁�
6.8.1	Filtering
6.8.2	Pretty	Printing
6.8.3	XML

6.9	Extensions	to	Eve	☁�
6.9.1	Object	Management	with	Eve	and	Evegenie
6.9.1.1	Installation
6.9.1.2	Starting	the	service
6.9.1.3	Creating	your	own	objects

6.10	Django	REST	Framework	☁�
6.11	Github	REST	Services	☁�
6.11.1	Issues

6.11.2	Exercise
7	MAPREDUCE
7.1	Introduction	to	Mapreduce	☁�
7.1.1	MapReduce	Algorithm
7.1.1.1	MapReduce	Example:	Word	Count

7.1.2	Hadoop	MapReduce	and	Hadoop	Spark
7.1.2.1	Apache	Spark
7.1.2.2	Hadoop	MapReduce
7.1.2.3	Key	Differences

7.1.3	References
7.2	Hadoop	☁�
7.2.1	Hadoop	and	MapReduce
7.2.2	Hadoop	EcoSystem
7.2.3	Hadoop	Components
7.2.4	Hadoop	and	the	Yarn	Resource	Manager
7.2.5	PageRank

7.3	Installation	of	Hadoop	☁�
7.3.1	Releases
7.3.2	Prerequisites
7.3.3	User	and	User	Group	Creation
7.3.4	Configuring	SSH
7.3.5	Installation	of	Java
7.3.6	Installation	of	Hadoop
7.3.7	Hadoop	Environment	Variables

7.4	Hadoop	Virtual	Cluster	Installation	Using	Cloudmesh	�	☁�
7.4.1	Cloudmesh	Cluster	Installation
7.4.1.1	Create	Cluster
7.4.1.2	Check	Created	Cluster
7.4.1.3	Delete	Cluster

7.4.2	Hadoop	Cluster	Installation
7.4.2.1	Create	Hadoop	Cluster
7.4.2.2	Delete	Hadoop	Cluster

7.4.3	Advanced	Topics	with	Hadoop
7.4.3.1	Hadoop	Virtual	Cluster	with	Spark	and/or	Pig
7.4.3.2	Word	Count	Example	on	Spark

7.5	SPARK
7.5.1	Spark	Lectures	☁�

7.5.1.1	Motivation	for	Spark
7.5.1.2	Spark	RDD	Operations
7.5.1.3	Spark	DAG
7.5.1.4	Spark	vs.	other	Frameworks

7.5.2	Installation	of	Spark	☁�
7.5.2.1	Prerequisites
7.5.2.2	Installation	of	Java
7.5.2.3	Install	Spark	with	Hadoop
7.5.2.4	Spark	Environment	Variables
7.5.2.5	Test	Spark	Installation
7.5.2.6	Install	Spark	With	Custom	Hadoop
7.5.2.7	Configuring	Hadoop
7.5.2.8	Test	Spark	Installation

7.5.3	Spark	Streaming	☁�
7.5.3.1	Streaming	Concepts
7.5.3.2	Simple	Streaming	Example
7.5.3.3	Spark	Streaming	For	Twitter	Data
7.5.3.3.1	Step	1
7.5.3.3.2	Step	2
7.5.3.3.3	Step	3
7.5.3.3.4	Step	4
7.5.3.3.5	step	5
7.5.3.3.6	step	6

7.5.4	User	Defined	Functions	in	Spark	☁�
7.5.4.1	Resources
7.5.4.2	Instructions	for	Spark	installation
7.5.4.2.1	Linux

7.5.4.3	Windows
7.5.4.4	MacOS
7.5.4.5	Instructions	for	creating	Spark	User	Defined	Functions
7.5.4.5.1	Example:	Temperature	conversion
7.5.4.5.1.1	Description	about	data	set
7.5.4.5.1.2	How	to	write	a	python	program	with	UDF
7.5.4.5.1.3	How	to	execute	a	python	spark	script
7.5.4.5.1.4	Filtering	and	sorting

7.5.4.6	Instructions	to	install	and	run	the	example	using	docker
7.6	ADVANCED	HADOOP

7.6.1	Amazon	EMR	(Elastic	Map	Reduce)�	☁�
7.6.1.1	Why	EMR?
7.6.1.2	Understanding	Clusters	and	Nodes
7.6.1.2.1	Submit	Work	to	a	Cluster
7.6.1.2.2	Processing	Data

7.6.1.3	AWS	Storage
7.6.1.4	Create	EMR	in	AWS
7.6.1.4.1	Create	the	buckets
7.6.1.4.2	Create	Key	Pairs
7.6.1.4.2.1	Create	Key	Value	Pair	Screen	shots

7.6.1.5	Create	Step	Execution	–	Hadoop	Job
7.6.1.5.0.1	Screen	shots

7.6.1.6	Create	a	Hive	Cluster
7.6.1.6.1	Create	a	Hive	Cluster	-	Screen	shots

7.6.1.7	Create	a	Spark	Cluster
7.6.1.7.1	Create	a	Spark	Cluster	-	Screenshots

7.6.2	Twister2	☁�
7.6.2.1	Introduction
7.6.2.2	Twister2	API’s
7.6.2.2.1	TSet	API
7.6.2.2.2	Task	API

7.6.2.3	Operator	API
7.6.2.3.1	Resources

7.6.3	Twister2	Installation	☁�
7.6.3.1	Prerequisites
7.6.3.1.1	Maven	Installation
7.6.3.1.2	OpenMPI	Installation
7.6.3.1.3	Install	Extras
7.6.3.1.4	Compiling	Twister2
7.6.3.1.5	Twister2	Distribution

7.6.4	Twister2	Examples	☁�
7.6.4.1	Submitting	a	Job
7.6.4.2	Batch	WordCount	Example

7.6.5	HADOOP	RDMA	☁�
7.6.5.1	Launching	a	Virtual	Hadoop	Cluster	on	Bare-metal	InfiniBand
Nodes	with	SR-IOV	on	Chameleon
7.6.5.2	Launching	Virtual	Machines	Manually

7.6.5.3	Extra	Initialization	when	Launching	Virtual	Machines
7.6.5.4	 Important	 Note	 for	 Tearing	 Down	 Virtual	 Machines	 and
Deleting	Network	Ports

8	CONTAINER
8.1	Introduction	to	Containers	☁�
8.1.1	Motivation	-	Microservices
8.1.2	Motivation	-	Serverless	Computing
8.1.3	Docker
8.1.4	Docker	and	Kubernetes

8.2	DOCKER
8.2.1	Introduction	to	Docker	☁�
8.2.1.1	Docker	Engine
8.2.1.2	Docker	Architecture
8.2.1.3	Docker	Survey

8.2.2	Running	Docker	Locally	☁�
8.2.2.1	Instillation	for	OSX
8.2.2.2	Installation	for	Ubuntu
8.2.2.3	Installation	for	Windows	10
8.2.2.4	Testing	the	Install

8.2.3	Dockerfile	☁�
8.2.3.1	Specification
8.2.3.2	References

8.2.4	Docker	Hub	☁�
8.2.4.1	Create	Docker	ID	and	Log	In
8.2.4.2	Searching	for	Docker	Images
8.2.4.3	Pulling	Images
8.2.4.4	Create	Repositories
8.2.4.5	Pushing	Images
8.2.4.6	Resources

8.3	DOCKER	AS	PAAS
8.3.1	Docker	Swarm	☁�
8.3.1.1	Terminology
8.3.1.2	Creating	a	Docker	Swarm	Cluster
8.3.1.3	Create	a	Swarm	Cluster	with	VirtualBox
8.3.1.4	Initialize	the	Swarm	Manager	Node	and	Add	Worker	Nodes
8.3.1.5	Deploy	the	application	on	the	swarm	manager

8.3.2	Docker	and	Docker	Swarm	on	FutureSystems	☁�

8.3.2.1	Getting	Access
8.3.2.2	Creating	a	service	and	deploy	to	the	swarm	cluster
8.3.2.3	Create	your	own	service
8.3.2.4	Publish	an	image	privately	within	the	swarm	cluster
8.3.2.5	Exercises

8.3.3	Hadoop	with	Docker	☁�
8.3.3.1	Building	Hadoop	using	Docker
8.3.3.2	Hadoop	Configuration	Files
8.3.3.3	Virtual	Memory	Limit
8.3.3.4	hdfs	Safemode	leave	command
8.3.3.5	Examples
8.3.3.5.1	Statistical	Example	with	Hadoop
8.3.3.5.1.1	Base	Location
8.3.3.5.1.2	Input	Files
8.3.3.5.1.3	Compilation
8.3.3.5.1.4	Archiving	Class	Files
8.3.3.5.1.5	HDFS	for	Input/Output
8.3.3.5.1.6	Run	Program	with	a	Single	Input	File
8.3.3.5.1.7	Result	for	Single	Input	File
8.3.3.5.1.8	Run	Program	with	Multiple	Input	Files
8.3.3.5.1.9	Result	for	Multiple	Files

8.3.3.5.2	Conclusion
8.3.3.6	Refernces

8.3.4	Docker	Pagerank	☁�
8.3.4.1	Use	the	automated	script
8.3.4.2	Compile	and	run	by	hand

8.3.5	Apache	Spark	with	Docker	☁�
8.3.5.1	Pull	Image	from	Docker	Repository
8.3.5.2	Running	the	Image
8.3.5.2.1	Running	interactively
8.3.5.2.2	Running	in	the	background

8.3.5.3	Run	Spark
8.3.5.3.1	Run	Spark	in	Yarn-Client	Mode
8.3.5.3.2	Run	Spark	in	Yarn-Cluster	Mode

8.3.5.4	Observe	Task	Execution	from	Running	Logs	of	SparkPi
8.3.5.5	Write	a	Word-Count	Application	with	Spark	RDD
8.3.5.5.1	Launch	Spark	Interactive	Shell

8.3.5.5.2	Program	in	Scala
8.3.5.5.3	Launch	PySpark	Interactive	Shell
8.3.5.5.4	Program	in	Python

8.3.5.6	Docker	Spark	Examples
8.3.5.6.1	K-Means	Example
8.3.5.6.2	Join	Example
8.3.5.6.3	Word	Count

8.3.5.7	Interactive	Examples
8.3.5.7.1	Stop	Docker	Container
8.3.5.7.2	Start	Docker	Container	Again
8.3.5.7.3	Remove	Docker	Container

8.4	KUBERNETES
8.4.1	Introduction	to	Kubernetes	☁�
8.4.1.1	What	are	containers?
8.4.1.2	Terminology
8.4.1.3	Kubernetes	Architecture
8.4.1.4	Minikube
8.4.1.4.1	Install	minikube
8.4.1.4.2	Start	a	cluster	using	Minikube
8.4.1.4.3	Create	a	deployment
8.4.1.4.4	Expose	the	servi
8.4.1.4.5	Check	running	status
8.4.1.4.6	Call	service	api
8.4.1.4.7	Take	a	look	from	Dashboard
8.4.1.4.8	Delete	the	service	and	deployment
8.4.1.4.9	Stop	the	cluster

8.4.1.5	Interactive	Tutorial	Online
8.4.2	Using	Kubernetes	on	FutureSystems	☁�
8.4.2.1	Getting	Access
8.4.2.2	Example	Use
8.4.2.3	Exercises

8.5	SINGULARITY
8.5.1	Running	Singularity	Containers	on	Comet	☁�
8.5.1.1	Background
8.5.1.2	Tutorial	Contents
8.5.1.3	Why	Singularity?
8.5.1.4	Hands-On	Tutorials

8.5.1.5	Downloading	&	Installing	Singularity
8.5.1.5.1	Download	&	Unpack	Singularity
8.5.1.5.2	Configure	&	Build	Singularity
8.5.1.5.3	Install	&	Test	Singularity

8.5.1.6	Building	Singularity	Containers
8.5.1.6.1	Upgrading	Singularity

8.5.1.7	Create	an	Empty	Container
8.5.1.8	Import	Into	a	Singularity	Container
8.5.1.9	Shell	Into	a	Singularity	Container
8.5.1.10	Write	Into	a	Singularity	Container
8.5.1.11	Bootstrapping	a	Singularity	Container
8.5.1.12	Running	Singularity	Containers	on	Comet
8.5.1.12.1	Transfer	the	Container	to	Comet
8.5.1.12.2	Run	the	Container	on	Comet
8.5.1.12.3	Allocate	Resources	to	Run	the	Container
8.5.1.12.4	Integrate	the	Container	with	Slurm
8.5.1.12.5	Use	Existing	Comet	Containers

8.5.1.13	Using	Tensorflow	With	Singularity
8.5.1.14	Run	the	job

8.6	Exercises	☁�
9	NIST
9.1	NIST	Big	Data	Referenece	Architecture	☁�
9.1.1	Pathway	to	the	NIST-BDRA
9.1.2	Big	Data	Characteristics	and	Definitions
9.1.3	Big	Data	and	the	Cloud
9.1.4	Big	Data,	Edge	Computing	and	the	Cloud
9.1.5	Reference	Architecture
9.1.6	Framework	Providers
9.1.7	Application	Providers
9.1.8	Fabric
9.1.9	Interface	definitions

10	AI
10.1	Artificial	Intelligence	Service	with	REST	�	☁�
10.1.1	Unsupervised	Learning
10.1.2	KMeans
10.1.3	Lab:Practice	on	AI
10.1.4	k-NN

10.1.5	Machine	Learning	and	Cloud	Services
10.1.5.1	Introduction	and	Regression
10.1.5.2	K-means	Clustering
10.1.5.3	Visulization
10.1.5.4	Clustering	Examples
10.1.5.5	General	Clustering	with	Examples
10.1.5.6	In	Depth	Example	with	four	centers
10.1.5.7	Parallel	Computing	and	K-means

10.1.6	Example	Project	with	SVM
11	REFERENCES

1	PREFACE

Sat	Nov	23	05:18:45	EST	2019	☁�

1.1	DISCLAIMER	☁�
This	book	has	been	generated	with	Cyberaide	Bookmanager.

Bookmanager	is	a	tool	to	create	a	publication	from	a	number	of	sources	on	the
internet.	 It	 is	 especially	 useful	 to	 create	 customized	 books,	 lecture	 notes,	 or
handouts.	 Content	 is	 best	 integrated	 in	markdown	 format	 as	 it	 is	 very	 fast	 to
produce	the	output.

Bookmanager	has	been	developed	based	on	our	experience	over	the	last	3	years
with	 a	more	 sophisticated	 approach.	Bookmanager	 takes	 the	 lessons	 from	 this
approach	and	distributes	a	tool	that	can	easily	be	used	by	others.

The	 following	shields	provide	 some	 information	about	 it.	Feel	 free	 to	click	on
them.

pypipypi v0.2.28v0.2.28 	 LicenseLicense Apache	2.0Apache	2.0 	 pythonpython 3.73.7 	 formatformat wheelwheel 	 statusstatus stablestable 	 buildbuild unknownunknown

1.1.1	Acknowledgment

If	you	use	bookmanager	to	produce	a	document	you	must	include	the	following
acknowledgement.

“This	 document	 was	 produced	 with	 Cyberaide	 Bookmanager
developed	 by	 Gregor	 von	 Laszewski	 available	 at
https://pypi.python.org/pypi/cyberaide-bookmanager.	 It	 is	 in	 the
responsibility	 of	 the	 user	 to	make	 sure	 an	 author	 acknowledgement
section	 is	 included	 in	 your	 document.	 Copyright	 verification	 of
content	included	in	a	book	is	responsibility	of	the	book	editor.”

The	bibtex	entry	is
@Misc{www-cyberaide-bookmanager,

		author	=			{Gregor	von	Laszewski},

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer.md
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://github.com/cloudmesh/cyberaide-bookmanager/blob/master/LICENSE
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://travis-ci.com/cloudmesh/cyberaide-bookmanager

1.1.2	Extensions

We	 are	 happy	 to	 discuss	 with	 you	 bugs,	 issues	 and	 ideas	 for	 enhancements.
Please	use	the	convenient	github	issues	at

https://github.com/cyberaide/bookmanager/issues

Please	do	not	file	with	us	issues	that	relate	to	an	editors	book.	They	will	provide
you	with	their	own	mechanism	on	how	to	correct	their	content.

1.2	CONTRIBUTORS	☁�
Contributors	 are	 sorted	 by	 the	 first	 letter	 of	 their	 combined	 Firstname	 and
Lastname	and	if	not	available	by	their	github	ID.	Please,	note	that	the	authors	are
identified	through	git	logs	in	addition	to	some	contributors	added	by	hand.	The
git	 repository	 from	 which	 this	 document	 is	 derived	 contains	 more	 than	 the
documents	 included	 in	 this	document.	Thus	not	everyone	 in	 this	 list	may	have
directly	contributed	to	this	document.	However	if	you	find	someone	missing	that
has	contributed	(they	may	not	have	used	this	particular	git)	please	let	us	know.
We	will	add	you.	The	contributors	that	we	are	aware	of	include:

Anand	 Sriramulu,	 Ankita	 Rajendra	 Alshi,	 Anthony	 Duer,	 Arnav,
Averill	Cate,	Jr,	Bertolt	Sobolik,	Bo	Feng,	Brad	Pope,	Brijesh,	Dave
DeMeulenaere,	De’Angelo	Rutledge,	Eliyah	Ben	Zayin,	Eric	Bower,
Fugang	 Wang,	 Geoffrey	 C.	 Fox,	 Gerald	 Manipon,	 Gregor	 von
Laszewski,	 Hyungro	 Lee,	 Ian	 Sims,	 IzoldaIU,	 Javier	 Diaz,	 Jeevan
Reddy	Rachepalli,	Jonathan	Branam,	Juliette	Zerick,	Keith	Hickman,
Keli	Fine,	Kenneth	Jones,	Mallik	Challa,	Mani	Kagita,	Miao	Jiang,
Mihir	 Shanishchara,	 Min	 Chen,	 Murali	 Cheruvu,	 Orly	 Esteban,
Pulasthi	 Supun,	 Pulasthi	 Supun	 Wickramasinghe,	 Pulkit	 Maloo,
Qianqian	 Tang,	 Ravinder	 Lambadi,	 Richa	 Rastogi,	 Ritesh	 Tandon,
Saber	Sheybani,	Sachith	Withana,	Sandeep	Kumar	Khandelwal,	Sheri
Sanders,	 Shivani	 Katukota,	 Silvia	 Karim,	 Swarnima	 H.	 Sowani,

		title	=				{{Cyberaide	Book	Manager}},

		howpublished	=	{pypi},

		month	=				apr,

		year	=					2019,

		url={https://pypi.org/project/cyberaide-bookmanager/}

}

https://github.com/cyberaide/bookmanager/issues
https://github.com/cloudmesh-community/book/blob/master/chapters/authors.md

Tharak	 Vangalapat,	 Tim	 Whitson,	 Tyler	 Balson,	 Vafa	 Andalibi,
Vibhatha	Abeykoon,	Vineet	Barshikar,	Yu	Luo,	ahilgenkamp,	aralshi,
azebrowski,	 bfeng,	 brandonfischer99,	 btpope,	 garbeandy,
harshadpitkar,	 himanshu3jul,	 hrbahramian,	 isims1,	 janumudvari,
joshish-iu,	 juaco77,	 karankotz,	 keithhickman08,	 kkp,	 mallik3006,
manjunathsivan,	 niranda	 perera,	 qianqian	 tang,	 rajni-cs,	 rirasto,
sahancha,	 shilpasingh21,	 swsachith,	 toshreyanjain,	 trawat87,
tvangalapat,	varunjoshi01,	vineetb-gh,	xianghang	mi,	zhengyili4321

2	SYLLABUS

2.1	E222:	INTELLIGENT	SYSTEMS	ENGENEERING	II	☁�
In	this	undergraduate	course	students	will	be	familiarized	with	different	specific
applications	and	implementations	of	intelligent	systems	and	their	use	in	desktop
and	cloud	solutions.

Piazza:	Link
Registrar:	Link
Lecture	Notes:	ePub
Indiana	University
Faculty:	Geoffrey	C.	Fox
Credits:	3
Hardware:	You	will	need	a	computer	to	take	this	class,	a	phone,	tablet,	or
chrome	book	is	not	sufficient.
Prerequisite(s):	Knowledge	of	a	programming	language,	the	ability	to	pick
up	 other	 programming	 languages	 as	 needed,	 willingness	 to	 enhance	 your
knowledge	 from	online	 resources	 and	 additional	 literature.	You	will	 need
access	 to	 a	 modern	 computer	 that	 allows	 using	 virtual	 machines	 and/or
containers.	 If	 such	 a	 system	 is	 not	 available	 to	 you	 can	 also	 use	 IU
computers	or	cloud	virtual	machines.	The	later	have	to	be	requested.
Course	Description:	Link

This	is	an	introductory	class.	In	case	you	like	to	do	research	and	more	advanced
topics,	consider	taking	an	independent	study	with	Dr.	Fox	or	Dr.	von	Laszewski.

An	introduction	video	is	available	at:

	222	Class	Introduction	and	Management

2.1.1	Teaching	and	learning	methods

Lectures
Assignments	including	specific	lab	activities

https://github.com/cloudmesh-community/book/blob/master/chapters/class/e222-syllabus.md
https://piazza.com/iu/spring2019/e222spring19/resources
https://registrar.indiana.edu/browser/soc4182/ENGR/ENGR-E222.shtml
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-e222.epub
https://github.com/cloudmesh-community/book/blob/master/chapters/class/e222-syllabus.md
https://youtu.be/m0T95VfdnkE

Final	project

2.1.2	Representative	bibliography

1.	 Cloud	Computing	for	Science	and	Engineering	By	Ian	Foster	and	Dennis	B.
Gannon

https://mitpress.mit.edu/books/cloud-computing-science-and-engineering

2.	 (This	 document)	 Handbook	 of	 Clouds	 and	 Big	 Data,	 Gregor	 von
Laszewski,	 Geoffrey	 C.	 Fox,	 and	 Judy	 Qiu,	 Fall	 2017,
https://tinyurl.com/vonLaszewski-handbook

3.	 Use	 Cases	 in	 Big	 Data	 Software	 and	 Analytics	 Vol.	 1,	 Gregor	 von
Laszewski,	 Fall	 2017,	 https://tinyurl.com/cloudmesh/vonLaszewski-i523-
v1.pdf

4.	 Use	 Cases	 in	 Big	 Data	 Software	 and	 Analytics	 Vol.	 2,	 Gregor	 von
Laszewski,	 Fall	 2017,	 https://tinyurl.com/cloudmesh/vonLaszewski-i523-
v2.pdf

5.	 Use	 Cases	 in	 Big	 Data	 Software	 and	 Analytics	 Vol.	 3,	 Gregor	 von
Laszewski,	Fall	2017,	https://tinyurl.com/vonLaszewski-projects-v3

6.	 Big	 Data	 Software	 Vol	 1.,	 Gregor	 von	 Laszewski,	 Spring	 2017,
https://github.	 com/cloudmesh/sp17-
i524/blob/master/paper1/proceedings.pdf

7.	 Big	Data	Software	Vol	2.,	Gregor	von	Laszewski,	Spring	2017,

https://github.com/cloudmesh/sp17-
i524/blob/master/paper2/proceedings.pdf

8.	 Big	Data	Projects,	Gregor	von	Laszewski,	Spring	2017,

https://github.com/cloudmesh/sp17-i524/blob/master/project/projects.pdf

9.	 Gregor	von	Laszewski,	Geoffrey	C.	Fox,	Cloud	Computing	and	Big	Data
http://cyberaide.org/papers/vonLaszewski-bigdata.pdf

10.	 Introduction	 to	 Python	 for	 cloud	 Computing
https://laszewski.github.io/book/python/

2.1.3	Grading

https://mitpress.mit.edu/books/cloud-computing-science-and-engineering
https://github.com/cloudmesh/sp17-i524/blob/master/paper2/proceedings.pdf
https://github.com/cloudmesh/sp17-i524/blob/master/project/projects.pdf
http://cyberaide.org/papers/vonLaszewski-bigdata.pdf
https://laszewski.github.io/book/python/

Grade	Item Percentage
Assignments 30%
Final	Project 60%
Participation 10%

2.1.4	Incomplete

Please	see	the	university	regulations	for	getting	an	incomplete.	However,	as	this
class	uses	 state-of-the-art	 technology	 that	 changes	 frequently,	you	must	 expect
that	 an	 incomplete	may	 result	 in	 significant	 additional	work	on	your	behalf	 as
your	project	may	need	significant	updates	on	infrastructure,	technology,	or	even
programming	models	used.	It	is	best	to	complete	the	course	within	one	semester.

2.1.5	Other	classes	I423,	I523,	I524,	B649,	E516,	E616

IU	offers	other	undergraduate	classes	in	this	topic	area	such	as	I423.	If	you	are
interested	in	taking	it,	please	see	when	they	are	taught.	Additional	graduate	level
classes	related	which	can	also	be	taken	only	by	special	permission	including:

CSCI	 B-649	 Cloud	 Computing	 is	 the	 same	 as	 E516	 but	 for	 computer
science	students.
I524	is	the	same	as	E516	but	for	Data	Engineering	Students
E516	Introdcustion	to	CLoud	COmputing	and	CLoud	Engeneering

All	 of	 these	 classes	 are	 project	 based	 and	 require	 a	 significant	 and	 consistent
effort	of	time	on	your	side.

2.1.6	Communication

To	ask	for	help	use	piazza:

Piazza	Resources
Piazza	Questions

Please	do	not	use	CANVAS	for	communicating	with	us.	Use	Piazza.	Make	sure
you	have	access	to	Piazza,	while	posting	your	formal	Bio.

https://piazza.com/iu/spring2019/e222spring19/resources
https://piazza.com/class/jq2u1qfc4o81ox

2.1.6.1	How	to	take	this	class

This	 class	 is	 an	 undergraduate	 class	 that	 contains	 two	 sections	 that	 you	must
attend.

In	 this	document	we	will	 introduce	you	theoretically	 to	some	concepts	 that	are
important	for	this	class.	This	is	done	either	through	lectures,	written	material,	or
pointers	to	Web	resources.	You	are	responsible	to

1.	 listen	to	the	online	lectures	and	understand	them.
2.	 identify	additional	material	that	may	help	you	in	understanding	the	lectures.

This	could	include	additional	resources	on	the	internet
3.	 Contribute	to	the	material	by	correcting	errors	and	updates	you	may	find.

Please	note	that	we	try	to	keep	the	material	up	to	date	with	your	help.	However,
in	 our	 field	 software	 and	 documentation	 changes	 quickly	 and	 if	 you	 identify
updated	material	we	expect	that	you	help	us	fixing	it.	You	will	get	credit	doing
so.

To	allow	you	to	be	most	flexible	in	taking	this	class,	we	certainly	allow	you	to
work	ahead.	Thus	you	can	use	all	but	the	in	person	lectures	ahead	of	time.	The
Syllabus	will	clearly	identify	which	material	is	available.	Note	that	the	book	may
include	 sections	 that	 are	 not	marked	 in	 the	 syllabus.	You	 do	 not	 have	 to	 read
such	sections.

Please	note	that	this	class	does	not	have	small	assignments	and	any	assignment
is	 likely	to	take	you	a	significant	amount	of	 time.	Thus	it	 is	advisable	that	you
start	your	assignments	early	and	make	sure	you	do	not	do	them	in	the	last	week
before	 the	 assignment	 is	 due.	 This	 contrasts	 other	 undergraduate	 classes,	 that
may	focus	on	the	assignment	of	a	number	of	toy	exerises.	Instead	we	will	work
throughout	 the	 entire	 semester	 towards	 a	 project	 you	will	 conduct.	 In	 order	 to
make	 it	 earlier	 for	 you,	 we	 will	 introduce	 graded	 checkpoints	 of	 all	 large
assignments.	The	grades	for	these	checkpoints	are	final	and	can	not	be	improved
by	 work	 done	 later.	 Also	 here	 please	 be	 advised	 that	 some	may	 take	 several
weeks	 to	 conduct	 and	 it	 is	 your	 responsibility	 to	 devote	 enough	 time	 to	 these
activities.

To	asure	progress,	you	will	have	 to	manage	a	notebook.md	file	 in	your	github

directory	 (that	 we	will	 create	 for	 you)	 in	which	 you	will	 update	 your	weekly
progress.	 If	 you	miss	 a	 lecture,	 it	 is	 in	 your	 responsibility	 to	 inform	 yourself
what	was	being	 taught.	Attendance	and	participation	will	be	graded	as	well	 as
the	update	to	notebook.md	will	be	graded.

In	 the	 following	 calendar	 we	 put	 in	 the	 last	 day	 of	 the	 week	 when	 the
assignments	are	typically	due

2.1.7	Covered	Topics

As	part	of	this	class	you	will	have	to	explore	the	following	topics.	These	topics
are	 either	 included	 in	 this	 document,	 or	 we	 are	 pointing	 you	 within	 this
document	to	other	documents	with	the	information.

If	 we	 forgot	 anything	 let	 us	 know.	 The	 order	 of	 the	 lectures	 and	 the	 lecture
material	are	subject	to	change	as	we	see	fit.

	This	weekly	Agenda	will	be	updated	every	week.	Yo	are	required
to	check	in	every	week	for	updates.	At	this	time	we	have	included	an
approximate	weekly	agenda.

To	see	the	differences	to	previous	versions	of	this	document,	you	can	look	at:

https://github.com/cloudmesh-
community/book/commits/master/chapters/e222-syllabus.md

To	see	if	checkins	succeed	you	can	look	at:

https://circleci.com/gh/cloudmesh-community/book

Currently,	the	topics	covered	in	the	class	include	the	following.

2.1.7.1	Week	1.	Overview	of	this	Class

We	will	provide	an	overview	of	this	class.

https://github.com/cloudmesh-community/book/commits/master/chapters/e222-syllabus.md
https://circleci.com/gh/cloudmesh-community/book

Logistic:	Get	familiar	with	the	class	structure.

Read:	Preface;	Class	Overview;	Start	reviewing	your	python	knowledge

Assignment	Accounts:	 Find	 a	 computer	 you	 can	 do	 the	 class	 programming	 on
(tablet	and	chrombook	will	not	suffice).	Get	an	account	on	piazza.com	with	your
???	name	Get	an	account	on	github.com	(This	is	NOT	the	IU	github)	and	apply
there	for	a	github	username.	Post	the	username	into	a	form	that	will	be	send	to
you.	Make	sure	that	the	account	you	send	us	is	your	github.com	account.	This	is
a	graded	assignment	that	must	be	completed	in	the	first	week	of	class

This	must	be	completed	in	 the	first	week	by	Friday.	(Survey	will	be	posted	on
Piazza).

Assignment	 notebook:	 Once	 you	 get	 your	 github	 directory,	 update	 the	 file	
notebook.md.	Mind	the	spelling	notebook	is	lowercase.	Use	simple	markdown	bullet
lists	to	record	your	activities.

Assignment	Development	Environment:	(Multiweek	assignment,	to	be	completed
in	 the	firts	month)	It	 is	 important	 that	you	have	a	development	environment	 to
conduct	the	class	assignments.	We	recommend	that	you	use	virtual	box	and	use
ubuntu.	We	have	provided	an	extensive	set	of	material	for	you	to	achieve	this	in
this	document.	Please	consult	additional	resources	form	the	Web	and	utilize	the
Lab	hours.

2.1.7.2	Week	1	and	2.	Review	of	Python	for	Intelligent	Systems	Engineering

Theory:	basic	Python	Language
Theory:	pyenv,	setup.py,	modules

Practice:	Living	without	anaconda

Python	specific	topics	include:

Assignment:	Install	Python	and	use	it	throughut	the	semester
Why	not	anaconda?
Using	python	3.7
pip

Language
Numpy
Scipy
OpenCV
ScikitLearn

Report:	Create	an	empty	report	based	on	our	 template	 in	github.	The	TAs
may	do	this	with	you	in	the	Lab.

Github	Pull	Requests:	Find	a	spelling	error	in	the	class	material	and	create	a
pull	request	to	correct	it.

2.1.7.3	Week	2.	Review	of	Linux	shell	for	OSX,	Linux,	and	Windows

Theory:	Basic	Linux	Shell
Practice:	SSH
Assignment:	ssh	key	generation	on	your	computer,	upload	to	github.com

2.1.7.4	Week	3.	Introduction	to	REST

Theory:	Overview	of	REST,	Eve,	OpenAPI
Practice:	develop	a	REST	service	with	OpenAPI

Theory:	Learn	about	REST	services	and	use	Swagger	OpenAPI	to	create	a	rest
service	that	returns	the	CPU	information	about	your	computer

We	will	be	starting	the	class	with	introducing	you	to	REST	services	that	provide
a	 foundation	 for	 setting	 up	 services	 in	 the	 cloud	 and	 to	 interact	 with	 these
services.	As	part	of	 this	class	we	will	be	 revisiting	 the	REST	services	and	use
them	 to	 deploy	 them	 on	 a	 cloud	 as	 well	 as	 develop	 our	 own	 AI	 based	 rest
services	in	the	second	half	of	the	class.

Focus	on	OpenAPI	example	posted	in	the	NIST	github	repository

Project	team:	Build	a	project	team	with	no	more	than	3	people.	There	will
not	be	an	exception.	You	are	allowed	to	work	alone.	Make	sure	your	project
team	does	the	work	together.	E.g.	YOu	must	not	have	3	people	on	the	team
and	 the	 project	 could	 have	 been	 executed	 by	 a	 single	 person.	 In	 case	 of

more	than	one	person	the	sum	of	the	deliverables	must	be	larger	than	what
one	team	member	can	achieve.	It	is	an	advantage	to	work	in	a	team	as	you
can	check	each	other.

If	a	team	member	does	not	contribute	to	the	project,	the	team	has	the	right
to	 exclude	 the	 non	 working	 team	 member	 with	 consultation	 of	 the
instructors.	We	will	have	a	joint	meeting	with	the	team	to	identify	the	best
path	forward.	Chose	your	 team	members	wisely.	 Ideally	you	should	make
this	decision	in	the	first	3	weeks.

2.1.7.5	Week	4.	Introduction	to	Scientific	Writing

Theory:	Scientific	writing	with	markdown	and	bibtex
Practice:	Contribute	a	significant	chapter	to	the	book	(as	a	group)
Practice:	Project	Report	(as	a	group)
Practice:	Introduction	to	Emacs
Practice:	Introduction	to	jabref

See	the	separet	ePub	for	more	information:	Link

Assignment	Scientific	Writing:	Learn	about	markdown.	See	our	class	notes	and
internet	 resources.	 Note	 that	 we	 use	 pandoc	 markdown	 that	 may	 not	 render
properly	in	github,	especially	when	it	comes	to	figure	captions,	references,	and
bibliography.	(You	have	till	the	end	of	the	month).	Install	and	use	jabref.

Report:	 Learn	 bibtex	 and	 create	 references	 in	 report.bib	 that	 you	 use	 in
report.md.	Make	 sure	 that	 you	 do	 only	 one	 report	 per	 team	 and	 update	 your
README.yml	file	accordingly.	Check	in	the	Lab	with	the	TAs	if	you	have	done
it	correct.

Project	Idea	due:	A	one	page	formal	document	that	summarizes	the	project.
This	is	not	a	proposal.	The	workds	I	and	project,	report	must	not	be	used.	It
is	 essentially	a	 snapshot	of	your	 final	 report.	Discuss	with	 the	TAs	 in	 the
Lab	how	to	define	a	project.

Github:	make	sure	your	team	mates	have	access	to	your	project	directory.

2.1.7.6	Week	5	to	9.	Introduction	to	Cloud	Computing

https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-writing-markdown.epub?raw=true

Theory:

Introduction	-	Part	A
Introduction	-	Part	B	-	Defining	Clouds	I
Introduction	-	Part	C	-	Defining	Clouds	II
Introduction	-	Part	D	-	Defining	Clouds	III
Introduction	-	Part	E	-	Virtualization
Introduction	-	Part	F	-	Technology	Hypecycle	I
Introduction	-	Part	G	-	Technology	Hypecycle	II
Introduction	-	Part	H	-	IaaS	I
Introduction	-	Part	I	-	IaaS	II
Introduction	-	Part	J	-	Cloud	Software
Introduction	-	Part	K	-	Applications	I
Introduction	-	Part	M	-	Applications	III
Introduction	-	Part	N	-	Parallelism
Introduction	-	Part	O	-	Storage	Released
Introduction	-	Part	P	-	HPC	in	the	Cloud	Released
Introduction	-	Part	Q	-	Analytics	and	Simulation	Released
Introduction	-	Part	R	-	Jobs	Released
Introduction	-	Part	S	-	The	Future	Released
Introduction	-	Part	T	-	Security	Released
Introduction	-	Part	U	-	Fault	Tolerance

Practice:	Manage	virtual	machines	with	Virtualbox
Practice:	Manage	virtual	machines	with	Cloudmesh	v4
Practice:	Manage	a	container	with	Docker

Theory:	Containers

Week	5:	Project	Update	due:	A	two	page	formal	document	that	summarizes
the	project.	This	is	not	a	proposal.	The	words	I	and	project,	report	must	not
be	used.	It	is	essentially	a	snapshot	of	your	final	report.

Week	7:	Project	Update	due:	A	multi-paragraph	description	about	the	data
that	 you	use	 for	 your	 project	 is	 to	 be	 added	 to	 your	 report.	This	 includes
details	about	the	data.	IN	a	documented	program	you	show	cases	how	you
down	load	the	data	with	python	request	in	an	automated	fashion.

Week	8:	Project	Update	Due:	Have	a	documented	program	ready	that	uses

a	 REST	 service	 to	 obtain	 data	 for	 your	 analysis.	 Identify	 how	 to	 do
benchmarks	 and	 time	 the	 execution	 of	 your	 project.	 Add	 planed
benchmarks	to	tour	report.	Do	not	use	the	word	plan	or	will	write	it	in	such
a	form	as	if	it	were	done.	Instead	put	a	�	on	benchmarks	that	you	will	that
you	wrok	on

Week	9:	Project	update:	Study	matplotlib	and	bokeah	and	identify	how	to
visualize	other	aspects	of	your	projects.	Your	are	also	allowed	to	use	D3.js
and	add	ons	to	it.	You	are	not	allowed	to	use	tablaeu.

2.1.7.7	Week	10:	Lecture	Free	Time

March	10	-	17	Lecture	free	time,	no	class	support.	A	god	week	to	work	ahead	on
your	project.

2.1.7.8	Week	11.	Introduction	to	Cloud	Platforms

We	will	 introduce	you	 to	 the	concept	of	Map	reduce.	We	will	discuss	systems
such	 as	Hadoop	 and	 Spark	 and	 how	 they	 differ.	 You	will	 be	 deploying	 via	 a
container	hadoop	on	your	machine	and	use	 it	 to	gain	hands	on	experience.	We
start	with	using	 cloudmesh	on	your	 computer	 to	manage	virtual	machines	 that
you	may	be	able	to	use	during	your	test	developments.

Background	about	Hadoop,	Spark	and	Twister

Theory:	Background	to	Cloudmesh
Theory:	Background	to	Hadoop
Theory:	Background	to	Spark

Theory:	Background	to	Twister

Week	11	Project	update:	 Identify	analysis	algorithms	for	your	project	and
apply	them.	Experiment	with	what	you	can	do	with	the	data

2.1.7.9	Week	12	to	16.	Review	of	AI	for	AI-Cloud	Computing	Integration

Theory	Introduction	to	basic	AI

Practice:	Develop	a	non	trivial	AI	REST	service

See	#sec:ai

Overview	of	AI	for	this	class
Theory
Unsupervised	Learning
Deep	Learning

Forecasting

Week	12:	Project	update:	Identify	analysis	algorithms	for	your	project	and
apply	them.	Experiment	with	what	you	can	do	with	the	data

Week	13:	Project	update:	Identify	analysis	algorithms	for	your	project	and
apply	 them.	 Experiment	 with	 what	 you	 can	 do	 with	 the	 data.	 Start
benchmarks.

Week	14:	Project	update:	Focus	on	your	project	report	and	finalize	it.	The
project	 report	 must	 include	 references	 in	 bibtex	 format.	 Double-check
integration	in	proceedings.

Week	15:	Apr	19	-	Project	due	date.

As	the	Project	will	take	time	to	grade	all	projects	are	due	two	weeks	(yes,
you	 read	 correctly)	 before	 the	 semester	 ends.	 The	 project	 will	 have	 the
following	artifacts:

completed	project	report
completed	project	code

completed	 instructions	 on	 you	 to	 replicate	 your	 project	 on	 someone
else’s	computer	or	a	cloud	service

any	other	outstanding	task.

Week	16:	Apr	26

Project	improvement	if	needed	(majority	should	be	finished)

Make	 sure	 your	 project	 report	 is	 showing	 up	 correctly	 in	 the
proceedings

2.1.7.10	Cloud	Edge	Computing

If	time	allows	we	may	in	addition	also	cover.

Theory:	Raspberry	PI	as	Platform

2.1.7.11	Alternative	Projects

if	 you	 are	 interested	 the	 following	 could	 be	 chosen	 by	 you	 as	 project.
Participation	 in	 these	projects	need	 to	be	approved	by	Dr.	von	Laszewski.	The
project	starts	in	thsi	case	in	week	2	or	3.

Project	(if	elected):	Document	the	build	a	100	node	Raspberry	PI	Cluster
Project:	Environmental	Robot	Boat

2.2	ASSIGNMENTS	☁�
For	more	details	see	the	course	syllabus	and	overview	pages.	We	give	here	just
some	summary.

2.2.1	Account	Creation

As	part	of	the	class	you	will	need	a	number	of	accounts

piazza.com
github.com

Optional	 accounts	 include	 (only	 apply	 for	 them	 if	 you	 know	 you	 need	 them.
Note	 that	 applying	 for	 some	 accounts	may	 take	 1	 -	 2	weeks	 to	 complete,	 you
should	 have	 identified	 before	 the	middle	 of	 the	 semester	 if	 you	 need	 some	 of
them.

futuresystems.org	(optional)
chameleoncloud.org	(optional)

https://github.com/cloudmesh-community/book/blob/master/chapters/222-assignments.md

aws.com	(optional)
google.com	(optional)
azure.com	(optional)
watson	from	IBM	(optional)
google	Iaas	(optional)

In	our	piazza	we	have	details	how	to	submit	them	to	us.	We	split	the	submission
in	multiple	sub-assignments	as	the	github.com	and	piazza.com	are	needed	within
the	first	week.

2.2.2	Sections,	Chapters,	Examples

As	 part	 of	 the	 class,	 we	 expect	 you	 to	 get	 familiar	 with	 topics	 related	 to
intelligent	systems	engeneering.	Thos	that	like	to	go	for	an	A+	are	also	expected
to	contribute	significantly	 to	this	document	or	have	a	 truly	outstanding	project.
This	is	done	in	Sections,	Examples,	and	Chapters,	or	excelent	Project	reports	and
code.

Section:

A	 section	 is	 a	 small	 section	 that	 explains	 a	 topic	 that	 is	 not	 yet	 in	 the
handbook	or	improves	an	existing	section	significantly.	It	is	typically	multi-
paragraphs	 long	 and	 can	 even	 include	 an	 example	 if	 needed.	 Example
sections	that	have	been	provided	are	for	example	the	Lambda	section	in	the
python	chapter

Sample	of	student	contributed	sections	include:

Project	Natic
Lambda	Expressions

�	please	fix	links

Chapter:

A	chapter	 is	 a	much	 longer	 topic	 and	 is	 a	 coherent	description	of	 a	 topic
related	to	cloud	computing.	A	chapter	could	either	be	a	review	of	a	topic	or
a	detailed	technical	contribution.	Several	Sections	(10+)	may	be	a	substitute

for	a	chapter.

You	will	 be	 contributing	 a	 significant	 chapter	 that	 can	 be	 used	 by	 other
students	in	the	class	and	introduces	the	reader	to	a	general	topic	related	to
the	 topic	of	 the	class.	 In	addition	 it	 is	expected	 if	applicable	 to	develop	a
practical	example	demonstrating	how	to	use	a	technology.	The	chapter	and
the	practical	example	can	be	done	together.	We	do	not	like	to	use	the	term
tutorial	 in	our	writeup	but	 sometimes	we	 refer	 to	 it	 in	our	assignments	as
such.	Chapters	that	focus	on	theory	may	not	have	an	example	and	it	can	be
substituted	by	a	longer	text.

A	sample	of	a	student	contributed	chapter	is	*	GraphQL.

Example:

An	 example	 is	 a	 document	 that	 showcases	 the	 use	 of	 a	 particular
technology.	 Typically	 it	 is	 a	 console	 session	 or	 a	 program.	 Examples
augment	chapters	and	Sections.

	 It	 is	 expected	 from	 you	 that	 you	 self	 identify	 a	 section	 or	 a
chapter	as	this	shows	competence	in	the	area	of	cloud	computing.	If
however	you	do	not	know	what	 to	select,	you	must	attend	an	online
hour	with	us	in	which	we	identify	sections	and	chapters	with	you.	The
emphasize	here	is	that	we	do	not	decide	them	for	you,	but	we	identify
them	with	you.

Sample	Topics	 that	could	 form	a	section	or	chapter	are	clearly	marked	with	a	

.	There	are	plenty	in	the	handbook,	but	you	are	welcome	to	define	your	own
contributions.	Discuss	them	with	us	in	the	online	hours.

A	list	of	topics	identified	by	students	is	maintained	in	a	spreadsheet.

See	https://piazza.com/class/jgxybbf5rnx5qd?cid=201	for	details.

You	are	expected	to	signup	in	this	spreadsheet.	THis	is	done	to	ab=void	overlap
and	foster	uniqueness	of	the	assignment	for	sections	and	chapters.

https://piazza.com/class/jgxybbf5rnx5qd?cid=201

2.2.3	Project

Project:

We	refer	with	the	term	project	to	the	major	activity	that	you	chose	as	part	of
your	 class.	 The	 default	 case	 is	 an	 implementation	 project	 that	 requires	 a
project	report	and	project	code.

License:

All	projects	are	developed	under	an	open	source	license	such	as	Apache	2.0
License.	You	will	 be	 required	 to	 add	 a	 LICENCE.txt	 file	 and	 if	 you	 use
other	software	identify	how	it	can	be	reused	in	your	project.	If	your	project
uses	different	 licenses,	please	add	 in	a	README.md	file	which	packages
are	used	and	which	license	these	packages	have.

Project	Report:

A	 project	 report	 is	 an	 enhanced	 topic	 paper	 that	 includes	 not	 just	 the
analysis	of	a	topic,	but	an	actual	code,	with	benchmark	and	demonstrated
application	 use.	 Obviously	 it	 is	 longer	 than	 a	 term	 paper	 and	 includes
descriptions	 about	 reproducibility	 of	 the	 application.	 A	 README.md	 is
provided	 that	describes	how	others	can	 reproduce	your	project	and	 run	 it.
Remember	 tables	 and	 figures	 do	not	 count	 towards	 the	 paper	 length.	The
following	length	is	required:

4	pages,	one	student	in	the	project
6	pages,	two	students	in	the	project
8	pages,	three	students	in	the	project

We	estimate	that	a	single	page	is	between	1000-1200	words.	Please	note	that	for
2018	the	format	will	be	markdown,	so	the	word	count	will	be	used	instead.	How
to	use	figures	 is	explained	 in	 the	Notation	of	 the	handbook.	We	use	bibtex	for
bibliographies.	 Please	 be	 reminded	 that	 images	 and	 tables	 as	 well	 as	 code	 is
excluded	from	the	page	length.	Make	sure	that	your	text	is	mostly	developed	by
midterm	time.

Project	Code:

This	 is	 the	documented	 and	reproducible	 code	 and	 scripts	 that	 allows	 a
TA	do	 replicate	 the	project.	 In	 case	you	use	 images	 they	must	be	created
from	 scratch	 locally	 and	 may	 not	 be	 uploaded	 to	 services	 such	 as
dockerhub.	You	can	however	reuse	vendor	uploaded	images	such	as	from
ubuntu	or	centos.	All	code,	scripts,	and	documentation	must	be	uploaded	to
github.com	under	the	class	specific	github	directory.

Data:

Data	is	to	be	hosted	on	IUs	google	drive	if	needed.	If	you	have	larger	data,
it	 should	 be	 downloaded	 from	 the	 internet.	 It	 is	 in	 your	 responsibility	 to
develop	a	download	program.	The	data	must	not	be	stored	in	github.	You
will	be	expected	to	write	a	python	program	that	downloads	the	data.

Work	Breakdown:

This	is	an	appendix	to	the	document	that	describes	in	detail	who	did	what	in
the	project.	This	section	comes	in	a	new	page	after	 the	references.	It	does
not	count	towards	the	page	length	of	the	document.	It	also	includes	explicit
URLs	to	the	git	history	that	documents	the	statistics	to	demonstrate	not	only
one	 student	 has	 worked	 on	 the	 project.	 If	 you	 can	 not	 provide	 such	 a
statistic	or	all	check-ins	have	been	made	by	a	single	student,	the	project	has
shown	 that	 they	have	not	properly	used	git.	Thus	points	will	be	deducted
from	 the	 project.	 Furthermore,	 if	 we	 detect	 that	 a	 student	 has	 not
contributed	 to	 a	 project	 we	 may	 invite	 the	 student	 to	 give	 a	 detailed
presentation	of	the	project.

Bibliography:

All	 bibliography	 has	 to	 be	 provided	 in	 a	 jabref/bibtex	 file.	 There	 is	NO
EXCEPTION	 to	 this	 rule.	Please	be	advised	doing	 references	 right	 takes
some	time	so	you	want	to	do	this	early.	Please	note	that	exports	of	Endnote
or	other	bibliography	management	 tools	do	not	 lead	 to	properly	formatted
bibtex	files,	despite	they	claiming	to	do	so.	You	will	have	to	clean	them	up
and	 we	 recommend	 to	 do	 it	 the	 other	 way	 around.	 Manage	 your
bibliography	with	jabref.	Make	sure	labels	only	include	chracters	from	[a-
zA-Z0-9-].	Use	dashes	and	not	underscore	or	:	in	the	label.

2.2.3.1	Project	Deliverables

The	objective	of	the	project	is	to	define	a	clear	problem	statement	and	create	a
framework	to	address	that	problem	as	it	relates	to	cloud	computing.	In	this	class
it	is	especially	importnat	to	address	the	reproducibility	of	the	deployment.	A	test
and	 benchmark	 possibly	 including	 a	 dataset	 must	 be	 used	 to	 verify	 the
correctness	of	your	approach.	Projects	related	to	NIST	focus	on	the	specification
and	implementation.	The	report	here	can	be	smaller,	but	the	contribution	must	be
includable	in	the	specification	document.

In	general	any	project	must	be	deployable	by	the	TA.	If	it	takes	hours	to	deploy
your	project,	please	talk	to	us	before	final	submission.

You	have	plenty	of	time	to	make	execute	a	wonderful	project.

The	 deliverables	 include	 but	 need	 to	 be	 updated	 according	 to	 your	 specific
project,	 for	 example	 if	 you	 do	 Edge	 Computing	 some	 deliverabl;es	 will	 be
different:

Provide	benchmarks.

Take	 results	 in	 two	 different	 cloud	 services	 and	 your	 local	 PC	 (ex:
Chameleon	Cloud,	echo	kubernetes).	Make	sure	your	system	can	be	created
and	deployed	based	on	your	documentation.

Each	 team	 member	 must	 provide	 a	 benchmark	 on	 their	 computer	 and	 a
cloud	IaaS,	where	the	cloud	is	different	from	each	team	member.

Create	a	Makefile	with	 the	 tags	deploy,	run,	kill,	view,	clean	 that	deploys
your	environment,	runs	application,	kills	it,	views	the	result	and	cleans	up
after	wards.	You	are	 allowed	 to	have	different	makefiles	 for	 the	different
clouds	and	different	directories.	Keep	the	code	and	directory	structure	clean
and	document	how	to	reproduce	your	results.

For	python	use	a	requirements.txt	file	also

For	docker	use	a	Dockerfile	also

Write	a	report	that	includes	the	following	sections

Abstract
Introduction
Design

Architecture
Implementation

Technologies	Used
Results

Deployment	Benchmarks
Application	Benchmarks

(Limitations)
Conclusion
(Work	Breakdown)

Your	paper	will	not	have	a	Future	Work	section	as	this	implies	that	you	will
do	 work	 in	 future	 and	 your	 paper	 is	 incomplte,	 instead	 you	 can	 use	 an
optional	“Limitations”	section.

2.2.3.2	Project	Topic

As	 part	 of	 this	 class	 you	 will	 be	 developing	 a	 OpenAPI	 based	 Artificial
Intelligence	REST	 service	 and	 demonstrate	 its	 use.	YOu	will	 be	 developing	 a
documentation	and	a	report	that	showcases	the	use	of	the	service.	The	OpenAPI
service	must	be	non	 trivial,	e.g.	you	shoudl	show	upload	of	data,	 sbmission	of
parameters	 including	 the	 function	 to	 be	 executed,	 potential	 development	 of	 a
GUI	for	the	service.

We	will	work	with	you	to	solidify	the	project	throughout	the	semester.

2.2.4	Alternate	Project:	Virtual	Cluster

All	 students	 can	 contribute	 to	 the	 creation	 of	 the	Virtual	Cluster	 code	 that	we
will	 be	 using	 throughout	 the	 class	 to	 improve	 and	 interface	 with	 cloud	 and
container	 frameworks.	 This	 project	 is	 typically	 done	 in	 a	 graduate	 class,	 but
interested	undergraduates	can	contribute	also.	Those	that	like	to	contribute	must
have	 significant	 programming	 experience	 in	 either	 Python	 or	 Javascript.	 This
project	could	replace	the	regilar	AI	REST	service	project.	A	weekly	meeting	and
demonstrated	progress	has	to	be	shown	to	Gregor	von	Laszewski.

https://github.com/cloudmesh-community/cm

The	 residential	 students	 have	 been	 assigned	 this	 task,	 but	 online	 students	 can
join	and	contribute.

2.2.5	Alternative	Project:	100	node	Raspberry	Pi	cluster

In	 this	 project	 you	will	 be	 developing	 a	 100	 node	Raspberry	 PI	 cluster.	 THis
includes	putting	 the	hardware	 together,	 and	developing	 software	 that	 allows	 to
uses	all	100	nodes	as	a	cluster.	Software	is	to	be	use	to	make	management	easiy.
It	 is	 not	 sufficient	 to	 just	 install	 the	 software	but	 to	 develop	 a	 framework	 that
allows	us	to	easily	share	this	resource	with	other	users.

A	documentation	has	 to	be	written	for	 this	project	so	others	can	replicate	your
cluster	build.	A	good	start	for	this	is	 to	look	at	our	 cm-burn	command	 that	creates
Raspberry	PI	OS	based	on	manipulation	of	the	file	system

https://github.com/cloudmesh/cm-burn
https://github.com/cloudmesh-community/cm

Substantial	contributions	are	expected	beyond	the	hardware	build.	We	also	like
to	design	a	case	with	a	Laser	cutter	for	the	100	nodes.	Building	the	cluster	would
take	 place	 in	 MESH	 and	 transportation	 to	 and	 from	 it	 is	 provided	 by	 the
university.	You	will	be	able	to	work	in	an	office	there	to	put	the	cluster	together.
A	weekly	meeting	with	Gregor	von	Laszewski	or	the	TAs	is	needed	to	showcase
progress.

2.2.6	Submission	of	sections	and	chapters	and	projects

Sections	 and	 subsections	 are	 to	 be	 added	 to	 the	 book	 github	 repo.	 Do	 a	 pull

request.	The	headline	of	the	section	needs	to	be	marked	with	a	 	 if	you	still

work	on	it,	marked	with	a	 	if	you	want	it	to	be	graded.	and	have	all	hids	for
people	that	contribute	to	that	section.

In	 addition,	 simply	 add	 them	 to	 your	 README.yml	 file	 in	 your	 github	 repo.
Add	the	following	to	it	(I	am	using	a18-516-18	as	example).

https://github.com/cloudmesh-community/cm
https://github.com/cloudmesh/cm-burn
https://github.com/cloudmesh-community/cm

Please	 look	 at	 https://github.com/cloudmesh-community/fa18-516-18	 and
https://raw.githubusercontent.com/cloudmesh-community/fa18-523-
62/master/README.yml	for	an	examples.	Please	note	that	in	case	you	work	in	a
group	the	code	and	report	is	supposed	to	be	only	stored	in	the	first	hid	mentioned
in	 the	 group	 field.	 If	 you	 store	 it	 in	 multiple	 directories	 your	 project	 will	 be
rejected.

You	MUST	 run	 yamllint	 on	 the	 README.yml	 file.	 YAML	 errors	 will	 give
point	deductions.

section:

				-	title:	title	of	the	section	1

						url:	https://github.com/cloudmesh-community/book/chapters/...

				-	title:	title	of	the	section	2

						url:	https://github.com/cloudmesh-community/book/chapters/...

				-	title:	title	of	the	section	3

						url:	https://github.com/cloudmesh-community/book/chapters/...

chapter:

				-	title:	title	of	the	chapter

						url:	https://github.com/cloudmesh-community/fa18-516-18/blob/master/chapter/whatever.md

						group:	fa18-523-62	fa18-523-69

						keyword:	whatever

project:

				-	title:	title	of	the	project

						url:	url	in	your	hid	space	or	that	of	your	partner

						group:	fa18-523-62	fa18-523-69

						keyword:	kubernetes,	NIST,	Database

						code:	the	url	to	the	code

other:

				-	activity:	spell	checked	md	document

						url:	put	url	here

https://github.com/cloudmesh-community/fa18-516-18
https://raw.githubusercontent.com/cloudmesh-community/fa18-523-62/master/README.yml

3	PYTHON

3.1	INTRODUCTION	TO	PYTHON	☁�

	Learning	Objectives

Learn	 quickly	 Python	 under	 the	 assumption	 you	 know	 a	 programming
language
Work	with	modules
Understand	docopts	and	cmd
Contuct	some	python	examples	to	refresh	your	python	knpwledge
Learn	about	the	map	function	in	Python
Learn	how	to	start	subprocesses	and	rederect	their	output
Learn	more	advanced	constructs	such	as	multiprocessing	and	Queues
Understand	why	we	do	not	use	anaconda
Get	familiar	with	pyenv

Portions	 of	 this	 lesson	 have	 been	 adapted	 from	 the	 official	 Python	 Tutorial
copyright	Python	Software	Foundation.

Python	is	an	easy	to	learn	programming	language.	It	has	efficient	high-level	data
structures	and	a	simple	but	effective	approach	to	object-oriented	programming.
Python’s	simple	syntax	and	dynamic	typing,	together	with	its	interpreted	nature,
make	 it	 an	 ideal	 language	 for	 scripting	 and	 rapid	 application	 development	 in
many	areas	on	most	platforms.	The	Python	interpreter	and	the	extensive	standard
library	are	freely	available	in	source	or	binary	form	for	all	major	platforms	from
the	 Python	Web	 site,	 https://www.python.org/,	 and	 may	 be	 freely	 distributed.
The	same	site	also	contains	distributions	of	and	pointers	to	many	free	third	party
Python	modules,	programs	and	tools,	and	additional	documentation.	The	Python
interpreter	can	be	extended	with	new	functions	and	data	types	implemented	in	C
or	 C++	 (or	 other	 languages	 callable	 from	 C).	 Python	 is	 also	 suitable	 as	 an
extension	language	for	customizable	applications.

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-intro.md
https://docs.python.org/2/tutorial/
http://www.python.org/
https://www.python.org/

Python	is	an	interpreted,	dynamic,	high-level	programming	language	suitable	for
a	wide	range	of	applications.

The	philosophy	of	python	is	summarized	in	The	Zen	of	Python	as	follows:

Explicit	is	better	than	implicit
Simple	is	better	than	complex
Complex	is	better	than	complicated
Readability	counts

The	main	features	of	Python	are:

Use	of	indentation	whitespace	to	indicate	blocks
Object	orient	paradigm
Dynamic	typing
Interpreted	runtime
Garbage	collected	memory	management
a	large	standard	library
a	large	repository	of	third-party	libraries

Python	 is	 used	 by	 many	 companies	 and	 is	 applied	 for	 web	 development,
scientific	 computing,	 embedded	 applications,	 artificial	 intelligence,	 software
development,	and	information	security,	to	name	a	few.

The	 material	 collected	 here	 introduces	 the	 reader	 to	 the	 basic	 concepts	 and
features	of	the	Python	language	and	system.	After	you	have	worked	through	the
material	you	will	be	able	to:

use	Python
use	the	interactive	Python	interface
understand	the	basic	syntax	of	Python
write	and	run	Python	programs
have	an	overview	of	the	standard	library
install	 Python	 libraries	 using	 pyenv	 for	 multipython	 interpreter
development.

E	doe	not	attempt	to	be	comprehensive	and	cover	every	single	feature,	or	even
every	 commonly	 used	 feature.	 Instead,	 it	 introduces	 many	 of	 Python’s	 most

https://www.python.org/dev/peps/pep-0020/

noteworthy	features,	and	will	give	you	a	good	idea	of	the	language’s	flavor	and
style.	After	 reading	 it,	 you	will	be	able	 to	 read	and	write	Python	modules	and
programs,	and	you	will	be	ready	to	learn	more	about	the	various	Python	library
modules.

In	order	to	conduct	this	lesson	you	need

A	computer	with	Python	2.7.16	or	3.7.4
Familiarity	with	command	line	usage
A	 text	 editor	 such	 as	 PyCharm,	 emacs,	 vi	 or	 others.	You	 should	 identity
which	works	best	for	you	and	set	it	up.

3.1.1	References

Some	 important	 additional	 information	 can	 be	 found	 on	 the	 following	 Web
pages.

Python
Pip
Virtualenv
NumPy
SciPy
Matplotlib
Pandas
pyenv
PyCharm

Python	 module	 of	 the	 week	 is	 a	 Web	 site	 that	 provides	 a	 number	 of	 short
examples	on	how	to	use	some	elementary	python	modules.	Not	all	modules	are
equally	useful	and	you	should	decide	if	there	are	better	alternatives.	However	for
beginners	this	site	provides	a	number	of	good	examples

Python	2:	https://pymotw.com/2/
Python	3:	https://pymotw.com/3/

3.2	PYTHON	3.7.4	INSTALLATION	☁�

https://www.jetbrains.com/pycharm/
https://www.python.org/
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
http://www.numpy.org/
https://scipy.org/
http://matplotlib.org/
http://pandas.pydata.org/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://pymotw.com/2/
https://pymotw.com/3/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install.md

	Learning	Objectives

Learn	how	to	install	python.
Find	additional	information	about	Python.
Make	sure	your	Computer	supports	Python.

In	this	setion	we	explain	how	to	install	python	3.7.4	on	a	computer.	Likely	much
of	the	code	will	work	with	earlier	versions,	but	we	do	the	development	in	Python
on	the	newest	version	of	python	available	at	https://www.python.org/downloads
.

3.2.1	Hardware

Python	 does	 not	 require	 any	 special	 hardware.	We	 have	 installed	 Python	 not
only	on	PC’s	and	Laptops,	but	also	on	Raspberry	PI’s	and	Lego	Mindstorms.

However,	there	are	some	things	to	consider.	If	you	use	many	programs	on	your
desktop	 and	 run	 them	 all	 at	 the	 same	 time	 you	 will	 find	 that	 in	 up-to-date
operating	 systems	 you	 will	 find	 your	 self	 quickly	 out	 of	 memmory.	 This	 is
especially	true	if	you	use	editors	such	as	PyCharm	which	we	highly	recommend.
Furthermore,	as	you	likely	have	lots	of	disk	access,	make	sure	to	use	a	fast	HDD
or	better	an	SSD.

A	typical	modern	developer	PC	or	Laptop	has	16GB	RAM	and	an	SSD.	You	can
certainly	do	python	on	a	$35	Rapbperry	PI,	but	you	probably	will	not	be	able	to
run	 PyCharm.	 There	 are	 many	 alternative	 editors	 with	 less	Memory	 footprint
avialable.

3.2.2	Prerequisits	Ubuntu	19.04

Python	 3.7	 is	 installed	 in	 ubuntu	 19.04.	 Therefore,	 it	 already	 fulfills	 the
prerequisits.	However	we	recommend	that	you	update	 to	 the	newest	version	of
python	and	pip.	However	we	recommend	that	you	update	the	the	newest	version
of	python.	Please	visit:	https://www.python.org/downloads

3.2.3	Prerequisits	macOS

https://www.python.org/downloads
https://www.python.org/downloads

3.2.3.1	Installation	from	Apple	App	Store

You	want	 a	 number	 of	 useful	 tool	 on	 your	macOS.	 They	 are	 not	 installed	 by
default,	but	are	available	via	Xcode.	First	you	need	to	install	xcode	from

https://apps.apple.com/us/app/xcode/id497799835

Next	you	need	to	install	macOS	xcode	command	line	tools:

3.2.3.2	Installation	from	python.org

The	 easiest	 instalation	 of	 Python	 for	 cloudmesh	 is	 to	 use	 the	 instaltion	 from
https://www.python.org/downloads.	 Please,	 visit	 the	 page	 and	 follow	 the
instructions.	After	this	install	you	have	python3	avalable	from	the	commandline

3.2.3.3	Installation	from	Hoembrew

An	 alternative	 instalation	 is	 provided	 from	 Homebrew.	 To	 use	 this	 install
method,	you	need	 to	 install	Homebrew	first.	Start	 the	process	by	 installing	 the
python	3	using	homebrew.	Install	homebrew	using	the	instruction	in	their	web	page:

Then	you	should	be	able	to	install	Python	3.7.4	using:

3.2.4	Prerequisits	Ubuntu	18.04

We	 recommend	 you	 update	 your	 ubuntu	 version	 to	 19.04	 and	 follow	 the
instructions	for	that	version	instead,	as	it	is	significantly	easier.	If	you	however
are	not	able	to	do	so,	the	following	instructions	may	be	helpful.

We	first	need	 to	make	sure	 that	 the	correct	version	of	 the	Python3	is	 installed.
The	default	version	of	Python	on	Ubuntu	18.04	is	3.6.	You	can	get	the	version
with:

$	xcode-select	--install

$	/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

$	brew	install	python

$	python3	--version

https://apps.apple.com/us/app/xcode/id497799835
https://www.python.org/downloads
https://brew.sh/#install

If	the	version	is	not	3.7.4	or	newer,	you	can	update	it	as	follows:

You	can	 then	check	 the	 installed	version	using	 python3.7	--version	 which	 should	 be	
3.7.4.

Now	we	will	create	a	new	virtual	environment:

The	edit	the	~/.bashrc	file	and	add	the	following	line	at	the	end:

now	activate	the	virtual	environment	using:

now	you	can	install	the	pip	for	the	virtual	environment	without	conflicting	with
the	native	pip:

3.2.5	Prerequisite	Windows	10

Python	 3.7	 can	 be	 installed	 on	 Windows	 10	 using:
https://www.python.org/downloads

For	3.7.4	can	go	to	 the	download	page	and	download	one	of	 the	different	 files
for	Windows.

Let	us	assume	you	choe	the	Web	based	installer,	than	you	click	on	the	file	in	the
edge	 browser	 (make	 sure	 the	 account	 you	 use	 has	 administrative	 priviledges).
Follow	the	instructions	that	the	installer	gives.	Important	is	that	you	select	at	one
point	“[x]	Add	to	Path”.	There	will	be	an	empty	checkmark	about	this	that	you
will	click	on.

Once	it	is	installed.	chose	a	terminal	and	execute

$	sudo	apt-get	update

$	sudo	apt	install	software-properties-common

$	sudo	add-apt-repository	ppa:deadsnakes/ppa

$	sudo	apt-get	install	python3.7	python3-dev	python3.7-dev

$	python3.7	-m	venv	--without-pip	~/ENV3

alias	ENV3="source	~/ENV3/bin/activate"

ENV3

$	source	~/.bashrc

$	curl	"https://bootstrap.pypa.io/get-pip.py"	-o	"get-pip.py"

$	python	get-pip.py

$	rm	get-pip.py

https://www.python.org/downloads
https://www.python.org/downloads/release/python-374/

However,	 if	you	have	 installed	conda	 for	 some	reason	you	need	 to	 read	up	on
how	to	install	3.7.4	python	in	conda	or	identify	how	to	run	conda	and	python.org
at	the	same	time.	We	see	often	others	giving	the	wrong	installation	instructions.

An	alternative	 is	 to	use	python	from	within	 the	Linux	Subsystem.	But	 that	has
some	limitations	and	you	will	need	to	explore	how	to	exxess	the	file	system	in
the	subssytem	to	have	a	smooth	integration	between	your	Windows	host	so	you
can	for	example	use	PyCharm.

3.2.5.1	Linux	Subsystem	Install

To	activate	the	Linux	Subsystem,	please	follow	the	instructions	at

https://docs.microsoft.com/en-us/windows/wsl/install-win10

A	suitable	distribution	would	be

https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?
activetab=pivot:overviewtab

However	as	it	uses	an	older	version	of	python	you	will	ahve	to	update	it.

3.2.6	Prerequisit	venv

This	 step	 is	 highly	 recommend	 if	 you	 have	 not	 yet	 already	 installed	 a	 venv	 for
python	to	make	sure	you	are	not	interfering	with	your	system	python.	Not	using
a	venv	could	have	catastrophic	consequences	and	a	destruction	of	your	operating
system	tools	if	they	realy	on	Python.	The	use	of	venv	is	simple.	For	our	purposes
we	assume	that	you	use	the	directory:

Follow	these	steps	first:

First	cd	to	your	home	directory.	Then	execute

python	--version

~/ENV3

$	python3	-m	venv		~/ENV3

$	source	~/ENV3/bin/activate

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?activetab=pivot:overviewtab

You	can	add	at	 the	end	of	your	 .bashrc	(ubuntu)	or	 .bash_profile	 (macOS)	file
the	line

so	the	environment	is	always	loaded.	Now	you	are	ready	to	install	cloudmesh.

Check	if	you	have	the	right	version	of	python	installed	with

To	make	sure	you	have	an	up	to	date	version	of	pip	issue	the	command

3.2.7	Install	Python	3.7	via	Anaconda

3.2.7.1	Download	conda	installer

Miniconda	is	recommended	here.	Download	an	 installer	for	Windows,	macOS,
and	Linux	from	this	page:	https://docs.conda.io/en/latest/miniconda.html

3.2.7.2	Install	conda

Follow	instructions	to	install	conda	for	your	operating	systems:

Windows.	 https://conda.io/projects/conda/en/latest/user-
guide/install/windows.html
macOS.	 https://conda.io/projects/conda/en/latest/user-
guide/install/macos.html
Linux.	https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

3.2.7.3	Install	Python	3.7.4	via	conda

It	is	very	important	to	make	sure	you	have	a	newer	version	of	pip	installed.	After
you	 installed	 and	 created	 the	ENV3	you	 need	 to	 activate	 it.	 This	 can	 be	 done

$	source	~/ENV3/bin/activate

$	python	--version

$	pip	install	pip	-U

$	cd	~

$	conda	create	-n	ENV3	python=3.7.4

$	conda	activate	ENV3

$	conda	install	-c	anaconda	pip

$	conda	deactivate	ENV3

https://docs.conda.io/en/latest/miniconda.html
https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

with

If	you	 like	 to	activate	 it	when	you	start	a	new	terminal,	please	add	 this	 line	 to
your	.bashrc	or	.bash_profile

If	you	use	zsh	please	add	it	to	.zprofile	instead.

3.3	INTERACTIVE	PYTHON	☁�
Python	can	be	used	interactively.	You	can	enter	the	interactive	mode	by	entering
the	interactive	loop	by	executing	the	command:

You	will	see	something	like	the	following:

The	 >>>	 is	 the	 prompt	 used	 by	 the	 interpreter.	 This	 is	 similar	 to	 bash	 where
commonly	$	is	used.

Sometimes	 it	 is	 convenient	 to	 show	 the	 prompt	when	 illustrating	 an	 example.
This	 is	 to	 provide	 some	 context	 for	 what	 we	 are	 doing.	 If	 you	 are	 following
along	you	will	not	need	to	type	in	the	prompt.

This	interactive	python	process	does	the	following:

read	your	input	commands
evaluate	your	command
print	the	result	of	evaluation
loop	back	to	the	beginning.

This	 is	 why	 you	 may	 see	 the	 interactive	 loop	 referred	 to	 as	 a	REPL:	Read-
Evaluate-Print-Loop.

3.3.1	REPL	(Read	Eval	Print	Loop)

$	conda	activate	ENV3

$	python

$	python

Python	3.7.1	(default,	Nov	24	2018,	14:27:15)

[Clang	10.0.0	(clang-1000.11.45.5)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-interactive.md

There	 are	 many	 different	 types	 beyond	 what	 we	 have	 seen	 so	 far,	 such	 as
dictionariess,	lists,	sets.	One	handy	way	of	using	the	interactive	python	is	to	get
the	type	of	a	value	using	type():

You	can	also	ask	for	help	about	something	using	help():

Using	help()	opens	up	a	help	message	within	a	pager.	To	navigate	you	can	use
the	spacebar	to	go	down	a	page	w	to	go	up	a	page,	the	arrow	keys	to	go	up/down
line-by-line,	or	q	to	exit.

3.3.2	Interpreter

Although	the	interactive	mode	provides	a	convenient	tool	to	test	things	out	you
will	see	quickly	that	for	our	class	we	want	to	use	the	python	interpreter	from	the
commandline.	Let	us	assume	the	program	is	called	prg.py.	Once	you	have	written
it	in	that	file	you	simply	can	call	it	with

It	is	important	to	name	the	program	with	meaningful	names.

3.3.3	Python	3	Features	in	Python	2

In	 this	 course	we	want	 to	 be	 able	 to	 seamlessly	 switch	 between	 python	 2	 and
python	3.	Thus	it	is	convenient	from	the	start	to	use	python	3	syntax	when	it	is
supported	also	in	python	2.	One	of	the	most	used	functions	is	the	print	statement
that	has	in	python	3	parentheses.	To	enable	it	in	python	2	you	just	need	to	import
this	function:

The	first	of	these	imports	allows	us	to	use	the	print	function	to	output	text	to	the
screen,	 instead	 of	 the	 print	 statement,	 which	 Python	 2	 uses.	 This	 is	 simply	 a

>>>	type(42)

<type	'int'>

>>>	type('hello')

<type	'str'>

>>>	type(3.14)

<type	'float'>

>>>	help(int)

>>>	help(list)

>>>	help(str)

$	python	prg.py

from	__future__	import	print_function,	division

design	decision	that	better	reflects	Python’s	underlying	philosophy.

Other	functions	such	as	the	division	also	behave	differently.	Thus	we	use

This	import	makes	sure	that	the	division	operator	behaves	in	a	way	a	newcomer
to	the	language	might	find	more	intuitive.	In	Python	2,	division	/	is	floor	division
when	the	arguments	are	integers,	meaning	that	the	following

In	Python	3,	division	/	is	a	floating	point	division,	thus

3.4	EDITORS	☁�
This	section	is	meant	to	give	an	overview	of	the	python	editing	tools	needed	for
doing	 for	 this	 course.	 There	 are	 many	 other	 alternatives,	 however,	 we	 do
recommend	to	use	PyCharm.

3.4.1	Pycharm

PyCharm	 is	 an	 Integrated	 Development	 Environment	 (IDE)	 used	 for
programming	 in	 Python.	 It	 provides	 code	 analysis,	 a	 graphical	 debugger,	 an
integrated	unit	tester,	integration	with	git.

	Python	8:56	Pycharm

3.4.2	Python	in	45	minutes

An	additional	community	video	about	the	Python	programming	language	that	we
found	on	the	internet.	Naturally	there	are	many	alternatives	to	this	video,	but	the
video	is	probably	a	good	start.	It	also	uses	PyCharm	which	we	recommend.

	Python	43:16	PyCharm

How	much	you	want	to	understand	of	python	is	actually	a	bit	up	to	you.	While

from	__future__	import	division

(5	/	2	==	2)	is	True

(5	/	2	==	2.5)	is	True

https://www.python.org/dev/peps/pep-3105/
https://www.python.org/dev/peps/pep-0238/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-editor.md
https://youtu.be/X8ZpbZweJcw
https://www.youtube.com/watch?v=N4mEzFDjqtA

its	good	 to	know	classes	and	 inheritance,	you	may	be	able	 for	 this	class	 to	get
away	without	using	it.	However,	we	do	recommend	that	you	learn	it.

PyCharm	Installation:	Method	1:	PyCharm	Installation	on	ubuntu	using	umake

Once	 umake	 command	 is	 run,	 use	 the	 next	 command	 to	 install	 Pycharm
community	edition:

If	you	want	to	remove	PyCharm	installed	using	umake	command,	use	this:

Method	2:	PyCharm	installation	on	ubuntu	using	PPA

PyCharm	 also	 has	 a	 Professional	 (paid)	 version	 which	 can	 be	 installed	 using
following	command:

Once	installed,	go	to	your	VM	dashboard	and	search	for	PyCharm.

3.5	LANGUAGE	☁�
3.5.1	Statements	and	Strings

Let	us	explore	the	syntax	of	Python	while	starting	with	a	print	statement

This	will	print	on	the	terminal

The	 print	 function	 was	 given	 a	 string	 to	 process.	 A	 string	 is	 a	 sequence	 of
characters.	 A	 character	 can	 be	 a	 alphabetic	 (A	 through	 Z,	 lower	 and	 upper

sudo	add-apt-repository	ppa:ubuntu-desktop/ubuntu-make

sudo	apt-get	update

sudo	apt-get	install	ubuntu-make

umake	ide	pycharm

umake	-r	ide	pycharm

sudo	add-apt-repository	ppa:mystic-mirage/pycharm

sudo	apt-get	update

sudo	apt-get	install	pycharm-community

sudo	apt-get	install	pycharm

print("Hello	world	from	Python!")

Hello	world	from	Python!

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python.md

case),	 numeric	 (any	 of	 the	 digits),	 white	 space	 (spaces,	 tabs,	 newlines,	 etc),
syntactic	directives	(comma,	colon,	quotation,	exclamation,	etc),	and	so	forth.	A
string	is	just	a	sequence	of	the	character	and	typically	indicated	by	surrounding
the	characters	in	double	quotes.

Standard	output	is	discussed	in	the	Section	Linux.

So,	 what	 happened	 when	 you	 pressed	 Enter?	 The	 interactive	 Python	 program
read	the	line	print	("Hello	world	from	Python!"),	split	it	into	the	print	statement	and	the	"Hello	
world	from	Python!"	string,	and	then	executed	the	line,	showing	you	the	output.

3.5.2	Comments

Comments	in	python	are	followed	by	a	#:

3.5.3	Variables

You	can	store	data	into	a	variable	to	access	it	later.	For	instance:

This	will	print	again

3.5.4	Data	Types

3.5.4.1	Booleans

A	boolean	 is	 a	 value	 that	 can	 have	 the	 values	 True	 or	 False.	 You	 can	 combine
booleans	with	boolean	operators	such	as	and	and	or

3.5.4.2	Numbers

#	This	is	a	comment

hello	=	'Hello	world	from	Python!'

print(hello)

Hello	world	from	Python!

print(True	and	True)	#	True

print(True	and	False)	#	False

print(False	and	False)	#	False

print(True	or	True)	#	True

print(True	or	False)	#	True

print(False	or	False)	#	False

The	interactive	interpreter	can	also	be	used	as	a	calculator.	For	instance,	say	we
wanted	to	compute	a	multiple	of	21:

We	saw	here	the	print	statement	again.	We	passed	in	the	result	of	the	operation
21	 *	 2.	An	 integer	 (or	 int)	 in	 Python	 is	 a	 numeric	 value	without	 a	 fractional
component	(those	are	called	floating	point	numbers,	or	float	for	short).

The	mathematical	operators	 compute	 the	 related	mathematical	operation	 to	 the
provided	numbers.	Some	operators	are:

Operator Function
* multiplication
/ division
+ addition
- subtraction
** exponent

Exponentiation	xy	is	written	as	x**y	is	x	to	the	yth	power.

You	can	combine	floats	and	ints:

Note	that	operator	precedence	is	important.	Using	parenthesis	to	indicate	affect
the	order	of	operations	gives	a	difference	results,	as	expected:

3.5.5	Module	Management

A	module	allows	you	to	logically	organize	your	Python	code.	Grouping	related
code	into	a	module	makes	the	code	easier	to	understand	and	use.	A	module	is	a
Python	object	with	arbitrarily	named	attributes	that	you	can	bind	and	reference.
A	module	 is	 a	 file	 consisting	of	Python	 code.	A	module	 can	define	 functions,
classes	and	variables.	A	module	can	also	include	runnable	code.

print(21	*	2)	#	42

print(3.14	*	42	/	11	+	4	-	2)	#	13.9890909091

print(2**3)	#	8

print(3.14	*	(42	/	11)	+	4	-	2)	#	11.42

print(1	+	2	*	3	-	4	/	5.0)	#	6.2

print((1	+	2)	*	(3	-	4)	/	5.0)	#	-0.6

3.5.5.1	Import	Statement

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	 searches	 before	 importing	 a	 module.	 The	 from…import	 Statement
Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	It	is	preferred	to	use	for	each	import	its	own	line	such	as:

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	searches	before	importing	a	module.

3.5.5.2	The	from	…	import	Statement

Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	The	from	…	import	has	the	following	syntax:

3.5.6	Date	Time	in	Python

The	datetime	module	supplies	classes	for	manipulating	dates	and	times	in	both
simple	and	complex	ways.	While	date	and	time	arithmetic	is	supported,	the	focus
of	 the	 implementation	 is	 on	 efficient	 attribute	 extraction	 for	 output	 formatting
and	 manipulation.	 For	 related	 functionality,	 see	 also	 the	 time	 and	 calendar
modules.

The	 import	 Statement	 You	 can	 use	 any	 Python	 source	 file	 as	 a	 module	 by
executing	an	import	statement	in	some	other	Python	source	file.

This	module	offers	a	generic	date/time	string	parser	which	is	able	to	parse	most
known	formats	to	represent	a	date	and/or	time.

pandas	 is	 an	 open	 source	 Python	 library	 for	 data	 analysis	 that	 needs	 to	 be

import	numpy

import	matplotlib

from	datetime	import	datetime

from	datetime	import	datetime

from	dateutil.parser	import	parse

imported.

Create	a	string	variable	with	the	class	start	time

Convert	the	string	to	datetime	format

Creating	a	list	of	strings	as	dates

Convert	Class_dates	strings	into	datetime	format	and	save	the	list	into	variable	a

Use	parse()	to	attempt	to	auto-convert	common	string	formats.	Parser	must	be	a
string	or	character	stream,	not	list.

Use	parse()	on	every	element	of	the	Class_dates	string.

Use	parse,	but	designate	that	the	day	is	first.

Create	 a	dataframe.A	DataFrame	 is	 a	 tabular	data	 structure	 comprised	of	 rows
and	 columns,	 akin	 to	 a	 spreadsheet,	 database	 table.	 DataFrame	 as	 a	 group	 of
Series	objects	that	share	an	index	(the	column	names).

import	pandas	as	pd

fall_start	=	'08-21-2018'

datetime.strptime(fall_start,	'%m-%d-%Y')	\#

datetime.datetime(2017,	8,	21,	0,	0)

class_dates	=	[

				'8/25/2017',

				'9/1/2017',

				'9/8/2017',

				'9/15/2017',

				'9/22/2017',

				'9/29/2017']

a	=	[datetime.strptime(x,	'%m/%d/%Y')	for	x	in	class_dates]

parse(fall_start)	#	datetime.datetime(2017,	8,	21,	0,	0)

[parse(x)	for	x	in	class_dates]

#	[datetime.datetime(2017,	8,	25,	0,	0),

#		datetime.datetime(2017,	9,	1,	0,	0),

#		datetime.datetime(2017,	9,	8,	0,	0),

#		datetime.datetime(2017,	9,	15,	0,	0),

#		datetime.datetime(2017,	9,	22,	0,	0),

#		datetime.datetime(2017,	9,	29,	0,	0)]

parse	(fall_start,	dayfirst=True)

#	datetime.datetime(2017,	8,	21,	0,	0)

import	pandas	as	pd

data	=	{

Convert	df[`date`]	from	string	to	datetime

3.5.7	Control	Statements

3.5.7.1	Comparison

Computer	 programs	 do	 not	 only	 execute	 instructions.	 Occasionally,	 a	 choice
needs	to	be	made.	Such	as	a	choice	is	based	on	a	condition.	Python	has	several
conditional	operators:

Operator Function
> greater	than
< smaller	than
== equals
!= is	not

Conditions	are	always	combined	with	variables.	A	program	can	make	a	choice
using	the	if	keyword.	For	example:

		'dates':	[

				'8/25/2017	18:47:05.069722',

				'9/1/2017	18:47:05.119994',

				'9/8/2017	18:47:05.178768',

				'9/15/2017	18:47:05.230071',

				'9/22/2017	18:47:05.230071',

				'9/29/2017	18:47:05.280592'],

		'complete':	[1,	0,	1,	1,	0,	1]}

df	=	pd.DataFrame(

		data,

		columns	=	['dates','complete'])

print(df)

#																		dates		complete

#		0		8/25/2017	18:47:05.069722	1

#		1			9/1/2017	18:47:05.119994	0

#		2			9/8/2017	18:47:05.178768	1

#		3		9/15/2017	18:47:05.230071	1

#		4		9/22/2017	18:47:05.230071	0

#		5		9/29/2017	18:47:05.280592	1

import	pandas	as	pd

pd.to_datetime(df['dates'])

#	0			2017-08-25	18:47:05.069722

#	1			2017-09-01	18:47:05.119994

#	2			2017-09-08	18:47:05.178768

#	3			2017-09-15	18:47:05.230071

#	4			2017-09-22	18:47:05.230071

#	5			2017-09-29	18:47:05.280592

#	Name:	dates,	dtype:	datetime64[ns]

x	=	int(input("Guess	x:"))

if	x	==	4:

			print('Correct!')

In	 this	 example,	You	 guessed	 correctly!	 will	 only	 be	 printed	 if	 the	 variable	 x
equals	 to	 four.	 Python	 can	 also	 execute	multiple	 conditions	 using	 the	 elif	 and
else	keywords.

3.5.7.2	Iteration

To	 repeat	 code,	 the	 for	 keyword	 can	 be	 used.	 For	 example,	 to	 display	 the
numbers	from	1	to	10,	we	could	write	something	like	this:

The	second	argument	 to	 range,	11,	 is	not	 inclusive,	meaning	 that	 the	 loop	will
only	get	to	10	before	it	finishes.	Python	itself	starts	counting	from	0,	so	this	code
will	also	work:

In	fact,	the	range	function	defaults	to	starting	value	of	0,	so	it	is	equivalent	to:

We	can	also	nest	loops	inside	each	other:

In	 this	 case	 we	 have	 two	 nested	 loops.	 The	 code	 will	 iterate	 over	 the	 entire
coordinate	range	(0,0)	to	(9,9)

3.5.8	Datatypes

3.5.8.1	Lists

see:	https://www.tutorialspoint.com/python/python_lists.htm

x	=	int(input("Guess	x:"))

if	x	==	4:

				print('Correct!')

elif	abs(4	-	x)	==	1:

				print('Wrong,	but	close!')

else:

				print('Wrong,	way	off!')

for	i	in	range(1,	11):

			print('Hello!')

for	i	in	range(0,	10):

			print(i	+	1)

for	i	in	range(10):

			print(i	+	1)

for	i	in	range(0,10):

				for	j	in	range(0,10):

								print(i,'	',j)

https://www.tutorialspoint.com/python/python_lists.htm

Lists	 in	Python	are	ordered	sequences	of	elements,	where	each	element	can	be
accessed	using	a	0-based	index.

To	define	a	list,	you	simply	list	its	elements	between	square	brackets	‘[]’:

You	can	also	use	a	negative	 index	 if	you	want	 to	start	counting	elements	from
the	 end	of	 the	 list.	Thus,	 the	 last	 element	 has	 index	 -1,	 the	 second	 before	 last
element	has	index	-2	and	so	on:

Python	also	allows	you	to	take	whole	slices	of	the	list	by	specifying	a	beginning
and	end	of	the	slice	separated	by	a	colon

As	you	can	see	from	the	example,	the	starting	index	in	the	slice	is	inclusive	and
the	ending	one,	exclusive.

Python	provides	a	variety	of	methods	for	manipulating	the	members	of	a	list.

You	can	add	elements	with	append’:

As	you	can	see,	the	elements	in	a	list	need	not	be	unique.

Merge	two	lists	with	‘extend’:

names	=	[

		'Albert',

		'Jane',

		'Liz',

		'John',

		'Abby']

#	access	the	first	element	of	the	list

names[0]

#	'Albert'

#	access	the	third	element	of	the	list

names[2]

#	'Liz'

#	access	the	last	element	of	the	list

names[-1]

#	'Abby'

#	access	the	second	last	element	of	the	list

names[-2]

#	'John'

#	the	middle	elements,	excluding	first	and	last

names[1:-1]

#	['Jane',	'Liz',	'John']

names.append('Liz')

names

#	['Albert',	'Jane',	'Liz',

#		'John',	'Abby',	'Liz']

names.extend(['Lindsay',	'Connor'])

names

Find	the	index	of	the	first	occurrence	of	an	element	with	‘index’:

Remove	elements	by	value	with	‘remove’:

Remove	elements	by	index	with	‘pop’:

Notice	that	pop	returns	the	element	being	removed,	while	remove	does	not.

If	you	are	familiar	with	stacks	from	other	programming	languages,	you	can	use
insert	and	‘pop’:

The	Python	documentation	contains	a	full	list	of	list	operations.

To	 go	 back	 to	 the	 range	 function	 you	 used	 earlier,	 it	 simply	 creates	 a	 list	 of
numbers:

3.5.8.2	Sets

Python	lists	can	contain	duplicates	as	you	saw	previously:

#	['Albert',	'Jane',	'Liz',	'John',

#		'Abby',	'Liz',	'Lindsay',	'Connor']

names.index('Liz')	\#	2

names.remove('Abby')

names

#	['Albert',	'Jane',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.pop(1)

#	'Jane'

names

#	['Albert',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.insert(0,	'Lincoln')

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay',	'Connor']

names.pop()

#	'Connor'

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay']

range(10)

#	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

range(2,	10,	2)

#	[2,	4,	6,	8]

names	=	['Albert',	'Jane',	'Liz',

									'John',	'Abby',	'Liz']

When	we	do	not	want	this	to	be	the	case,	we	can	use	a	set:

Keep	in	mind	that	the	set	is	an	unordered	collection	of	objects,	thus	we	can	not
access	them	by	index:

However,	we	can	convert	a	set	to	a	list	easily:

Notice	that	in	this	case,	the	order	of	elements	in	the	new	list	matches	the	order	in
which	the	elements	were	displayed	when	we	create	the	set.	We	had
set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

and	now	we	have
['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

You	 should	 not	 assume	 this	 is	 the	 case	 in	 general.	 That	 is,	 do	 not	 make	 any
assumptions	about	the	order	of	elements	in	a	set	when	it	is	converted	to	any	type
of	sequential	data	structure.

You	 can	 change	 a	 set’s	 contents	 using	 the	 add,	 remove	 and	 update	 methods
which	 correspond	 to	 the	 append,	 remove	 and	 extend	 methods	 in	 a	 list.	 In
addition	 to	 these,	 set	 objects	 support	 the	 operations	 you	may	 be	 familiar	with
from	mathematical	sets:	union,	intersection,	difference,	as	well	as	operations	 to
check	 containment.	 You	 can	 read	 about	 this	 in	 the	 Python	 documentation	 for
sets.

3.5.8.3	Removal	and	Testing	for	Membership	in	Sets

One	important	advantage	of	a	set	over	a	list	is	that	access	to	elements	is	fast.	 If
you	 are	 familiar	with	 different	 data	 structures	 from	a	Computer	Science	 class,
the	Python	 list	 is	 implemented	by	 an	 array,	while	 the	 set	 is	 implemented	by	 a

unique_names	=	set(names)

unique_names

#	set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

unique_names[0]

#	Traceback	(most	recent	call	last):

#			File	"<stdin>",	line	1,	in	<module>

#			TypeError:	'set'	object	does	not	support	indexing

unique_names	=	list(unique_names)

unique_names	[`Lincoln',	`John',	`Albert',	`Liz',	`Lindsay']

unique_names[0]

#	`Lincoln'

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set

hash	table.

We	will	demonstrate	this	with	an	example.	Let	us	say	we	have	a	list	and	a	set	of
the	same	number	of	elements	(approximately	100	thousand):

We	will	 use	 the	 timeit	 Python	module	 to	 time	 100	 operations	 that	 test	 for	 the
existence	of	a	member	in	either	the	list	or	set:

The	 exact	 duration	 of	 the	 operations	 on	 your	 system	will	 be	 different,	 but	 the
take	 away	 will	 be	 the	 same:	 searching	 for	 an	 element	 in	 a	 set	 is	 orders	 of
magnitude	faster	than	in	a	list.	This	is	important	to	keep	in	mind	when	you	work
with	large	amounts	of	data.

3.5.8.4	Dictionaries

One	of	the	very	important	data	structures	in	python	is	a	dictionary	also	referred
to	as	dict.

A	dictionary	represents	a	key	value	store:

A	convenient	for	to	print	by	named	attributes	is

This	form	of	printing	with	the	format	statement	and	a	reference	to	data	increases
readability	of	the	print	statements.

import	sys,	random,	timeit

nums_set	=	set([random.randint(0,	sys.maxint)	for	_	in	range(10**5)])

nums_list	=	list(nums_set)

len(nums_set)

#	100000

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_set),	number=100)

#	0.0004038810729980469

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_list),	number=100)

#	0.398054122924804

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

print("person['Name']:	",	person['Name'])

#	person['Name']:		Albert

print("person['Age']:	",	person['Age'])

#	person['Age']:		100

print("{Name}	{Age}'.format(**data))

https://docs.python.org/2/library/timeit.html

You	can	delete	elements	with	the	following	commands:

You	can	iterate	over	a	dict:

3.5.8.5	Dictionary	Keys	and	Values

You	can	retrieve	both	 the	keys	and	values	of	a	dictionary	using	 the	keys()	and
values()	methods	of	the	dictionary,	respectively:

Both	methods	return	lists.	Notice,	however,	that	the	order	in	which	the	elements
appear	 in	 the	 returned	 lists	 (Age,	 Name,	 Class)	 is	 different	 from	 the	 order	 in
which	we	 listed	 the	elements	when	we	declared	 the	dictionary	 initially	 (Name,
Age,	Class).	It	is	important	to	keep	this	in	mind:

	You	cannot	make	any	assumptions	about	the	order	in	which	the
elements	of	a	dictionary	will	be	 returned	by	 the	keys()	and	values()
methods.

However,	you	can	assume	that	if	you	call	keys()	and	values()	in	sequence,	the	order
of	 elements	 will	 at	 least	 correspond	 in	 both	 methods.	 In	 the	 example	 Age
corresponds	to	100,	Name	to	 Albert,	and	Class	to	Scientist,	and	you	will	observe
the	 same	 correspondence	 in	 general	 as	 long	 as	 keys()	 and	 values()	 are	 called	 one
right	after	the	other.

del	person['Name']	#	remove	entry	with	key	'Name'

#	person

#	{'Age':	100,	'Class':	'Scientist'}

person.clear()					#	remove	all	entries	in	dict

#	person

#	{}

del	person									#	delete	entire	dictionary

#	person

#	Traceback	(most	recent	call	last):

#		File	"<stdin>",	line	1,	in	<module>

#		NameError:	name	'person'	is	not	defined

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

for	item	in	person:

		print(item,	person[item])

#	Age	100

#	Name	Albert

#	Class	Scientist

person.keys()	#	['Age',	'Name',	'Class']

person.values()	#	[100,	'Albert',	'Scientist']

3.5.8.6	Counting	with	Dictionaries

One	application	of	dictionaries	that	frequently	comes	up	is	counting	the	elements
in	a	sequence.	For	example,	say	we	have	a	sequence	of	coin	flips:

The	actual	 list	die_rolls	will	 likely	be	different	when	you	execute	 this	on	your
computer	since	the	outcomes	of	the	die	rolls	are	random.

To	compute	the	probabilities	of	heads	and	tails,	we	could	count	how	many	heads
and	tails	we	have	in	the	list:

In	 addition	 to	 how	 we	 use	 the	 dictionary	 counts	 to	 count	 the	 elements	 of
coin_flips,	notice	a	couple	things	about	this	example:

1.	 We	 used	 the	 assert	 outcome	 in	 counts	 statement.	 The	 assert	 statement	 in
Python	 allows	 you	 to	 easily	 insert	 debugging	 statements	 in	 your	 code	 to
help	 you	 discover	 errors	 more	 quickly.	 assert	 statements	 are	 executed
whenever	the	internal	Python	__debug__	variable	is	set	to	True,	which	is	always
the	case	unless	you	start	Python	with	the	-O	option	which	allows	you	to	run
optimized	Python.

2.	 When	 we	 computed	 the	 probability	 of	 tails,	 we	 used	 the	 built-in	 sum
function,	which	allowed	us	 to	quickly	 find	 the	 total	number	of	 coin	 flips.
sum	is	one	of	many	built-in	function	you	can	read	about	here.

3.5.9	Functions

You	can	reuse	code	by	putting	it	inside	a	function	that	you	can	call	in	other	parts

import	random

die_rolls	=	[

		random.choice(['heads',	'tails'])	for	_	in	range(10)

]

#	die_rolls

#	['heads',	'tails',	'heads',

#		'tails',	'heads',	'heads',

			'tails',	'heads',	'heads',	'heads']

counts	=	{'heads':	0,	'tails':	0}

for	outcome	in	coin_flips:

			assert	outcome	in	counts

			counts[outcome]	+=	1

print('Probability	of	heads:	%.2f'	%	(counts['heads']	/	len(coin_flips)))

#	Probability	of	heads:	0.70

print('Probability	of	tails:	%.2f'	%	(counts['tails']	/	sum(counts.values())))

#	Probability	of	tails:	0.30

https://docs.python.org/2/library/functions.html

of	your	programs.	Functions	are	also	a	good	way	of	grouping	code	that	logically
belongs	 together	 in	 one	 coherent	whole.	A	 function	 has	 a	 unique	 name	 in	 the
program.	Once	you	call	a	function,	it	will	execute	its	body	which	consists	of	one
or	more	lines	of	code:

The	 def	 keyword	 tells	 Python	 we	 are	 defining	 a	 function.	 As	 part	 of	 the
definition,	we	have	the	function	name,	check_triangle,	and	the	parameters	of	the
function	–	variables	that	will	be	populated	when	the	function	is	called.

We	call	the	function	with	arguments	4,	5	and	6,	which	are	passed	in	order	into
the	parameters	a,	b	and	c.	A	function	can	be	called	several	 times	with	varying
parameters.	There	is	no	limit	to	the	number	of	function	calls.

It	 is	 also	 possible	 to	 store	 the	 output	 of	 a	 function	 in	 a	 variable,	 so	 it	 can	 be
reused.

3.5.10	Classes

A	class	 is	 an	 encapsulation	 of	 data	 and	 the	 processes	 that	work	 on	 them.	The
data	 is	 represented	 in	member	 variables,	 and	 the	 processes	 are	 defined	 in	 the
methods	of	the	class	(methods	are	functions	inside	the	class).	For	example,	let’s
see	how	to	define	a	Triangle	class:

def	check_triangle(a,	b,	c):

return	\

				a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

				b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

				c	<	a	+	b	and	c	>	abs(a	-	b)

				print(check_triangle(4,	5,	6))

def	check_triangle(a,	b,	c):

		return	\

					a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

					b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

					c	<	a	+	b	and	c	>	abs(a	-	b)

				result	=	check_triangle(4,	5,	6)

				print(result)

class	Triangle(object):

		def	__init__(self,	length,	width,

															height,	angle1,	angle2,	angle3):

					if	not	self._sides_ok(length,	width,	height):

									print('The	sides	of	the	triangle	are	invalid.')

					elif	not	self._angles_ok(angle1,	angle2,	angle3):

									print('The	angles	of	the	triangle	are	invalid.')

					self._length	=	length

					self._width	=	width

					self._height	=	height

Python	 has	 full	 object-oriented	 programming	 (OOP)	 capabilities,	 however	 we
can	not	cover	all	of	them	in	this	section,	so	if	you	need	more	information	please
refer	to	the	Python	docs	on	classes	and	OOP.

3.5.11	Modules

Now	write	this	simple	program	and	save	it:

As	a	check,	make	sure	the	file	contains	the	expected	contents	on	the	command
line:

To	execute	your	program	pass	the	file	as	a	parameter	to	the	python	command:

Files	 in	 which	 Python	 code	 is	 stored	 are	 called	modules.	 You	 can	 execute	 a
Python	module	form	the	command	line	like	you	just	did,	or	you	can	import	it	in
other	Python	code	using	the	import	statement.

Let	 us	 write	 a	 more	 involved	 Python	 program	 that	 will	 receive	 as	 input	 the
lengths	 of	 the	 three	 sides	 of	 a	 triangle,	 and	will	 output	whether	 they	 define	 a
valid	triangle.	A	triangle	is	valid	if	the	length	of	each	side	is	less	than	the	sum	of
the	lengths	of	the	other	two	sides	and	greater	than	the	difference	of	the	lengths	of
the	other	two	sides.:

					self._angle1	=	angle1

					self._angle2	=	angle2

					self._angle3	=	angle3

	def	_sides_ok(self,	a,	b,	c):

					return	\

									a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

									b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

									c	<	a	+	b	and	c	>	abs(a	-	b)

	def	_angles_ok(self,	a,	b,	c):

					return	a	+	b	+	c	==	180

triangle	=	Triangle(4,	5,	6,	35,	65,	80)

print("Hello	world!")

$	cat	hello.py

print("Hello	world!")

$	python	hello.py

Hello	world!

"""Usage:	check_triangle.py	[-h]	LENGTH	WIDTH	HEIGHT

Check	if	a	triangle	is	valid.

Arguments:

https://docs.python.org/2.7/tutorial/classes.html

Assuming	we	save	the	program	in	a	file	called	check_triangle.py,	we	can	run	it	like	so:

Let	us	break	this	down	a	bit.

1.	 We	are	 importing	 the	print_function	and	division	modules	 from	python	3
like	we	did	earlier	in	this	section.	It’s	a	good	idea	to	always	include	these	in
your	programs.

2.	 We’ve	defined	a	boolean	expression	that	tells	us	if	the	sides	that	were	input
define	 a	 valid	 triangle.	 The	 result	 of	 the	 expression	 is	 stored	 in	 the
valid_triangle	variable.	inside	are	true,	and	False	otherwise.

3.	 We’ve	 used	 the	 backslash	 symbol	 \	 to	 format	 are	 code	 nicely.	 The
backslash	 simply	 indicates	 that	 the	 current	 line	 is	 being	 continued	 on	 the
next	line.

4.	 When	we	run	the	program,	we	do	the	check	if	__name__	==	'__main__'.	 __name__	 is	 an
internal	 Python	 variable	 that	 allows	 us	 to	 tell	 whether	 the	 current	 file	 is
being	run	from	the	command	line	(value	__name__),	or	is	being	imported	by	a
module	 (the	 value	 will	 be	 the	 name	 of	 the	 module).	 Thus,	 with	 this
statement	we’re	just	making	sure	the	program	is	being	run	by	the	command
line.

5.	 We	are	using	 the	docopt	module	 to	handle	command	 line	arguments.	The
advantage	of	using	 this	module	 is	 that	 it	generates	a	usage	help	statement
for	 the	program	and	enforces	 command	 line	 arguments	 automatically.	All
of	this	is	done	by	parsing	the	docstring	at	the	top	of	the	file.

6.	 In	the	print	function,	we	are	using	Python’s	string	formatting	capabilities	to
insert	values	into	the	string	we	are	displaying.

		LENGTH					The	length	of	the	triangle.

		WIDTH						The	width	of	the	traingle.

		HEIGHT					The	height	of	the	triangle.

Options:

-h	--help

"""

from	docopt	import	docopt

if	__name__	==	'__main__':

		arguments	=	docopt(__doc__)

		a,	b,	c	=	int(arguments['LENGTH']),

												int(arguments['WIDTH']),

												int(arguments['HEIGHT'])

		valid_triangle	=	\

						a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

						b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

						c	<	a	+	b	and	c	>	abs(a	-	b)

		print('Triangle	with	sides	%d,	%d	and	%d	is	valid:	%r'	%	(

						a,	b,	c,	valid_triangle

))

$	python	check_triangle.py	4	5	6

Triangle	with	sides	4,	5	and	6	is	valid:	True

https://docs.python.org/2/library/string.html#format-string-syntax

3.5.12	Lambda	Expressions

As	 oppose	 to	 normal	 functions	 in	 Python	 which	 are	 defined	 using	 the	 def

keyword,	 lambda	 functions	 in	 Python	 are	 anonymous	 functions	 which	 do	 not
have	a	name	and	are	defined	using	 the	 lambda	 keyword.	The	generic	 syntax	of	 a
lambda	 function	 is	 in	 form	 oflambda	arguments:	expression,	 as	 shown	 in	 the	 following
example:

As	you	could	probably	guess,	the	result	is:

Now	consider	the	following	examples:

The	 power2	 function	 defined	 in	 the	 expression,	 is	 equivalent	 to	 the	 following
definition:

Lambda	functions	are	useful	for	when	you	need	a	function	for	a	short	period	of
time.	Note	 that	 they	can	also	be	very	useful	when	passed	as	an	argument	with
other	built-in	functions	that	take	a	function	as	an	argument,	e.g.	filter()	and	map().	In
the	next	example	we	show	how	a	lambda	function	can	be	combined	with	the	filer
function.	 Consider	 the	 array	 all_names	 which	 contains	 five	 words	 that	 rhyme
together.	We	want	to	filter	the	words	that	contain	the	word	name.	To	achieve	this,
we	pass	the	function	lambda	x:	'name'	in	x	as	 the	first	argument.	This	 lambda	function
returns	 True	 if	 the	 word	 name	 exists	 as	 a	 sub-string	 in	 the	 string	 x.	 The	 second
argument	of	filter	function	is	the	array	of	names,	i.e.	all_names.

As	you	can	see,	the	names	are	successfully	filtered	as	we	expected.

In	Python3,	filter	function	returns	a	filter	object	or	the	iterator	which	gets	lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	 filter	 object

greeter	=	lambda	x:	print('Hello	%s!'%x)

print(greeter('Albert'))

Hello	Albert!

power2	=	lambda	x:	x	**	2

def	power2(x):

				return	x	**	2

all_names	=	['surname',	'rename',	'nickname',	'acclaims',	'defame']

filtered_names	=	list(filter(lambda	x:	'name'	in	x,	all_names))

print(filtered_names)

#	['surname',	'rename',	'nickname']

with	index	nor	we	can	use	len()	to	find	the	length	of	the	filter	object.

In	Python,	we	can	have	a	small	usually	a	single	liner	anonymous	function	called
Lambda	 function	which	 can	have	 any	number	of	 arguments	 just	 like	 a	normal
function	but	with	only	one	expression	with	no	return	statement.	The	result	of	this
expression	can	be	applied	to	a	value.

Basic	Syntax:

For	an	example:	a	function	in	python

Same	function	can	written	as	Lambda	function.	This	function	named	as	multiply
is	having	2	arguments	and	returns	their	multiplication.

Lambda	equivalent	for	this	function	would	be:

Here	 a	 and	 b	 are	 the	 2	 arguments	 and	 a*b	 is	 the	 expression	 whose	 value	 is
returned	as	an	output.

Also	we	don’t	need	to	assign	Lambda	function	to	a	variable.

Lambda	functions	are	mostly	passed	as	parameter	to	a	function	which	expects	a
function	objects	like	in	map	or	filter.

3.5.12.1	map

list_a	=	[1,	2,	3,	4,	5]

filter_obj	=	filter(lambda	x:	x	%	2	==	0,	list_a)

#	Convert	the	filer	obj	to	a	list

even_num	=	list(filter_obj)

print(even_num)

#	Output:	[2,	4]

lambda	arguments	:	expression

def	multiply(a,	b):

				return	a*b

#call	the	function

multiply(3*5)	#outputs:	15

multiply	=	Lambda	a,	b	:	a*b

print(multiply(3,	5))

#	outputs:	15

(lambda	a,	b	:	a*b)(3*5)

The	basic	syntax	of	the	map	function	is

map	functions	expects	a	function	object	and	any	number	of	iterables	like	list	or
dictionary.	It	executes	the	function_object	for	each	element	in	the	sequence	and
returns	a	list	of	the	elements	modified	by	the	function	object.

Example:

If	we	want	to	write	same	function	using	Lambda

3.5.12.2	dictionary

Now,	lets	see	how	we	can	interate	over	a	dictionary	using	map	and	lambda	Lets
say	we	have	a	dictionary	object

We	 can	 iterate	 over	 this	 dictionary	 and	 read	 the	 elements	 of	 it	 using	map	 and
lambda	functions	in	following	way:

In	 Python3,	 map	 function	 returns	 an	 iterator	 or	 map	 object	 which	 gets	 lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	map	 object
with	 index	nor	we	 can	use	 len()	 to	 find	 the	 length	of	 the	map	object.	We	 can
force	convert	the	map	output	i.e.	the	map	object	to	list	as	shown	next:

map(function_object,	iterable1,	iterable2,...)

def	multiply(x):

				return	x	*	2

map(multiply2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

map(lambda	x:	x*2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

dict_movies	=	[

				{'movie':	'avengers',	'comic':	'marvel'},

				{'movie':	'superman',	'comic':	'dc'}]

map(lambda	x	:	x['movie'],	dict_movies)		#	Output:	['avengers',	'superman']

map(lambda	x	:	x['comic'],		dict_movies)		#	Output:	['marvel',	'dc']

map(lambda	x	:	x['movie']	==	"avengers",	dict_movies)

#	Output:	[True,	False]

map_output	=	map(lambda	x:	x*2,	[1,	2,	3,	4])

print(map_output)

#	Output:	map	object:	<map	object	at	0x04D6BAB0>

list_map_output	=	list(map_output)

print(list_map_output)	#	Output:	[2,	4,	6,	8]

3.5.13	Iterators

In	Python,	 an	 iterator	protocol	 is	defined	using	 two	methods:	 __iter()__	 and	 next().
The	 former	 returns	 the	 iterator	 object	 and	 latter	 returns	 the	 next	 element	 of	 a
sequence.	Some	advantages	of	iterators	are	as	follows:

Readability
Supports	sequences	of	infinite	length
Saving	resources

There	are	several	built-in	objects	 in	Python	which	 implement	 iterator	protocol,
e.g.	string,	list,	dictionary.	In	the	following	example,	we	create	a	new	class	that
follows	the	iterator	protocol.	We	then	use	the	class	to	generate	log2	of	numbers:

As	 you	 can	 see,	we	 first	 create	 an	 instance	 of	 the	 class	 and	 assign	 its	 __iter()__
function	to	a	variable	called	i.	Then	by	calling	the	next()	function	four	times,	we
get	the	following	output:

As	you	probably	noticed,	the	lines	are	log2()	of	1,	2,	3,	4	respectively.

3.5.14	Generators

from	math	import	log2

class	LogTwo:

				"Implements	an	iterator	of	log	two"

				def	__init__(self,last	=	0):

								self.last	=	last

				def	__iter__(self):

								self.current_num	=	1

								return	self

				def	__next__(self):

								if	self.current_num	<=	self.last:

												result	=	log2(self.current_num)

												self.current_num	+=	1

												return	result

								else:

												raise	StopIteration

L	=	LogTwo(5)

i	=	iter(L)

print(next(i))

print(next(i))

print(next(i))

print(next(i))

$	python	iterator.py

0.0

1.0

1.584962500721156

2.0

Before	 we	 go	 to	 Generators,	 please	 understand	 Iterators.	 Generators	 are	 also
Iterators	but	they	can	only	be	interated	over	once.	Thats	because	Generators	do
not	store	the	values	in	memory	instead	they	generate	the	values	on	the	go.	If	we
want	to	print	those	values	then	we	can	either	simply	iterate	over	them	or	use	the
for	loop.

3.5.14.1	Generators	with	function

For	 example:	we	 have	 a	 function	 named	 as	multiplyBy10	which	 prints	 all	 the
input	numbers	multiplied	by	10.

Now,	if	we	want	to	use	Generators	here	then	we	will	make	following	changes.

In	Generators,	we	use	yield()	 function	 in	place	of	 return().	So	when	we	 try	 to
print	new_numbers	list	now,	it	just	prints	Generators	object.	The	reason	for	this
is	because	Generators	dont	hold	any	value	 in	memory,	 it	yields	one	 result	at	a
time.	So	essentially	it	is	just	waiting	for	us	to	ask	for	the	next	result.	To	print	the
next	result	we	can	just	say	print	next(new_numbers)	,	so	how	it	is	working	is	its
reading	the	first	value	and	squaring	it	and	yielding	out	value	1.	Also	in	this	case
we	can	just	print	next(new_numbers)	5	times	to	print	all	numbers	and	if	we	do	it
for	6th	time	then	we	will	get	an	error	StopIteration	which	meanns	Generators	has
exausted	its	limit	and	it	has	no	6th	element	to	print.

3.5.14.2	Generators	using	for	loop

If	we	now	want	to	print	the	complete	list	of	squared	values	then	we	can	just	do:

def	multiplyBy10(numbers):

				result	=	[]

				for	i	in	numbers:

								result.append(i*10)

				return	result

new_numbers	=	multiplyBy10([1,2,3,4,5])

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

print	new_numbers		#Output:	Generators	object

print	next(new_numbers)		#Output:	1

The	output	will	be:

3.5.14.3	Generators	with	List	Comprehension

Python	 has	 something	 called	 List	 Comprehension,	 if	we	 use	 this	 then	we	 can
replace	the	complete	function	def	with	just:

Here	 the	 point	 to	 note	 is	 square	 brackets	 []	 in	 line	 1	 is	 very	 important.	 If	we
change	it	to	()	then	again	we	will	start	getting	Generators	object.

We	can	get	 the	 individual	elements	again	 from	Generators	 if	we	do	a	 for	 loop
over	new_numbers	like	we	did	previously.	Alternatively,	we	can	convert	it	into	a
list	and	then	print	it.

But	here	if	we	convert	this	into	a	list	then	we	loose	on	performance,	which	we
will	just	see	next.

3.5.14.4	Why	to	use	Generators?

Generators	 are	 better	with	Performance	 because	 it	 does	 not	 hold	 the	 values	 in
memory	and	here	with	the	small	examples	we	provide	its	not	a	big	deal	since	we
are	 dealing	 with	 small	 amount	 of	 data	 but	 just	 consider	 a	 scenario	 where	 the
records	 are	 in	 millions	 of	 data	 set.	 And	 if	 we	 try	 to	 convert	 millions	 of	 data
elements	 into	 a	 list	 then	 that	 will	 definitely	 make	 an	 impact	 on	 memory	 and

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

for	num	in	new_numbers:

				print	num

10

20

30

40

50

new_numbers	=	[x*10	for	x	in	[1,2,3,4,5]]

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	new_numbers		#Output:	Generators	object

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	list(new_numbers)		#Output:	[10,	20,	30,	40	,50]

performance	because	everything	will	in	memory.

Lets	 see	 an	 example	 on	 how	 Generators	 help	 in	 Performance.	 First,	 without
Generators,	 normal	 function	 taking	 1	 million	 record	 and	 returns	 the
result[people]	for	1	million.

I	 am	 just	giving	approximate	values	 to	compare	 it	with	next	 execution	but	we
just	try	to	run	it	we	will	see	a	serious	consumption	of	memory	with	good	amount
of	time	taken.

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_list(people):

				result	=	[]

				for	i	in	range(people):

								person	=	{

																'id'	:	i,

																'name'	:	random.choice(names),

																'major'	:	randon.choice(majors)

																}

								result.append(person)

				return	result

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

Memory	(After):	318Mb

Took	1.2	seconds

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_generator(people):

				for	i	in	xrange(people):

								person	=	{

												'id'	:	i,

												'name'	:	random.choice(names),

												'major'	:	randon.choice(majors)

								}

								yield	person

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

Now	 after	 running	 the	 same	 code	 using	 Generators,	 we	will	 see	 a	 significant
amount	 of	 performance	boost	with	 alomost	 0	Seconds.	And	 the	 reason	behind
this	is	that	in	case	of	Generators,	we	do	not	keep	anything	in	memory	so	system
just	reads	1	at	a	time	and	yields	that.

3.6	LIBRARIES

3.6.1	Python	Modules	☁�

Often	you	may	need	functionality	that	is	not	present	in	Python’s	standard	library.
In	this	case	you	have	two	option:

implement	the	features	yourself
use	a	third-party	library	that	has	the	desired	features.

Often	you	can	find	a	previous	implementation	of	what	you	need.	Since	this	is	a
common	situation,	there	is	a	service	supporting	it:	the	Python	Package	Index	(or
PyPi	for	short).

Our	 task	 here	 is	 to	 install	 the	 autopep8	 tool	 from	 PyPi.	 This	will	 allow	 us	 to
illustrate	the	use	if	virtual	environments	using	the	pyenv	or	virtualenv	command,
and	installing	and	uninstalling	PyPi	packages	using	pip.

3.6.1.1	Updating	Pip

It	is	important	that	you	have	the	newest	version	of	pip	installed	for	your	version
of	 python.	 Let	 us	 assume	 your	 python	 is	 registered	 with	 python	 and	 you	 use
pyenv,	than	you	can	update	pip	with

without	 interfering	with	 a	 potential	 system	wide	 installed	 version	 of	 p	 ip	 that

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

Memory	(After):	15Mb

Took	0.01	seconds

pip	install	-U	pip

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-libraries.md
https://pypi.python.org/pypi

may	be	needed	by	 the	 system	default	version	of	python.	See	 the	 section	about
pyenv	for	more	details

3.6.1.2	Using	pip	to	Install	Packages

Let	us	now	look	at	another	 important	 tool	for	Python	development:	 the	Python
Package	Index,	or	PyPI	for	short.	PyPI	provides	a	large	set	of	third-party	python
packages.	 If	 you	want	 to	do	 something	 in	python,	 first	 check	pypi,	 as	odd	 are
someone	already	ran	into	the	problem	and	created	a	package	solving	it.

In	order	to	install	package	from	PyPI,	use	the	pip	command.	We	can	search	for
PyPI	for	packages:

It	appears	that	the	top	two	results	are	what	we	want	so	install	them:

This	will	 cause	 pip	 to	 download	 the	 packages	 from	PyPI,	 extract	 them,	 check
their	 dependencies	 and	 install	 those	 as	 needed,	 then	 install	 the	 requested
packages.

You	can	skip	‘–trusted-host	pypi.python.org’	option	if	you	have

patched	urllib3	on	Python	2.7.9.

3.6.1.3	GUI

3.6.1.3.1	GUIZero

Install	guizero	with	the	following	command:

For	a	comprehensive	tutorial	on	guizero,	click	here.

3.6.1.3.2	Kivy

You	can	install	Kivy	on	macOS	as	follows:

$	pip	search	--trusted-host	pypi.python.org	autopep8	pylint

$	pip	install	--trusted-host	pypi.python.org	autopep8	pylint

sudo	pip	install	guizero

https://lawsie.github.io/guizero/howto/

A	hello	world	program	for	kivy	 is	 included	 in	 the	cloudmesh.robot	 repository.
Which	you	can	fine	here

https://github.com/cloudmesh/cloudmesh.robot/tree/master/projects/kivy

To	 run	 the	 program,	 please	 download	 it	 or	 execute	 it	 in	 cloudmesh.robot	 as
follows:

To	create	stand	alone	packages	with	kivy,	please	see:

3.6.1.4	Formatting	and	Checking	Python	Code

First,	get	the	bad	code:

Examine	the	code:

As	 you	 can	 see,	 this	 is	 very	 dense	 and	 hard	 to	 read.	 Cleaning	 it	 up	 by	 hand
would	be	a	time-consuming	and	error-prone	process.	Luckily,	this	is	a	common
problem	so	there	exist	a	couple	packages	to	help	in	this	situation.

3.6.1.5	Using	autopep8

We	can	now	run	the	bad	code	through	autopep8	to	fix	formatting	problems:

Let	us	look	at	the	result.	This	is	considerably	better	than	before.	It	is	easy	to	tell
what	the	example1	and	example2	functions	are	doing.

It	 is	 a	 good	 idea	 to	 develop	 a	 habit	 of	 using	 autopep8	 in	 your	 python-

brew	install	pkg-config	sdl2	sdl2_image	sdl2_ttf	sdl2_mixer	gstreamer

pip	install	-U	Cython

pip	install	kivy

pip	install	pygame

cd	cloudmesh.robot/projects/kivy

python	swim.py

-		https://kivy.org/docs/guide/packaging-osx.html

$	wget	--no-check-certificate	http://git.io/pXqb	-O	bad_code_example.py

$	emacs	bad_code_example.py

$	autopep8	bad_code_example.py	>code_example_autopep8.py

https://github.com/cloudmesh/cloudmesh.robot/tree/master/projects/kivy

development	 workflow.	 For	 instance:	 use	 autopep8	 to	 check	 a	 file,	 and	 if	 it
passes,	make	any	changes	in	place	using	the	-i	flag:

If	you	use	pyCharm	you	have	the	ability	to	use	a	similar	function	while	pressing
on	Inspect	Code.

3.6.1.6	Writing	Python	3	Compatible	Code

To	write	python	2	and	3	compatible	code	we	recommend	that	you	take	a	look	at:
http://python-future.org/compatible_idioms.html

3.6.1.7	Using	Python	on	FutureSystems

This	is	only	important	if	you	use	Futuresystems	resources.

In	order	to	use	Python	you	must	log	into	your	FutureSystems	account.	Then	at
the	shell	prompt	execute	the	following	command:

This	will	make	the	python	and	virtualenv	commands	available	to	you.

The	details	of	what	the	module	load	command	does	are	described	in	the	future
lesson	modules.

3.6.1.8	Ecosystem

3.6.1.8.1	pypi

The	 Python	 Package	 Index	 is	 a	 large	 repository	 of	 software	 for	 the	 Python
programming	language	containing	a	 large	number	of	packages,	many	of	which
can	be	found	on	pypi.	The	nice	 thing	about	pypi	 is	 that	many	packages	can	be
installed	with	the	program	‘pip’.

To	do	so	you	have	 to	 locate	 the	<package_name>	for	example	with	 the	search
function	in	pypi	and	say	on	the	commandline:

$	autopep8	file.py				#	check	output	to	see	of	passes

$	autopep8	-i	file.py	#	update	in	place

$	module	load	python

http://python-future.org/compatible_idioms.html
https://pypi.python.org/pypi

where	 package_name	 is	 the	 string	 name	 of	 the	 package.	 an	 example	 would	 be	 the
package	called	cloudmesh_client	which	you	can	install	with:

If	all	goes	well	the	package	will	be	installed.

3.6.1.8.2	Alternative	Installations

The	 basic	 installation	 of	 python	 is	 provided	 by	 python.org.	 However	 others
claim	 to	 have	 alternative	 environments	 that	 allow	 you	 to	 install	 python.	 This
includes

Canopy
Anaconda
IronPython

Typically	 they	 include	 not	 only	 the	 python	 compiler	 but	 also	 several	 useful
packages.	It	is	fine	to	use	such	environments	for	the	class,	but	it	should	be	noted
that	 in	 both	 cases	 not	 every	 python	 library	may	 be	 available	 for	 install	 in	 the
given	environment.	For	example	if	you	need	to	use	cloudmesh	client,	it	may	not
be	available	as	conda	or	Canopy	package.	This	 is	also	 the	case	for	many	other
cloud	related	and	useful	python	libraries.	Hence,	we	do	recommend	that	 if	you
are	 new	 to	 python	 to	 use	 the	 distribution	 form	 python.org,	 and	 use	 pip	 and
virtualenv.

Additionally	 some	 python	 version	 have	 platform	 specific	 libraries	 or
dependencies.	For	example	coca	libraries,	.NET	or	other	frameworks	are	examples.
For	the	assignments	and	the	projects	such	platform	dependent	libraries	are	not	to
be	used.

If	 however	 you	 can	 write	 a	 platform	 independent	 code	 that	 works	 on	 Linux,
macOS	and	Windows	while	using	the	python.org	version	but	develop	it	with	any
of	the	other	tools	that	is	just	fine.	However	it	is	up	to	you	to	guarantee	that	this
independence	 is	 maintained	 and	 implemented.	 You	 do	 have	 to	 write
requirements.txt	files	that	will	install	the	necessary	python	libraries	in	a	platform
independent	 fashion.	The	homework	assignment	PRG1	has	even	a	 requirement

$	pip	install	<package_name>

$	pip	install	cloudmesh_client

https://store.enthought.com/downloads/#default
https://www.continuum.io/downloads
http://ironpython.net/

to	do	so.

In	order	to	provide	platform	independence	we	have	given	in	the	class	a	minimal
python	version	that	we	have	tested	with	hundreds	of	students:	python.org.	If	you
use	any	other	version,	that	is	your	decision.	Additionally	some	students	not	only
use	python.org	but	have	used	iPython	which	is	fine	too.	However	this	class	is	not
only	about	python,	but	also	about	how	to	have	your	code	run	on	any	platform.
The	homework	is	designed	so	that	you	can	identify	a	setup	that	works	for	you.

However	we	have	concerns	if	you	for	example	wanted	to	use	chameleon	cloud
which	we	require	you	to	access	with	cloudmesh.	cloudmesh	is	not	available	as
conda,	canopy,	or	other	framework	package.	Cloudmesh	client	is	available	form
pypi	which	is	standard	and	should	be	supported	by	the	frameworks.	We	have	not
tested	cloudmesh	on	any	other	python	version	then	python.org	which	is	the	open
source	community	standard.	None	of	the	other	versions	are	standard.

In	 fact	we	 had	 students	 over	 the	 summer	 using	 canopy	on	 their	machines	 and
they	got	confused	as	 they	now	had	multiple	python	versions	and	did	not	know
how	 to	 switch	between	 them	and	activate	 the	 correct	 version.	Certainly	 if	 you
know	how	to	do	that,	than	feel	free	to	use	canopy,	and	if	you	want	to	use	canopy
all	 this	 is	up	to	you.	However	 the	homework	and	project	requires	you	to	make
your	program	portable	to	python.org.	If	you	know	how	to	do	that	even	if	you	use
canopy,	anaconda,	or	any	other	python	version	that	is	fine.	Graders	will	test	your
programs	 on	 a	 python.org	 installation	 and	 not	 canopy,	 anaconda,	 ironpython
while	using	virtualenv.	 It	 is	obvious	why.	 If	you	do	not	know	that	answer	you
may	want	 to	 think	about	 that	every	 time	they	test	a	program	they	need	to	do	a
new	virtualenv	and	run	vanilla	python	in	it.	If	we	were	to	run	two	installs	in	the
same	system,	this	will	not	work	as	we	do	not	know	if	one	student	will	cause	a
side	effect	 for	another.	Thus	we	as	 instructors	do	not	 just	have	 to	 look	at	your
code	 but	 code	 of	 hundreds	 of	 students	 with	 different	 setups.	 This	 is	 a	 non
scalable	solution	as	every	time	we	test	out	code	from	a	student	we	would	have	to
wipe	out	 the	OS,	 install	 it	new,	 install	an	new	version	of	whatever	python	you
have	 elected,	 become	 familiar	with	 that	 version	 and	 so	 on	 and	 on.	This	 is	 the
reason	 why	 the	 open	 source	 community	 is	 using	 python.org.	We	 follow	 best
practices.	Using	other	versions	is	not	a	community	best	practice,	but	may	work
for	an	individual.

We	 have	 however	 in	 regards	 to	 using	 other	 python	 version	 additional	 bonus

projects	such	as

deploy	run	and	document	cloudmesh	on	ironpython
deploy	 run	 and	 document	 cloudmesh	 on	 anaconda,	 develop	 script	 to
generate	a	conda	package	form	github
deploy	run	and	document	cloudmesh	on	canopy,	develop	script	to	generate
a	conda	package	form	github
deploy	run	and	document	cloudmesh	on	ironpython
other	documentation	that	would	be	useful

3.6.1.9	Resources

If	you	are	unfamiliar	with	programming	in	Python,	we	also	refer	you	to	some	of
the	numerous	online	resources.	You	may	wish	to	start	with	Learn	Python	or	the
book	Learn	Python	the	Hard	Way.	Other	options	include	Tutorials	Point	or	Code
Academy,	 and	 the	 Python	 wiki	 page	 contains	 a	 long	 list	 of	 references	 for
learning	as	well.	Additional	resources	include:

https://virtualenvwrapper.readthedocs.io
https://github.com/yyuu/pyenv
https://amaral.northwestern.edu/resources/guides/pyenv-tutorial
https://godjango.com/96-django-and-python-3-how-to-setup-pyenv-for-
multiple-pythons/
https://www.accelebrate.com/blog/the-many-faces-of-python-and-how-to-
manage-them/
http://ivory.idyll.org/articles/advanced-swc/
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.youtube.com/watch?v=0vJJlVBVTFg
http://www.korokithakis.net/tutorials/python/
http://www.afterhoursprogramming.com/tutorial/Python/Introduction/
http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://docs.python.org/3.3/tutorial/modules.html
https://www.learnpython.org/en/Modules/_and/_Packages
https://docs.python.org/2/library/datetime.html
https://chrisalbon.com/python/strings/_to/_datetime.html

A	very	long	list	of	useful	information	are	also	available	from

https://www.learnpython.org
http://learnpythonthehardway.org/book/
http://www.tutorialspoint.com/python/
http://www.codecademy.com/en/tracks/python
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://virtualenvwrapper.readthedocs.io
https://github.com/yyuu/pyenv
https://amaral.northwestern.edu/resources/guides/pyenv-tutorial
https://godjango.com/96-django-and-python-3-how-to-setup-pyenv-for-multiple-pythons/
https://www.accelebrate.com/blog/the-many-faces-of-python-and-how-to-manage-them/
http://ivory.idyll.org/articles/advanced-swc/
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.youtube.com/watch?v=0vJJlVBVTFg
http://www.korokithakis.net/tutorials/python/
http://www.afterhoursprogramming.com/tutorial/Python/Introduction/
http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://docs.python.org/3.3/tutorial/modules.html
https://www.learnpython.org/en/Modules/_and/_Packages
https://docs.python.org/2/library/datetime.html
https://chrisalbon.com/python/strings/_to/_datetime.html

https://github.com/vinta/awesome-python
https://github.com/rasbt/python_reference

This	 list	 may	 be	 useful	 as	 it	 also	 contains	 links	 to	 data	 visualization	 and
manipulation	libraries,	and	AI	tools	and	libraries.	Please	note	that	for	this	class
you	can	reuse	such	libraries	if	not	otherwise	stated.

3.6.1.9.1	Jupyter	Notebook	Tutorials

A	Short	 Introduction	 to	Jupyter	Notebooks	and	NumPy	To	view	the	notebook,
open	 this	 link	 in	 a	 background	 tab	 https://nbviewer.jupyter.org/	 and	 copy	 and
paste	 the	 following	 link	 in	 the	 URL	 input	 area
https://cloudmesh.github.io/classes/lesson/prg/Jupyter-NumPy-tutorial-I523-
F2017.ipynb	Then	hit	Go.

3.6.1.10	Exercises

E.Python.Lib.1:

Write	 a	 python	 program	 called	 iterate.py	 that	 accepts	 an	 integer	 n
from	the	command	line.	Pass	this	integer	to	a	function	called	iterate.

The	iterate	function	should	then	iterate	from	1	to	n.	If	the	i-th	number
is	 a	 multiple	 of	 three,	 print	 multiple	 of	 3,	 if	 a	 multiple	 of	 5	 print
multiple	of	5,	if	a	multiple	of	both	print	multiple	of	3	and	5,	else	print
the	value.

E:Python.Lib.2:

1.	 Create	a	pyenv	or	virtualenv	~/ENV

2.	 Modify	 your	 ~/.bashrc	 shell	 file	 to	 activate	 your	 environment
upon	login.

3.	 Install	the	docopt	python	package	using	pip

4.	 Write	 a	 program	 that	 uses	 docopt	 to	 define	 a	 commandline
program.	Hint:	modify	the	iterate	program.

https://github.com/vinta/awesome-python
https://github.com/rasbt/python_reference
https://nbviewer.jupyter.org/
https://cloudmesh.github.io/classes/lesson/prg/Jupyter-NumPy-tutorial-I523-F2017.ipynb

5.	 Demonstrate	the	program	works.

3.6.2	Data	Management	☁�

Obviously	when	dealing	with	big	data	we	may	not	only	be	dealing	with	data	in
one	format	but	in	many	different	formats.	It	is	important	that	you	will	be	able	to
master	such	formats	and	seamlessly	integrate	in	your	analysis.	Thus	we	provide
some	 simple	 examples	 on	 which	 different	 data	 formats	 exist	 and	 how	 to	 use
them.

3.6.2.1	Formats

3.6.2.1.1	Pickle

Python	pickle	allows	you	to	save	data	in	a	python	native	format	into	a	file	that
can	 later	 be	 read	 in	 by	 other	 programs.	However,	 the	 data	 format	may	 not	 be
portable	among	different	python	versions	thus	the	format	is	often	not	suitable	to
store	information.	Instead	we	recommend	for	standard	data	to	use	either	json	or
yaml.

To	read	it	back	in	use

3.6.2.1.2	Text	Files

To	read	text	files	into	a	variable	called	content	you	can	use

You	can	also	use	the	following	code	while	using	the	convenient	with	statement

import	pickle

flavor	=	{

				"small":	100,

				"medium":	1000,

				"large":	10000

				}

pickle.dump(flavor,	open("data.p",	"wb"))

flavor	=	pickle.load(open("data.p",	"rb"))

content	=	open('filename.txt',	'r').read()

with	open('filename.txt','r')	as	file:

				content	=	file.read()

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-data.md

To	split	up	the	lines	of	the	file	into	an	array	you	can	do

This	cam	also	be	done	with	the	build	in	readlines	function

In	case	the	file	is	too	big	you	will	want	to	read	the	file	line	by	line:

3.6.2.1.3	CSV	Files

Often	data	is	contained	in	comma	separated	values	(CSV)	within	a	file.	To	read
such	files	you	can	use	the	csv	package.

Using	pandas	you	can	read	them	as	follows.

There	are	many	other	modules	and	libraries	that	include	CSV	read	functions.	In
case	you	need	to	split	a	single	line	by	comma,	you	may	also	use	the	split	function.
However,	remember	it	swill	split	at	every	comma,	including	those	contained	in
quotes.	So	this	method	although	looking	originally	convenient	has	limitations.

3.6.2.1.4	Excel	spread	sheets

Pandas	contains	a	method	to	read	Excel	files

3.6.2.1.5	YAML

YAML	 is	 a	 very	 important	 format	 as	 it	 allows	 you	 easily	 to	 structure	 data	 in

with	open('filename.txt','r')	as	file:

				lines	=	file.read().splitlines()

lines	=	open('filename.txt','r').readlines()

with	open('filename.txt','r')	as	file:

				line	=	file.readline()

				print	(line)

import	csv

with	open('data.csv',	'rb')	as	f:

			contents	=	csv.reader(f)

for	row	in	content:

				print	row

import	pandas	as	pd

df	=	pd.read_csv("example.csv")

import	pandas	as	pd

filename	=	'data.xlsx'

data	=	pd.ExcelFile(file)

df	=	data.parse('Sheet1')

hierarchical	fields	It	is	frequently	used	to	coordinate	programs	while	using	yaml
as	the	specification	for	configuration	files,	but	also	data	files.	To	read	in	a	yaml
file	the	following	code	can	be	used

The	nice	part	is	that	this	code	can	also	be	used	to	verify	if	a	file	is	valid	yaml.	To
write	data	out	we	can	use

The	 flow	 style	 set	 to	 false	 formats	 the	 data	 in	 a	 nice	 readable	 fashion	 with
indentations.

3.6.2.1.6	JSON

3.6.2.1.7	XML

XML	 format	 is	 extensively	 used	 to	 transport	 data	 across	 the	 web.	 It	 has	 a
hierarchical	data	format,	and	can	be	represented	in	the	form	of	a	tree.

A	Sample	XML	data	looks	like:

Python	provides	the	ElementTree	XML	API	to	parse	and	create	XML	data.

Importing	XML	data	from	a	file:

Reading	XML	data	from	a	string	directly:

import	yaml

with	open('data.yaml',	'r')	as	f:

				content	=	yaml.load(f)

with	open('data.yml',	'w')	as	f:

				yaml.dump(data,	f,	default_flow_style=False)

import	json

with	open('strings.json')	as	f:

				content	=	json.load(f)

<data>

				<items>

								<item	name="item-1"></item>

								<item	name="item-2"></item>

								<item	name="item-3"></item>

				</items>

</data>

import	xml.etree.ElementTree	as	ET

tree	=	ET.parse('data.xml')

root	=	tree.getroot()

root	=	ET.fromstring(data_as_string)

Iterating	over	child	nodes	in	a	root:

Modifying	XML	data	using	ElementTree:

Modifying	text	within	a	tag	of	an	element	using	.text	method:

Adding/modifying	an	attribute	using	.set()	method:

Other	Python	modules	used	for	parsing	XML	data	include

minidom:	https://docs.python.org/3/library/xml.dom.minidom.html
BeautifulSoup:	https://www.crummy.com/software/BeautifulSoup/

3.6.2.1.8	RDF

To	read	RDF	files	you	will	need	to	install	RDFlib	with

This	will	than	allow	you	to	read	RDF	files

Good	 examples	 on	 using	 RDF	 are	 provided	 on	 the	 RDFlib	 Web	 page	 at
https://github.com/RDFLib/rdflib

From	the	Web	page	we	showcase	also	how	to	directly	process	RDF	data	 from
the	Web

for	child	in	root:

				print(child.tag,	child.attrib)

tag.text	=	new_data

tree.write('output.xml')

tag.set('key',	'value')

tree.write('output.xml')

$	pip	install	rdflib

from	rdflib.graph	import	Graph

g	=	Graph()

g.parse("filename.rdf",	format="format")

for	entry	in	g:

			print(entry)

import	rdflib

g=rdflib.Graph()

g.load('http://dbpedia.org/resource/Semantic_Web')

for	s,p,o	in	g:

				print	s,p,o

https://docs.python.org/3/library/xml.dom.minidom.html
https://www.crummy.com/software/BeautifulSoup/
https://github.com/RDFLib/rdflib

3.6.2.1.9	PDF

The	 Portable	 Document	 Format	 (PDF)	 has	 been	 made	 available	 by	 Adobe
Inc.	royalty	free.	This	has	enabled	PDF	to	become	a	world	wide	adopted	format
that	 also	 has	 been	 standardized	 in	 2008	 (ISO/IEC	 32000-1:2008,
https://www.iso.org/standard/51502.html).	 A	 lot	 of	 research	 is	 published	 in
papers	making	PDF	one	of	the	de-facto	standards	for	publishing.	However,	PDF
is	 difficult	 to	 parse	 and	 is	 focused	 on	 high	 quality	 output	 instead	 of	 data
representation.	Nevertheless,	tools	to	manipulate	PDF	exist:

PDFMiner

https://pypi.python.org/pypi/pdfminer/	allows	the	simple	translation	of	PDF
into	 text	 that	 than	 can	 be	 further	 mined.	 The	 manual	 page	 helps	 to
demonstrate	some	examples	http://euske.github.io/pdfminer/index.html.

pdf-parser.py

https://blog.didierstevens.com/programs/pdf-tools/	 parses	 pdf	 documents
and	identifies	some	structural	elements	that	can	than	be	further	processed.

If	you	know	about	other	tools,	let	us	know.

3.6.2.1.10	HTML

A	 very	 powerful	 library	 to	 parse	 HTML	 Web	 pages	 is	 provided	 with
https://www.crummy.com/software/BeautifulSoup/

More	 details	 about	 it	 are	 provided	 in	 the	 documentation	 page
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

�	TODO:	Students	can	contribute	a	section

Beautiful	Soup	is	a	python	library	to	parse,	process	and	edit	HTML	documents.

To	install	Beautiful	Soup,	use	pip	command	as	follows:

In	 order	 to	 process	 HTML	 documents,	 a	 parser	 is	 required.	 Beautiful	 Soup

$	pip	install	beautifulsoup4

https://www.iso.org/standard/51502.html
https://pypi.python.org/pypi/pdfminer/
http://euske.github.io/pdfminer/index.html
https://blog.didierstevens.com/programs/pdf-tools/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

supports	 the	 HTML	 parser	 included	 in	 Python’s	 standard	 library,	 but	 it	 also
supports	 a	 number	 of	 third-party	 Python	 parsers	 like	 the	 lxml	 parser	 which	 is
commonly	used	[1].

Following	command	can	be	used	to	install	lxml	parser

To	begin	with,	we	import	the	package	and	instantiate	an	object	as	follows	for	a
html	document	html_handle:

Now,	we	will	discuss	a	few	functions,	attributes	and	methods	of	Beautiful	Soup.

prettify	function

prettify()	 method	 will	 turn	 a	 Beautiful	 Soup	 parse	 tree	 into	 a	 nicely	 formatted
Unicode	 string,	with	a	 separate	 line	 for	 each	HTML/XML	 tag	and	 string.	 It	 is
analgous	to	pprint()	function.	The	object	created	above	can	be	viewed	by	printing
the	prettfied	version	of	the	document	as	follows:

tag	Object

A	tag	object	refers	to	tags	in	the	HTML	document.	It	is	possible	to	go	down	to	the
inner	levels	of	the	DOM	tree.	To	access	a	tag	div	under	the	tag	body,	it	can	be	done
as	follows:

The	attrs	attribute	of	the	tag	object	returns	a	dictionary	of	all	the	defined	attributes
of	the	HTML	tag	as	keys.

has_attr()	method

To	check	if	a	tag	object	has	a	specific	attribute,	has_attr()	method	can	be	used.

$	pip	install	lxml

from	bs4	import	BeautifulSoup

soup	=	BeautifulSoup(html_handle,	`lxml`)

print(soup.prettify())

body_div	=	soup.body.div

print(body_div.prettify())

if	body_div.has_attr('p'):

				print('The	value	of	\'p\'	attribute	is:',	body_div['p'])

tag	object	attributes

name	-	This	attribute	returns	the	name	of	the	tag	selected.
attrs	 -	This	attribute	 returns	a	dictionary	of	all	 the	defined	attributes	of	 the
HTML	tag	as	keys.
contents	 -	This	attribute	returns	a	 list	of	contents	enclosed	within	 the	HTML
tag
string	-	This	attribute	which	returns	the	text	enclosed	within	the	HTML	tag.
This	returns	None	if	there	are	multiple	children
strings	-	This	overcomes	the	limitation	of	string	and	returns	a	generator	of	all
strings	enclosed	within	the	given	tag

Following	code	showcases	usage	of	the	above	discussed	attributes:

Searching	the	Tree

find()	 function	 takes	 a	 filter	 expression	 as	 argument	 and	 returns	 the	 first
match	found
findall()	function	returns	a	list	of	all	the	matching	elements

select()	function	can	be	used	to	search	the	tree	using	CSS	selectors

3.6.2.1.11	ConfigParser

�	TODO:	Students	can	contribute	a	section

body_tag	=	soup.body

print("Name	of	the	tag:',	body_tag.name)

attrs	=	body_tag.attrs

print('The	attributes	defined	for	body	tag	are:',	attrs)

print('The	contents	of	\'body\'	tag	are:\n',	body_tag.contents)

print('The	string	value	enclosed	in	\'body\'	tag	is:',	body_tag.string)

for	s	in	body_tag.strings:

				print(repr(s))

search_elem	=	soup.find('a')

print(search_elem.prettify())

search_elems	=	soup.find_all("a",	class_="sample")

pprint(search_elems)

#	Select	`a`	tag	with	class	`sample`

a_tag_elems	=	soup.select('a.sample')

print(a_tag_elems)

https://pymotw.com/2/ConfigParser/

3.6.2.1.12	ConfigDict

https://github.com/cloudmesh/cloudmesh-
common/blob/master/cloudmesh/common/ConfigDict.py

3.6.2.2	Encryption

Often	we	need	to	protect	the	information	stored	in	a	file.	This	is	achieved	with
encryption.	There	are	many	methods	of	supporting	encryption	and	even	if	a	file
is	encrypted	it	may	be	target	to	attacks.	Thus	it	is	not	only	important	to	encrypt
data	that	you	do	not	want	others	to	se	but	also	to	make	sure	that	the	system	on
which	the	data	is	hosted	is	secure.	This	is	especially	important	if	we	talk	about
big	data	having	a	potential	large	effect	if	it	gets	into	the	wrong	hands.

To	 illustrate	 one	 type	 of	 encryption	 that	 is	 non	 trivial	 we	 have	 chosen	 to
demonstrate	 how	 to	 encrypt	 a	 file	 with	 an	 ssh	 key.	 In	 case	 you	 have	 openssl
installed	on	your	system,	this	can	be	achieved	as	follows.

Most	important	here	are	Step	4	that	encrypts	the	file	and	Step	5	that	decrypts	the
file.	 Using	 the	 Python	 os	 module	 it	 is	 straight	 forward	 to	 implement	 this.
However,	we	are	providing	in	cloudmesh	a	convenient	class	that	makes	the	use
in	python	very	simple.

				#!	/bin/sh

				#	Step	1.	Creating	a	file	with	data

				echo	"Big	Data	is	the	future."	>	file.txt

				#	Step	2.	Create	the	pem

				openssl	rsa	-in	~/.ssh/id_rsa	-pubout		>	~/.ssh/id_rsa.pub.pem

				#	Step	3.	look	at	the	pem	file	to	illustrate	how	it	looks	like	(optional)

				cat	~/.ssh/id_rsa.pub.pem

				#	Step	4.	encrypt	the	file	into	secret.txt

				openssl	rsautl	-encrypt	-pubin	-inkey	~/.ssh/id_rsa.pub.pem	-in	file.txt	-out	secret.txt

				#	Step	5.	decrypt	the	file	and	print	the	contents	to	stdout

				openssl	rsautl	-decrypt	-inkey	~/.ssh/id_rsa	-in	secret.txt

from	cloudmesh.common.ssh.encrypt	import	EncryptFile

e	=	EncryptFile('file.txt',	'secret.txt')

e.encrypt()

e.decrypt()

https://pymotw.com/2/ConfigParser/
https://github.com/cloudmesh/cloudmesh-common/blob/master/cloudmesh/common/ConfigDict.py

In	our	class	we	initialize	it	with	the	locations	of	the	file	that	is	to	be	encrypted
and	decrypted.	To	initiate	that	action	just	call	the	methods	encrypt	and	decrypt.

3.6.2.3	Database	Access

�	TODO:	Students:	define	conventional	database	access	section

see:	https://www.tutorialspoint.com/python/python_database_access.htm

3.6.2.4	SQLite

�	TODO:	Students	can	contribute	to	this	section

https://www.sqlite.org/index.html

https://docs.python.org/3/library/sqlite3.html

3.6.2.4.1	Exercises	�

E:Encryption.1:

Test	the	shell	script	to	replicate	how	this	example	works

E:Encryption.2:

Test	the	cloudmesh	encryption	class

E:Encryption.3:

What	 other	 encryption	methods	 exist.	 Can	 you	 provide	 an	 example
and	contribute	to	the	section?

E:Encryption.4:

What	is	the	issue	of	encryption	that	make	it	challenging	for	Big	Data

E:Encryption.5:

Given	a	test	dataset	with	many	files	text	files,	how	long	will	it	take	to

https://www.tutorialspoint.com/python/python_database_access.htm
https://www.sqlite.org/index.html
https://docs.python.org/3/library/sqlite3.html

encrypt	 and	decrypt	 them	on	 various	machines.	Write	 a	 benchmark
that	you	test.	Develop	this	benchmark	as	a	group,	test	out	the	time	it
takes	to	execute	it	on	a	variety	of	platforms.

3.6.3	Plotting	with	matplotlib	☁�

A	brief	 overview	of	plotting	with	matplotlib	 along	with	 examples	 is	 provided.
First	matplotlib	must	be	installed,	which	can	be	accomplished	with	pip	install	as
follows:

We	will	start	by	plotting	a	simple	line	graph	using	built	in	numpy	functions	for
sine	and	cosine.	This	first	step	is	to	import	the	proper	libraries	shown	next.

Next	we	will	define	the	values	for	the	x	axis,	we	do	this	with	the	linspace	option
in	numpy.	The	first	two	parameters	are	the	starting	and	ending	points,	these	must
be	scalars.	The	third	parameter	is	optional	and	defines	the	number	of	samples	to
be	 generated	 between	 the	 starting	 and	 ending	 points,	 this	 value	 must	 be	 an
integer.	Additional	parameters	for	the	linspace	utility	can	be	found	here:

Now	we	will	use	the	sine	and	cosine	functions	in	order	to	generate	y	values,	for
this	we	will	 use	 the	 values	 of	 x	 for	 the	 argument	 of	 both	 our	 sine	 and	 cosine
functions	i.e.	cos(x).

You	can	display	 the	values	of	 the	 three	parameters	we	have	defined	by	 typing
them	in	a	python	shell.

Having	defined	x	and	y	values	we	can	generate	a	line	plot	and	since	we	imported
matplotlib.pyplot	as	plt	we	simply	use	plt.plot.

$	pip	install	matplotlib

import	numpy	as	np

import	matplotlib.pyplot	as	plt

x	=	np.linspace(-np.pi,	np.pi,	16)

cos	=	np.cos(x)

sin	=	np.sin(x)

x

array([-3.14159265,	-2.72271363,	-2.30383461,	-1.88495559,	-1.46607657,

				-1.04719755,	-0.62831853,	-0.20943951,	0.20943951,	0.62831853,

				1.04719755,	1.46607657,	1.88495559,	2.30383461,	2.72271363,

				3.14159265])

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-matplotlib.md

We	can	display	the	plot	using	plt.show()	which	will	pop	up	a	figure	displaying
the	plot	defined.

Additionally	we	can	add	the	sine	line	to	out	line	graph	by	entering	the	following.

Invoking	 plt.show()	 now	 will	 show	 a	 figure	 with	 both	 sine	 and	 cosine	 lines
displayed.	Now	that	we	have	a	figure	generated	it	would	be	useful	to	label	the	x
and	y	axis	and	provide	a	title.	This	is	done	by	the	following	three	commands:

Along	with	axis	labels	and	a	title	another	useful	figure	feature	may	be	a	legend.
In	order	to	create	a	legend	you	must	first	designate	a	label	for	the	line,	this	label
will	 be	 what	 shows	 up	 in	 the	 legend.	 The	 label	 is	 defined	 in	 the	 initial
plt.plot(x,y)	instance,	next	is	an	example.

Then	in	order	to	display	the	legend	the	following	command	is	issued:

The	location	is	specified	by	using	upper	or	lower	and	left	or	right.	Naturally	all
these	commands	can	be	combined	and	put	 in	a	 file	with	 the	 .py	extension	and
run	from	the	command	line.

�	link	error

plt.plot(x,cos)

plt.show()

plt.plot(x,sin)

plt.xlabel("X	-	label	(units)")

plt.ylabel("Y	-	label	(units)")

plt.title("A	clever	Title	for	your	Figure")

plt.plot(x,cos,	label="cosine")

plt.legend(loc='upper	right')

import	numpy	as	np

import	matplotlib.pyplot	as	plt

x	=	np.linspace(-np.pi,	np.pi,	16)

cos	=	np.cos(x)

sin	=	np.sin(x)

plt.plot(x,cos,	label="cosine")

plt.plot(x,sin,	label="sine")

plt.xlabel("X	-	label	(units)")

plt.ylabel("Y	-	label	(units)")

plt.title("A	clever	Title	for	your	Figure")

plt.legend(loc='upper	right')

plt.show()

An	example	of	a	bar	chart	is	preceded	next	using	data	from	[T:fast-cars].

You	 can	 customize	 plots	 further	 by	 using	 plt.style.use(),	 in	 python	 3.	 If	 you
provide	 the	following	command	inside	a	python	command	shell	you	will	see	a
list	of	available	styles.

An	example	of	using	a	predefined	style	is	shown	next.

Up	to	this	point	we	have	only	showcased	how	to	display	figures	through	python
output,	 however	 web	 browsers	 are	 a	 popular	 way	 to	 display	 figures.	 One
example	is	Bokeh,	 the	following	lines	can	be	entered	in	a	python	shell	and	the
figure	is	outputted	to	a	browser.

3.6.4	DocOpts	☁�

When	we	want	to	design	commandline	arguments	for	python	programs	we	have
many	 options.	 However,	 as	 our	 approach	 is	 to	 create	 documentation	 first,
docopts	provides	also	a	good	apprach	for	Python.	The	code	for	it	is	located	at

https://github.com/docopt/docopt

import	matplotlib.pyplot	as	plt

x	=	['	Toyota	Prius',

					'Tesla	Roadster	',

					'	Bugatti	Veyron',

					'	Honda	Civic	',

					'	Lamborghini	Aventador	']

horse_power	=	[120,	288,	1200,	158,	695]

x_pos	=	[i	for	i,	_	in	enumerate(x)]

plt.bar(x_pos,	horse_power,	color='green')

plt.xlabel("Car	Model")

plt.ylabel("Horse	Power	(Hp)")

plt.title("Horse	Power	for	Selected	Cars")

plt.xticks(x_pos,	x)

plt.show()

print(plt.style.available)

plt.style.use('seaborn')

from	bokeh.io	import	show

from	bokeh.plotting	import	figure

x_values	=	[1,	2,	3,	4,	5]

y_values	=	[6,	7,	2,	3,	6]

p	=	figure()

p.circle(x=x_values,	y=y_values)

show(p)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-docopts.md
https://github.com/docopt/docopt

It	can	be	installed	with

A	sample	programs	are	located	at

https://github.com/docopt/docopt/blob/master/examples/options_example.py

A	sample	program	of	using	doc	opts	for	our	purposes	loks	as	follows

Another	 good	 feature	 of	 using	 docopts	 is	 that	 we	 can	 use	 the	 same	 verbal
description	in	other	programming	languages	as	showcased	in	this	book.

3.6.5	Cloudmesh	Command	Shell	☁�

3.6.5.1	CMD5

Python’s	 CMD	 (https://docs.python.org/2/library/cmd.html)	 is	 a	 very	 useful
package	to	create	command	line	shells.	However	it	does	not	allow	the	dynamic
integration	of	newly	defined	commands.	Furthermore,	additions	to	CMD	need	to
be	 done	within	 the	 same	 source	 tree.	 To	 simplify	 developing	 commands	 by	 a
number	 of	 people	 and	 to	 have	 a	 dynamic	 plugin	 mechanism,	 we	 developed
cmd5.	It	is	a	rewrite	on	our	earlier	efforts	in	cloudmesh	client	and	cmd3.

3.6.5.1.1	Resources

$	pip	install	docopt

"""Cloudmesh	VM	management

Usage:

		cm-go	vm	start	NAME	[--cloud=CLOUD]

		cm-go	vm	stop	NAME	[--cloud=CLOUD]

		cm-go	set	--cloud=CLOUD

		cm-go	-h	|	--help

		cm-go	--version

Options:

		-h	--help					Show	this	screen.

		--version					Show	version.

		--cloud=CLOUD		The	name	of	the	cloud.

		--moored						Moored	(anchored)	mine.

		--drifting				Drifting	mine.

ARGUMENTS:

		NAME					The	name	of	the	VM`

"""

from	docopt	import	docopt

if	__name__	==	'__main__':

				arguments	=	docopt(__doc__,	version='1.0.0rc2')

				print(arguments)

https://github.com/docopt/docopt/blob/master/examples/options_example.py
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/python-cmd5.md
https://docs.python.org/2/library/cmd.html

The	source	code	for	cmd5	is	located	in	github:

https://github.com/cloudmesh/cmd5

We	 have	 discussed	 in	 Section	 ¿sec:cloudmesh-cms-install?	 how	 to	 install
cloudmesh	as	developer	and	have	access	to	the	source	code	in	a	directory	called	
cm.	As	you	read	this	document	we	assume	you	are	a	developer	and	can	skip	the
next	section.

3.6.5.1.2	Installation	from	source

WARNING:	DO	NOT	 EXECUTE	 THIS	 IF	YOU	ARE	A	DEVELOPER	OR
YOUR	ENVIRONMENT	WILL	NOT	PROPERLY	WORK.

However,	if	you	are	a	user	of	cloudmesh	you	can	install	it	with

3.6.5.1.3	Execution

To	 run	 the	 shell	 you	 can	 activate	 it	 with	 the	 cms	 command.	 cms	 stands	 for
cloudmesh	shell:

It	will	print	the	banner	and	enter	the	shell:

To	see	the	list	of	commands	you	can	say:

To	see	the	manual	page	for	a	specific	command,	please	use:

$	pip	install	cloudmesh-cmd5

(ENV2)	$	cms

+---+

|			____	_																	_																					_						|

|		/	___|	|	___		_			_		__|	|_	__	___			___		___|	|__			|

|	|	|			|	|/	_	\|	|	|	|/	_`	|	'_	`	_	\	/	_	\/	__|	'_	\		|

|	|	|___|	|	(_)	|	|_|	|	(_|	|	|	|	|	|	|		__/__	\	|	|	|	|

|		____|_|___/	__,_|__,_|_|	|_|	|_|___||___/_|	|_|	|

+---+

|																		Cloudmesh	CMD5	Shell																	|

+---+

cms>

cms>	help

help	COMMANDNAME

https://github.com/cloudmesh/cmd5

3.6.5.1.4	Create	your	own	Extension

One	of	the	most	important	features	of	CMD5	is	its	ability	to	extend	it	with	new
commands.	This	is	done	via	packaged	name	spaces.	We	recommend	you	name	is
cloudmesh-mycommand,	where	mycommand	 is	 the	name	of	 the	command	 that
you	 like	 to	 create.	 This	 can	 easily	 be	 done	 while	 using	 the	 sys*	 cloudmesh
command	 (we	 suggest	 you	 use	 a	 different	 name	 than	 gregor	 maybe	 your
firstname):

It	will	download	a	template	from	cloudmesh	called	cloudmesh-bar	and	generate	a	new
directory	cloudmesh-gregor	with	all	the	needed	files	to	create	your	own	command	and
register	 it	 dynamically	 with	 cloudmesh.	 All	 you	 have	 to	 do	 is	 to	 cd	 into	 the
directory	and	install	the	code:

Adding	your	own	command	is	easy.	It	is	important	that	all	objects	are	defined	in
the	 command	 itself	 and	 that	 no	global	 variables	 be	use	 in	 order	 to	 allow	each
shell	 command	 to	 stand	 alone.	 Naturally	 you	 should	 develop	 API	 libraries
outside	 of	 the	 cloudmesh	 shell	 command	 and	 reuse	 them	 in	 order	 to	 keep	 the
command	code	as	small	as	possible.	We	place	the	command	in:

Now	you	can	go	ahead	and	modify	your	command	in	that	directory.	It	will	look
similar	to	(if	you	used	the	command	name	gregor):

$	cms	sys	command	generate	gregor

$	cd	cloudmesh-gregor

$	python	setup.py	install

#	pip	install	.

cloudmsesh/mycommand/command/gregor.py

from	__future__	import	print_function

from	cloudmesh.shell.command	import	command

from	cloudmesh.shell.command	import	PluginCommand

class	GregorCommand(PluginCommand):

				@command

				def	do_gregor(self,	args,	arguments):

								"""

								::

										Usage:

																gregor	-f	FILE

																gregor	list

										This	command	does	some	useful	things.

										Arguments:

														FILE			a	file	name

										Options:

														-f						specify	the	file

								"""

								print(arguments)

								if	arguments.FILE:

											print("You	have	used	file:	",	arguments.FILE)

An	 important	 difference	 to	 other	 CMD	 solutions	 is	 that	 our	 commands	 can
leverage	 (besides	 the	 standard	definition),	 docopts	 as	 a	way	 to	define	 the	manual
page.	 This	 allows	 us	 to	 use	 arguments	 as	 dict	 and	 use	 simple	 if	 conditions	 to
interpret	 the	 command.	 Using	 docopts	 has	 the	 advantage	 that	 contributors	 are
forced	to	think	about	the	command	and	its	options	and	document	them	from	the
start.	Previously	we	did	not	use	but	argparse	and	click.	However	we	noticed	that
for	our	contributors	both	systems	lead	to	commands	that	were	either	not	properly
documented	or	 the	developers	delivered	 ambiguous	 commands	 that	 resulted	 in
confusion	and	wrong	usage	by	subsequent	users.	Hence,	we	do	recommend	that
you	 use	 docopts	 for	 documenting	 cmd5	 commands.	 The	 transformation	 is
enabled	by	the	@command	decorator	that	generates	a	manual	page	and	creates	a
proper	 help	 message	 for	 the	 shell	 automatically.	 Thus	 there	 is	 no	 need	 to
introduce	a	separate	help	method	as	would	normally	be	needed	 in	CMD	while
reducing	the	effort	it	takes	to	contribute	new	commands	in	a	dynamic	fashion.

3.6.5.1.5	Bug:	Quotes

We	have	one	bug	in	cmd5	that	relates	to	the	use	of	quotes	on	the	commandline

For	example	you	need	to	say

If	you	 like	 to	help	us	 fix	 this	 that	would	be	great.	 it	 requires	 the	use	of	 shlex.
Unfortuantly	we	did	not	yet	time	to	fix	this	“feature”.

3.6.6	cmd	Module	☁�

If	you	consider	using	this	module,	you	may	instead	want	to	use	cloudmesh	cmd5
instead	 as	 it	 provides	 some	 very	 nice	 features	 that	 are	 not	 included	 in	 cmd.
However	to	do	the	basics,	cmd	will	do.

The	 Python	 cmd	 module	 is	 useful	 for	 any	 more	 involved	 command-line
application.	It	is	used	in	the	Cloudmesh	Project,	for	example,	and	students	have
found	it	helpful	 in	their	projects	to	develop	quickly	high	quality	command	line
tools	with	documentation	so	that	others	can	replicate	and	use	the	programs.	The
Python	cmd	module	contains	a	public	class,	Cmd,	designed	to	be	used	as	a	base

								return	""

$	cms	gregor	-f	\"file	name	with	spaces\"

https://docs.python.org/3/library/shlex.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-cmd.md
http://cloudmesh.github.io/

class	 for	 command	 processors	 such	 as	 interactive	 shells	 and	 other	 command
interpreters.

3.6.6.1	Hello,	World	with	cmd

This	example	shows	a	very	simple	command	interpreter	that	simply	responds	to
the	greet	command.

In	 order	 to	 demonstrate	 commands	 provided	 by	 cmd,	 let’s	 save	 the	 following
program	in	a	file	called	helloworld.py.

A	session	with	this	program	might	look	like	this:

The	Cmd	class	can	be	used	to	customize	a	subclass	that	becomes	a	user-defined
command	prompt.	After	you	have	executed	your	program,	commands	defined	in
your	class	can	be	used.	Take	note	of	the	following	in	this	example:

from	__future__	import	print_function,	division

import	cmd

class	HelloWorld(cmd.Cmd):

				'''Simple	command	processor	example.'''

				def	do_greet(self,	line):

								if	line	is	not	None	and	len(line.strip())	>	0:

												print('Hello,	%s!'	%	line.strip().title())

								else:

												print('Hello!')

				def	do_EOF(self,	line):

								print('bye,	bye')

								return	True

if	__name__	==	'__main__':

				HelloWorld().cmdloop()

$	python	helloworld.py

(Cmd)	help

Documented	commands	(type	help	<topic>):

==

help

Undocumented	commands:

======================

EOF		greet

(Cmd)	greet

Hello!

(Cmd)	greet	albert

Hello,	Albert!

<CTRL-D	pressed>

(Cmd)	bye,	bye

The	 methods	 of	 the	 class	 of	 the	 form	 do_xxx	 implement	 the	 shell
commands,	with	xxx	being	the	name	of	the	command.	For	example,	in	the	
HelloWorld	class,	the	function	do_greet	maps	to	the	greet	on	the	command	line.

The	EOF	command	is	a	special	command	that	is	executed	when	you	press
CTRL-D	on	your	keyboard.

As	soon	as	any	command	method	returns	True	 the	shell	application	exits.
Thus,	 in	 this	 example	 the	 shell	 is	 exited	 by	 pressing	 CTRL-D,	 since	 the
do_EOF	method	is	the	only	one	that	returns	True.

The	shell	application	is	started	by	calling	the	cmdloop	method	of	the	class.

3.6.6.2	A	More	Involved	Example

Let	us	look	at	a	little	more	involved	example.	Save	the	following	code	in	a	file
called	calculator.py.

A	session	with	this	program	might	look	like	this:

from	__future__	import	print_function,	division

import	cmd

class	Calculator(cmd.Cmd):

	prompt	=	'calc	>>>	'

	intro	=	'Simple	calculator	that	can	do	addition,	subtraction,	multiplication	and	division.'

	def	do_add(self,	line):

					args	=	line.split()

					total	=	0

					for	arg	in	args:

									total	+=	float(arg.strip())

					print(total)

	def	do_subtract(self,	line):

					args	=	line.split()

					total	=	0

					if	len(args)	>	0:

									total	=	float(args[0])

					for	arg	in	args[1:]:

									total	-=	float(arg.strip())

					print(total)

	def	do_EOF(self,	line):

					print('bye,	bye')

					return	True

if	__name__	==	'__main__':

	Calculator().cmdloop()

$	python	calculator.py

Simple	calculator	that	can	do	addition,	subtraction,	multiplication	and	division.

calc	>>>	help

In	this	case	we	are	using	the	prompt	and	intro	class	variables	to	define	what	the
default	prompt	looks	like	and	a	welcome	message	when	the	command	interpreter
is	invoked.

In	the	add	and	subtract	commands	we	are	using	the	strip	and	split	methods	to	parse
all	arguments.	If	you	want	to	get	fancy,	you	can	use	Python	modules	like	getopts
or	argparse	for	this,	but	this	is	not	necessary	in	this	simple	example.

3.6.6.3	Help	Messages

Notice	that	all	commands	presently	show	up	as	undocumented.	To	remedy	this,
we	can	define	help_	methods	for	each	command:

Documented	commands	(type	help	<topic>):

==

help

Undocumented	commands:

======================

EOF		add		subtract

calc	>>>	add

0

calc	>>>	add	4	5	6

15.0

calc	>>>	subtract

0

calc	>>>	subtract	10	2

8.0

calc	>>>	subtract	10	2	20

-12.0

calc	>>>	bye,	bye

from	__future__	import	print_function,	division

import	cmd

class	Calculator(cmd.Cmd):

		prompt	=	'calc	>>>	'

		intro	=	'Simple	calculator	that	can	do	addition,	subtraction,	multiplication	and	division.'

		def	do_add(self,	line):

						args	=	line.split()

						total	=	0

						for	arg	in	args:

										total	+=	float(arg.strip())

						print(total)

		def	help_add(self):

						print('\n'.join([

										'add	[number,]',

										'Add	the	arguments	together	and	display	the	total.'

]))

		def	do_subtract(self,	line):

						args	=	line.split()

						total	=	0

						if	len(args)	>	0:

										total	=	float(args[0])

						for	arg	in	args[1:]:

										total	-=	float(arg.strip())

						print(total)

Now,	we	can	obtain	help	for	the	add	and	subtract	commands:

3.6.6.4	Useful	Links

cms	Python	2	Docs

cmd	Python	3	Docs

Python	 Module	 of	 the	 Week:	 cmd	 –	 Create	 line-oriented	 command
processors

Python	 Module	 of	 the	 Week:	 cmd	 –	 Create	 line-oriented	 command
processors

3.6.7	OpenCV	☁�

	Learning	Objectives

Provide	some	simple	calculations	so	we	can	test	cloud	services.

		def	help_subtract(self):

						print('\n'.join([

										'subtract	[number,]',

										'Subtract	all	following	arguments	from	the	first	argument.'

]))

		def	do_EOF(self,	line):

						print('bye,	bye')

						return	True

if	__name__	==	'__main__':

		Calculator().cmdloop()

$	python	calculator.py

Simple	calculator	that	can	do	addition,	subtraction,	multiplication	and	division.

calc	>>>	help

Documented	commands	(type	help	<topic>):

==

add		help		subtract

Undocumented	commands:

======================

EOF

calc	>>>	help	add

add	[number,]

Add	the	arguments	together	and	display	the	total.

calc	>>>	help	subtract

subtract	[number,]

Subtract	all	following	arguments	from	the	first	argument.

calc	>>>	bye,	bye

https://docs.python.org/2/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://pymotw.com/2/cmd/
https://pymotw.com/3/cmd/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/opencv/opencv.md

Show	case	some	elementary	OpenCV	functions
Show	an	environmental	image	analysis	application	using	Secchi	disks

OpenCV	 (Open	Source	Computer	Vision	Library)	 is	 a	 library	 of	 thousands	 of
algorithms	for	various	applications	in	computer	vision	and	machine	learning.	It
has	 C++,	 C,	 Python,	 Java	 and	 MATLAB	 interfaces	 and	 supports	 Windows,
Linux,	Android	and	Mac	OS.	 In	 this	 section,	we	will	 explain	basic	 features	of
this	library,	including	the	implementation	of	a	simple	example.

3.6.7.1	Overview

OpenCV	has	countless	functions	for	image	and	videos	processing.	The	pipeline
starts	 with	 reading	 the	 images,	 low-level	 operations	 on	 pixel	 values,
preprocessing	e.g.	denoising,	and	then	multiple	steps	of	higher-level	operations
which	 vary	 depending	 on	 the	 application.	OpenCV	 covers	 the	whole	 pipeline,
especially	providing	a	large	set	of	library	functions	for	high-level	operations.	A
simpler	 library	 for	 image	 processing	 in	 Python	 is	 Scipy’s	 multi-dimensional
image	processing	package	(scipy.ndimage).

3.6.7.2	Installation

OpenCV	 for	 Python	 can	 be	 installed	 on	 Linux	 in	 multiple	 ways,	 namely
PyPI(Python	 Package	 Index),	 Linux	 package	 manager	 (apt-get	 for	 Ubuntu),
Conda	package	manager,	and	also	building	from	source.	You	are	recommended
to	use	PyPI.	Here’s	the	command	that	you	need	to	run:

This	was	tested	on	Ubuntu	16.04	with	a	fresh	Python	3.6	virtual	environment.	In
order	to	test,	import	the	module	in	Python	command	line:

If	 it	does	not	raise	an	error,	 it	 is	 installed	correctly.	Otherwise,	 try	 to	solve	the
error.

For	installation	on	Windows,	see:

$	pip	install	opencv-python

import	cv2

https://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.html#install-
opencv-python-in-windows

Note	that	building	from	source	can	take	a	long	time	and	may	not	be	feasible	for
deploying	to	limited	platforms	such	as	Raspberry	Pi.

3.6.7.3	A	Simple	Example

In	this	example,	an	image	is	loaded.	A	simple	processing	is	performed,	and	the
result	is	written	to	a	new	image.

3.6.7.3.1	Loading	an	image

The	image	was	downloaded	from	USC	standard	database:

http://sipi.usc.edu/database/database.php?volume=misc&image=9

3.6.7.3.2	Displaying	the	image

The	 image	 is	 saved	 in	 a	numpy	array.	Each	pixel	 is	 represented	with	3	values
(R,G,B).	This	provides	you	with	access	to	manipulate	the	image	at	the	level	of
single	 pixels.	 You	 can	 display	 the	 image	 using	 imshow	 function	 as	 well	 as
Matplotlib’s	imshow	function.

You	can	display	the	image	using	imshow	function:

or	you	can	use	Matplotlib.	If	you	have	not	installed	Matplotlib	before,	install	it
using:

Now	you	can	use:

%matplotlib	inline

import	cv2

img	=	cv2.imread('images/opencv/4.2.01.tiff')

cv2.imshow('Original',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

$	pip	install	matplotlib

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.html#install-opencv-python-in-windows
http://sipi.usc.edu/database/database.php?volume=misc&image=9

which	results	in	Figure	1

Figure	1:	Image	display

3.6.7.3.3	Scaling	and	Rotation

Scaling	(resizing)	the	image	relative	to	different	axis

which	results	in	Figure	2

Figure	2:	Scaling	and	rotation

import	matplotlib.pyplot	as	plt

plt.imshow(img)

res	=	cv2.resize(img,

																	None,

																	fx=1.2,

																	fy=0.7,

																	interpolation=cv2.INTER_CUBIC)

plt.imshow(res)

Rotation	of	the	image	for	an	angle	of	t

which	results	in	Figure	3

Figure	3:	image

3.6.7.3.4	Gray-scaling

which	results	in	+Figure	4

Figure	4:	Gray	sacling

rows,cols,_	=	img.shape

t	=	45

M	=	cv2.getRotationMatrix2D((cols/2,rows/2),t,1)

dst	=	cv2.warpAffine(img,M,(cols,rows))

plt.imshow(dst)

img2	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)

plt.imshow(img2,	cmap='gray')

3.6.7.3.5	Image	Thresholding

which	results	in	Figure	5

Figure	5:	Image	Thresholding

3.6.7.3.6	Edge	Detection

Edge	detection	using	Canny	edge	detection	algorithm

which	results	in	Figure	6

Figure	6:	Edge	detection

3.6.7.4	Additional	Features

OpenCV	 has	 implementations	 of	 many	 machine	 learning	 techniques	 such	 as

ret,thresh	=				cv2.threshold(img2,127,255,cv2.THRESH_BINARY)

plt.subplot(1,2,1),	plt.imshow(img2,	cmap='gray')

plt.subplot(1,2,2),	plt.imshow(thresh,	cmap='gray')

edges	=	cv2.Canny(img2,100,200)

plt.subplot(121),plt.imshow(img2,cmap	=	'gray')

plt.subplot(122),plt.imshow(edges,cmap	=	'gray')

KMeans	and	Support	Vector	Machines,	that	can	be	put	into	use	with	only	a	few
lines	 of	 code.	 It	 also	 has	 functions	 especially	 for	 video	 analysis,	 feature
detection,	object	recognition	and	many	more.	You	can	find	out	more	about	them
in	their	website

[OpenCV](https://docs.opencv.org/3.0-beta/index.html	 was	 initially	 developed
for	 C++	 and	 still	 has	 a	 focus	 on	 that	 language,	 but	 it	 is	 still	 one	 of	 the	most
valuable	image	processing	libraries	in	Python.

3.6.8	Secchi	Disk	☁�

We	are	developing	an	autonomous	robot	boat	that	you	can	be	part	of	developing
within	this	class.	The	robot	bot	is	actually	measuring	turbidity	or	water	clarity.
Traditionally	this	has	been	done	with	a	Secchi	disk.	The	use	of	the	Secchi	disk	is
as	follows:

1.	 Lower	the	Secchi	disk	into	the	water.
2.	 Measure	the	point	when	you	can	no	longer	see	it
3.	 Record	the	depth	at	various	levels	and	plot	in	a	geographical	3D	map

One	 of	 the	 things	we	 can	 do	 is	 take	 a	 video	 of	 the	measurement	 instead	 of	 a
human	recording	them.	Than	we	can	analyse	the	video	automatically	to	see	how
deep	 a	 disk	was	 lowered.	This	 is	 a	 classical	 image	 analysis	 program.	You	 are
encouraged	to	identify	algorithms	that	can	identify	the	depth.	The	most	simplest
seems	to	be	to	do	a	histogram	at	a	variety	of	depth	steps,	and	measure	when	the
histogram	no	 longer	changes	significantly.	The	depth	at	 that	 image	will	be	 the
measurement	we	look	for.

Thus	 if	we	 analyse	 the	 images	we	 need	 to	 look	 at	 the	 image	 and	 identify	 the
numbers	on	the	measuring	tape,	as	well	as	the	visibility	of	the	disk.

To	 show	 case	 how	 such	 a	 disk	 looks	 like	 we	 refer	 to	 the	 image	 showcasing
different	 Secchi	 disks.	 For	 our	 purpose	 the	 black-white	 contrast	 Secchi	 disk
works	well.	See	Figure	7

https://docs.opencv.org/3.0-beta/index.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/opencv/secchi.md

Figure	 7:	 Secchi	 disk	 types.	 A	 marine	 style	 on	 the	 left	 and	 the
freshwater	version	on	the	right	wikipedia.

More	information	about	Secchi	Disk	can	be	found	at:

https://en.wikipedia.org/wiki/Secchi/_disk

We	have	included	next	a	couple	of	examples	while	using	some	obviously	useful
OpenCV	methods.	Surprisingly,	the	use	of	the	edge	detection	that	comes	in	mind
first	 to	 identify	 if	 we	 still	 can	 see	 the	 disk,	 seems	 to	 complicated	 to	 use	 for
analysis.	We	at	this	time	believe	the	histogram	will	be	sufficient.

Please	inspect	our	examples.

3.6.8.1	Setup	for	OSX

First	 lest	 setup	 the	OpenCV	environment	 for	OSX.	Naturally	you	will	have	 to
update	the	versions	based	on	your	versions	of	python.	When	we	tried	the	install
of	 OpenCV	 on	 MacOS,	 the	 setup	 was	 slightly	 more	 complex	 than	 other
packages.	 This	 may	 have	 changed	 by	 now	 and	 if	 you	 have	 improved
instructions,	 pleas	 elt	 us	 know.	 However	 we	 do	 not	 want	 to	 install	 it	 via
Anaconda	out	of	the	obvious	reason	that	anaconda	installs	to	many	other	things.
import	os,	sys

from	os.path	import	expanduser

https://en.wikipedia.org/wiki/Secchi/_disk

3.6.8.2	Step	1:	Record	the	video

Record	the	video	on	the	robot

We	have	actually	done	this	for	you	and	will	provide	you	with	images	and	videos
if	you	are	interested	in	analyzing	them.	See	Figure	8

3.6.8.3	Step	2:	Analyse	the	images	from	the	Video

For	now	we	just	selected	4	images	from	the	video

os.path

home	=	expanduser("~")

sys.path.append('/usr/local/Cellar/opencv/3.3.1_1/lib/python3.6/site-packages/')

sys.path.append(home	+	'/.pyenv/versions/OPENCV/lib/python3.6/site-packages/')

import	cv2

cv2.__version__

!	pip	install	numpy	>	tmp.log

!	pip	install	matplotlib	>>	tmp.log

%matplotlib	inline

import	cv2

import	matplotlib.pyplot	as	plt

img1	=	cv2.imread('secchi/secchi1.png')

img2	=	cv2.imread('secchi/secchi2.png')

img3	=	cv2.imread('secchi/secchi3.png')

img4	=	cv2.imread('secchi/secchi4.png')

figures	=	[]

fig	=	plt.figure(figsize=(18,	16))

for	i	in	range(1,13):

				figures.append(fig.add_subplot(4,3,i))

count	=	0

for	img	in	[img1,img2,img3,img4]:

				figures[count].imshow(img)

				color	=	('b','g','r')

				for	i,col	in	enumerate(color):

								histr	=	cv2.calcHist([img],[i],None,[256],[0,256])

								figures[count+1].plot(histr,color	=	col)

				figures[count+2].hist(img.ravel(),256,[0,256])

				count	+=	3

print("Legend")

print("First	column	=	image	of	Secchi	disk")

print("Second	column	=	histogram	of	colors	in	image")

print("Third	column	=	histogram	of	all	values")

plt.show()

Figure	8:	Histogram

3.6.8.3.1	Image	Thresholding

See	Figure	9,	Figure	10,	Figure	11,	Figure	12
def	threshold(img):

				ret,thresh	=	cv2.threshold(img,150,255,cv2.THRESH_BINARY)

				plt.subplot(1,2,1),	plt.imshow(img,	cmap='gray')

				plt.subplot(1,2,2),	plt.imshow(thresh,	cmap='gray')

threshold(img1)

Figure	9:	Threshold	1

Figure	10:	Threshold	2

Figure	11:	Threshold	3

Figure	12:	Threshold	4

3.6.8.3.2	Edge	Detection

threshold(img2)

threshold(img3)

threshold(img4)

See	Figure	13,	Figure	14,	Figure	15,	Figure	16,	Figure	17.	Edge	detection	using
Canny	edge	detection	algorithm

Figure	13:	Edge	Detection	1

Figure	14:	Edge	Detection	2

Figure	15:	Edge	Detection	3

def	find_edge(img):

				edges	=	cv2.Canny(img,50,200)

				plt.subplot(121),plt.imshow(img,cmap	=	'gray')

				plt.subplot(122),plt.imshow(edges,cmap	=	'gray')

find_edge(img1)

find_edge(img2)

find_edge(img3)

find_edge(img4)

Figure	16:	Edge	Detection	4

3.6.8.3.3	Black	and	white

Figure	17:	Back	White	conversion

3.7	DATA

3.7.1	Data	Formats	☁�

3.7.1.1	YAML

The	term	YAML	stand	for	“YAML	Ainot	Markup	Language”.	According	to	the
Web	Page	at

http://yaml.org/

“YAML	 is	 a	 human	 friendly	 data	 serialization	 standard	 for	 all	 programming

bw1	=	cv2.cvtColor(img1,	cv2.COLOR_BGR2GRAY)

plt.imshow(bw1,	cmap='gray')

https://github.com/cloudmesh-community/book/blob/master/chapters/data/formats.md
http://yaml.org/

languages.”	There	are	multiple	versions	of	YAML	existing	and	one	needs	to	take
care	 of	 that	 your	 software	 supports	 the	 right	 version.	 The	 current	 version	 is
YAML	1.2.

YAML	 is	 often	used	 for	 configuration	 and	 in	many	 cases	 can	 also	be	used	 as
XML	replacement.	Important	is	tat	YAM	in	contrast	to	XML	removes	the	tags
while	replacing	them	with	indentation.	This	has	naturally	the	advantage	that	it	is
mor	easily	 to	 read,	however,	 the	 format	 is	 strict	and	needs	 to	adhere	 to	proper
indentation.	 Thus	 it	 is	 important	 that	 you	 check	 your	 YAML	 files	 for
correctness,	either	by	writing	for	example	a	python	program	that	read	your	yaml
file,	or	an	online	YAML	checker	such	as	provided	at

http://www.yamllint.com/

An	 example	 on	 how	 to	 use	 yaml	 in	 python	 is	 provided	 in	 our	 next	 example.
Please	note	that	YAML	is	a	superset	of	JSON.	Originally	YAML	was	designed
as	a	markup	language.	However	as	it	is	not	document	oriented	but	data	oriented
it	has	been	recast	and	it	does	no	longer	classify	itself	as	markup	language.

Resources:

http://yaml.org/
https://en.wikipedia.org/wiki/YAML
http://www.yamllint.com/

3.7.1.2	JSON

The	term	JSON	stand	for	JavaScript	Object	Notation.	It	is	targeted	as	an	open-
standard	 file	 format	 that	 emphasizes	 on	 integration	 of	 human-readable	 text	 to
transmit	data	objects.	The	data	objects	contain	attribute	value	pairs.	Although	it

import	os

import	sys

import	yaml

try:

				yamlFilename	=	os.sys.argv[1]

				yamlFile	=	open(yamlFilename,	"r")

except:

				print("filename	does	not	exist")

				sys.exit()

try:

			yaml.load(yamlFile.read())

except:

			print("YAML	file	is	not	valid.")

http://www.yamllint.com/
http://yaml.org/
https://en.wikipedia.org/wiki/YAML
http://www.yamllint.com/

originates	 from	 JavaScript,	 the	 format	 itself	 is	 language	 independent.	 It	 uses
brackets	to	allow	organization	of	the	data.	PLease	note	that	YAML	is	a	superset
of	JSON	and	not	all	YAML	documents	can	be	converted	to	JSON.	Furthermore
JSON	does	not	support	comments.	For	these	reasons	we	often	prefer	to	us	YAMl
instead	of	JSON.	However	JSON	data	can	easily	be	translated	to	YAML	as	well
as	XML.

Resources:

https://en.wikipedia.org/wiki/JSON
https://www.json.org/

3.7.1.3	XML

XML	stands	for	Extensible	Markup	Language.	XML	allows	to	define	documents
with	 the	 help	 of	 a	 set	 of	 rules	 in	 order	 to	 make	 it	 machine	 readable.	 The
emphasize	 here	 is	 on	 machine	 readable	 as	 document	 in	 XML	 can	 become
quickly	 complex	 and	 difficult	 to	 understand	 for	 humans.	 XML	 is	 used	 for
documents	as	well	as	data	structures.

A	tutorial	about	XML	is	available	at

https://www.w3schools.com/xml/default.asp

Resources:

https://en.wikipedia.org/wiki/XML

3.7.2	MongoDB	in	Python	☁�

	Learning	Objectives

Introduction	to	basic	MongoDB	knowledge
Use	of	MongoDB	via	PyMongo
Use	of	MongoEngine	MongoEngine	and	Object-Document	mapper,
Use	of	Flask-Mongo

https://en.wikipedia.org/wiki/JSON
https://www.json.org/
https://www.w3schools.com/xml/default.asp
https://en.wikipedia.org/wiki/XML
https://github.com/cloudmesh-community/book/blob/master/chapters/data/mongodb.md

In	 today’s	 era,	 NoSQL	 databases	 have	 developed	 an	 enormous	 potential	 to
process	 the	 unstructured	 data	 efficiently.	 Modern	 information	 is	 complex,
extensive,	 and	may	not	have	pre-existing	 relationships.	With	 the	 advent	of	 the
advanced	 search	 engines,	 machine	 learning,	 and	 Artificial	 Intelligence,
technology	 expectations	 to	 process,	 store,	 and	 analyze	 such	 data	 have	 grown
tremendously	[2].	The	NoSQL	database	engines	such	as	MongoDB,	Redis,	and
Cassandra	 have	 successfully	 overcome	 the	 traditional	 relational	 database
challenges	 such	 as	 scalability,	 performance,	 unstructured	 data	 growth,	 agile
sprint	 cycles,	 and	growing	needs	 of	 processing	data	 in	 real-time	with	minimal
hardware	processing	power	[3].	The	NoSQL	databases	are	a	new	generation	of
engines	 that	 do	 not	 necessarily	 require	 SQL	 language	 and	 are	 sometimes	 also
called	Not	Only	SQL	 databases.	However,	most	of	 them	support	various	 third-
party	open	connectivity	drivers	that	can	map	NoSQL	queries	to	SQL’s.	It	would
be	 safe	 to	 say	 that	 although	NoSQL	 databases	 are	 still	 far	 from	 replacing	 the
relational	databases,	they	are	adding	an	immense	value	when	used	in	hybrid	IT
environments	in	conjunction	with	relational	databases,	based	on	the	application
specific	 needs	 [3].	We	 will	 be	 covering	 the	MongoDB	 technology,	 its	 driver
PyMongo,	 its	object-document	mapper	MongoEngine,	 and	 the	Flask-PyMongo
micro-web	framework	that	make	MongoDB	more	attractive	and	user-friendly.

3.7.2.1	Cloudmesh	MongoDB	Usage	Quickstart

Before	you	read	on	we	like	you	to	read	this	quickstart.	The	easiest	way	for	many
of	 the	 activities	 we	 do	 to	 interact	 with	 MongoDB	 is	 to	 use	 our	 cloudmesh
functionality.	This	prelude	section	is	not	intended	to	describe	all	the	details,	but
get	you	started	quickly	while	leveraging	cloudmesh

This	is	done	via	the	cloudmesh	cmd5	and	the	cloudmesh_community/cm	code:

https://cloudmesh-community.github.io/cm/

To	install	mongo	on	for	example	macOS	you	can	use

To	start,	stop	and	see	the	status	of	mongo	you	can	use

$	cms	admin	mongo	install

$	cms	admin	mongo	start

https://cloudmesh-community.github.io/cm/

To	add	 an	object	 to	Mongo,	 you	 simply	have	 to	 define	 a	 dict	with	predefined
values	for	kind	and	cloud.	In	future	such	attributes	can	be	passed	to	the	function	to
determine	the	MongoDB	collection.

When	 you	 invoke	 the	 function	 it	will	 automatically	 store	 the	 information	 into
MongoDB.	 Naturally	 this	 requires	 that	 the	 ~/.cloudmesh/cloudmesh.yaml	 file	 is	 properly
configured.

3.7.2.2	MongoDB

Today	MongoDB	 is	one	of	 leading	NoSQL	database	which	 is	 fully	capable	of
handling	 dynamic	 changes,	 processing	 large	 volumes	 of	 complex	 and
unstructured	data,	easily	using	object-oriented	programming	features;	as	well	as
distributed	 system	 challenges	 [4].	 At	 its	 core,	 MongoDB	 is	 an	 open	 source,
cross-platform,	document	database	mainly	written	in	C++	language.

3.7.2.2.1	Installation

MongoDB	can	be	installed	on	various	Unix	Platforms,	including	Linux,	Ubuntu,
Amazon	Linux,	etc	[5].	This	section	focuses	on	installing	MongoDB	on	Ubuntu
18.04	Bionic	Beaver	used	as	a	standard	OS	for	a	virtual	machine	used	as	a	part
of	Big	Data	Application	Class	during	the	2018	Fall	semester.

3.7.2.2.1.1	Installation	procedure

Before	installing,	it	is	recommended	to	configure	the	non-root	user	and	provide
the	 administrative	 privileges	 to	 it,	 in	 order	 to	 be	 able	 to	 perform	 general
MongoDB	admin	 tasks.	This	can	be	accomplished	by	 login	as	 the	 root	user	 in
the	following	manner	[6].

$	cms	admin	mongo	stop

$	cms	admin	mongo	status

from	cloudmesh.mongo.DataBaseDecorator	import	DatabaseUpdate

@DatabaseUpdate

def	test():

		data	={

				"kind":	"test",

				"cloud":	"testcloud",

				"value":	"hello"

		}

		return	data

result	=	test()

When	 logged	 in	 as	 a	 regular	 user,	 one	 can	 perform	 actions	 with	 superuser
privileges	by	typing	sudo	before	each	command	[6].

Once	the	user	set	up	is	completed,	one	can	login	as	a	regular	user	(mongoadmin)
and	use	the	following	instructions	to	install	MongoDB.

To	 update	 the	 Ubuntu	 packages	 to	 the	 most	 recent	 versions,	 use	 the	 next
command:

To	install	the	MongoDB	package:

To	check	the	service	and	database	status:

Verifying	the	status	of	a	successful	MongoDB	installation	can	be	confirmed	with
an	output	similar	to	this:

To	verify	 the	configuration,	more	specifically	 the	 installed	version,	 server,	and
port,	use	the	following	command:

Similarly,	to	restart	MongoDB,	use	the	following:

To	 allow	 access	 to	MongoDB	 from	 an	 outside	 hosted	 server	 one	 can	 use	 the
following	command	which	opens	the	fire-wall	connections	[5].

Status	can	be	verified	by	using:

$	adduser	mongoadmin

$	usermod	-aG	sudo	sammy

$	sudo	apt	update

$	sudo	apt	install	-y	mongodb

$	sudo	systemctl	status	mongodb

$	mongodb.service	-	An	object/document-oriented	database

				Loaded:	loaded	(/lib/systemd/system/mongodb.service;	enabled;	vendor	preset:	enabled)

				Active:	**active**	(running)	since	Sat	2018-11-15	07:48:04	UTC;	2min	17s	ago

						Docs:	man:mongod(1)

		Main	PID:	2312	(mongod)

					Tasks:	23	(limit:	1153)

				CGroup:	/system.slice/mongodb.service

											└─2312	/usr/bin/mongod	--unixSocketPrefix=/run/mongodb	--config	/etc/mongodb.conf

$	mongo	--eval	'db.runCommand({	connectionStatus:	1	})'

$	sudo	systemctl	restart	mongodb

$	sudo	ufw	allow	from	your_other_server_ip/32	to	any	port	27017

Other	 MongoDB	 configurations	 can	 be	 edited	 through	 the	 /etc/mongodb.conf
files	such	as	port	and	hostnames,	file	paths.

Also,	 to	 complete	 this	 step,	 a	 server’s	 IP	address	must	be	 added	 to	 the	bindIP
value	[5].

MongoDB	 is	 now	 listening	 for	 a	 remote	 connection	 that	 can	 be	 accessed	 by
anyone	with	appropriate	credentials	[5].

3.7.2.2.2	Collections	and	Documents

Each	 database	 within	 Mongo	 environment	 contains	 collections	 which	 in	 turn
contain	documents.	Collections	and	documents	are	analogous	to	tables	and	rows
respectively	to	the	relational	databases.	The	document	structure	is	in	a	key-value
form	 which	 allows	 storing	 of	 complex	 data	 types	 composed	 out	 of	 field	 and
value	 pairs.	 Documents	 are	 objects	 which	 correspond	 to	 native	 data	 types	 in
many	programming	 languages,	 hence	 a	well	 defined,	 embedded	document	 can
help	reduce	expensive	joins	and	improve	query	performance.	The	_id	field	helps
to	identify	each	document	uniquely	[3].

MongoDB	 offers	 flexibility	 to	write	 records	 that	 are	 not	 restricted	 by	 column
types.	The	data	 storage	approach	 is	 flexible	as	 it	 allows	one	 to	 store	data	as	 it
grows	and	to	fulfill	varying	needs	of	applications	and/or	users.	It	supports	JSON
like	binary	points	known	as	BSON	where	data	can	be	stored	without	specifying
the	 type	 of	 data.	Moreover,	 it	 can	 be	 distributed	 to	multiple	machines	 at	 high
speed.	 It	 includes	 a	 sharding	 feature	 that	 partitions	 and	 spreads	 the	 data	 out
across	various	servers.	This	makes	MongoDB	an	excellent	choice	for	cloud	data
processing.	 Its	 utilities	 can	 load	 high	 volumes	 of	 data	 at	 high	 speed	 which
ultimately	 provides	 greater	 flexibility	 and	 availability	 in	 a	 cloud-based
environment	[2].

The	dynamic	schema	structure	within	MongoDB	allows	easy	testing	of	the	small

$	sudo	ufw	status

$	sudo	nano	/etc/mongodb.conf

$	logappend=true

		bind_ip	=	127.0.0.1,your_server_ip

		port	=	27017

sprints	 in	 the	Agile	 project	management	 life	 cycles	 and	 research	 projects	 that
require	frequent	changes	to	the	data	structure	with	minimal	downtime.	Contrary
to	this	flexible	process,	modifying	the	data	structure	of	relational	databases	can
be	a	very	tedious	process	[2].

3.7.2.2.2.1	Collection	example

The	following	collection	example	for	a	person	named	Albert	includes	additional
information	such	as	age,	status,	and	group	[7].

3.7.2.2.2.2	Document	structure

3.7.2.2.2.3	Collection	Operations

If	 collection	 does	 not	 exists,	 MongoDB	 database	 will	 create	 a	 collection	 by
default.

3.7.2.2.3	MongoDB	Querying

The	data	retrieval	patterns,	 the	frequency	of	data	manipulation	statements	such
as	 insert,	 updates,	 and	 deletes	 may	 demand	 for	 the	 use	 of	 indexes	 or
incorporating	the	sharding	feature	to	improve	query	performance	and	efficiency
of	 MongoDB	 environment	 [3].	 One	 of	 the	 significant	 difference	 between
relational	databases	and	NoSQL	databases	are	 joins.	 In	 the	 relational	database,
one	can	combine	results	from	two	or	more	tables	using	a	common	column,	often
called	 as	 key.	 The	 native	 table	 contains	 the	 primary	 key	 column	 while	 the
referenced	 table	 contains	 a	 foreign	 key.	 This	 mechanism	 allows	 one	 to	 make
changes	in	a	single	row	instead	of	changing	all	rows	in	the	referenced	table.	This

{

	name:	"Albert"

	age:	"21"

	status:	"Open"

	group:	["AI"	,	"Machine	Learning"]

}

{

			field1:	value1,

			field2:	value2,

			field3:	value3,

			...

			fieldN:	valueN

}

>	db.myNewCollection1.insertOne({	x:	1	})

>	db.myNewCollection2.createIndex({	y:	1	})

action	 is	 referred	 to	 as	 normalization.	MongoDB	 is	 a	 document	 database	 and
mainly	contains	denormalized	data	which	means	the	data	is	repeated	instead	of
indexed	over	a	specific	key.	If	the	same	data	is	required	in	more	than	one	table,
it	needs	to	be	repeated.	This	constraint	has	been	eliminated	in	MongoDB’s	new
version	 3.2.	 The	 new	 release	 introduced	 a	 $lookup	 feature	 which	more	 likely
works	as	a	left-outer-join.	Lookups	are	restricted	to	aggregated	functions	which
means	that	data	usually	need	some	type	of	filtering	and	grouping	operations	to
be	 conducted	 beforehand.	 For	 this	 reason,	 joins	 in	 MongoDB	 require	 more
complicated	 querying	 compared	 to	 the	 traditional	 relational	 database	 joins.
Although	 at	 this	 time,	 lookups	 are	 still	 very	 far	 from	 replacing	 joins,	 this	 is	 a
prominent	 feature	 that	 can	 resolve	 some	 of	 the	 relational	 data	 challenges	 for
MongoDB	[8].	MongoDB	queries	support	 regular	expressions	as	well	as	 range
asks	for	specific	fields	that	eliminate	the	need	of	returning	entire	documents	[3].
MongoDB	 collections	 do	 not	 enforce	 document	 structure	 like	 SQL	 databases
which	is	a	compelling	feature.	However,	it	is	essential	to	keep	in	mind	the	needs
of	the	applications[2].

3.7.2.2.3.1	Mongo	Queries	examples

The	queries	can	be	executed	from	Mongo	shell	as	well	as	through	scripts.

To	 query	 the	 data	 from	 a	 MongoDB	 collection,	 one	 would	 use	 MongoDB’s
find()	method.

The	output	can	be	formatted	by	using	the	pretty()	command.

The	MongoDB	insert	statements	can	be	performed	in	the	following	manner:

“The	$lookup	 command	 performs	 a	 left-outer-join	 to	 an	 unsharded
collection	in	the	same	database	to	filter	in	documents	from	the	joined
collection	for	processing”	[9].

>	db.COLLECTION_NAME.find()

>	db.mycol.find().pretty()

>	db.COLLECTION_NAME.insert(document)

$	{

				$lookup:

						{

								from:	<collection	to	join>,

								localField:	<field	from	the	input	documents>,

This	operation	is	equivalent	to	the	following	SQL	operation:

To	perform	a	Like	Match	(Regex),	one	would	use	the	following	command:

3.7.2.2.4	MongoDB	Basic	Functions

When	it	comes	to	the	technical	elements	of	MongoDB,	it	posses	a	rich	interface
for	 importing	 and	 storage	 of	 external	 data	 in	 various	 formats.	 By	 using	 the
Mongo	Import/Export	tool,	one	can	easily	transfer	contents	from	JSON,	CSV,	or
TSV	 files	 into	 a	 database.	 MongoDB	 supports	 CRUD	 (create,	 read,	 update,
delete)	 operations	 efficiently	 and	 has	 detailed	 documentation	 available	 on	 the
product	website.	It	can	also	query	the	geospatial	data,	and	it	is	capable	of	storing
geospatial	 data	 in	 GeoJSON	 objects.	 The	 aggregation	 operation	 of	 the
MongoDB	 process	 data	 records	 and	 returns	 computed	 results.	 MongoDB
aggregation	framework	is	modeled	on	the	concept	of	data	pipelines	[10].

3.7.2.2.4.1	Import/Export	functions	examples

To	import	JSON	documents,	one	would	use	the	following	command:

The	 CSV	 import	 uses	 the	 input	 file	 name	 to	 import	 a	 collection,	 hence,	 the
collection	name	is	optional	[10].

“Mongoexport	 is	 a	 utility	 that	 produces	 a	 JSON	 or	 CSV	 export	 of
data	stored	in	a	MongoDB	instance”	[10].

3.7.2.2.5	Security	Features

								foreignField:	<field	from	the	documents	of	the	"from"	collection>,

								as:	<output	array	field>

						}

		}

	$	SELECT	*,	<output	array	field>

			FROM	collection

			WHERE	<output	array	field>	IN	(SELECT	*

																															FROM	<collection	to	join>

																															WHERE	<foreignField>	=	<collection.localField>);`

>	db.products.find({	sku:	{	$regex:	/789$/	}	})

$	mongoimport	--db	users	--collection	contacts	--file	contacts.json

$	mongoimport	--db	users	--type	csv	--headerline	--file	/opt/backups/contacts.csv

$	mongoexport	--db	test	--collection	traffic	--out	traffic.json

Data	security	is	a	crucial	aspect	of	the	enterprise	infrastructure	management	and
is	the	reason	why	MongoDB	provides	various	security	features	such	as	ole	based
access	 control,	 numerous	 authentication	 options,	 and	 encryption.	 It	 supports
mechanisms	 such	 as	 SCRAM,	 LDAP,	 and	 Kerberos	 authentication.	 The
administrator	 can	 create	 role/collection-based	 access	 control;	 also	 roles	 can	 be
predefined	 or	 custom.	 MongoDB	 can	 audit	 activities	 such	 as	 DDL,	 CRUD
statements,	authentication	and	authorization	operations	[11].

3.7.2.2.5.1	Collection	based	access	control	example

A	user	defined	role	can	contain	the	following	privileges	[11].

3.7.2.2.6	MongoDB	Cloud	Service

In	 regards	 to	 the	 cloud	 technologies,	 MongoDB	 also	 offers	 fully	 automated
cloud	service	called	Atlas	with	competitive	pricing	options.	Mongo	Atlas	Cloud
interface	 offers	 interactive	 GUI	 for	 managing	 cloud	 resources	 and	 deploying
applications	 quickly.	 The	 service	 is	 equipped	 with	 geographically	 distributed
instances	 to	 ensure	 no	 single	 point	 failure.	 Also,	 a	 well-rounded	 performance
monitoring	 interface	 allows	 users	 to	 promptly	 detect	 anomalies	 and	 generate
index	 suggestions	 to	 optimize	 the	 performance	 and	 reliability	 of	 the	 database.
Global	 technology	 leaders	 such	 as	 Google,	 Facebook,	 eBay,	 and	 Nokia	 are
leveraging	MongoDB	 and	Atlas	 cloud	 services	 making	MongoDB	 one	 of	 the
most	popular	choices	among	the	NoSQL	databases	[12].

3.7.2.3	PyMongo

PyMongo	 is	 the	 official	 Python	 driver	 or	 distribution	 that	 allows	work	with	 a
NoSQL	type	database	called	MongoDB	[13].	The	first	version	of	the	driver	was
developed	in	2009	[14],	only	two	years	after	the	development	of	MongoDB	was
started.	This	driver	allows	developers	 to	combine	both	Python’s	versatility	and
MongoDB’s	flexible	schema	nature	into	successful	applications.	Currently,	this
driver	 supports	 MongoDB	 versions	 2.6,	 3.0,	 3.2,	 3.4,	 3.6,	 and	 4.0	 [15].
MongoDB	and	Python	represent	a	compatible	fit	considering	that	BSON	(binary

$	privileges:	[

			{	resource:	{	db:	"products",	collection:	"inventory"	},	actions:	["find",	"update"]	},

			{	resource:	{	db:	"products",	collection:	"orders"	},		actions:	["find"]	}

]

JSON)	 used	 in	 this	 NoSQL	 database	 is	 very	 similar	 to	 Python	 dictionaries,
which	makes	 the	collaboration	between	the	 two	even	more	appealing	[16].	For
this	reason,	dictionaries	are	the	recommended	tools	to	be	used	in	PyMongo	when
representing	documents	[17].

3.7.2.3.1	Installation

Prior	 to	 being	 able	 to	 exploit	 the	 benefits	 of	 Python	 and	 MongoDB
simultaneously,	the	PyMongo	distribution	must	be	installed	using	pip.	To	install
it	on	all	platforms,	the	following	command	should	be	used	[18]:
$	python	-m	pip	install	pymongo

Specific	versions	of	PyMongo	can	be	 installed	with	command	 lines	 such	as	 in
our	example	where	the	3.5.1	version	is	installed	[18].

A	single	line	of	code	can	be	used	to	upgrade	the	driver	as	well	[18].

Furthermore,	 the	 installation	 process	 can	 be	 completed	 with	 the	 help	 of	 the
easy_install	tool,	which	requires	users	to	use	the	following	command	[18].

To	 do	 an	 upgrade	 of	 the	 driver	 using	 this	 tool,	 the	 following	 command	 is
recommended	[18]:

There	 are	 many	 other	 ways	 of	 installing	 PyMongo	 directly	 from	 the	 source,
however,	 they	require	for	C	extension	dependencies	 to	be	 installed	prior	 to	 the
driver	 installation	 step,	 as	 they	 are	 the	 ones	 that	 skim	 through	 the	 sources	 on
GitHub	and	use	the	most	up-to-date	links	to	install	the	driver	[18].

To	check	if	the	installation	was	completed	accurately,	the	following	command	is
used	in	the	Python	console	[19].

If	 the	 command	 returns	 zero	 exceptions	 within	 the	 Python	 shell,	 one	 can

$	python	-m	pip	install	pymongo==3.5.1

$	python	-m	pip	install	--upgrade	pymongo

$	python	-m	easy_install	pymongo

$	python	-m	easy_install	-U	pymongo

import	pymongo

consider	for	the	PyMongo	installation	to	have	been	completed	successfully.

3.7.2.3.2	Dependencies

The	 PyMongo	 driver	 has	 a	 few	 dependencies	 that	 should	 be	 taken	 into
consideration	prior	to	its	usage.	Currently,	it	supports	CPython	2.7,	3.4+,	PyPy,
and	 PyPy	 3.5+	 interpreters	 [15].	 An	 optional	 dependency	 that	 requires	 some
additional	components	to	be	installed	is	the	GSSAPI	authentication	[15].	For	the
Unix	based	machines,	 it	 requires	pykerberos,	while	 for	 the	Windows	machines
WinKerberos	 is	 needed	 to	 fullfill	 this	 requirement	 [15].	 The	 automatic
installation	 of	 this	 dependency	 can	 be	 done	 simultaneously	 with	 the	 driver
installation,	in	the	following	manner:

Other	 third-party	 dependencies	 such	 as	 ipaddress,	 certifi,	 or	 wincerstore	 are
necessary	for	connections	with	help	of	TLS/SSL	and	can	also	be	simultaneously
installed	along	with	the	driver	installation	[15].

3.7.2.3.3	Running	PyMongo	with	Mongo	Deamon

Once	PyMongo	is	 installed,	 the	Mongo	deamon	can	be	run	with	a	very	simple
command	in	a	new	terminal	window	[19].

3.7.2.3.4	Connecting	to	a	database	using	MongoClient

In	 order	 to	 be	 able	 to	 establish	 a	 connection	with	 a	 database,	 a	MongoClient
class	 needs	 to	 be	 imported,	 which	 sub-sequentially	 allows	 the	 MongoClient
object	to	communicate	with	the	database	[19].

This	command	allows	a	connection	with	a	default,	local	host	through	port	27017,
however,	 depending	 on	 the	 programming	 requirements,	 one	 can	 also	 specify
those	by	listing	them	in	the	client	 instance	or	use	the	same	information	via	the
Mongo	URI	format	[19].

3.7.2.3.5	Accessing	Databases

$	python	-m	pip	install	pymongo[gssapi]

$	mongod

from	pymongo	import	MongoClient

client	=	MongoClient()

Since	 MongoClient	 plays	 a	 server	 role,	 it	 can	 be	 used	 to	 access	 any	 desired
databases	in	an	easy	way.	To	do	that,	one	can	use	two	different	approaches.	The
first	approach	would	be	doing	this	via	 the	attribute	method	where	 the	name	of
the	 desired	 database	 is	 listed	 as	 an	 attribute,	 and	 the	 second	 approach,	 which
would	include	a	dictionary-style	access	[19].	For	example,	to	access	a	database
called	 cloudmesh_community,	 one	would	 use	 the	 following	 commands	 for	 the
attribute	and	for	the	dictionary	method,	respectively.

3.7.2.3.6	Creating	a	Database

Creating	 a	 database	 is	 a	 straight	 forward	 process.	 First,	 one	 must	 create	 a
MongoClient	object	and	specify	the	connection	(IP	address)	as	well	as	the	name
of	the	database	they	are	trying	to	create	[20].	The	example	of	 this	command	is
presented	in	the	followng	section:

3.7.2.3.7	Inserting	and	Retrieving	Documents	(Querying)

Creating	 documents	 and	 storing	 data	 using	 PyMongo	 is	 equally	 easy	 as
accessing	and	creating	databases.	In	order	to	add	new	data,	a	collection	must	be
specified	first.	In	this	example,	a	decision	is	made	to	use	the	cloudmesh	group	of
documents.

Once	this	step	is	completed,	data	may	be	inserted	using	the	insert_one()	method,
which	means	 that	 only	 one	 document	 is	 being	 created.	Of	 course,	 insertion	 of
multiple	 documents	 at	 the	 same	 time	 is	 possible	 as	 well	 with	 use	 of	 the
insert_many()	method	[19].	An	example	of	this	method	is	as	follows:

Another	example	of	this	method	would	be	to	create	a	collection.	If	we	wanted	to
create	a	collection	of	students	 in	 the	cloudmesh_community,	we	would	do	 it	 in

db	=	client.cloudmesh_community

db	=	client['cloudmesh_community']

import	pymongo

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

db	=	client['cloudmesh']

cloudmesh	=	db.cloudmesh

course_info	=	{

					'course':	'Big	Data	Applications	and	Analytics',

					'instructor':	'	Gregor	von	Laszewski',

					'chapter':	'technologies'

}

result	=	cloudmesh.insert_one(course_info)`

the	following	manner:

Retrieving	documents	is	equally	simple	as	creating	them.	The	find_one()	method
can	be	used	to	retrieve	one	document	[19].	An	implementation	of	this	method	is
given	in	the	following	example.

Similarly,	 to	 retieve	 multiple	 documents,	 one	 would	 use	 the	 find()	 method
instead	of	the	 find_one().	For	example,	to	find	all	courses	thought	by	professor
von	Laszewski,	one	would	use	the	following	command:

One	thing	that	users	should	be	cognizant	of	when	using	the	find()	method	is	that
it	 does	not	 return	 results	 in	 an	 array	 format	but	 as	 a	cursor	 object,	which	 is	 a
combination	of	methods	 that	work	 together	 to	help	with	data	querying	[19].	 In
order	to	return	individual	documents,	iteration	over	the	result	must	be	completed
[19].

3.7.2.3.8	Limiting	Results

When	 it	comes	 to	working	with	 large	databases	 it	 is	always	useful	 to	 limit	 the
number	of	query	 results.	PyMongo	supports	 this	option	with	 its	 limit()	method
[20].	 This	 method	 takes	 in	 one	 parameter	 which	 specifies	 the	 number	 of
documents	to	be	returned	[20].	For	example,	if	we	had	a	collection	with	a	large
number	 of	 cloud	 technologies	 as	 individual	 documents,	 one	 could	modify	 the
query	 results	 to	 return	 only	 the	 top	 10	 technologies.	To	 do	 this,	 the	 following
example	could	be	utilized:

student	=	[{'name':	'John',	'st_id':	52642},

				{'name':	'Mercedes',	'st_id':	5717},

				{'name':	'Anna',	'st_id':	5654},

				{'name':	'Greg',	'st_id':	5423},

				{'name':	'Amaya',	'st_id':	3540},

				{'name':	'Cameron',	'st_id':	2343},

				{'name':	'Bozer',	'st_id':	4143},

				{'name':	'Cody',	'price':	2165}]

client	=	MongoClient('mongodb://localhost:27017/')

with	client:

				db	=	client.cloudmesh

				db.students.insert_many(student)

gregors_course	=	cloudmesh.find_one({'instructor':'Gregor	von	Laszewski'})

gregors_course	=	cloudmesh.find({'instructor':'Gregor	von	Laszewski'})

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

				db	=	client['cloudmesh']

				col	=	db['technologies']

				topten	=	col.find().limit(10)

3.7.2.3.9	Updating	Collection

Updating	 documents	 is	 very	 similar	 to	 inserting	 and	 retrieving	 the	 same.
Depending	 on	 the	 number	 of	 documents	 to	 be	 updated,	 one	 would	 use	 the
update_one()	or	update_many()	method	[20].	Two	parameters	need	to	be	passed
in	the	update_one()	method	for	it	to	successfully	execute.	The	first	argument	is
the	 query	 object	 that	 specifies	 the	 document	 to	 be	 changed,	 and	 the	 second
argument	is	the	object	that	specifies	the	new	value	in	the	document.	An	example
of	the	update_one()	method	in	action	is	the	following:

Updating	 all	 documents	 that	 fall	 under	 the	 same	 criteria	 can	 be	 done	with	 the
update_many	 method	 [20].	 For	 example,	 to	 update	 all	 documents	 in	 which
course	title	starts	with	letter	B	with	a	different	instructor	information,	we	would
do	the	following:

3.7.2.3.10	Counting	Documents

Counting	 documents	 can	 be	 done	 with	 one	 simple	 operation	 called
count_documents()	instead	of	using	a	full	query	[21].	For	example,	we	can	count
the	documents	in	the	cloudmesh_commpunity	by	using	the	following	command:

To	create	a	more	specific	count,	one	would	use	a	command	similar	to	this:

This	technology	supports	some	more	advanced	querying	options	as	well.	Those
advanced	 queries	 allow	 one	 to	 add	 certain	 contraints	 and	 narrow	 down	 the
results	 even	 more.	 For	 example,	 to	 get	 the	 courses	 thought	 by	 professor	 von
Laszewski	after	a	certain	date,	one	would	use	the	following	command:

myquery	=	{	'course':	'Big	Data	Applications	and	Analytics'	}

newvalues	=	{	'$set':	{	'course':	'Cloud	Computing'	}	}

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

db	=	client['cloudmesh']

col	=	db['courses']

query	=	{	'course':	{	'$regex':	'^B'	}	}

newvalues	=	{	'$set':	{	'instructor':	'Gregor	von	Laszewski'	}	}

edited	=	col.update_many(query,	newvalues)

cloudmesh	=	count_documents({})

cloudmesh	=	count_documents({'author':	'von	Laszewski'})

d	=	datetime.datetime(2017,	11,	12,	12)

for	course	in	cloudmesh.find({'date':	{'$lt':	d}}).sort('author'):

				pprint.pprint(course)

3.7.2.3.11	Indexing

Indexing	 is	 a	 very	 important	 part	 of	 querying.	 It	 can	 greately	 improve	 query
performance	but	also	add	functionality	and	aide	in	storing	documents	[21].

“To	 create	 a	 unique	 index	 on	 a	 key	 that	 rejects	 documents	 whose
value	for	that	key	already	exists	in	the	index”	[21].

We	need	to	firstly	create	the	index	in	the	following	manner:

This	command	acutally	creates	two	different	indexes.	The	first	one	is	the	*_id*	,
created	by	MongoDB	automatically,	and	the	second	one	is	 the	user_id,	created
by	the	user.

The	purpose	of	 those	 indexes	 is	 to	 cleverly	prevent	 future	 additions	of	 invalid
user_ids	into	a	collection.

3.7.2.3.12	Sorting

Sorting	on	the	server-side	is	also	avaialable	via	MongoDB.	The	PyMongo	sort()
method	is	equivalent	to	the	SQL	order	by	statement	and	it	can	be	performed	as
pymongo.ascending	 and	pymongo.descending	 [22].	This	method	 is	much	more
efficient	 as	 it	 is	 being	 completed	 on	 the	 server-side,	 compared	 to	 the	 sorting
completed	 on	 the	 client	 side.	 For	 example,	 to	 return	 all	 users	with	 first	 name
Gregor	sorted	in	descending	order	by	birthdate	we	would	use	a	command	such
as	this:

3.7.2.3.13	Aggregation

Aggregation	operations	are	used	to	process	given	data	and	produce	summarized
results.	 Aggregation	 operations	 collect	 data	 from	 a	 number	 of	 documents	 and
provide	 collective	 results	 by	 grouping	 data.	 PyMongo	 in	 its	 documentation
offers	 a	 separate	 framework	 that	 supports	 data	 aggregation.	 This	 aggregation
framework	can	be	used	to

result	=	db.profiles.create_index([('user_id',	pymongo.ASCENDING)],

unique=True)

sorted(list(db.profiles.index_information()))

users	=	cloudmesh.users.find({'firstname':'Gregor'}).sort(('dateofbirth',	pymongo.DESCENDING))

for	user	in	users:

			print	user.get('email')

“provide	projection	capabilities	to	reshape	the	returned	data”	[23].

In	 the	 aggregation	 pipeline,	 documents	 pass	 through	 multiple	 pipeline	 stages
which	 convert	 documents	 into	 result	 data.	 The	 basic	 pipeline	 stages	 include
filters.	 Those	 filters	 act	 like	 document	 transformation	 by	 helping	 change	 the
document	 output	 form.	 Other	 pipelines	 help	 group	 or	 sort	 documents	 with
specific	 fields.	 By	 using	 native	 operations	 from	 MongoDB,	 the	 pipeline
operators	are	efficient	in	aggregating	results.

The	addFields	stage	is	used	to	add	new	fields	into	documents.	It	reshapes	each
document	 in	 stream,	 similarly	 to	 the	 project	 stage.	 The	 output	 document	 will
contain	 existing	 fields	 from	 input	 documents	 and	 the	 newly	 added	 fields	 24].
The	following	example	shows	how	to	add	student	details	into	a	document.

The	bucket	stage	is	used	to	categorize	incoming	documents	into	groups	based	on
specified	 expressions.	 Those	 groups	 are	 called	 buckets	 [24].	 The	 following
example	shows	the	bucket	stage	in	action.

In	 the	 bucketAuto	 stage,	 the	 boundaries	 are	 automatically	 determined	 in	 an
attempt	to	evenly	distribute	documents	into	a	specified	number	of	buckets.	In	the
following	operation,	input	documents	are	grouped	into	four	buckets	according	to
the	values	in	the	price	field	[24].

		db.cloudmesh_community.aggregate([

	{

								$addFields:	{

								"document.StudentDetails":	{

								$concat:['$document.student.FirstName',	'$document.student.LastName']

												}

								}

				}])

db.user.aggregate([

{	"$group":	{

		"_id":	{

				"city":	"$city",

				"age":	{

						"$let":	{

								"vars":	{

	"age":	{	"$subtract"	:[{	"$year":	new	Date()	},{	"$year":	"$birthDay"	}]	}},

								"in":	{

										"$switch":	{

												"branches":	[

														{	"case":	{	"$lt":	["$$age",	20]	},	"then":	0	},

														{	"case":	{	"$lt":	["$$age",	30]	},	"then":	20	},

														{	"case":	{	"$lt":	["$$age",	40]	},	"then":	30	},

														{	"case":	{	"$lt":	["$$age",	50]	},	"then":	40	},

														{	"case":	{	"$lt":	["$$age",	200]	},	"then":	50	}

]	}		}		}	}	},

		"count":	{	"$sum":	1	}}})

db.artwork.aggregate([

		{

				$bucketAuto:	{

The	collStats	stage	returns	statistics	regarding	a	collection	or	view	[24].

The	count	 stage	passes	 a	 document	 to	 the	next	 stage	 that	 contains	 the	number
documents	that	were	input	to	the	stage	[24].

The	 facet	 stage	 helps	 process	multiple	 aggregation	 pipelines	 in	 a	 single	 stage
[24].

The	 geoNear	 stage	 returns	 an	 ordered	 stream	 of	 documents	 based	 on	 the
proximity	 to	 a	 geospatial	 point.	 The	 output	 documents	 include	 an	 additional
distance	field	and	can	include	a	location	identifier	field	[24].

The	graphLookup	 stage	 performs	 a	 recursive	 search	 on	 a	 collection.	 To	 each
output	document,	 it	adds	a	new	array	field	that	contains	the	traversal	results	of
the	recursive	search	for	that	document	[24].

								groupBy:	"$price",

								buckets:	4

				}

		}

])

db.matrices.aggregate([{	$collStats:	{	latencyStats:	{	histograms:	true	}	}

	}])

db.scores.aggregate([{

			$match:	{								score:	{										$gt:	80				}	}		},

	{						$count:	"passing_scores"		}])

db.artwork.aggregate([{

			$facet:	{		"categorizedByTags":	[{	$unwind:	"$tags"	},

							{	$sortByCount:	"$tags"	}],		"categorizedByPrice":	[

							//	Filter	out	documents	without	a	price	e.g.,	_id:	7

							{	$match:	{	price:	{	$exists:	1	}	}	},

						{	$bucket:	{	groupBy:	"$price",

										boundaries:	[0,	150,	200,	300,	400],

										default:	"Other",

										output:	{	"count":	{	$sum:	1	},

												"titles":	{	$push:	"$title"	}

										}	}								}],	"categorizedByYears(Auto)":	[

						{	$bucketAuto:	{	groupBy:	"$year",buckets:	4	}

						}]}}])

db.places.aggregate([

	{				$geoNear:	{

						near:	{	type:	"Point",	coordinates:	[-73.99279	,	40.719296]	},

						distanceField:	"dist.calculated",

						maxDistance:	2,

						query:	{	type:	"public"	},

						includeLocs:	"dist.location",

						num:	5,

						spherical:	true

			}		}])

db.travelers.aggregate([

	{

				$graphLookup:	{

							from:	"airports",

							startWith:	"$nearestAirport",

							connectFromField:	"connects",

The	group	 stage	consumes	 the	document	data	per	each	distinct	group.	 It	has	a
RAM	 limit	 of	 100	MB.	 If	 the	 stage	 exceeds	 this	 limit,	 the	group	 produces	 an
error	[24].

The	 indexStats	 stage	 returns	 statistics	 regarding	 the	 use	 of	 each	 index	 for	 a
collection	[24].

The	 limit	 stage	 is	 used	 for	 controlling	 the	 number	 of	 documents	 passed	 to	 the
next	stage	in	the	pipeline	[24].

The	listLocalSessions	stage	gives	the	session	information	currently	connected	to
mongos	or	mongod	instance	[24].

The	listSessions	stage	lists	out	all	session	that	have	been	active	long	enough	to
propagate	to	the	system.sessions	collection	[24].

The	lookup	stage	is	useful	for	performing	outer	joins	to	other	collections	in	the
same	database	[24].

							connectToField:	"airport",

							maxDepth:	2,

							depthField:	"numConnections",

							as:	"destinations"

				}

	}

])

db.sales.aggregate(

	[

				{

						$group	:	{

									_id	:	{	month:	{	$month:	"$date"	},	day:	{	$dayOfMonth:	"$date"	},

									year:	{	$year:	"$date"	}	},

									totalPrice:	{	$sum:	{	$multiply:	["$price",	"$quantity"]	}	},

									averageQuantity:	{	$avg:	"$quantity"	},

									count:	{	$sum:	1	}

							}

				}

]

)

db.orders.aggregate([{	$indexStats:	{	}	}])

db.article.aggregate(

		{	$limit	:	5	}

)

db.aggregate([{	$listLocalSessions:	{	allUsers:	true	}	}])

	use	config

	db.system.sessions.aggregate([{	$listSessions:	{	allUsers:	true	}	}])

{

			$lookup:

					{

							from:	<collection	to	join>,

The	match	stage	is	used	to	filter	the	document	stream.	Only	matching	documents
pass	to	next	stage	[24].

The	project	 stage	 is	 used	 to	 reshape	 the	 documents	 by	 adding	 or	 deleting	 the
fields.

The	 redact	 stage	 reshapes	 stream	 documents	 by	 restricting	 information	 using
information	stored	in	documents	themselves	[24].

The	replaceRoot	stage	is	used	to	replace	a	document	with	a	specified	embedded
document	[24].

The	sample	 stage	 is	used	 to	 sample	out	data	by	 randomly	selecting	number	of
documents	form	input	[24].

The	skip	stage	skips	specified	initial	number	of	documents	and	passes	remaining
documents	to	the	pipeline	[24].

							localField:	<field	from	the	input	documents>,

							foreignField:	<field	from	the	documents	of	the	"from"	collection>,

							as:	<output	array	field>

					}

}

db.articles.aggregate(

				[{	$match	:	{	author	:	"dave"	}	}]

)

db.books.aggregate([{	$project	:	{	title	:	1	,	author	:	1	}	}])

		db.accounts.aggregate(

		[

				{	$match:	{	status:	"A"	}	},

				{

						$redact:	{

								$cond:	{

										if:	{	$eq:	["$level",	5]	},

										then:	"$$PRUNE",

										else:	"$$DESCEND"

								}						}				}]);

		db.produce.aggregate([

			{

					$replaceRoot:	{	newRoot:	"$in_stock"	}

			}

])

		db.users.aggregate(

			[{	$sample:	{	size:	3	}	}]

)

db.article.aggregate(

			{	$skip	:	5	}

);

The	sort	 stage	 is	 useful	while	 reordering	 document	 stream	 by	 a	 specified	 sort
key	[24].

The	 sortByCounts	 stage	 groups	 the	 incoming	 documents	 based	 on	 a	 specified
expression	value	and	counts	documents	in	each	distinct	group	[24].

The	unwind	stage	deconstructs	an	array	field	from	the	input	documents	to	output
a	document	for	each	element	[24].

The	out	stage	is	used	to	write	aggregation	pipeline	results	into	a	collection.	This
stage	should	be	the	last	stage	of	a	pipeline	[24].

Another	option	from	the	aggregation	operations	is	the	Map/Reduce	framework,
which	essentially	includes	two	different	functions,	map	and	reduce.	The	first	one
provides	the	key	value	pair	for	each	tag	in	the	array,	while	the	latter	one

“sums	over	all	of	the	emitted	values	for	a	given	key”	[23].

The	last	step	in	the	Map/Reduce	process	it	to	call	the	map_reduce()	function	and
iterate	over	the	results	[23].	The	Map/Reduce	operation	provides	result	data	in	a
collection	or	returns	results	in-line.	One	can	perform	subsequent	operations	with
the	same	input	collection	if	the	output	of	the	same	is	written	to	a	collection	[25].
An	operation	that	produces	results	in	a	in-line	form	must	provide	results	with	in
the	BSON	document	 size	 limit.	The	current	 limit	 for	 a	BSON	document	 is	 16
MB.	These	types	of	operations	are	not	supported	by	views	[25].	The	PyMongo’s
API	 supports	 all	 features	 of	 the	 MongoDB’s	 Map/Reduce	 engine	 [26].
Moreover,	Map/Reduce	 has	 the	 ability	 to	 get	more	 detailed	 results	 by	 passing
full_response=True	argument	to	the	map_reduce()	function	[26].

	db.users.aggregate(

				[

						{	$sort	:	{	age	:	-1,	posts:	1	}	}

]

)

db.exhibits.aggregate(

[{	$unwind:	"$tags"	},		{	$sortByCount:	"$tags"	}])

db.inventory.aggregate([{	$unwind:	"$sizes"	}])

db.inventory.aggregate([{	$unwind:	{	path:	"$sizes"	}	}])

db.books.aggregate([

																		{	$group	:	{	_id	:	"$author",	books:	{	$push:	"$title"	}	}	},

																						{	$out	:	"authors"	}

])

3.7.2.3.14	Deleting	Documents	from	a	Collection

The	deletion	of	documents	with	PyMongo	 is	 fairly	 straight	 forward.	To	do	 so,
one	 would	 use	 the	 remove()	 method	 of	 the	 PyMongo	 Collection	 object	 [22].
Similarly	to	the	reads	and	updates,	specification	of	documents	to	be	removed	is	a
must.	For	example,	removal	of	the	entire	document	collection	with	a	score	of	1,
would	required	one	to	use	the	following	command:

The	safe	parameter	set	to	True	ensures	the	operation	was	completed	[22].

3.7.2.3.15	Copying	a	Database

Copying	 databases	 within	 the	 same	 mongod	 instance	 or	 between	 different
mongod	servers	 is	made	possible	with	 the	command()	method	after	connecting
to	 the	 desired	 mongod	 instance	 [27].	 For	 example,	 to	 copy	 the	 cloudmesh
database	 and	 name	 the	 new	 database	 cloudmesh_copy,	 one	 would	 use	 the
command()	method	in	the	following	manner:

There	 are	 two	 ways	 to	 copy	 a	 database	 between	 servers.	 If	 a	 server	 is	 not
password-prodected,	 one	 would	 not	 need	 to	 pass	 in	 the	 credentials	 nor	 to
authenticate	 to	 the	 admin	 database	 [27].	 In	 that	 case,	 to	 copy	 a	 database	 one
would	use	the	following	command:

On	 the	 other	 hand,	 if	 the	 server	 where	 we	 are	 copying	 the	 database	 to	 is
protected,	one	would	use	this	command	instead:

3.7.2.3.16	PyMongo	Strengths

cloudmesh.users.remove({"score":1,	safe=True})

client.admin.command('copydb',

																									fromdb='cloudmesh',

																									todb='cloudmesh_copy')

client.admin.command('copydb',

																									fromdb='cloudmesh',

																									todb='cloudmesh_copy',

																									fromhost='source.example.com')

client	=	MongoClient('target.example.com',

																					username='administrator',

																					password='pwd')

client.admin.command('copydb',

																					fromdb='cloudmesh',

																					todb='cloudmesh_copy',

																					fromhost='source.example.com')

One	 of	 PyMongo	 strengths	 is	 that	 allows	 document	 creation	 and	 querying
natively

“through	 the	 use	 of	 existing	 language	 features	 such	 as	 nested
dictionaries	and	lists”	[22].

For	moderately	 experienced	 Python	 developers,	 it	 is	 very	 easy	 to	 learn	 it	 and
quickly	feel	comfortable	with	it.

“For	 these	 reasons,	 MongoDB	 and	 Python	 make	 a	 powerful
combination	for	rapid,	iterative	development	of	horizontally	scalable
backend	applications”	[22].

According	to	[22],	MongoDB	is	very	applicable	 to	modern	applications,	which
makes	PyMongo	equally	valuable	[22].

3.7.2.4	MongoEngine

“MongoEngine	is	an	Object-Document	Mapper,	written	in	Python	for
working	with	MongoDB”	[28].

It	 is	 actually	 a	 library	 that	 allows	 a	 more	 advanced	 communication	 with
MongoDB	compared	to	PyMongo.	As	MongoEngine	is	technically	considered	to
be	an	object-document	mapper(ODM),	it	can	also	be	considered	to	be

“equivalent	to	a	SQL-based	object	relational	mapper(ORM)”	[19].

The	primary	 technique	why	one	would	use	 an	ODM	 includes	data	conversion
between	computer	systems	that	are	not	compatible	with	each	other	[29].	For	the
purpose	 of	 converting	 data	 to	 the	 appropriate	 form,	 a	 virtual	 object	 database
must	be	created	within	 the	utilized	programming	 language	[29].	This	 library	 is
also	used	to	define	schemata	for	documents	within	MongoDB,	which	ultimately
helps	with	minimizing	coding	errors	as	well	defining	methods	on	existing	fields
[30].	It	is	also	very	beneficial	to	the	overall	workflow	as	it	tracks	changes	made
to	the	documents	and	aids	in	the	document	saving	process	[31].

3.7.2.4.1	Installation

The	installation	process	for	this	technology	is	fairly	simple	as	it	is	considered	to
be	a	library.	To	install	it,	one	would	use	the	following	command	[32]:

A	bleeding-edge	version	of	MongoEngine	can	be	installed	directly	from	GitHub
by	first	cloning	the	repository	on	the	local	machine,	virtual	machine,	or	cloud.

3.7.2.4.2	Connecting	to	a	database	using	MongoEngine

Once	 installed,	 MongoEngine	 needs	 to	 be	 connected	 to	 an	 instance	 of	 the
mongod,	 similarly	 to	 PyMongo	 [33].	 The	 connect()	 function	 must	 be	 used	 to
successfully	 complete	 this	 step	 and	 the	 argument	 that	 must	 be	 used	 in	 this
function	is	the	name	of	the	desired	database	[33].	Prior	to	using	this	function,	the
function	name	needs	to	be	imported	from	the	MongoEngine	library.

Similarly	to	the	MongoClient,	MongoEngine	uses	the	local	host	and	port	27017
by	 default,	 however,	 the	 connect()	 function	 also	 allows	 specifying	 other	 hosts
and	port	arguments	as	well	[33].

Other	 types	 of	 connections	 are	 also	 supported	 (i.e.	 URI)	 and	 they	 can	 be
completed	by	providing	the	URI	in	the	connect()	function	[33].

3.7.2.4.3	Querying	using	MongoEngine

To	query	MongoDB	using	MongoEngine	an	objects	attribute	 is	used,	which	is,
technically,	 a	 part	 of	 the	 document	 class	 [34].	 This	 attribute	 is	 called	 the
QuerySetManager	which	in	return

“creates	a	new	QuerySet	object	on	access”	[34].

To	be	able	to	access	individual	documents	from	a	database,	this	object	needs	to
be	 iterated	 over.	 For	 example,	 to	 return/print	 all	 students	 in	 the
cloudmesh_community	 object	 (database),	 the	 following	 command	 would	 be
used.

$	pip	install	mongoengine

from	mongoengine	import	connect

connect('cloudmesh_community')

connect('cloudmesh_community',	host='196.185.1.62',	port=16758)

for	user	in	cloudmesh_community.objects:

MongoEngine	 also	 has	 a	 capability	 of	 query	 filtering	 which	 means	 that	 a
keyword	 can	 be	 used	 within	 the	 called	 QuerySet	 object	 to	 retrieve	 specific
information	 [34].	 Let	 us	 say	 one	 would	 like	 to	 iterate	 over
cloudmesh_community	students	that	are	natives	of	Indiana.	To	achieve	this,	one
would	use	the	following	command:

This	library	also	allows	the	use	of	all	operators	except	for	the	equality	operator
in	 its	queries,	 and	moreover,	has	 the	capability	of	handling	string	queries,	geo
queries,	list	querying,	and	querying	of	the	raw	PyMongo	queries	[34].

The	 string	 queries	 are	 useful	 in	 performing	 text	 operations	 in	 the	 conditional
queries.	A	query	 to	 find	 a	 document	 exactly	matching	 and	with	 state	ACTIVE
can	be	performed	in	the	following	manner:

The	query	to	retrieve	document	data	for	names	that	start	with	a	case	sensitive	AL
can	be	written	as:

To	perform	an	exact	same	query	for	the	non-key-sensitive	AL	one	would	use	the
following	command:

The	MongoEngine	allows	data	extraction	of	geographical	locations	by	using	Geo
queries.	The	geo_within	operator	checks	if	a	geometry	is	within	a	polygon.

The	list	query	looks	up	the	documents	where	the	specified	fields	matches	exactly
to	the	given	value.	To	match	all	pages	that	have	the	word	coding	as	an	item	in
the	tags	list	one	would	use	the	following	query:

			print	cloudmesh_community.student

indy_students	=	cloudmesh_community.objects(state='IN')

db.cloudmesh_community.find(State.exact("ACTIVE"))

db.cloudmesh_community.find(Name.startswith("AL"))

db.cloudmesh_community.find(Name.istartswith("AL"))

		cloudmesh_community.objects(

												point__geo_within=[[[40,	5],	[40,	6],	[41,	6],	[40,	5]]])

		cloudmesh_community.objects(

												point__geo_within={"type":	"Polygon",

																	"coordinates":	[[[40,	5],	[40,	6],	[41,	6],	[40,	5]]]})

		class	Page(Document):

					tags	=	ListField(StringField())

		Page.objects(tags='coding')

Overall,	it	would	be	safe	to	say	that	MongoEngine	has	good	compatibility	with
Python.	 It	 provides	 different	 functions	 to	 utilize	 Python	 easily	 with
MongoDBand	 which	 makes	 this	 pair	 even	 more	 attractive	 to	 application
developers.

3.7.2.5	Flask-PyMongo

“Flask	is	a	micro-web	framework	written	in	Python”	[35].

It	was	developed	after	Django,	and	 it	 is	very	pythonic	 in	nature	which	 implies
that	it	is	explicitly	the	targeting	the	Python	user	community.	It	is	lightweight	as
it	does	not	require	additional	tools	or	libraries	and	hence	is	classified	as	a	Micro-
Web	framework.	It	is	often	used	with	MongoDB	using	PyMongo	connector,	and
it	 treats	 data	 within	 MongoDB	 as	 searchable	 Python	 dictionaries.	 The
applications	such	as	Pinterest,	LinkedIn,	and	the	community	web	page	for	Flask
are	 using	 the	Flask	 framework.	Moreover,	 it	 supports	 various	 features	 such	 as
the	 RESTful	 request	 dispatching,	 secure	 cookies,	 Google	 app	 engine
compatibility,	and	integrated	support	for	unit	testing,	etc	[35].	When	it	comes	to
connecting	to	a	database,	the	connection	details	for	MongoDB	can	be	passed	as	a
variable	or	configured	in	PyMongo	constructor	with	additional	arguments	such
as	username	and	password,	if	required.	It	is	important	that	versions	of	both	Flask
and	MongoDB	are	compatible	with	each	other	to	avoid	functionality	breaks	[36].

3.7.2.5.1	Installation

Flask-PyMongo	can	be	installed	with	an	easy	command	such	as	this:

PyMongo	can	be	added	in	the	following	manner:

3.7.2.5.2	Configuration

There	are	two	ways	to	configure	Flask-PyMongo.	The	first	way	would	be	to	pass
a	MongoDB	URI	to	the	PyMongo	constructor,	while	the	second	way	would	be	to

$	pip	install	Flask-PyMongo

		from	flask	import	Flask

		from	flask_pymongo	import	PyMongo

		app	=	Flask(__name__)

		app.config["MONGO_URI"]	=	"mongodb://localhost:27017/cloudmesh_community"

		mongo	=	PyMongo(app)

“assign	it	to	the	MONGO_URI	Flask	confiuration	variable”	[36].

3.7.2.5.3	Connection	to	multiple	databases/servers

Multiple	 PyMongo	 instances	 can	 be	 used	 to	 connect	 to	 multiple	 databases	 or
database	 servers.	 To	 achieve	 this,	 once	 would	 use	 a	 command	 similar	 to	 the
following:

3.7.2.5.4	Flask-PyMongo	Methods

Flask-PyMongo	 provides	 helpers	 for	 some	 common	 tasks.	One	 of	 them	 is	 the
Collection.find_one_or_404	method	shown	in	the	following	example:

This	 method	 is	 very	 similar	 to	 the	 MongoDB’s	 find_one()	 method,	 however,
instead	of	returning	None	it	causes	a	404	Not	Found	HTTP	status	[36].

Similarly,	the	PyMongo.send_file	and	PyMongo.save_file	methods	work	on	 the
file-like	objects	and	save	them	to	GridFS	using	the	given	file	name	[36].

3.7.2.5.5	Additional	Libraries

Flask-MongoAlchemy	and	Flask-MongoEngine	are	 the	additional	 libraries	 that
can	be	used	 to	connect	 to	a	MongoDB	database	while	using	enhanced	features
with	 the	 Flask	 app.	 The	 Flask-MongoAlchemy	 is	 used	 as	 a	 proxy	 between
Python	 and	 MongoDB	 to	 connect.	 It	 provides	 an	 option	 such	 as	 server	 or
database	based	authentication	to	connect	to	MongoDB.	While	the	default	 is	set
server	 based,	 to	 use	 a	 database-based	 authentication,	 the	 config	 value
MONGOALCHEMY_SERVER_AUTH	parameter	must	be	set	to	False	[37].

Flask-MongoEngine	 is	 the	 Flask	 extension	 that	 provides	 integration	 with	 the
MongoEngine.	 It	 handles	 connection	 management	 for	 the	 apps.	 It	 can	 be
installed	through	pip	and	set	up	very	easily	as	well.	The	default	configuration	is

		app	=	Flask(__name__)

		mongo1	=	PyMongo(app,	uri="mongodb://localhost:27017/cloudmesh_community_one")

		mongo2	=	PyMongo(app,	uri="mongodb://localhost:27017/cloudmesh_community_two")

		mongo3	=	PyMongo(app,	uri=

								"mongodb://another.host:27017/cloudmesh_community_Three")

		@app.route("/user/<username>")

		def	user_profile(username):

						user	=	mongo.db.cloudmesh_community.find_one_or_404({"_id":	username})

						return	render_template("user.html",	user=user)

set	 to	 the	 local	 host	 and	 port	 27017.	 For	 the	 custom	 port	 and	 in	 cases	where
MongoDB	 is	 running	 on	 another	 server,	 the	 host	 and	 port	 must	 be	 explicitly
specified	in	connect	strings	within	the	MONGODB_SETTINGS	dictionary	with
app.config,	 along	with	 the	 database	 username	 and	 password,	 in	 cases	where	 a
database	authentication	is	enabled.	The	URI	style	connections	are	also	supported
and	supply	 the	URI	as	 the	host	 in	 the	MONGODB_SETTINGS	 dictionary	with
app.config.	There	are	various	custom	query	sets	that	are	available	within	Flask-
Mongoengine	that	are	attached	to	Mongoengine’s	default	queryset	[38].

3.7.2.5.6	Classes	and	Wrappers

Attributes	 such	 as	 cx	 and	 db	 in	 the	 PyMongo	 objects	 are	 the	 ones	 that	 help
provide	access	to	the	MongoDB	server	[36].	To	achieve	this,	one	must	pass	the
Flask	app	to	the	constructor	or	call	init_app()	[36].

“Flask-PyMongo	 wraps	 PyMongo’s	 MongoClient,	 Database,	 and
Collection	classes,	and	overrides	their	attribute	and	item	accessors”
[36].

This	 type	 of	 wrapping	 allows	 Flask-PyMongo	 to	 add	 methods	 to	 Collection
while	at	the	same	time	allowing	a	MongoDB-style	dotted	expressions	in	the	code
[36].

Flask-PyMongo	 creates	 connectivity	 between	 Python	 and	 Flask	 using	 a
MongoDB	database	and	supports

“extensions	 that	 can	 add	 application	 features	 as	 if	 they	 were
implemented	in	Flask	itself”	[39],

hence,	 it	 can	be	used	 as	 an	 additional	Flask	 functionality	 in	Python	 code.	The
extensions	 are	 there	 for	 the	 purpose	 of	 supporting	 form	 validations,
authentication	 technologies,	 object-relational	 mappers	 and	 framework	 related
tools	which	ultimately	adds	a	lot	of	strength	to	this	micro-web	framework	[39].
One	of	the	main	reasons	and	benefits	why	it	is	frequently	used	with	MongoDB	is
its	capability	of	adding	more	control	over	databases	and	history	[39].

type(mongo.cx)

type(mongo.db)

type(mongo.db.cloudmesh_community)

3.7.3	Mongoengine	☁�

3.7.3.1	Introduction

MongoEngine	 is	a	document	mapper	 for	working	with	mongoldb	with	python.
To	 be	 able	 to	 use	 mongo	 engine	 MongodD	 should	 be	 already	 installed	 and
running.

3.7.3.2	Install	and	connect

Mongoengine	can	be	installed	by	running:

This	will	install	six,	pymongo	and	mongoengine.

To	 connect	 to	 mongoldb	 use	 connect	 ()	 function	 by	 specifying	 mongoldb
instance	name.	You	don’t	need	to	go	to	mongo	shell	but	this	can	be	done	from
unix	 shell	 or	 cmd	 line.	 In	 this	 case	 we	 are	 connecting	 to	 a	 database	 named
student_db.

If	mongodb	 is	 running	on	a	port	different	 from	default	port	 ,	 port	number	and
host	 need	 to	 be	 specified.	 If	 mongoldb	 needs	 authentication	 username	 and
password	need	to	be	specified.

3.7.3.3	Basics

Mongodb	does	not	enforce	schemas.	Comparing	to	RDBMS,	Row	in	mongoldb
is	 called	 a	 “document”	 and	 table	 can	 be	 compared	 to	Collection.	 Defining	 a
schema	is	helpful	as	it	minimizes	coding	error’s.	To	define	a	schema	we	create	a
class	that	inherits	from	document.

�	TODO:	Can	you	fix	the	code	sections	and	look	at	the	examples	we	provided.

				$	pip	install	mongo	engine

from	mongo	engine	import	*	connect	(‘student_db’)

from	mongoengine	import	*

class	Student(Document):

				first_name	=	StringField(max_length=50)

				last_name	=	StringField(max_length=50)

https://github.com/cloudmesh-community/book/blob/master/chapters/data/mongoengine.md

Fields	 are	 not	mandatory	 but	 if	 needed,	 set	 the	 required	 keyword	 argument	 to
True.	 There	 are	 multiple	 values	 available	 for	 field	 types.	 Each	 field	 can	 be
customized	by	by	keyword	argument.	If	each	student	is	sending	text	messages	to
Universities	central	database	,	these	can	be	stored	using	Mongodb.	Each	text	can
have	different	data	types,	some	might	have	images	or	some	might	have	url’s.	So
we	can	create	a	class	text	and	link	it	to	student	by	using	Reference	field	(similar
to	foreign	key	in	RDBMS).

MongoDb	 supports	 adding	 tags	 to	 individual	 texts	 rather	 then	 storing	 them
separately	 and	 then	 having	 them	 referenced.Similarly	 Comments	 can	 also	 be
stored	directly	in	a	Text.

For	accessing	data:	if	we	need	to	get	titles.

Searching	texts	with	tags.

3.8	CALCULATION

3.8.1	Word	Count	with	Parallel	Python	☁�

We	 will	 demonstrate	 Python’s	 multiprocessing	 API	 for	 parallel	 computation	 by
writing	 a	 program	 that	 counts	 how	 many	 times	 each	 word	 in	 a	 collection	 of
documents	appear.

class	Text(Document):

				title	=	StringField(max_length=120,	required=True)

				author	=	ReferenceField(Student)

				meta	=	{'allow_inheritance':	True}

class	OnlyText(Text):

				content	=	StringField()

class	ImagePost(Text):

				image_path	=	StringField()

class	LinkPost(Text):

				link_url	=	StringField()

class	Text(Document):

				title	=	StringField(max_length=120,	required=True)

				author	=	ReferenceField(User)

				tags	=	ListField(StringField(max_length=30))

				comments	=	ListField(EmbeddedDocumentField(Comment))

for	text	in	OnlyText.objects:

				print(text.title)

for	text	in	Text.objects(tags='mongodb'):

				print(text.title)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-wordcount.md

3.8.1.1	Generating	a	Document	Collection

Before	we	begin,	let	us	write	a	script	that	will	generate	document	collections	by
specifying	 the	 number	 of	 documents	 and	 the	 number	 of	words	 per	 document.
This	will	make	benchmarking	straightforward.

To	 keep	 it	 simple,	 the	 vocabulary	 of	 the	 document	 collection	 will	 consist	 of
random	numbers	rather	than	the	words	of	an	actual	language:

Notice	 that	we	 are	 using	 the	 docopt	module	 that	 you	 should	 be	 familiar	 with
from	the	Section	[Python	DocOpts](#s-python-docopts}	to	make	the	script	easy
to	run	from	the	command	line.

'''Usage:	generate_nums.py	[-h]	NUM_LISTS	INTS_PER_LIST	MIN_INT	MAX_INT	DEST_DIR

Generate	random	lists	of	integers	and	save	them

as	1.txt,	2.txt,	etc.

Arguments:

			NUM_LISTS						The	number	of	lists	to	create.

			INTS_PER_LIST		The	number	of	integers	in	each	list.

			MIN_NUM								Each	generated	integer	will	be	>=	MIN_NUM.

			MAX_NUM								Each	generated	integer	will	be	<=	MAX_NUM.

			DEST_DIR							A	directory	where	the	generated	numbers	will	be	stored.

Options:

		-h	--help

'''

from	__future__	import	print_function

import	os,	random,	logging

from	docopt	import	docopt

def	generate_random_lists(num_lists,

																										ints_per_list,	min_int,	max_int):

				return	[[random.randint(min_int,	max_int)	\

								for	i	in	range(ints_per_list)]	for	i	in	range(num_lists)]

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			num_lists,	ints_per_list,	min_int,	max_int,	dest_dir	=	[

						int(args['NUM_LISTS']),

						int(args['INTS_PER_LIST']),

						int(args['MIN_INT']),

						int(args['MAX_INT']),

						args['DEST_DIR']

]

			if	not	os.path.exists(dest_dir):

						os.makedirs(dest_dir)

			lists	=	generate_random_lists(num_lists,

																																	ints_per_list,

																																	min_int,

																																	max_int)

			curr_list	=	1

			for	lst	in	lists:

						with	open(os.path.join(dest_dir,	'%d.txt'	%	curr_list),	'w')	as	f:

					f.write(os.linesep.join(map(str,	lst)))

		curr_list	+=	1

			logging.debug('Numbers	written.')

https://pypi.python.org/pypi/docopt

You	can	generate	a	document	collection	with	this	script	as	follows:

3.8.1.2	Serial	Implementation

A	first	serial	implementation	of	wordcount	is	straightforward:

3.8.1.3	Serial	Implementation	Using	map	and	reduce

We	 can	 improve	 the	 serial	 implementation	 in	 anticipation	 of	 parallelizing	 the
program	by	making	use	of	Python’s	map	and	reduce	functions.

In	 short,	 you	 can	 use	 map	 to	 apply	 the	 same	 function	 to	 the	 members	 of	 a
collection.	For	example,	to	convert	a	list	of	numbers	to	strings,	you	could	do:

python	generate_nums.py	1000	10000	0	100	docs-1000-10000

'''Usage:	wordcount.py	[-h]	DATA_DIR

Read	a	collection	of	.txt	documents	and	count	how	many	times	each	word

appears	in	the	collection.

Arguments:

		DATA_DIR		A	directory	with	documents	(.txt	files).

Options:

		-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

logging.basicConfig(level=logging.DEBUG)

def	wordcount(files):

			counts	=	{}

			for	filepath	in	files:

						with	open(filepath,	'r')	as	f:

					words	=	[word.strip()	for	word	in	f.read().split()]

					for	word	in	words:

								if	word	not	in	counts:

											counts[word]	=	0

								counts[word]	+=	1

			return	counts

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

			counts	=	wordcount(glob.glob(os.path.join(args['DATA_DIR'],	'*.txt')))

			logging.debug(counts)

import	random

nums	=	[random.randint(1,	2)	for	_	in	range(10)]

print(nums)

[2,	1,	1,	1,	2,	2,	2,	2,	2,	2]

print(map(str,	nums))

We	 can	 use	 reduce	 to	 apply	 the	 same	 function	 cumulatively	 to	 the	 items	 of	 a
sequence.	For	example,	to	find	the	total	of	the	numbers	in	our	list,	we	could	use	
reduce	as	follows:

We	can	simplify	this	even	more	by	using	a	lambda	function:

You	can	read	more	about	Python’s	lambda	function	in	the	docs.

With	this	in	mind,	we	can	reimplement	the	wordcount	example	as	follows:

['2',	'1',	'1',	'1',	'2',	'2',	'2',	'2',	'2',	'2']

def	add(x,	y):

				return	x	+	y

print(reduce(add,	nums))

17

print(reduce(lambda	x,	y:	x	+	y,	nums))

17

'''Usage:	wordcount_mapreduce.py	[-h]	DATA_DIR

Read	a	collection	of	.txt	documents	and	count	how

many	times	each	word

appears	in	the	collection.

Arguments:

			DATA_DIR		A	directory	with	documents	(.txt	files).

Options:

			-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

logging.basicConfig(level=logging.DEBUG)

def	count_words(filepath):

			counts	=	{}

			with	open(filepath,	'r')	as	f:

						words	=	[word.strip()	for	word	in	f.read().split()]

		for	word	in	words:

					if	word	not	in	counts:

								counts[word]	=	0

					counts[word]	+=	1

		return	counts

def	merge_counts(counts1,	counts2):

			for	word,	count	in	counts2.items():

						if	word	not	in	counts1:

					counts1[word]	=	0

		counts1[word]	+=	counts2[word]

			return	counts1

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

https://docs.python.org/2.7/tutorial/controlflow.html#lambda-expressions

3.8.1.4	Parallel	Implementation

Drawing	on	 the	previous	 implementation	using	 map	and	 reduce,	we	 can	 parallelize
the	implementation	using	Python’s	multiprocessing	API:

3.8.1.5	Benchmarking

To	time	each	of	the	examples,	enter	it	into	its	own	Python	file	and	use	Linux’s	
time	command:

The	output	 contains	 the	 real	 run	 time	and	 the	user	 run	 time.	 real	 is	wall	 clock
time	-	time	from	start	to	finish	of	the	call.	user	is	the	amount	of	CPU	time	spent
in	 user-mode	 code	 (outside	 the	 kernel)	within	 the	 process,	 that	 is,	 only	 actual
CPU	time	used	in	executing	the	process.

						per_doc_counts	=	map(count_words,

																											glob.glob(os.path.join(args['DATA_DIR'],

																											'*.txt')))

			counts	=	reduce(merge_counts,	[{}]	+	per_doc_counts)

			logging.debug(counts)

'''Usage:	wordcount_mapreduce_parallel.py	[-h]	DATA_DIR	NUM_PROCESSES

Read	a	collection	of	.txt	documents	and	count,	in	parallel,	how	many

times	each	word	appears	in	the	collection.

Arguments:

			DATA_DIR							A	directory	with	documents	(.txt	files).

			NUM_PROCESSES		The	number	of	parallel	processes	to	use.

Options:

			-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

from	wordcount_mapreduce	import	count_words,	merge_counts

from	multiprocessing	import	Pool

logging.basicConfig(level=logging.DEBUG)

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

			num_processes	=	int(args['NUM_PROCESSES'])

			pool	=	Pool(processes=num_processes)

			per_doc_counts	=	pool.map(count_words,

																													glob.glob(os.path.join(args['DATA_DIR'],

																													'*.txt')))

			counts	=	reduce(merge_counts,	[{}]	+	per_doc_counts)

			logging.debug(counts)

$	time	python	wordcount.py	docs-1000-10000

3.8.1.6	Excersises

E.python.wordcount.1:

Run	 the	 three	different	programs	 (serial,	 serial	w/	map	and	reduce,
parallel)	and	answer	the	following	questions:

1.	 Is	 there	 any	 performance	 difference	 between	 the	 different
versions	of	the	program?

2.	 Does	user	time	significantly	differ	from	real	time	for	any	of	the
versions	of	the	program?

3.	 Experiment	with	different	numbers	of	processes	for	the	parallel
example,	 starting	 with	 1.	 What	 is	 the	 performance	 gain	 when
you	goal	from	1	to	2	processes?	From	2	to	3?	When	do	you	stop
seeing	 improvement?	 (this	 will	 depend	 on	 your	 machine
architecture)

3.8.1.7	References

Map,	Filter	and	Reduce
multiprocessing	API

3.8.2	NumPy	☁�

NumPy	is	a	popular	library	that	is	used	by	many	other	Python	packages	such	as
Pandas,	 SciPy,	 and	 scikit-learn.	 It	 provides	 a	 fast,	 simple-to-use	 way	 of
interacting	 with	 numerical	 data	 organized	 in	 vectors	 and	 matrices.	 In	 this
section,	we	will	provide	a	short	introduction	to	NumPy.

3.8.2.1	Installing	NumPy

The	 most	 common	 way	 of	 installing	 NumPy,	 if	 it	 wasn’t	 included	 with	 your
Python	installation,	is	to	install	it	via	pip:

If	NumPy	has	already	been	installed,	you	can	update	to	the	most	recent	version
using:

$	pip	install	numpy

http://book.pythontips.com/en/latest/map_filter.html
https://docs.python.org/2/library/multiprocessing.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/numpy/numpy.md

You	can	verify	that	NumPy	is	installed	by	trying	to	use	it	in	a	Python	program:

Note	that,	by	convention,	we	import	NumPy	using	the	alias	‘np’	-	whenever	you
see	 ‘np’	 sprinkled	 in	 example	 Python	 code,	 it’s	 a	 good	 bet	 that	 it	 is	 using
NumPy.

3.8.2.2	NumPy	Basics

At	 its	 core,	 NumPy	 is	 a	 container	 for	 n-dimensional	 data.	 Typically,	 1-
dimensional	 data	 is	 called	 an	 array	 and	 2-dimensional	 data	 is	 called	 a	matrix.
Beyond	2-dimenions	would	be	considered	a	multidimensional	array.	Examples
where	you’ll	encounter	these	dimenions	may	include:

1	 Dimensional:	 time	 series	 data	 such	 as	 audio,	 stock	 prices,	 or	 a	 single
observation	in	a	dataset.
2	 Dimensional:	 connectivity	 data	 between	 network	 nodes,	 user-product
recommendations,	and	database	tables.
3+	 Dimensional:	 network	 latency	 between	 nodes	 over	 time,	 video
(RGB+time),	and	version	controlled	datasets.

All	 of	 these	 data	 can	 be	 placed	 into	 NumPy’s	 array	 object,	 just	 with	 varying
dimensions.

3.8.2.3	Data	Types:	The	Basic	Building	Blocks

Before	we	delve	into	arrays	and	matrices,	we	will	start	off	with	the	most	basic
element	 of	 those:	 a	 single	 value.	 NumPy	 can	 represent	 data	 utilizing	 many
different	standard	datatypes	such	as	uint8	(an	8-bit	usigned	 integer),	 float64	(a
64-bit	float),	or	str	(a	string).	An	exhaustive	listing	can	be	found	at:

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

Before	moving	on,	it	is	important	to	know	about	the	tradeoff	made	when	using
different	datatypes.	For	example,	a	uint8	can	only	contain	values	between	0	and
255.	This,	however,	contrasts	with	float64	which	can	express	any	value	from	+/-

$	pip	install	-U	numpy

import	numpy	as	np

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

1.80e+308.	So	why	wouldn’t	we	just	always	use	float64s?	Though	they	allow	us
to	be	more	expressive	in	terms	of	numbers,	they	also	consume	more	memory.	If
we	were	working	with	 a	12	megapixel	 image,	 for	 example,	 storing	 that	 image
using	uint8	values	would	require	3000	*	4000	*	8	=	96	million	bits,	or	91.55	MB
of	 memory.	 If	 we	 were	 to	 store	 the	 same	 image	 utilizing	 float64,	 our	 image
would	consume	8	 times	as	much	memory:	768	million	bits	or	732.42	MB.	It’s
important	 use	 the	 right	 datatype	 for	 the	 job	 to	 avoid	 consuming	 unneccessary
resources	or	slowing	down	processing.

Finally,	while	NumPy	will	conveniently	convert	between	datatypes,	one	must	be
aware	of	overflows	when	using	smaller	datatypes.	For	example:

In	 this	 example,	 it	 makes	 sense	 that	 6+7=13.	 But	 how	 does	 13+245=2?	 Put
simply,	 the	 object	 type	 (uint8)	 simply	 ran	 out	 of	 space	 to	 store	 the	 value	 and
wrapped	 back	 around	 to	 the	 beginning.	 An	 8-bit	 number	 is	 only	 capable	 of
storing	2^8,	or	256,	unique	values.	An	operation	that	results	in	a	value	above	that
range	will	‘overflow’	and	cause	the	value	to	wrap	back	around	to	zero.	Likewise,
anything	below	that	range	will	‘underflow’	and	wrap	back	around	to	the	end.	In
our	 example,	 13+245	 became	 258,	which	was	 too	 large	 to	 store	 in	 8	 bits	 and
wrapped	back	around	to	0	and	ended	up	at	2.

NumPy	will,	 generally,	 try	 to	 avoid	 this	 situation	 by	 dynamically	 retyping	 to
whatever	datatype	will	support	the	result:

Here,	our	addition	caused	our	array,	‘a’,	to	be	upscaled	to	use	uint16	instead	of
uint8.	 Finally,	 NumPy	 offers	 convenience	 functions	 akin	 to	 Python’s	 range()
function	to	create	arrays	of	sequential	numbers:

a	=	np.array([6],	dtype=np.uint8)

print(a)

>>>[6]

a	=	a	+	np.array([7],	dtype=np.uint8)

print(a)

>>>[13]

a	=	a	+	np.array([245],	dtype=np.uint8)

print(a)

>>>[2]

a	=	a	+	260

print(test)

>>>[262]

X	=	np.arange(0.2,1,.1)

print(X)

>>>array([0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9],	dtype=float32)

We	can	use	this	function	to	also	generate	parameters	spaces	that	can	be	iterated
on:

3.8.2.4	Arrays:	Stringing	Things	Together

With	 our	 knowledge	 of	 datatypes	 in	 hand,	 we	 can	 begin	 to	 explore	 arrays.
Simply	 put,	 arrays	 can	 be	 thought	 of	 as	 a	 sequence	 of	 values	 (not	 neccesarily
numbers).	Arrays	are	1	dimensional	and	can	be	created	and	accessed	simply:

Arrays	 (and,	 later,	matrices)	are	zero-indexed.	This	makes	 it	 convenient	when,
for	example,	using	Python’s	range()	function	to	iterate	through	an	array:

Arrays	are,	also,	mutable	and	can	be	changed	easily:

NumPy	 also	 includes	 incredibly	 powerful	 broadcasting	 features.	This	makes	 it
very	 simple	 to	 perform	 mathematical	 operations	 on	 arrays	 that	 also	 makes
intuitive	sense:

Arrays	can	also	interact	with	other	arrays:

P	=	10.0	**	np.arange(-7,1,1)

print(P)

for	x,p	in	zip(X,P):

				print('%f,	%f'	%	(x,	p))

a	=	np.array([1,	2,	3])

print(type(a))

>>><class	'numpy.ndarray'>

print(a)

>>>[1	2	3]

print(a.shape)

>>>(3,)

a[0]

>>>1

for	i	in	range(3):

				print(a[i])

>>>1

>>>2

>>>3

a[0]	=	42

print(a)

>>>array([42,	2,	3])

a	*	3

>>>array([3,	6,	9])

a**2

>>>array([1,	4,	9],	dtype=int32)

b	=	np.array([2,	3,	4])

print(a	*	b)

>>>array([2,		6,	12])

In	 this	 example,	 the	 result	 of	 multiplying	 together	 two	 arrays	 is	 to	 take	 the
element-wise	product	while	multiplying	by	a	constant	will	multiply	each	element
in	 the	 array	 by	 that	 constant.	 NumPy	 supports	 all	 of	 the	 basic	 mathematical
operations:	 addition,	 subtraction,	 multiplication,	 division,	 and	 powers.	 It	 also
includes	an	extensive	suite	of	mathematical	functions,	such	as	log()	and	max(),
which	are	covered	later.

3.8.2.5	Matrices:	An	Array	of	Arrays

Matrices	 can	 be	 thought	 of	 as	 an	 extension	 of	 arrays	 -	 rather	 than	 having	 one
dimension,	matrices	have	2	(or	more).	Much	like	arrays,	matrices	can	be	created
easily	within	NumPy:

Accessing	individual	elements	is	similar	to	how	we	did	it	for	arrays.	We	simply
need	to	pass	in	a	number	of	arguments	equal	to	the	number	of	dimensions:

In	 this	 example,	 our	 first	 index	 selected	 the	 row	 and	 the	 second	 selected	 the
column	-	giving	us	our	result	of	3.	Matrices	can	be	extending	out	to	any	number
of	dimensions	by	simply	using	more	indices	to	access	specific	elements	(though
use-cases	beyond	4	may	be	somewhat	rare).

Matrices	support	all	of	the	normal	mathematial	functions	such	as	+,	-,	*,	and	/.	A
special	note:	the	*	operator	will	result	in	an	element-wise	multiplication.	Using
@	or	np.matmul()	for	matrix	multiplication:

More	complex	mathematical	functions	can	typically	be	found	within	the	NumPy
library	itself:

A	 full	 listing	 can	 be	 found	 at:

m	=	np.array([[1,	2],	[3,	4]])

print(m)

>>>[[1	2]

>>>	[3	4]]

m[1][0]

>>>3

print(m-m)

print(m*m)

print(m/m)

print(np.sin(x))

print(np.sum(x))

https://docs.scipy.org/doc/numpy/reference/routines.math.html

3.8.2.6	Slicing	Arrays	and	Matrices

As	 one	 can	 imagine,	 accessing	 elements	 one-at-a-time	 is	 both	 slow	 and	 can
potentially	 require	 many	 lines	 of	 code	 to	 iterate	 over	 every	 dimension	 in	 the
matrix.	 Thankfully,	 NumPy	 incorporate	 a	 very	 powerful	 slicing	 engine	 that
allows	us	to	access	ranges	of	elements	easily:

The	 ‘:’	value	 tells	NumPy	 to	select	all	elements	 in	 the	given	dimension.	Here,
we’ve	 requested	 all	 elements	 in	 the	 first	 row.	 We	 can	 also	 use	 indexing	 to
request	elements	within	a	given	range:

Here,	we	asked	NumPy	 to	give	us	elements	4	 through	7	 (ranges	 in	Python	are
inclusive	at	the	start	and	non-inclusive	at	the	end).	We	can	even	go	backwards:

In	the	previous	example,	the	negative	value	is	asking	NumPy	to	return	the	last	5
elements	of	 the	array.	Had	 the	argument	been	‘:-5’,	NumPy	would’ve	returned
everything	BUT	the	last	five	elements:

Becoming	 more	 familiar	 with	 NumPy’s	 accessor	 conventions	 will	 allow	 you
write	more	efficient,	clearer	code	as	it	is	easier	to	read	a	simple	one-line	accessor
than	 it	 is	 a	 multi-line,	 nested	 loop	 when	 extracting	 values	 from	 an	 array	 or
matrix.

3.8.2.7	Useful	Functions

The	 NumPy	 library	 provides	 several	 convenient	 mathematical	 functions	 that
users	 can	 use.	 These	 functions	 provide	 several	 advantages	 to	 code	written	 by

m[1,	:]

>>>array([3,	4])

a	=	np.arange(0,	10,	1)

print(a)

>>>[0	1	2	3	4	5	6	7	8	9]

a[4:8]

>>>array([4,	5,	6,	7])

a[-5:]

>>>array([5,	6,	7,	8,	9])

a[:-5]

>>>array([0,	1,	2,	3,	4])

users:

They	 are	 open	 source	 typically	 have	 multiple	 contributors	 checking	 for
errors.
Many	 of	 them	 utilize	 a	 C	 interface	 and	will	 run	much	 faster	 than	 native
Python	code.
They’re	written	to	very	flexible.

NumPy	arrays	and	matrices	contain	many	useful	aggregating	functions	such	as
max(),	min(),	mean(),	 etc	 These	 functions	 are	 usually	 able	 to	 run	 an	 order	 of
magnitude	faster	than	looping	through	the	object,	so	it’s	important	to	understand
what	functions	are	available	to	avoid	‘reinventing	the	wheel.’	In	addition,	many
of	 the	 functions	 are	 able	 to	 sum	 or	 average	 across	 axes,	 which	 make	 them
extremely	 useful	 if	 your	 data	 has	 inherent	 grouping.	 To	 return	 to	 a	 previous
example:

In	 this	example,	we	created	a	2x2	matrix	containing	 the	numbers	1	 through	4.
The	sum	of	 the	matrix	 returned	 the	element-wise	addition	of	 the	entire	matrix.
Summing	 across	 axis	 0	 (rows)	 returned	 a	 new	 array	 with	 the	 element-wise
addition	across	each	row.	Likewise,	summing	across	axis	1	(columns)	returned
the	columnar	summation.

3.8.2.8	Linear	Algebra

Perhaps	 one	 of	 the	 most	 important	 uses	 for	 NumPy	 is	 its	 robust	 support	 for
Linear	 Algebra	 functions.	 Like	 the	 aggregation	 functions	 described	 in	 the
previous	 section,	 these	 functions	 are	 optimized	 to	 be	 much	 faster	 than	 user
implementations	and	can	utilize	processesor	level	features	to	provide	very	quick
computations.	 These	 functions	 can	 be	 accessed	 very	 easily	 from	 the	 NumPy
package:

m	=	np.array([[1,	2],	[3,	4]])

print(m)

>>>[[1	2]

>>>	[3	4]]

m.sum()

>>>10

m.sum(axis=1)

>>>[3,	7]

m.sum(axis=0)

>>>[4,	6]

a	=	np.array([[1,	2],	[3,	4]])

b	=	np.array([[5,	6],	[7,	8]])

print(np.matmul(a,	b))

Included	 in	 within	 np.linalg	 are	 functions	 for	 calculating	 the
Eigendecomposition	of	square	matrices	and	symmetric	matrices.	Finally,	to	give
a	quick	example	of	how	easy	 it	 is	 to	 implement	algorithms	 in	NumPy,	we	can
easily	use	it	to	calculate	the	cost	and	gradient	when	using	simple	Mean-Squared-
Error	(MSE):

Finally,	 more	 advanced	 functions	 are	 easily	 available	 to	 users	 via	 the	 linalg
library	of	NumPy	as:

3.8.2.9	NumPy	Resources

https://docs.scipy.org/doc/numpy
http://cs231n.github.io/python-numpy-tutorial/#numpy
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html
https://en.wikipedia.org/wiki/Mean_squared_error

3.8.3	Scipy	☁�

SciPy	 is	 a	 library	 built	 around	 numpy	 and	 has	 a	 number	 of	 off-the-shelf
algorithms	and	operations	implemented.	These	include	algorithms	from	calculus
(such	 as	 integration),	 statistics,	 linear	 algebra,	 image-processing,	 signal
processing,	machine	learning.

To	 achieve	 this,	 SciPy	 bundels	 a	 number	 of	 useful	 open-source	 software	 for
mathematics,	science,	and	engineering.	It	includes	the	following	packages:

NumPy,

for	managing	N-dimensional	arrays

>>>[[19	22]

				[43	50]]

cost	=	np.power(Y	-	np.matmul(X,	weights)),	2).mean(axis=1)

gradient	=	np.matmul(X.T,	np.matmul(X,	weights)	-	y)

from	numpy	import	linalg

A	=	np.diag((1,2,3))

w,v	=	linalg.eig(A)

print	('w	=',	w)

print	('v	=',	v)

https://docs.scipy.org/doc/numpy
http://cs231n.github.io/python-numpy-tutorial/#numpy
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html
https://en.wikipedia.org/wiki/Mean_squared_error
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/scipy/scipy.md

SciPy	library,

to	access	fundamental	scientific	computing	capabilities

Matplotlib,

to	conduct	2D	plotting

IPython,

for	an	Interactive	console	(see	jupyter)

Sympy,

for	symbolic	mathematics

pandas,

for	providing	data	structures	and	analysis

3.8.3.1	Introduction

First	 we	 add	 the	 usual	 scientific	 computing	 modules	 with	 the	 typical
abbreviations,	 including	 sp	 for	 scipy.	 We	 could	 invoke	 scipy’s	 statistical
package	as	sp.stats,	but	for	the	sake	of	laziness	we	abbreviate	that	too.

Now	we	create	some	random	data	to	play	with.	We	generate	100	samples	from	a
Gaussian	distribution	centered	at	zero.

How	many	elements	are	in	the	set?

What	is	the	mean	(average)	of	the	set?

import	numpy	as	np	#	import	numpy

import	scipy	as	sp	#	import	scipy

from	scipy	import	stats	#	refer	directly	to	stats	rather	than	sp.stats

import	matplotlib	as	mpl	#	for	visualization

from	matplotlib	import	pyplot	as	plt	#	refer	directly	to	pyplot

																																					#	rather	than	mpl.pyplot

s	=	sp.randn(100)

print	('There	are',len(s),'elements	in	the	set')

What	is	the	minimum	of	the	set?

What	is	the	maximum	of	the	set?

We	can	use	the	scipy	functions	too.	What’s	the	median?

What	about	the	standard	deviation	and	variance?

Isn’t	the	variance	the	square	of	the	standard	deviation?

How	 close	 are	 the	 measures?	 The	 differences	 are	 close	 as	 the	 following
calculation	shows

How	does	this	look	as	a	histogram?	See	Figure	18,	Figure	19,	Figure	20

print	('The	mean	of	the	set	is',s.mean())

print	('The	minimum	of	the	set	is',s.min())

print	('The	maximum	of	the	set	is',s.max())

print	('The	median	of	the	set	is',sp.median(s))

print	('The	standard	deviation	is',sp.std(s),

							'and	the	variance	is',sp.var(s))

				print	('The	square	of	the	standard	deviation	is',sp.std(s)**2)

				print	('The	difference	is',abs(sp.std(s)**2	-	sp.var(s)))

				print	('And	in	decimal	form,	the	difference	is	%0.16f'	%

											(abs(sp.std(s)**2	-	sp.var(s))))

plt.hist(s)	#	yes,	one	line	of	code	for	a	histogram

plt.show()

Figure	18:	Histogram	1

Let	us	add	some	titles.

Figure	19:	Histogram	2

Typically	 we	 do	 not	 include	 titles	 when	 we	 prepare	 images	 for	 inclusion	 in
LaTeX.	There	we	use	the	caption	to	describe	what	the	figure	is	about.

plt.clf()	#	clear	out	the	previous	plot

plt.hist(s)

plt.title("Histogram	Example")

plt.xlabel("Value")

plt.ylabel("Frequency")

plt.show()

plt.clf()	#	clear	out	the	previous	plot

plt.hist(s)

plt.xlabel("Value")

plt.ylabel("Frequency")

plt.show()

Figure	20:	Histogram	3

Let	 us	 try	 out	 some	 linear	 regression,	 or	 curve	 fitting.	 See	 @#fig:scipy-
output_30_0

Figure	21:	Result	1

import	random

def	F(x):

				return	2*x	-	2

def	add_noise(x):

				return	x	+	random.uniform(-1,1)

X	=	range(0,10,1)

Y	=	[]

for	i	in	range(len(X)):

				Y.append(add_noise(X[i]))

plt.clf()	#	clear	out	the	old	figure

plt.plot(X,Y,'.')

plt.show()

Now	let’s	try	linear	regression	to	fit	the	curve.

What	is	the	slope	and	y-intercept	of	the	fitted	curve?

Now	let’s	see	how	well	the	curve	fits	the	data.	We’ll	call	the	fitted	curve	F’.

To	 save	 images	 into	 a	 PDF	 file	 for	 inclusion	 into	 LaTeX	 documents	 you	 can
save	the	images	as	follows.	Other	formats	such	as	png	are	also	possible,	but	the
quality	is	naturally	not	sufficient	for	inclusion	in	papers	and	documents.	For	that
you	certainly	want	 to	use	PDF.	The	save	of	 the	figure	has	 to	occur	before	you
use	the	show()	command.	See	Figure	22

m,	b,	r,	p,	est_std_err	=	stats.linregress(X,Y)

print	('The	slope	is',m,'and	the	y-intercept	is',	b)

def	Fprime(x):	#	the	fitted	curve

				return	m*x	+	b

X	=	range(0,10,1)

Yprime	=	[]

for	i	in	range(len(X)):

				Yprime.append(Fprime(X[i]))

plt.clf()	#	clear	out	the	old	figure

#	the	observed	points,	blue	dots

plt.plot(X,	Y,	'.',	label='observed	points')

#	the	interpolated	curve,	connected	red	line

plt.plot(X,	Yprime,	'r-',	label='estimated	points')

plt.title("Linear	Regression	Example")	#	title

plt.xlabel("x")	#	horizontal	axis	title

plt.ylabel("y")	#	vertical	axis	title

#	legend	labels	to	plot

plt.legend(['obsered	points',	'estimated	points'])

#	comment	out	so	that	you	can	save	the	figure

#plt.show()

plt.savefig("regression.pdf",	bbox_inches='tight')

plt.savefig('regression.png')

plt.show()

Figure	22:	Result	2

3.8.3.2	References

For	more	 information	about	SciPy	we	 recommend	 that	you	visit	 the	 following
link

https://www.scipy.org/getting-started.html#learning-to-work-with-scipy

Additional	material	and	inspiration	for	this	section	are	from

[]	“Getting	Started	guide”	https://www.scipy.org/getting-started.html

[]	Prasanth.	“Simple	statistics	with	SciPy.”	Comfort	at	1	AU.	February
28,	 2011.	 https://oneau.wordpress.com/2011/02/28/simple-statistics-with-
scipy/.

[]	 SciPy	 Cookbook.	 Lasted	 updated:	 2015.	 http://scipy-
cookbook.readthedocs.io/.

	create	bibtex	entries

3.8.4	Scikit-learn	☁�

https://www.scipy.org/getting-started.html#learning-to-work-with-scipy
https://www.scipy.org/getting-started.html
https://oneau.wordpress.com/2011/02/28/simple-statistics-with-scipy/
http://scipy-cookbook.readthedocs.io/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/scikit-learn/scikit-learn.md

	Learning	Objectives

Exploratory	data	analysis
Pipeline	to	prepare	data
Full	learning	pipeline
Fine	tune	the	model
Significance	tests

3.8.4.1	Introduction	to	Scikit-learn

Scikit	 learn	is	a	Machine	Learning	specific	 library	used	in	Python.	Library	can
be	used	for	data	mining	and	analysis.	It	is	built	on	top	of	NumPy,	matplotlib	and
SciPy.	Scikit	Learn	features	Dimensionality	reduction,	clustering,	regression	and
classification	algorithms.	It	also	features	model	selection	using	grid	search,	cross
validation	and	metrics.

Scikit	learn	also	enables	users	to	preprocess	the	data	which	can	then	be	used	for
machine	learning	using	modules	like	preprocessing	and	feature	extraction.

In	this	section	we	demonstrate	how	simple	it	is	to	use	k-means	in	scikit	learn.

3.8.4.2	Installation

If	you	already	have	a	working	installation	of	numpy	and	scipy,	the	easiest	way	to
install	scikit-learn	is	using	pip

3.8.4.3	Supervised	Learning

Supervised	Learning	is	used	in	machine	learning	when	we	already	know	a	set	of
output	predictions	based	on	 input	 characteristics	 and	based	on	 that	we	need	 to
predict	the	target	for	a	new	input.	Training	data	is	used	to	train	the	model	which
then	can	be	used	to	predict	the	output	from	a	bounded	set.

$	pip	install	numpy

$	pip	install	scipy	-U

$	pip	install	-U	scikit-learn

Problems	can	be	of	two	types

1.	 Classification	:	Training	data	belongs	to	three	or	four	classes/categories	and
based	on	 the	 label	we	want	 to	predict	 the	class/category	for	 the	unlabeled
data.

2.	 Regression	 :	 Training	 data	 consists	 of	 vectors	without	 any	 corresponding
target	values.	Clustering	can	be	used	for	these	type	of	datasets	to	determine
discover	 groups	 of	 similar	 examples.	 Another	 way	 is	 density	 estimation
which	determine	the	distribution	of	data	within	the	input	space.	Histogram
is	the	most	basic	form.

3.8.4.4	Unsupervised	Learning

Unsupervised	Learning	 is	used	 in	machine	 learning	when	we	have	 the	 training
set	available	but	without	any	corresponding	target.	The	outcome	of	the	problem
is	to	discover	groups	within	the	provided	input.	It	can	be	done	in	many	ways.

Few	of	them	are	listed	here

1.	 Clustering	:	Discover	groups	of	similar	characteristics.
2.	 Density	 Estimation	 :	 Finding	 the	 distribution	 of	 data	within	 the	 provided

input	or	changing	 the	data	 from	a	high	dimensional	 space	 to	 two	or	 three
dimension.

3.8.4.5	Building	a	end	to	end	pipeline	for	Supervised	machine	learning	using
Scikit-learn

A	data	pipeline	is	a	set	of	processing	components	that	are	sequenced	to	produce
meaningful	data.	Pipelines	are	commonly	used	in	Machine	learning,	since	there
is	lot	of	data	transformation	and	manipulation	that	needs	to	be	applied	to	make
data	useful	 for	machine	 learning.	All	 components	 are	 sequenced	 in	 a	way	 that
the	 output	 of	 one	 component	 becomes	 input	 for	 the	 next	 and	 each	 of	 the
component	is	self	contained.	Components	interact	with	each	other	using	data.

Even	if	a	component	breaks,	the	downstream	component	can	run	normally	using
the	 last	 output.	 Sklearn	 provide	 the	 ability	 to	 build	 pipelines	 that	 can	 be
transformed	and	modeled	for	machine	learning.

3.8.4.6	Steps	for	developing	a	machine	learning	model

1.	 Explore	the	domain	space
2.	 Extract	the	problem	definition
3.	 Get	the	data	that	can	be	used	to	make	the	system	learn	to	solve	the	problem

definition.
4.	 Discover	and	Visualize	the	data	to	gain	insights
5.	 Feature	engineering	and	prepare	the	data
6.	 Fine	tune	your	model
7.	 Evaluate	your	solution	using	metrics
8.	 Once	proven	launch	and	maintain	the	model.

3.8.4.7	Exploratory	Data	Analysis

Example	project	=	Fraud	detection	system

First	step	is	to	load	the	data	into	a	dataframe	in	order	for	a	proper	analysis	to	be
done	on	the	attributes.

Perform	the	basic	analysis	on	the	data	shape	and	null	value	information.

Here	is	the	example	of	few	of	the	visual	data	analysis	methods.

3.8.4.7.1	Bar	plot

A	bar	chart	or	graph	is	a	graph	with	rectangular	bars	or	bins	that	are	used	to	plot
categorical	values.	Each	bar	in	the	graph	represents	a	categorical	variable	and	the
height	of	the	bar	is	proportional	to	the	value	represented	by	it.

Bar	graphs	are	used:

To	make	comparisons	between	variables	To	visualize	any	trend	in	the	data,	i.e.,
they	 show	 the	 dependence	 of	 one	 variable	 on	 another	 Estimate	 values	 of	 a
variable

data	=	pd.read_csv('dataset/data_file.csv')

data.head()

print(data.shape)

print(data.info())

data.isnull().values.any()

Figure	23:	Example	of	scikit-learn	barplots

3.8.4.7.2	Correlation	between	attributes

Attributes	in	a	dataset	can	be	related	based	on	differnt	aspects.

Examples	include	attributes	dependent	on	another	or	could	be	loosely	or	tightly
coupled.	Also	example	includes	two	variables	can	be	associated	with	a	third	one.

In	order	to	understand	the	relationship	between	attributes,	correlation	represents
the	best	visual	way	to	get	an	insight.	Positive	correlation	meaning	both	attributes
moving	into	the	same	direction.	Negative	correlation	refers	to	opposte	directions.
One	 attributes	 values	 increase	 results	 in	 value	 decrease	 for	 other.	 Zero
correlation	is	when	the	attributes	are	unrelated.

plt.ylabel('Transactions')

plt.xlabel('Type')

data.type.value_counts().plot.bar()

#	compute	the	correlation	matrix

corr	=	data.corr()

#	generate	a	mask	for	the	lower	triangle

mask	=	np.zeros_like(corr,	dtype=np.bool)

mask[np.triu_indices_from(mask)]	=	True

#	set	up	the	matplotlib	figure

f,	ax	=	plt.subplots(figsize=(18,	18))

Figure	24:	scikit-learn	correlation	array

3.8.4.7.3	Histogram	Analysis	of	dataset	attributes

A	histogram	consists	of	a	set	of	counts	that	represent	the	number	of	times	some
event	occurred.

#	generate	a	custom	diverging	color	map

cmap	=	sns.diverging_palette(220,	10,	as_cmap=True)

#	draw	the	heatmap	with	the	mask	and	correct	aspect	ratio

sns.heatmap(corr,	mask=mask,	cmap=cmap,	vmax=.3,

												square=True,

												linewidths=.5,	cbar_kws={"shrink":	.5},	ax=ax);

%matplotlib	inline

data.hist(bins=30,	figsize=(20,15))

plt.show()

Figure	25:	scikit-learn

3.8.4.7.4	Box	plot	Analysis

Box	 plot	 analysis	 is	 useful	 in	 detecting	 whether	 a	 distribution	 is	 skewed	 and
detect	outliers	in	the	data.
fig,	axs	=	plt.subplots(2,	2,	figsize=(10,	10))

tmp	=	data.loc[(data.type	==	'TRANSFER'),	:]

a	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'amount',	data	=	tmp,	ax=axs[0][0])

axs[0][0].set_yscale('log')

b	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'oldbalanceDest',	data	=	tmp,	ax=axs[0][1])

axs[0][1].set(ylim=(0,	0.5e8))

c	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'oldbalanceOrg',	data=tmp,	ax=axs[1][0])

axs[1][0].set(ylim=(0,	3e7))

d	=	sns.regplot(x	=	'oldbalanceOrg',	y	=	'amount',	data=tmp.loc[(tmp.isFlaggedFraud	==1),	:],	ax=axs[1][1])

plt.show()

Figure	26:	scikit-learn

3.8.4.7.5	Scatter	plot	Analysis

The	 scatter	 plot	 displays	 values	 of	 two	 numerical	 variables	 as	 Cartesian
coordinates.
plt.figure(figsize=(12,8))

sns.pairplot(data[['amount',	'oldbalanceOrg',	'oldbalanceDest',	'isFraud']],	hue='isFraud')

Figure	27:	scikit-learn	scatter	plots

3.8.4.8	Data	Cleansing	-	Removing	Outliers

If	the	transaction	amount	is	lower	than	5	percent	of	the	all	the	transactions	AND
does	not	exceed	USD	3000,	we	will	exclude	it	from	our	analysis	to	reduce	Type
1	costs	If	the	transaction	amount	is	higher	than	95	percent	of	all	the	transactions
AND	 exceeds	 USD	 500000,	 we	 will	 exclude	 it	 from	 our	 analysis,	 and	 use	 a
blanket	review	process	for	such	transactions	(similar	to	isFlaggedFraud	column
in	original	dataset)	to	reduce	Type	2	costs
low_exclude	=	np.round(np.minimum(fin_samp_data.amount.quantile(0.05),	3000),	2)

high_exclude	=	np.round(np.maximum(fin_samp_data.amount.quantile(0.95),	500000),	2)

###Updating	Data	to	exclude	records	prone	to	Type	1	and	Type	2	costs

low_data	=	fin_samp_data[fin_samp_data.amount	>	low_exclude]

3.8.4.9	Pipeline	Creation

Machine	learning	pipeline	is	used	to	help	automate	machine	learning	workflows.
They	operate	by	 enabling	 a	 sequence	of	data	 to	be	 transformed	and	correlated
together	 in	 a	 model	 that	 can	 be	 tested	 and	 evaluated	 to	 achieve	 an	 outcome,
whether	positive	or	negative.

3.8.4.9.1	Defining	DataFrameSelector	to	separate	Numerical	and	Categorical	attributes

Sample	function	to	seperate	out	Numerical	and	categorical	attributes.

3.8.4.9.2	Feature	Creation	/	Additional	Feature	Engineering

During	EDA	we	identified	that	there	are	transactions	where	the	balances	do	not
tally	after	the	transaction	is	completed.We	believe	this	could	potentially	be	cases
where	fraud	is	occurring.	To	account	for	this	error	in	the	transactions,	we	define
two	 new	 features“errorBalanceOrig”	 and	 “errorBalanceDest”,	 calculated	 by
adjusting	 the	amount	with	 the	before	and	after	balances	 for	 the	Originator	and
Destination	accounts.

Below,	we	create	a	function	that	allows	us	to	create	these	features	in	a	pipeline.

data	=	low_data[low_data.amount	<	high_exclude]

from	sklearn.base	import	BaseEstimator,	TransformerMixin

#	Create	a	class	to	select	numerical	or	categorical	columns

#	since	Scikit-Learn	doesn't	handle	DataFrames	yet

class	DataFrameSelector(BaseEstimator,	TransformerMixin):

				def	__init__(self,	attribute_names):

								self.attribute_names	=	attribute_names

				def	fit(self,	X,	y=None):

								return	self

				def	transform(self,	X):

								return	X[self.attribute_names].values

from	sklearn.base	import	BaseEstimator,	TransformerMixin

#	column	index

amount_ix,	oldbalanceOrg_ix,	newbalanceOrig_ix,	oldbalanceDest_ix,	newbalanceDest_ix	=	0,	1,	2,	3,	4

class	CombinedAttributesAdder(BaseEstimator,	TransformerMixin):

				def	__init__(self):	#	no	*args	or	**kargs

								pass

				def	fit(self,	X,	y=None):

								return	self		#	nothing	else	to	do

				def	transform(self,	X,	y=None):

								errorBalanceOrig	=	X[:,newbalanceOrig_ix]	+		X[:,amount_ix]	-		X[:,oldbalanceOrg_ix]

								errorBalanceDest	=	X[:,oldbalanceDest_ix]	+		X[:,amount_ix]-		X[:,newbalanceDest_ix]

								return	np.c_[X,	errorBalanceOrig,	errorBalanceDest]

3.8.4.10	Creating	Training	and	Testing	datasets

Training	set	includes	the	set	of	input	examples	that	the	model	will	be	fit	into or
trained	 on by	 adjusting	 the	 parameters.	 Testing	 dataset	 is	 critical	 to	 test	 the
generalizability	 of	 the	 model	 .	 By	 using	 this	 set,	 we	 can	 get	 the	 working
accuracy	of	our	model.

Testing	set	should	not	be	exposed	to	model	unless	model	training	has	not	been
completed.	This	way	the	results	from	testing	will	be	more	reliable.

3.8.4.11	Creating	pipeline	for	numerical	and	categorical	attributes

Identifying	columns	with	Numerical	and	Categorical	characteristics.

3.8.4.12	Selecting	the	algorithm	to	be	applied

Algorithim	selection	primarily	depends	on	the	objective	you	are	trying	to	solve
and	what	kind	of	dataset	is	available.	There	are	differnt	type	of	algorithms	which
can	be	applied	and	we	will	look	into	few	of	them	here.

3.8.4.12.1	Linear	Regression

This	 algorithm	 can	 be	 applied	 when	 you	 want	 to	 compute	 some	 continuous
value.	To	predict	some	future	value	of	a	process	which	is	currently	running,	you

from	sklearn.model_selection	import	train_test_split

X_train,	X_test,	y_train,	y_test	=	train_test_split(X,y,test_size=0.30,	random_state=42,	stratify=y)

X_train_num	=	X_train[["amount","oldbalanceOrg",	"newbalanceOrig",	"oldbalanceDest",	"newbalanceDest"]]

X_train_cat	=	X_train[["type"]]

X_model_col	=	["amount","oldbalanceOrg",	"newbalanceOrig",	"oldbalanceDest",	"newbalanceDest","type"]

from	sklearn.pipeline	import	Pipeline

from	sklearn.preprocessing	import	StandardScaler

from	sklearn.preprocessing	import	Imputer

num_attribs	=	list(X_train_num)

cat_attribs	=	list(X_train_cat)

num_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(num_attribs)),

								('attribs_adder',	CombinedAttributesAdder()),

								('std_scaler',	StandardScaler())

])

cat_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(cat_attribs)),

								('cat_encoder',	CategoricalEncoder(encoding="onehot-dense"))

])

can	go	with	regression	algorithm.

Examples	where	linear	regression	can	used	are	:

1.	 Predict	the	time	taken	to	go	from	one	place	to	another
2.	 Predict	the	sales	for	a	future	month
3.	 Predict	sales	data	and	improve	yearly	projections.

3.8.4.12.2	Logistic	Regression

This	algorithm	can	be	used	to	perform	binary	classification.	It	can	be	used	if	you
want	a	probabilistic	framework.	Also	in	case	you	expect	to	receive	more	training
data	 in	 the	 future	 that	 you	 want	 to	 be	 able	 to	 quickly	 incorporate	 into	 your
model.

1.	 Customer	churn	prediction.
2.	 Credit	Scoring	&	Fraud	Detection	which	is	our	example	problem	which	we

are	trying	to	solve	in	this	chapter.
3.	 Calculating	the	effectiveness	of	marketing	campaigns.

3.8.4.12.3	Decision	trees

Decision	 trees	 handle	 feature	 interactions	 and	 they’re	 non-parametric.	 Doesnt
support	online	learning	and	the	entire	tree	needs	to	be	rebuild	when	new	traning

from	sklearn.linear_model	import	LinearRegression

from	sklearn.preprocessing	import	StandardScaler

import	time

scl=	StandardScaler()

X_train_std	=	scl.fit_transform(X_train)

X_test_std	=	scl.transform(X_test)

start	=	time.time()

lin_reg	=	LinearRegression()

lin_reg.fit(X_train_std,	y_train)	#SKLearn's	linear	regression

y_train_pred	=	lin_reg.predict(X_train_std)

train_time	=	time.time()-start

from	sklearn.linear_model	import	LogisticRegression

from	sklearn.model_selection	import	train_test_split

X_train,	_,	y_train,	_	=	train_test_split(X_train,	y_train,	stratify=y_train,	train_size=subsample_rate,	random_state=42)

X_test,	_,	y_test,	_	=	train_test_split(X_test,	y_test,	stratify=y_test,	train_size=subsample_rate,	random_state=42)

model_lr_sklearn	=	LogisticRegression(multi_class="multinomial",	C=1e6,	solver="sag",	max_iter=15)

model_lr_sklearn.fit(X_train,	y_train)

y_pred_test	=	model_lr_sklearn.predict(X_test)

acc	=	accuracy_score(y_test,	y_pred_test)

results.loc[len(results)]	=	["LR	Sklearn",	np.round(acc,	3)]

results

dataset	comes	in.	Memory	consumption	is	very	high.

Can	be	used	for	the	following	cases

1.	 Investment	decisions
2.	 Customer	churn
3.	 Banks	loan	defaulters
4.	 Build	vs	Buy	decisions
5.	 Sales	lead	qualifications

3.8.4.12.4	K	Means

This	algorithm	is	used	when	we	are	not	aware	of	the	labels	and	one	needs	to	be
created	based	on	 the	 features	of	objects.	Example	will	be	 to	divide	a	group	of
people	into	differnt	subgroups	based	on	common	theme	or	attribute.

The	main	disadvantage	of	K-mean	is	that	you	need	to	know	exactly	the	number
of	clusters	or	groups	which	is	required.	It	takes	a	lot	of	iteration	to	come	up	with
the	best	K.

3.8.4.12.5	Support	Vector	Machines

SVM	 is	 a	 supervised	 ML	 technique	 and	 used	 for	 pattern	 recognition	 and

from	sklearn.tree	import	DecisionTreeRegressor

dt	=	DecisionTreeRegressor()

start	=	time.time()

dt.fit(X_train_std,	y_train)

y_train_pred	=	dt.predict(X_train_std)

train_time	=	time.time()	-	start

start	=	time.time()

y_test_pred	=	dt.predict(X_test_std)

test_time	=	time.time()	-	start

from	sklearn.neighbors	import	KNeighborsClassifier

from	sklearn.model_selection	import	train_test_split,	GridSearchCV,	PredefinedSplit

from	sklearn.metrics	import	accuracy_score

X_train,	_,	y_train,	_	=	train_test_split(X_train,	y_train,	stratify=y_train,	train_size=subsample_rate,	random_state=42)

X_test,	_,	y_test,	_	=	train_test_split(X_test,	y_test,	stratify=y_test,	train_size=subsample_rate,	random_state=42)

model_knn_sklearn	=	KNeighborsClassifier(n_jobs=-1)

model_knn_sklearn.fit(X_train,	y_train)

y_pred_test	=	model_knn_sklearn.predict(X_test)

acc	=	accuracy_score(y_test,	y_pred_test)

results.loc[len(results)]	=	["KNN	Arbitary	Sklearn",	np.round(acc,	3)]

results

classification	 problems when	 your	 data	 has	 exactly	 two	 classes.	 Its	 popular	 in
text	classification	problems.

Few	cases	where	SVM	can	be	used	is

1.	 Detecting	persons	with	common	diseases.
2.	 Hand-written	character	recognition
3.	 Text	categorization
4.	 Stock	market	price	prediction

3.8.4.12.6	Naive	Bayes

Naive	Bayes	is	used	for	large	datasets.This	algoritm	works	well	even	when	we
have	a	limited	CPU	and	memory	available.	This	works	by	calculating	bunch	of
counts.	It	requires	less	training	data.	The	algorthim	cant	learn	interation	between
features.

Naive	Bayes	can	be	used	in	real-world	applications	such	as:

1.	 Sentiment	analysis	and	text	classification
2.	 Recommendation	systems	like	Netflix,	Amazon
3.	 To	mark	an	email	as	spam	or	not	spam
4.	 Face	recognition

3.8.4.12.7	Random	Forest

Ranmdon	forest	is	similar	to	Decision	tree.	Can	be	used	for	both	regression	and
classification	problems	with	large	data	sets.

Few	case	where	it	can	be	applied.

1.	 Predict	patients	for	high	risks.
2.	 Predict	parts	failures	in	manufacturing.
3.	 Predict	loan	defaulters.

from	sklearn.ensemble	import	RandomForestRegressor

forest	=	RandomForestRegressor(n_estimators	=	400,	criterion='mse',random_state=1,	n_jobs=-1)

start	=	time.time()

forest.fit(X_train_std,	y_train)

y_train_pred	=	forest.predict(X_train_std)

train_time	=	time.time()	-	start

start	=	time.time()

3.8.4.12.8	Neural	networks

Neural	 network	 works	 based	 on	 weights	 of	 connections	 between	 neurons.
Weights	 are	 trained	 and	 based	 on	 that	 the	 neural	 network	 can	 be	 utilized	 to
predict	the	class	or	a	quantity.	They	are	resource	and	memory	intensive.

Few	cases	where	it	can	be	applied.

1.	 Applied	to	unsupervised	learning	tasks,	such	as	feature	extraction.
2.	 Extracts	 features	 from	 raw	 images	 or	 speech	 with	 much	 less	 human

intervention

3.8.4.12.9	Deep	Learning	using	Keras

Keras	 is	 most	 powerful	 and	 easy-to-use	 Python	 libraries	 for	 developing	 and
evaluating	 deep	 learning	 models.	 It	 has	 the	 efficient	 numerical	 computation
libraries	Theano	and	TensorFlow.

3.8.4.12.10	XGBoost

XGBoost	stands	for	eXtreme	Gradient	Boosting.	XGBoost	is	an	implementation
of	 gradient	 boosted	 decision	 trees	 designed	 for	 speed	 and	 performance.	 It	 is
engineered	for	efficiency	of	compute	time	and	memory	resources.

3.8.4.13	Scikit	Cheat	Sheet

Scikit	learning	has	put	a	very	indepth	and	well	explained	flow	chart	to	help	you
choose	the	right	algorithm	that	I	find	very	handy.

y_test_pred	=	forest.predict(X_test_std)

test_time	=	time.time()	-	start

Figure	28:	scikit-learn

3.8.4.14	Parameter	Optimization

Machine	learning	models	are	parameterized	so	that	their	behavior	can	be	tuned
for	a	given	problem.	These	models	can	have	many	parameters	and	 finding	 the
best	combination	of	parameters	can	be	treated	as	a	search	problem.

A	parameter	is	a	configurationthat	is	part	of	the	model	and	values	can	be	derived
from	the	given	data.

1.	 Required	by	the	model	when	making	predictions.
2.	 Values	define	the	skill	of	the	model	on	your	problem.
3.	 Estimated	or	learned	from	data.
4.	 Often	not	set	manually	by	the	practitioner.
5.	 Often	saved	as	part	of	the	learned	model.

3.8.4.14.1	Hyperparameter	optimization/tuning	algorithms

Grid	search	is	an	approach	to	hyperparameter	tuning	that	will	methodically	build
and	evaluate	a	model	for	each	combination	of	algorithm	parameters	specified	in

a	grid.

Random	 search	 provide	 a	 statistical	 distribution	 for	 each	 hyperparameter	 from
which	values	may	be	randomly	sampled.

3.8.4.15	Experiments	with	Keras	(deep	learning),	XGBoost,	and	SVM	(SVC)
compared	to	Logistic	Regression(Baseline)

3.8.4.15.1	Creating	a	parameter	grid

3.8.4.15.2	Implementing	Grid	search	with	models	and	also	creating	metrics	from	each	of	the	model.

grid_param	=	[

																[{			#LogisticRegression

																			'model__penalty':['l1','l2'],

																			'model__C':	[0.01,	1.0,	100]

																}],

																[{#keras

																				'model__optimizer':	optimizer,

																				'model__loss':	loss

																}],

																[{		#SVM

																			'model__C'	:[0.01,	1.0,	100],

																			'model__gamma':	[0.5,	1],

																			'model__max_iter':[-1]

																}],

																[{			#XGBClassifier

																				'model__min_child_weight':	[1,	3,	5],

																				'model__gamma':	[0.5],

																				'model__subsample':	[0.6,	0.8],

																				'model__colsample_bytree':	[0.6],

																				'model__max_depth':	[3]

																}]

]

Pipeline(memory=None,

					steps=[('preparation',	FeatureUnion(n_jobs=None,

							transformer_list=[('num_pipeline',	Pipeline(memory=None,

					steps=[('selector',	DataFrameSelector(attribute_names=['amount',	'oldbalanceOrg',	'newbalanceOrig',	'oldbalanceDest'

										tol=0.0001,	verbose=0,	warm_start=False))])

from	sklearn.metrics	import	mean_squared_error

from	sklearn.metrics	import	classification_report

from	sklearn.metrics	import	f1_score

from	xgboost.sklearn	import	XGBClassifier

from	sklearn.svm	import	SVC

test_scores	=	[]

#Machine	Learning	Algorithm	(MLA)	Selection	and	Initialization

MLA	=	[

								linear_model.LogisticRegression(),

								keras_model,

								SVC(),

								XGBClassifier()

]

3.8.4.15.3	Results	table	from	the	Model	evaluation	with	metrics.

Figure	29:	scikit-learn

#create	table	to	compare	MLA	metrics

MLA_columns	=	['Name',	'Score',	'Accuracy_Score','ROC_AUC_score','final_rmse','Classification_error','Recall_Score','Precision_Score'

MLA_compare	=	pd.DataFrame(columns	=	MLA_columns)

Model_Scores	=	pd.DataFrame(columns	=	['Name','Score'])

row_index	=	0

for	alg	in	MLA:

				#set	name	and	parameters

				MLA_name	=	alg.__class__.__name__

				MLA_compare.loc[row_index,	'Name']	=	MLA_name

				#MLA_compare.loc[row_index,	'Parameters']	=	str(alg.get_params())

				full_pipeline_with_predictor	=	Pipeline([

								("preparation",	full_pipeline),		#	combination	of	numerical	and	categorical	pipelines

								("model",	alg)

])

				grid_search	=	GridSearchCV(full_pipeline_with_predictor,	grid_param[row_index],	cv=4,	verbose=2,	scoring='f1',	return_train_score

				grid_search.fit(X_train[X_model_col],	y_train)

				y_pred	=	grid_search.predict(X_test)

				MLA_compare.loc[row_index,	'Accuracy_Score']	=	np.round(accuracy_score(y_pred,	y_test),	3)

				MLA_compare.loc[row_index,	'ROC_AUC_score']	=	np.round(metrics.roc_auc_score(y_test,	y_pred),3)

				MLA_compare.loc[row_index,'Score']	=	np.round(grid_search.score(X_test,	y_test),3)

				negative_mse	=	grid_search.best_score_

				scores	=	np.sqrt(-negative_mse)

				final_mse	=	mean_squared_error(y_test,	y_pred)

				final_rmse	=	np.sqrt(final_mse)

				MLA_compare.loc[row_index,	'final_rmse']	=	final_rmse

				confusion_matrix_var	=	confusion_matrix(y_test,	y_pred)

				TP	=	confusion_matrix_var[1,	1]

				TN	=	confusion_matrix_var[0,	0]

				FP	=	confusion_matrix_var[0,	1]

				FN	=	confusion_matrix_var[1,	0]

				MLA_compare.loc[row_index,'Classification_error']	=	np.round(((FP	+	FN)	/	float(TP	+	TN	+	FP	+	FN)),	5)

				MLA_compare.loc[row_index,'Recall_Score']	=	np.round(metrics.recall_score(y_test,	y_pred),	5)

				MLA_compare.loc[row_index,'Precision_Score']	=	np.round(metrics.precision_score(y_test,	y_pred),	5)

				MLA_compare.loc[row_index,'F1_Score']	=	np.round(f1_score(y_test,y_pred),	5)

				MLA_compare.loc[row_index,	'mean_test_score']	=	grid_search.cv_results_['mean_test_score'].mean()

				MLA_compare.loc[row_index,	'mean_fit_time']	=	grid_search.cv_results_['mean_fit_time'].mean()

				Model_Scores.loc[row_index,'MLA	Name']	=	MLA_name

				Model_Scores.loc[row_index,'ML	Score']	=	np.round(metrics.roc_auc_score(y_test,	y_pred),3)

				#Collect	Mean	Test	scores	for	statistical	significance	test

				test_scores.append(grid_search.cv_results_['mean_test_score'])

				row_index+=1

3.8.4.15.4	ROC	AUC	Score

AUC	-	ROC	curve	 is	a	performance	measurement	for	classification	problem	at
various	 thresholds	 settings.	 ROC	 is	 a	 probability	 curve	 and	 AUC	 represents
degree	 or	 measure	 of	 separability.	 It	 tells	 how	 much	 model	 is	 capable	 of
distinguishing	 between	 classes.	 Higher	 the	 AUC,	 better	 the	 model	 is	 at
predicting	0s	as	0s	and	1s	as	1s.

Figure	30:	scikit-learn

Figure	31:	scikit-learn

3.8.4.16	K-means	in	scikit	learn.

3.8.4.16.1	Import

3.8.4.17	K-means	Algorithm

In	this	section	we	demonstrate	how	simple	it	is	to	use	k-means	in	scikit	learn.

3.8.4.17.1	Import

3.8.4.17.2	Create	samples

3.8.4.17.3	Create	samples

				from	time	import	time

				import	numpy	as	np

				import	matplotlib.pyplot	as	plt

				from	sklearn	import	metrics

				from	sklearn.cluster	import	KMeans

				from	sklearn.datasets	import	load_digits

				from	sklearn.decomposition	import	PCA

				from	sklearn.preprocessing	import	scale

				np.random.seed(42)

				digits	=	load_digits()

				data	=	scale(digits.data)

				np.random.seed(42)

				digits	=	load_digits()

				data	=	scale(digits.data)

				n_samples,	n_features	=	data.shape

				n_digits	=	len(np.unique(digits.target))

				labels	=	digits.target

				sample_size	=	300

				print("n_digits:	%d,	\t	n_samples	%d,	\t	n_features	%d"	%	(n_digits,	n_samples,	n_features))

				print(79	*	'_')

				print('%	9s'	%	'init'	'				time		inertia				homo			compl		v-meas					ARI	AMI		silhouette')

				print("n_digits:	%d,	\t	n_samples	%d,	\t	n_features	%d"

										%	(n_digits,	n_samples,	n_features))

				print(79	*	'_')

				print('%	9s'	%	'init'

										'				time		inertia				homo			compl		v-meas					ARI	AMI		silhouette')

				def	bench_k_means(estimator,	name,	data):

								t0	=	time()

								estimator.fit(data)

								print('%	9s			%.2fs				%i			%.3f			%.3f			%.3f			%.3f			%.3f				%.3f'

3.8.4.17.4	Visualize

See	Figure	32

3.8.4.17.5	Visualize

See	Figure	32

														%	(name,	(time()	-	t0),	estimator.inertia_,

																	metrics.homogeneity_score(labels,	estimator.labels_),

																	metrics.completeness_score(labels,	estimator.labels_),

																	metrics.v_measure_score(labels,	estimator.labels_),

																	metrics.adjusted_rand_score(labels,	estimator.labels_),

																	metrics.adjusted_mutual_info_score(labels,		estimator.labels_),

																	metrics.silhouette_score(data,	estimator.labels_,metric='euclidean',sample_size=sample_size)))

				bench_k_means(KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10),	name="k-means++",	data=data)

				bench_k_means(KMeans(init='random',	n_clusters=n_digits,	n_init=10),	name="random",	data=data)

																	metrics.silhouette_score(data,	estimator.labels_,

																																										metric='euclidean',

																																										sample_size=sample_size)))

				bench_k_means(KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10),

																		name="k-means++",	data=data)

				bench_k_means(KMeans(init='random',	n_clusters=n_digits,	n_init=10),

																		name="random",	data=data)

				#	in	this	case	the	seeding	of	the	centers	is	deterministic,	hence	we	run	the

				#	kmeans	algorithm	only	once	with	n_init=1

				pca	=	PCA(n_components=n_digits).fit(data)

				bench_k_means(KMeans(init=pca.components_,n_clusters=n_digits,	n_init=1),name="PCA-based",	data=data)

				print(79	*	'_')

				bench_k_means(KMeans(init=pca.components_,

																									n_clusters=n_digits,	n_init=1),

																		name="PCA-based",

																		data=data)

				print(79	*	'_')

				reduced_data	=	PCA(n_components=2).fit_transform(data)

				kmeans	=	KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10)

				kmeans.fit(reduced_data)

				#	Step	size	of	the	mesh.	Decrease	to	increase	the	quality	of	the	VQ.

				h	=	.02					#	point	in	the	mesh	[x_min,	x_max]x[y_min,	y_max].

				#	Plot	the	decision	boundary.	For	that,	we	will	assign	a	color	to	each

				x_min,	x_max	=	reduced_data[:,	0].min()	-	1,	reduced_data[:,	0].max()	+	1

				y_min,	y_max	=	reduced_data[:,	1].min()	-	1,	reduced_data[:,	1].max()	+	1

				xx,	yy	=	np.meshgrid(np.arange(x_min,	x_max,	h),	np.arange(y_min,	y_max,	h))

				#	Obtain	labels	for	each	point	in	mesh.	Use	last	trained	model.

				Z	=	kmeans.predict(np.c_[xx.ravel(),	yy.ravel()])

				#	Put	the	result	into	a	color	plot

				Z	=	Z.reshape(xx.shape)

				plt.figure(1)

				plt.clf()

				plt.imshow(Z,	interpolation='nearest',

															extent=(xx.min(),	xx.max(),	yy.min(),	yy.max()),

															cmap=plt.cm.Paired,

Figure	32:	Result

3.8.5	Parallel	Computing	in	Python	☁�

In	this	module	we	will	review	the	available	Python	modules	that	can	be	used	for
parallel	 computing.	 The	 parallel	 computing	 can	 be	 in	 form	 of	 either	 multi-
threading	or	multi-processing.	In	multi-threading	approach,	the	threads	run	in	the
same	 shared	 memory	 heap	 whereas	 in	 case	 of	 multi-processing,	 the	 memory
heaps	 of	 processes	 are	 separate	 and	 independent,	 therefore	 the	 communication
between	the	processes	are	a	little	bit	more	complex.

3.8.5.1	Multi-threading	in	Python

Threading	in	Python	is	perfect	for	I/O	operations	where	the	process	is	expected
to	 be	 idle	 regularly,	 e.g.	 web	 scraping.	 This	 is	 a	 very	 useful	 feature	 because
several	 applications	 and	 script	 might	 spend	 the	 majority	 of	 their	 runtime	 on
waiting	 for	 network	 or	 data	 I/O.	 In	 several	 cases,	 e.g.	 web	 scraping,	 the
resources,	 i.e.	 downloading	 from	 different	 websites,	 are	 most	 of	 the	 time

															aspect='auto',	origin='lower')

				plt.plot(reduced_data[:,	0],	reduced_data[:,	1],	'k.',	markersize=2)

				#	Plot	the	centroids	as	a	white	X

				centroids	=	kmeans.cluster_centers_

				plt.scatter(centroids[:,	0],	centroids[:,	1],

																marker='x',	s=169,	linewidths=3,

																color='w',	zorder=10)

				plt.title('K-means	clustering	on	the	digits	dataset	(PCA-reduced	data)\n'

														'Centroids	are	marked	with	white	cross')

				plt.xlim(x_min,	x_max)

				plt.ylim(y_min,	y_max)

				plt.xticks(())

				plt.yticks(())

				plt.show()

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-parallel.md

independent.	Therefore	the	processor	can	download	in	parallel	and	join	the	result
at	the	end.

3.8.5.1.1	Thread	vs	Threading

There	are	two	built-in	modules	in	Python	that	are	related	to	threading,	namely	
thread	and	threading.	The	former	module	is	deprecated	for	sometime	in	Python	2,	and	in	
Python	3	it	is	renamed	to	_thread	for	the	sake	of	backwards	incompatibilities.	The	_thread
module	provides	low-level	threading	API	for	multi-threading	in	Python,	whereas
the	module	threading	builds	a	high-level	threading	interface	on	top	of	it.

The	Thread()	is	the	main	method	of	the	threading	module,	the	two	important	arguments
of	 which	 are	 target,	 for	 specifying	 the	 callable	 object,	 and	 args	 to	 pass	 the
arguments	for	the	target	callable.	We	illustrate	these	in	the	following	example:

This	is	the	output	of	the	previous	example:

In	case	you	are	not	familiar	with	the	if	__name__	==	'__main__:'	statement,	what	it	does	is
basically	making	sure	that	the	code	nested	under	this	condition	will	be	run	only
if	you	run	your	module	as	a	program	and	it	will	not	run	in	case	your	module	is
imported	in	another	file.

3.8.5.1.2	Locks

As	mentioned	prior,	the	memory	space	is	shared	between	the	threads.	This	is	at
the	 same	 time	 beneficial	 and	 problematic:	 it	 is	 beneficial	 in	 a	 sense	 that	 the
communication	 between	 the	 threads	 becomes	 easy,	 however,	 you	 might
experience	 strange	 outcome	 if	 you	 let	 several	 threads	 change	 same	 variable
without	caution,	e.g.	thread	2	changes	variable	x	while	thread	1	is	working	with

import	threading

def	hello_thread(thread_num):

				print	("Hello	from	Thread	",	thread_num)

if	__name__	==	'__main__':

				for	thread_num	in	range(5):

								t	=	threading.Thread(target=hello_thread,arg=(thread_num,))

								t.start()

In	[1]:	%run	threading.py

Hello	from	Thread		0

Hello	from	Thread		1

Hello	from	Thread		2

Hello	from	Thread		3

Hello	from	Thread		4

it.	This	is	when	lock	comes	into	play.	Using	lock,	you	can	allow	only	one	thread	to
work	with	a	variable.	In	other	words,	only	a	single	thread	can	hold	the	lock.	If	the
other	 threads	need	 to	work	with	 that	variable,	 they	have	 to	wait	until	 the	other
thread	is	done	and	the	variable	is	“unlocked”.

We	illustrate	this	with	a	simple	example:

Suppose	we	want	 to	print	multiples	of	3	between	1	and	12,	 i.e.	3,	6,	9	and	12.
For	the	sake	of	argument,	we	try	to	do	this	using	2	threads	and	a	nested	for	loop.
Then	we	create	a	global	variable	called	counter	and	we	initialize	it	with	0.	Then
whenever	 each	 of	 the	 incrementer1	 or	 incrementer2	 functions	 are	 called,	 the	 counter	 is
incremented	by	3	 twice	 (counter	 is	 incremented	by	6	 in	 each	 function	 call).	 If
you	run	the	previous	code,	you	should	be	really	lucky	if	you	get	the	following	as
part	of	your	output:

The	reason	is	the	conflict	that	happens	between	threads	while	incrementing	the	
counter	 in	 the	nested	for	 loop.	As	you	probably	noticed,	 the	first	 level	for	 loop	is
equivalent	of	adding	3	 to	 the	counter	and	 the	conflict	 that	might	happen	 is	not
effective	 on	 that	 level	 but	 the	 nested	 for	 loop.	Accordingly,	 the	 output	 of	 the
previous	code	is	different	in	every	run.	This	is	an	example	output:

import	threading

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	1	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

def	incrementer2():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	2	incremented	the	counter	by	1")

								print	("Counter	is	now	%d"%counter)

if	__name__	==	'__main__':

				t1	=	threading.Thread(target	=	incrementer1)

				t2	=	threading.Thread(target	=	incrementer2)

				t1.start()

				t2.start()

Counter	is	now	3

Counter	is	now	6

Counter	is	now	9

Counter	is	now	12

We	 can	 fix	 this	 issue	 using	 a	 lock:	 whenever	 one	 of	 the	 function	 is	 going	 to
increment	the	value	by	3,	it	will	acquire()	the	lock	and	when	it	is	done	the	function
will	release()	the	lock.	This	mechanism	is	illustrated	in	the	following	code:

No	matter	how	many	times	you	run	this	code,	the	output	would	always	be	in	the
correct	order:

$	python3	lock_example.py

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	4

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	8

Greeter	1	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	10

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	12

import	threading

increment_by_3_lock	=	threading.Lock()

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	1	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

								increment_by_3_lock.release()

def	incrementer2():

				global	counter

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	2	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				t1	=	threading.Thread(target	=	incrementer1)

				t2	=	threading.Thread(target	=	incrementer2)

				t1.start()

				t2.start()

$	python3	lock_example.py

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	3

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	6

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Using	 the	 Threading	 module	 increases	 both	 the	 overhead	 associated	 with	 thread
management	as	well	as	the	complexity	of	the	program	and	that	is	why	in	many
situations,	employing	multiprocessing	module	might	be	a	better	approach.

3.8.5.2	Multi-processing	in	Python

We	 already	 mentioned	 that	 multi-threading	 might	 not	 be	 sufficient	 in	 many
applications	and	we	might	need	to	use	multiprocessing	sometime,	or	better	to	say	most
of	 the	 times.	 That	 is	 why	 we	 are	 dedicating	 this	 subsection	 to	 this	 particular
module.	This	module	provides	you	with	an	API	for	spawning	processes	the	way
you	 spawn	 threads	 using	 threading	 module.	 Moreover,	 there	 are	 some
functionalities	 that	 are	 not	 even	 available	 in	 threading	 module,	 e.g.	 the	 Pool	 class
which	allows	you	to	run	a	batch	of	jobs	using	a	pool	of	worker	processes.

3.8.5.2.1	Process

Similar	to	threading	module	which	was	employing	thread	(aka	_thread)	under	the	hood,	
multiprocessing	employs	the	Process	class.	Consider	the	following	example:

In	 this	 example,	 after	 importing	 the	 Process	module	we	created	 a	 greeter()	 function
that	takes	a	name	and	greets	that	person.	It	also	prints	the	pid	(process	identifier)	of
the	process	that	is	running	it.	Note	that	we	used	the	os	module	to	get	the	pid.	In	the
bottom	of	the	code	after	checking	the	__name__='__main__'	condition,	we	create	a	series
of	Processes	and	start	them.	Finally	in	the	last	for	loop	and	using	the	join	method,	we
tell	 Python	 to	wait	 for	 the	 processes	 to	 terminate.	 This	 is	 one	 of	 the	 possible
outputs	of	the	code:

Counter	is	9

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	12

from	multiprocessing	import	Process

import	os

def	greeter	(name):

				proc_idx	=	os.getpid()

				print	("Process	{0}:	Hello	{1}!".format(proc_idx,name))

if	__name__	==	'__main__':

				name_list	=	['Harry',	'George',	'Dirk',	'David']

				process_list	=	[]

				for	name_idx,	name	in	enumerate(name_list):

								current_process	=	Process(target=greeter,	args=(name,))

								process_list.append(current_process)

								current_process.start()

				for	process	in	process_list:

								process.join()

3.8.5.2.2	Pool

Consider	the	Pool	class	as	a	pool	of	worker	processes.	There	are	several	ways	for
assigning	jobs	to	the	Pool	class	and	we	will	introduce	the	most	important	ones	in
this	 section.	 These	 methods	 are	 categorized	 as	 blocking	 or	 non-blocking.	 The	 former
means	 that	 after	 calling	 the	 API,	 it	 blocks	 the	 thread/process	 until	 it	 has	 the
result	or	answer	ready	and	the	control	returns	only	when	the	call	completes.	In
the	non-blockin	on	the	other	hand,	the	control	returns	immediately.

3.8.5.2.2.1	Synchronous	Pool.map()

We	illustrate	the	Pool.map	method	by	re-implementing	our	previous	greeter	example
using	Pool.map:

As	you	can	see,	we	have	seven	names	here	but	we	do	not	want	to	dedicate	each
greeting	 to	a	 separate	process.	 Instead	we	do	 the	whole	 job	of	“greeting	seven
people”	using	“two	processes”.	We	create	a	pool	of	3	processes	with	Pool(processes=3)
syntax	 and	 then	 we	 map	 an	 iterable	 called	 names	 to	 the	 greeter	 function	 using	
pool.map(greeter,names).	As	we	expected,	the	greetings	in	the	output	will	be	printed	from
three	different	processes:

Note	 that	 Pool.map()	 is	 in	 blocking	 category	 and	 does	 not	 return	 the	 control	 to	 your
script	until	it	is	done	calculating	the	results.	That	is	why	Done!	is	printed	after	all	of

$	python3	process_example.py

Process	23451:	Hello	Harry!

Process	23452:	Hello	George!

Process	23453:	Hello	Dirk!

Process	23454:	Hello	David!

from	multiprocessing	import	Pool

import	os

def	greeter(name):

				pid	=	os.getpid()

				print("Process	{0}:	Hello	{1}!".format(pid,name))

if	__name__	==	'__main__':

				names	=	['Jenna',	'David','Marry',	'Ted','Jerry','Tom','Justin']

				pool	=	Pool(processes=3)

				sync_map	=	pool.map(greeter,names)

				print("Done!")

$	python	poolmap_example.py

Process	30585:	Hello	Jenna!

Process	30586:	Hello	David!

Process	30587:	Hello	Marry!

Process	30585:	Hello	Ted!

Process	30585:	Hello	Jerry!

Process	30587:	Hello	Tom!

Process	30585:	Hello	Justin!

Done!

the	greetings	are	over.

3.8.5.2.2.2	Asynchronous	Pool.map_async()

As	 the	 name	 implies,	 you	 can	 use	 the	 map_async	 method,	 when	 you	 want	 assign
many	 function	 calls	 to	 a	 pool	 of	 worker	 processes	 asynchronously.	 Note	 that
unlike	 map,	 the	 order	 of	 the	 results	 is	 not	 guaranteed	 (as	 oppose	 to	 map)	 and	 the
control	is	returned	immediately.	We	now	implement	the	previous	example	using	
map_async:

As	 you	 probably	 noticed,	 the	 only	 difference	 (clearly	 apart	 from	 the	 map_async

method	name)	is	calling	the	 wait()	method	in	 the	 last	 line.	The	 wait()	method	 tells
your	script	to	wait	for	the	result	of	map_async	before	terminating:

Note	 that	 the	 order	 of	 the	 results	 are	 not	 preserved.	Moreover,	 Done!	 is	 printer
before	 any	of	 the	 results,	meaning	 that	 if	we	do	not	 use	 the	 wait()	method,	 you
probably	will	not	see	the	result	at	all.

3.8.5.2.3	Locks

The	way	multiprocessing	module	implements	locks	is	almost	identical	to	the	way	the	
threading	module	does.	After	importing	Lock	from	multiprocessing	all	you	need	to	do	is	to	
acquire	it,	do	some	computation	and	then	release	the	lock.	We	will	clarify	the	use	of	
Lock	by	providing	an	example	in	next	section	about	process	communication.

3.8.5.2.4	Process	Communication

from	multiprocessing	import	Pool

import	os

def	greeter(name):

				pid	=	os.getpid()

				print("Process	{0}:	Hello	{1}!".format(pid,name))

if	__name__	==	'__main__':

				names	=	['Jenna',	'David','Marry',	'Ted','Jerry','Tom','Justin']

				pool	=	Pool(processes=3)

				async_map	=	pool.map_async(greeter,names)

				print("Done!")

				async_map.wait()

$	python	poolmap_example.py

Done!

Process	30740:	Hello	Jenna!

Process	30741:	Hello	David!

Process	30740:	Hello	Ted!

Process	30742:	Hello	Marry!

Process	30740:	Hello	Jerry!

Process	30741:	Hello	Tom!

Process	30742:	Hello	Justin!

Process	 communication	 in	 multiprocessing	 is	 one	 of	 the	 most	 important,	 yet
complicated,	features	for	better	use	of	this	module.	As	oppose	to	threading,	the	Process
objects	 will	 not	 have	 access	 to	 any	 shared	 variable	 by	 default,	 i.e.	 no	 shared
memory	space	between	the	processes	by	default.	This	effect	is	illustrated	in	the
following	example:

Probably	 you	 already	 noticed	 that	 this	 is	 almost	 identical	 to	 our	 example	 in	
threading	section.	Now,	take	a	look	at	the	strange	output:

As	you	can	see,	it	is	as	if	the	processes	does	not	see	each	other.	Instead	of	having
two	processes	one	counting	 to	6	and	 the	other	counting	from	6	 to	12,	we	have
two	processes	counting	to	6.

Nevertheless,	 there	 are	 several	 ways	 that	 Processes	 from	 multiprocessing	 can
communicate	with	each	other,	including	Pipe,	Queue,	Value,	Array	and	Manager.	Pipe	and	 Queue
are	 appropriate	 for	 inter-process	message	 passing.	 To	 be	more	 specific,	 Pipe	 is
useful	 for	 process-to-process	 scenarios	 while	 Queue	 is	 more	 appropriate	 for
processes-toprocesses	ones.	Value	and	Array	are	both	used	to	provide	a	synchronized
access	to	a	shared	data	(very	much	like	shared	memory)	and	Managers	can	be	used
on	different	data	types.	In	the	following	sub-sections,	we	cover	both	Value	and	Array

from	multiprocessing	import	Process,	Lock,	Value

import	time

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

								print	("Greeter1:	Counter	is	%d"%counter)

def	incrementer2():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

								print	("Greeter2:	Counter	is	%d"%counter)

if	__name__	==	'__main__':

				t1	=	Process(target	=	incrementer1)

				t2	=	Process(target	=	incrementer2)

				t1.start()

				t2.start()

$	python	communication_example.py

Greeter1:	Counter	is	3

Greeter1:	Counter	is	6

Greeter2:	Counter	is	3

Greeter2:	Counter	is	6

since	they	are	both	lightweight,	yet	useful,	approaches.

3.8.5.2.4.1	Value

The	 following	 example	 re-implements	 the	 broken	 example	 in	 the	 previous
section.	We	fix	the	strange	output,	by	using	both	Lock	and	Value:

The	 usage	 of	 Lock	 object	 in	 this	 example	 is	 identical	 to	 the	 example	 in	 threading
section.	The	usage	of	 counter	 is	on	 the	other	hand	 the	novel	part.	First,	note	 that
counter	is	not	a	global	variable	anymore	and	instead	it	is	a	Value	which	returns	a	
ctypes	 object	 allocated	 from	 a	 shared	 memory	 between	 the	 processes.	 The	 first
argument	 'i'	 indicates	 a	 signed	 integer,	 and	 the	 second	 argument	 defines	 the
initialization	value.	In	this	case	we	are	assigning	a	signed	integer	in	the	shared
memory	 initialized	 to	 size	 0	 to	 the	 counter	 variable.	We	 then	modified	 our	 two
functions	and	pass	this	shared	variable	as	an	argument.	Finally,	we	change	the
way	we	increment	the	counter	since	counter	is	not	an	Python	integer	anymore	but	a	
ctypes	 signed	 integer	where	we	 can	 access	 its	 value	 using	 the	 value	 attribute.	The
output	of	the	code	is	now	as	we	expected:

from	multiprocessing	import	Process,	Lock,	Value

import	time

increment_by_3_lock	=	Lock()

def	incrementer1(counter):

				for	j	in	range(3):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.1)

								print	("Greeter1:	Counter	is	%d"%counter.value)

								increment_by_3_lock.release()

def	incrementer2(counter):

				for	j	in	range(3):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.05)

								print	("Greeter2:	Counter	is	%d"%counter.value)

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				counter	=	Value('i',0)

				t1	=	Process(target	=	incrementer1,	args=(counter,))

				t2	=	Process(target	=	incrementer2	,	args=(counter,))

				t2.start()

				t1.start()

$	python	mp_lock_example.py

Greeter2:	Counter	is	3

Greeter2:	Counter	is	6

Greeter1:	Counter	is	9

Greeter1:	Counter	is	12

The	last	example	related	to	parallel	processing,	illustrates	the	use	of	both	Value	and
Array,	as	well	as	a	 technique	 to	pass	multiple	arguments	 to	a	 function.	Note	 that
the	Process	object	does	not	accept	multiple	arguments	for	a	function	and	therefore
we	 need	 this	 or	 similar	 techniques	 for	 passing	multiple	 arguments.	 Also,	 this
technique	can	also	be	used	when	you	want	to	pass	multiple	arguments	to	map	or	
map_async:

In	this	example	we	created	a	multiprocessing.Array()	object	and	assigned	it	to	a	variable
called	names.	As	we	mentioned	before,	the	first	argument	is	the	ctype	data	type	and
since	we	want	to	create	an	array	of	strings	with	length	of	4	(second	argument),
we	imported	the	c_char_p	and	passed	it	as	the	first	argument.

Instead	 of	 passing	 the	 arguments	 separately,	we	merged	 both	 the	 Value	 and	 Array
objects	 in	 a	 tuple	 and	passed	 the	 tuple	 to	 the	 functions.	We	 then	modified	 the
functions	 to	 unpack	 the	 objects	 in	 the	 first	 two	 lines	 in	 the	 both	 functions.
Finally	 we	 changed	 the	 print	 statement	 in	 a	 way	 that	 each	 process	 greets	 a
particular	name.	The	output	of	the	example	is:

from	multiprocessing	import	Process,	Lock,	Value,	Array

import	time

from	ctypes	import	c_char_p

increment_by_3_lock	=	Lock()

def	incrementer1(counter_and_names):

				counter=		counter_and_names[0]

				names	=	counter_and_names[1]

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.1)

								name_idx	=	counter.value//3	-1

								print	("Greeter1:	Greeting	{0}!	Counter	is	{1}".format(names.value[name_idx],counter.value))

								increment_by_3_lock.release()

def	incrementer2(counter_and_names):

				counter=		counter_and_names[0]

				names	=	counter_and_names[1]

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.05)

								name_idx	=	counter.value//3	-1

								print	("Greeter2:	Greeting	{0}!	Counter	is	{1}".format(names.value[name_idx],counter.value))

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				counter	=	Value('i',0)

				names	=	Array	(c_char_p,4)

				names.value	=	['James','Tom','Sam',	'Larry']

				t1	=	Process(target	=	incrementer1,	args=((counter,names),))

				t2	=	Process(target	=	incrementer2	,	args=((counter,names),))

				t2.start()

				t1.start()

3.8.6	Dask	-	Random	Forest	Feature	Detection	☁�

3.8.6.1	Setup

First	 we	 need	 our	 tools.	 pandas	 gives	 us	 the	 DataFrame,	 very	 similar	 to	 R’s
DataFrames.	The	DataFrame	is	a	structure	that	allows	us	to	work	with	our	data
more	easily.	It	has	nice	features	for	slicing	and	transformation	of	data,	and	easy
ways	to	do	basic	statistics.

numpy	has	some	very	handy	functions	that	work	on	DataFrames.

3.8.6.2	Dataset

We	 are	 using	 a	 dataset	 about	 the	 wine	 quality	 dataset,	 archived	 at	 UCI’s
Machine	Learning	Repository	(http://archive.ics.uci.edu/ml/index.php).

Now	we	will	load	our	data.	pandas	makes	it	easy!

Like	 in	 R,	 there	 is	 a	 .describe()	 method	 that	 gives	 basic	 statistics	 for	 every
column	in	the	dataset.

fixed	acidity volatile
acidity citric	acid residual

sugar chlorides

count 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000
mean 8.319637 0.527821 0.270976 2.538806 0.087467

$	python3	mp_lock_example.py

Greeter2:	Greeting	James!	Counter	is	3

Greeter2:	Greeting	Tom!	Counter	is	6

Greeter1:	Greeting	Sam!	Counter	is	9

Greeter1:	Greeting	Larry!	Counter	is	12

import	pandas	as	pd

import	numpy	as	np

#	red	wine	quality	data,	packed	in	a	DataFrame

red_df	=	pd.read_csv('winequality-red.csv',sep=';',header=0,	index_col=False)

#	white	wine	quality	data,	packed	in	a	DataFrame

white_df	=	pd.read_csv('winequality-white.csv',sep=';',header=0,index_col=False)

#	rose?	other	fruit	wines?	plum	wine?	:(

#	for	red	wines

red_df.describe()

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/random-forest/random-forest.md

std 1.741096 0.179060 0.194801 1.409928 0.047065
min 4.600000 0.120000 0.000000 0.900000 0.012000
25% 7.100000 0.390000 0.090000 1.900000 0.070000
50% 7.900000 0.520000 0.260000 2.200000 0.079000
75% 9.200000 0.640000 0.420000 2.600000 0.090000
max 15.900000 1.580000 1.000000 15.500000 0.611000

fixed	acidity volatile
acidity citric	acid residual

sugar chlorides

count 4898.000000 4898.000000 4898.000000 4898.000000 4898.000000
mean 6.854788 0.278241 0.334192 6.391415 0.045772
std 0.843868 0.100795 0.121020 5.072058 0.021848
min 3.800000 0.080000 0.000000 0.600000 0.009000
25% 6.300000 0.210000 0.270000 1.700000 0.036000
50% 6.800000 0.260000 0.320000 5.200000 0.043000
75% 7.300000 0.320000 0.390000 9.900000 0.050000
max 14.200000 1.100000 1.660000 65.800000 0.346000

Sometimes	it	is	easier	to	understand	the	data	visually.	A	histogram	of	the	white
wine	quality	data	citric	acid	samples	is	shown	next.	You	can	of	course	visualize
other	 columns’	 data	 or	 other	 datasets.	 Just	 replace	 the	DataFrame	 and	 column
name	(see	Figure	33).

#	for	white	wines

white_df.describe()

import	matplotlib.pyplot	as	plt

def	extract_col(df,col_name):

				return	list(df[col_name])

col	=	extract_col(white_df,'citric	acid')	#	can	replace	with	another	dataframe	or	column

plt.hist(col)

#TODO:	add	axes	and	such	to	set	a	good	example

plt.show()

Figure	33:	Histogram

3.8.6.3	Detecting	Features

Let	us	try	out	a	some	elementary	machine	learning	models.	These	models	are	not
always	 for	 prediction.	 They	 are	 also	 useful	 to	 find	 what	 features	 are	 most
predictive	of	a	variable	of	interest.	Depending	on	the	classifier	you	use,	you	may
need	to	transform	the	data	pertaining	to	that	variable.

3.8.6.3.1	Data	Preparation

Let	us	assume	we	want	to	study	what	features	are	most	correlated	with	pH.	pH
of	course	is	real-valued,	and	continuous.	The	classifiers	we	want	to	use	usually
need	 labeled	 or	 integer	 data.	Hence,	we	will	 transform	 the	 pH	 data,	 assigning
wines	with	pH	higher	than	average	as	hi	(more	basic	or	alkaline)	and	wines	with
pH	lower	than	average	as	lo	(more	acidic).
#	refresh	to	make	Jupyter	happy

red_df	=	pd.read_csv('winequality-red.csv',sep=';',header=0,	index_col=False)

white_df	=	pd.read_csv('winequality-white.csv',sep=';',header=0,index_col=False)

#TODO:	data	cleansing	functions	here,	e.g.	replacement	of	NaN

#	if	the	variable	you	want	to	predict	is	continuous,	you	can	map	ranges	of	values

#	to	integer/binary/string	labels

#	for	example,	map	the	pH	data	to	'hi'	and	'lo'	if	a	pH	value	is	more	than	or

#	less	than	the	mean	pH,	respectively

M	=	np.mean(list(red_df['pH']))	#	expect	inelegant	code	in	these	mappings

Lf	=	lambda	p:	int(p	<	M)*'lo'	+	int(p	>=	M)*'hi'	#	some	C-style	hackery

#	create	the	new	classifiable	variable

red_df['pH-hi-lo']	=	map(Lf,list(red_df['pH']))

#	and	remove	the	predecessor

del	red_df['pH']

Now	we	 specify	which	 dataset	 and	 variable	 you	want	 to	 predict	 by	 assigning
vlues	to	SELECTED_DF	and	TARGET_VAR,	respectively.

We	like	to	keep	a	parameter	file	where	we	specify	data	sources	and	such.	This
lets	me	create	generic	analytics	code	that	is	easy	to	reuse.

After	we	have	specified	what	dataset	we	want	to	study,	we	split	the	training	and
test	datasets.	We	then	scale	 (normalize)	 the	data,	which	makes	most	classifiers
run	better.

Now	we	pick	a	classifier.	As	you	can	see,	 there	are	many	 to	 try	out,	and	even
more	in	scikit-learn’s	documentation	and	many	examples	and	tutorials.	Random
Forests	 are	 data	 science	workhorses.	They	 are	 the	go-to	method	 for	most	 data
scientists.	 Be	 careful	 relying	 on	 them	 though–they	 tend	 to	 overfit.	We	 try	 to
avoid	overfitting	by	separating	the	training	and	test	datasets.

3.8.6.4	Random	Forest

Now	we	will	test	it	out	with	the	default	parameters.

Note	that	this	code	is	boilerplate.	You	can	use	it	interchangeably	for	most	scikit-

from	sklearn.model_selection	import	train_test_split

from	sklearn.preprocessing	import	StandardScaler

from	sklearn	import	metrics

#	make	selections	here	without	digging	in	code

SELECTED_DF	=	red_df	#	selected	dataset

TARGET_VAR	=	'pH-hi-lo'	#	the	predicted	variable

#	generate	nameless	data	structures

df	=	SELECTED_DF

target	=	np.array(df[TARGET_VAR]).ravel()

del	df[TARGET_VAR]	#	no	cheating

#TODO:	data	cleansing	function	calls	here

#	split	datasets	for	training	and	testing

X_train,	X_test,	y_train,	y_test	=	train_test_split(df,target,test_size=0.2)

#	set	up	the	scaler

scaler	=	StandardScaler()

scaler.fit(X_train)

#	apply	the	scaler

X_train	=	scaler.transform(X_train)

X_test	=	scaler.transform(X_test)

#	pick	a	classifier

from	sklearn.tree	import	DecisionTreeClassifier,DecisionTreeRegressor,ExtraTreeClassifier,ExtraTreeRegressor

from	sklearn.ensemble	import	RandomForestClassifier,ExtraTreesClassifier

clf	=	RandomForestClassifier()

learn	models.

Now	output	the	results.	For	Random	Forests,	we	get	a	feature	ranking.	Relative
importances	 usually	 exponentially	 decay.	 The	 first	 few	 highly-ranked	 features
are	usually	the	most	important.

Feature	ranking:

fixed	 acidity	 0.269778	 citric	 acid	 0.171337	 density	 0.089660	 volatile	 acidity
0.088965	 chlorides	 0.082945	 alcohol	 0.080437	 total	 sulfur	 dioxide	 0.067832
sulphates	0.047786	free	sulfur	dioxide	0.042727	residual	sugar	0.037459	quality
0.021075

Sometimes	it’s	easier	to	visualize.	We’ll	use	a	bar	chart.	See	Figure	34

#	test	it	out

model	=	clf.fit(X_train,y_train)

pred	=	clf.predict(X_test)

conf_matrix	=	metrics.confusion_matrix(y_test,pred)

var_score	=	clf.score(X_test,y_test)

#	the	results

importances	=	clf.feature_importances_

indices	=	np.argsort(importances)[::-1]

#	for	the	sake	of	clarity

num_features	=	X_train.shape[1]

features	=	map(lambda	x:	df.columns[x],indices)

feature_importances	=	map(lambda	x:	importances[x],indices)

print	'Feature	ranking:\n'

for	i	in	range(num_features):

				feature_name	=	features[i]

				feature_importance	=	feature_importances[i]

				print	'%s%f'	%	(feature_name.ljust(30),	feature_importance)

plt.clf()

plt.bar(range(num_features),feature_importances)

plt.xticks(range(num_features),features,rotation=90)

plt.ylabel('relative	importance	(a.u.)')

plt.title('Relative	importances	of	most	predictive	features')

plt.show()

Figure	34:	Result

3.8.6.5	Acknowledgement

This	notebook	was	developed	by	Juliette	Zerick	and	Gregor	von	Laszewski

import	dask.dataframe	as	dd

red_df	=	dd.read_csv('winequality-red.csv',sep=';',header=0)

white_df	=	dd.read_csv('winequality-white.csv',sep=';',header=0)

4	DEVOPS	TOOLS

4.1	REFCARDS	☁�

	Learning	Objectives

Obtain	 quickly	 information	 about	 technical	 aspects	 with	 the	 help	 of
reference	cards.

We	 present	 you	with	 a	 list	 of	 useful	 short	 reference	 cards.	 This	 cards	 can	 be
extremely	 useful	 to	 remind	 yourself	 about	 some	 important	 commands	 and
features.	Having	them	could	simplify	your	interaction	with	the	systems,	We	not
only	collected	here	some	refcards	about	Linux,	but	also	about	other	useful	tools
and	services.

If	 you	 like	 to	 add	 new	 topics,	 let	 us	 know	 via	 your	 contribution	 (see	 the
contribution	section).

CheatSheets

CheatSheets

Editors

Emacs
Vi
Vim

Documentation

LaTeX
RST

Linux

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/refcards.md
http://www.cheat-sheets.org/
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://www.ks.uiuc.edu/Training/Tutorials/Reference/virefcard.pdf
http://michaelgoerz.net/refcards/vimqrc.pdf
https://wch.github.io/latexsheet/latexsheet.pdf
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.pdf

Linux
Makefile
Git

Cloud/Virtualization

Openstack
Openstack
vagrant

SQL

SQL

Languages

R

Python

Python
PythonData
Numpy/Pandas
PythonTutorial
Python
Python
PythonAPIIndex
Python3

4.2	VIRTUAL	BOX	☁�
For	development	purposes	we	recommend	that	you	use	for	this	class	an	Ubuntu
virtual	machine	that	you	set	up	with	the	help	of	virtualbox.	We	recommend	that
you	use	the	current	version	of	ubuntu	and	do	not	install	or	reuse	a	version	that
you	have	set	up	years	ago.

As	 access	 to	 cloud	 resources	 requires	 some	 basic	 knowledge	 of	 linux	 and
security	 we	 will	 restrict	 access	 to	 our	 cloud	 services	 to	 those	 that	 have

http://www.cs.jhu.edu/~joanne/unixRC.pdf
http://www.tofgarion.net/lectures/IN323/refcards/refcardMakeIN323.pdf
https://education.github.com/git-cheat-sheet-education.pdf
http://docs.openstack.org/user-guide/cli_cheat_sheet.html
http://cmias.free.fr/IMG/pdf/rc208_010d-openstack_2.pdf
https://www.cheatography.com/davbfr/cheat-sheets/vagrant-cheat-sheet/
http://www.digilife.be/quickreferences/QRC/MySQL-4.02a.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://dzone.com/refcardz/core-python
https://dzone.com/refcardz/data-mining-discovering-and
http://www.cheat-sheets.org/saved-copy/NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
http://fivedots.coe.psu.ac.th/Software.coe/learnPython/Cheat%20Sheets/python2.pdf
http://www.cheat-sheets.org/saved-copy/PQRC-2.4-A4-latest.pdf
https://www.cheatography.com/davechild/cheat-sheets/python/pdf/
http://overapi.com/python
https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/virtualbox.md

demonstrated	 responsible	 use	 on	 their	 own	 computers.	 Naturally	 as	 it	 is	 your
own	computer	you	must	make	sure	you	follow	proper	security.	We	have	seen	in
the	 past	 students	 carelessly	 working	 with	 virtual	 machines	 and	 introducing
security	vulnerabilities	on	our	clouds	 just	because	“it	was	not	 their	computer.”
Hence,	we	will	 allow	using	 of	 cloud	 resources	 only	 if	 you	 have	 demonstrated
that	you	 responsibly	use	 a	 linux	virtual	machine	on	your	own	computer.	Only
after	you	have	successfully	used	ubuntu	in	a	virtual	machine	you	will	be	allowed
to	use	virtual	machines	on	clouds.

A	cloud	drivers	license	test	will	be	conducted.	Only	after	you	pass	it	we	wil	let
you	gain	access	 to	 the	cloud	 infrastructure.	We	will	announce	 this	 test.	Before
you	have	not	passed	the	test,	you	will	not	be	able	to	use	the	clouds.	Furthermore,
you	do	not	have	to	ask	us	for	join	requests	to	cloud	projects	before	you	have	not
passed	 the	 test.	 Please	 be	 patient.	 Only	 students	 enrolled	 in	 the	 class	 can	 get
access	to	the	cloud.

If	you	however	have	access	to	other	clouds	yourself	you	are	welcome	to	use	the,
However,	be	reminded	that	projects	need	to	be	reproducible,	on	our	cloud.	This
will	require	you	to	make	sure	a	TA	can	replicate	it.

Let	us	now	focus	on	using	virtual	box.

4.2.1	Installation

First	you	will	need	 to	 install	virtualbox.	 It	 is	 easy	 to	 install	 and	details	 can	be
found	at

https://www.virtualbox.org/wiki/Downloads

After	you	have	installed	virtualbox	you	also	need	to	use	an	image.	For	this	class
we	will	be	using	ubuntu	Desktop	16.04	which	you	can	find	at:

http://www.ubuntu.com/download/desktop

Please	 note	 some	 hardware	 you	 may	 have	 may	 be	 too	 old	 or	 has	 too	 little
resources	 to	 be	 useful.	 We	 have	 heard	 from	 students	 that	 the	 following	 is	 a
minimal	setup	for	the	desktop	machine:

https://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/desktop

multi	core	processor	or	better	allowing	to	run	hypervisors

8	GB	system	memory

50	GB	of	free	hard	drive	space

For	 virtual	machines	 you	may	 need	multiple,	while	 the	minimal	 configuration
may	not	work	for	all	cases.

As	configuration	we	often	use

minimal

1	core,	2GB	Memory,	5	GB	disk

latex

2	core,	4GB	Memory,	25	GB	disk

A	video	to	showcase	such	an	install	is	available	at:

	Using	Ubuntu	in	Virtualbox	(8:08)

	Please	note	 that	 the	video	shows	the	version	16.04.	You	should
however	use	the	newest	version	which	at	this	time	is	18.04.

If	 you	 specify	 your	 machine	 too	 small	 you	 will	 not	 be	 able	 to	 install	 the
development	 environment.	Gregor	 used	 on	 his	machine	 8GB	RAM	and	25GB
diskspace.

Please	let	us	know	the	smallest	configuration	that	works.

4.2.2	Guest	additions

The	virtual	guest	additions	allow	you	to	easily	do	the	following	tasks:

Resize	the	windows	of	the	vm

https://youtu.be/NWibDntN2M4

Copy	and	paste	 content	 between	 the	Guest	 operating	 system	and	 the	host
operating	system	windows.

This	 way	 you	 can	 use	 many	 native	 programs	 on	 you	 host	 and	 copy	 contents
easily	into	for	example	a	terminal	or	an	editor	that	you	run	in	the	Vm.

A	video	is	located	at

	Virtualbox	(4:46)

Please	reboot	the	machine	after	installation	and	configuration.

On	OSX	you	can	once	you	have	enabled	bidirectional	copying	in	the	Device	tab
with

OSX	to	Vbox:

command	c	shift	CONTRL	v

Vbox	to	OSX:

shift	CONTRL	v	shift	CONTRL	v

On	 Windows	 the	 key	 combination	 is	 naturally	 different.	 Please	 consult	 your
windows	manual.	If	you	let	us	know	TAs	will	add	the	information	here.

4.2.3	Exercises

E.Virtualbox.1:

Install	ubuntu	desktop	on	your	computer	with	guest	additions.

E.Virtualbox.2:

Make	sure	you	know	how	 to	paste	and	copy	between	your	host	and
guest	operating	system.

E.Virtualbox.3:

https://youtu.be/wdCoiNdn2jA

Install	the	programs	defined	by	the	development	configuration.

E.Virtualbox.4:

Provide	 us	 with	 the	 key	 combination	 to	 copy	 and	 paste	 between
Windows	and	Vbox.

4.3	VAGRANT	☁�

	Learning	Objectives

Be	able	to	experiment	with	virtual	machines	on	your	computer	before	you
go	on	a	cloud.
Simulate	a	virtual	cluster	with	multiple	VMs	running	on	your	computer	if	it
is	big	enough.

A	convenient	tool	to	interface	with	Virtual	Box	is	vagrant.Vagrant	allows	us	to
manage	 virtual	machines	 directly	 from	 the	 commandline.	 It	 support	 also	 other
providers	 and	 can	 be	 used	 to	 start	 virtual	 machines	 and	 even	 containers.	 The
latest	 version	 of	 vagrant	 includes	 the	 ability	 to	 automatically	 fetch	 a	 virtual
machine	 image	 and	 start	 it	 on	 your	 local	 computer.	 It	 assumes	 that	 you	 have
virtual	box	installed.	Some	key	concepts	and	advertisement	are	located	at

https://www.vagrantup.com/intro/index.html:

Detailed	documentation	for	it	is	located

https://www.vagrantup.com/docs/index.html

A	list	of	boxes	is	available	from

https://app.vagrantup.com/boxes/search

One	image	we	will	typically	use	is	Ubuntu	18.04.	Please	note	that	older	version
may	not	be	suitable	for	class	and	we	will	not	support	any	questions	about	them.
This	image	is	located	at

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/vagrant.md
https://www.vagrantup.com/intro/index.html
https://www.vagrantup.com/docs/index.html
https://app.vagrantup.com/boxes/search

https://app.vagrantup.com/ubuntu/boxes/bionic64

4.3.1	Installation

Vagrant	is	easy	to	install.	You	can	go	to	the	download	page	and	download	and
install	the	appropriate	version:

https://www.vagrantup.com/downloads.html

4.3.1.1	macOS

On	MacOS,	download	the	dmg	image,	and	click	on	it.	You	will	find	a	pkg	in	it
that	you	double	click.	After	installation	vagrant	is	installed	in

/usr/local/bin/vagrant

Make	sure	/usr/local/bin	is	in	your	PATH	Start	a	new	terminal	to	verify	this.

Check	it	with

If	it	is	not	in	the	path	put

export	PATH=/usr/local/bin:$PATH

in	the	terminal	command	or	in	your	~/.bash_profile

4.3.1.2	Windows	�

	

	students	contribute

4.3.1.3	Linux	�

	

echo	$PATH

https://app.vagrantup.com/ubuntu/boxes/bionic64
https://www.vagrantup.com/downloads.html

	students	contribute

4.3.2	Usage

To	download,	start	and	login	into	install	the	18.04:

Once	you	are	logged	in	you	can	test	the	version	of	python	with

To	install	a	newer	version	of	python,	and	pip	you	can	use

To	 install	 the	 light	 weight	 idle	 development	 environment	 in	 case	 you	 do	 not
want	o	use	pyCharm,	please	use

So	 that	you	do	not	have	 to	always	use	 the	number	3,	you	can	also	set	an	alias
with

When	you	exit	the	virtual	machine	with	the

It	does	not	terminate	the	VM.	You	can	use	from	your	host	system	the	commands
such	as

to	manage	the	vm.

4.4	LINUX	SHELL	☁�

host$	vagrant	init	ubuntu/bionic64

host$	vagrant	up

host$	vagrant	ssh

vagrant@ubuntu-bionic:~$	sudo	apt-get	update

vagrant@ubuntu-bionic:~$	python3	--version

Python	3.6.5

vagrant@ubuntu-bionic:~$	sudo	apt-get	install	python3.7

vagrant@ubuntu-bionic:~$	sudo	apt-get	install	python3-pip

vagrant@ubuntu-bionic:~$	sudo	apt-get	install	idle-python

alias	python=python3

exit	command

host$	vagrant	status

host$	vagrant	destroy

host$	vagrant	suspend

host$	vagrant	resume

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/linux.md

	Learning	Objectives

Be	able	to	know	the	basic	commands	to	work	in	a	Linux	terminal.
Get	familiar	with	Linux	Commands

In	 this	 chapter	we	 introduce	 you	 to	 a	 number	 of	 useful	 shell	 commands.	You
may	ask:

“Why	is	he	so	keen	on	telling	me	all	about	shells	as	I	do	have	a	beautiful	GUI?”

You	will	soon	learn	that	A	GUI	may	not	be	that	suitable	if	you	like	to	manage
10,	100,	1000,	10000,	…	virtual	machines.	A	commandline	 interface	could	be
mcuh	simpler	and	would	allow	scripting.

4.4.1	History

LINUX	is	a	reimplementation	by	the	community	of	UNIX	which	was	developed
in	1969	by	Ken	Thompson	and	Dennis	Ritchie	of	Bell	Laboratories	and	rewritten
in	C.	An	important	part	of	UNIX	is	what	 is	called	the	kernel	which	allows	 the
software	to	talk	to	the	hardware	and	utilize	it.

In	 1991	 Linus	 Torvalds	 started	 developing	 a	 Linux	 Kernel	 that	 was	 initially
targeted	 for	PC’s.	This	made	 it	possible	 to	 run	 it	on	Laptops	and	was	 later	on
further	developed	by	making	it	a	full	Operating	system	replacement	for	UNIX.

4.4.2	Shell

One	of	the	most	important	features	for	us	will	be	to	access	the	computer	with	the
help	of	a	shell.	The	shell	is	typically	run	in	what	is	called	a	terminal	and	allows
interaction	to	the	computer	with	commandline	programs.

There	are	many	good	tutorials	out	there	that	explain	why	one	needs	a	linux	shell
and	not	just	a	GUI.	Randomly	we	picked	the	first	one	that	came	up	with	a	google
query.	This	 is	not	an	endorsement	 for	 the	material	we	point	 to,	but	could	be	a
worth	while	read	for	someone	that	has	no	experience	in	Shell	programming:

http://linuxcommand.org/lc3_learning_the_shell.php

Certainly	you	are	welcome	 to	use	other	 resources	 that	may	suite	you	best.	We
will	however	 summarize	 in	 table	 form	a	number	of	useful	 commands	 that	you
may	als	find	even	as	a	RefCard.

http://www.cheat-sheets.org/#Linux

We	 provide	 in	 the	 next	 table	 a	 number	 of	 useful	 commands	 that	 you	want	 to
explore.	For	more	information	simply	type	man	and	the	name	of	the	command.
If	 you	 find	 a	 useful	 command	 that	 is	 missing,	 please	 add	 it	 with	 a	 Git	 pull
request.

.

Command Description
man	command manual	page	for	the	command
apropos	text list	all	commands	that	have	text	in	it
ls Directory	listing
ls	-lisa list	details
tree list	the	directories	in	graphical	form
cd	dirname Change	directory	to	dirname
mkdir	dirname create	the	directory
rmdir	dirname delete	the	directory
pwd print	working	directory
rm	file remove	the	file
cp	a	b copy	file	a	to	b
mv	a	b move/rename	file	a	to	b
cat	a print	content	of	filea
cat	-n	filename print	content	of	filea	with

line	numbers
less	a print	paged	content	of	file	a
head	-5	a Display	first	5	lines	of	file	a

http://linuxcommand.org/lc3_learning_the_shell.php
http://www.cheat-sheets.org/#Linux

tail	-5	a Display	last	5	lines	of	file	a

du	-hs	. show	in	human	readable	form	the
space	used	by	the	current	directory

df	-h show	the	details	of	the	disk	file
system

wc	filename counts	the	word	in	a	file
sort	filename sorts	the	file
uniq	filename displays	only	uniq	entries	in	the	file

tar	-xvf	dir tars	up	a	compressed	version	of	the
directory

rsync faster,	flexible	replacement	for	rcp
gzip	filename compresses	the	file
gunzip	filename compresses	the	file
bzip2	filename compresses	the	file	with

block-sorting

bunzip2	filename uncompresses	the	file	with	block-
sorting

clear clears	the	terminal	screen

touch	filename
change	file	access	and	modification
times	or	if	file	does	not	exist	creates
file

who

displays	a	list	of	users	that	are
currently	logged	on,	for	each	user
the	login	name,	date	and	time	of
login,	tty	name,	and	hostname	if	not
local	are	displayed

whoami displays	the	users	effective	id	see
also	id

echo	-n	string write	specified	arguments	to
standard	output

date
displays	or	sets	date	&	time,	when
invoked	without	arguments	the
current	date	and	time	are	displayed

logout exit	a	given	session

exit
when	issued	at	the	shell	prompt	the
shell	will	exit	and	terminate	any
running	jobs	within	the	shell

kill
terminate	or	signal	a	process	by
sending	a	signal	to	the	specified
process	usually	by	the	pid

ps
displays	a	header	line	followed	by
all	processes	that	have	controlling
terminals

sleep suspends	execution	for	an	interval	of
time	specified	in	seconds

uptime displays	how	long	the	system	has
been	running

time	command times	the	command	execution	in
seconds

find	/	[-name]	file-name.txt

searches	a	specified	path	or
directory	with	a	given	expression
that	tells	the	find	utility	what	to	find,
if	used	as	shown	the	find	utility
would	search	the	entire	drive	for	a
file	named	file-name.txt

diff compares	files	line	by	line

hostname prints	the	name	of	the	current	host
system

which locates	a	program	file	in	the	users
path

tail displays	the	last	part	of	the	file
head displays	the	first	lines	of	a	file

top displays	a	sorted	list	of	system
processes

locate	filename finds	the	path	of	a	file
grep	‘word’	filename finds	all	lines	with	the	word	in	it
grep	-v	‘word’	filename finds	all	lines	without	the	word	in	it

chmod	ug+rw	filename
change	file	modes	or	Access	Control
Lists.	In	this	example	user	and
group	are	changed	to	read	and	write

chown change	file	owner	and	group

history a	build-in	command	to	list	the	past
commands

sudo execute	a	command	as	another	user
su substitute	user	identity
uname print	the	operating	system	name

set	-o	emacs tells	the	shell	to	use	Emacs
commands.

chmod	go-rwx	file changes	the	permission	of	the	file
chown	username	file changes	the	ownership	of	the	file
chgrp	group	file changes	the	group	of	a	file
fgrep	text	filename searches	the	text	in	the	given	file

grep	-R	text	. recursively	searches	for	xyz	in	all
files

find	.	-name	*.py find	all	files	with	.py	at	the	end
ps list	the	running	processes
kill	-9	1234 kill	the	process	with	the	id	1234
at que	commands	for	later	execution

cron daemon	to	execute	scheduled
commands

crontab manage	the	time	table	for	execution
commands	with	cron

mount	/dev/cdrom	/mnt/cdrom mount	a	filesystem	from	a	cd	rom	to
/mnt/cdrom

users list	the	logged	in	users
who display	who	is	logged	in
whoami print	the	user	id
dmesg display	the	system	message	buffer
last indicate	last	logins	of	users	and	ttys

uname print	operating	system	name
date prints	the	current	date	and	time
time	command prints	the	sys,	real	and	user	time
shutdown	-h	“shut	down” shutdown	the	computer
ping ping	a	host
netstat show	network	status
hostname print	name	of	current	host	system

traceroute print	the	route	packets	take	to
network	host

ifconfig configure	network	interface
parameters

host DNS	lookup	utility

whois Internet	domain	name	and	network
number	directory	service

dig DNS	lookup	utility
wget non-interactive	network	downloader
curl transfer	a	URL
ssh remote	login	program
scp remote	file	copy	program
sftp secure	file	transfer	program

watch	command run	any	designated	command	at
regular	intervals

awk
program	that	you	can	use	to	select
particular	records	in	a	file	and
perform	operations	on	them

sed stream	editor	used	to	perform	basic
text	transformations

xargs program	that	can	be	used	to	build
and	execute	commands	from	STDIN

cat	some_file.json	|	python	-m
json.tool quick	and	easy	JSON	validator

4.4.3	The	command	man

On	Linux	you	find	a	 rich	set	of	manual	pages	 for	 thes	commands.	Try	 to	pick
one	and	execute:

You	will	see	somthing	like	this

4.4.4	Multi-command	execution

One	of	the	important	features	is	that	one	can	execute	multiple	commands	in	the
shell.

To	execute	command	2	once	command	1	has	finished	use

To	execute	command	2	as	soon	as	command	1	forwards	output	to	stdout	use

$	man	ls

LS(1)																					BSD	General	Commands	Manual																				LS(1)

NAME

					ls	--	list	directory	contents

SYNOPSIS

					ls	[-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1]	[file	...]

DESCRIPTION

					

					For	each	operand	that	names	a	file	of	a	type	other	than	directory,

					ls	displays	its	name	as	well	as	any	requested,	associated

					information.		For	each	operand	that	names	a	file	of	type	directory,

					ls	displays	the	names	of	files	contained	within	that	directory,	as

					well	as	any	requested,	associated	information.

					If	no	operands	are	given,	the	contents	of	the	current	directory	are

					displayed.		If	more	than	one	operand	is	given,	non-directory

					operands	are	displayed	first;	directory	and	non-directory	operands

					are	sorted	separately	and	in	lexicographical	order.

					The	following	options	are	available:

					-@						Display	extended	attribute	keys	and	sizes	in	long	(-l)	output.

					-1						(The	numeric	digit	``one''.)		Force	output	to	be	one	entry

													per	line.		This	is	the	default	when	output	is	not	to	a	terminal.

					-A						List	all	entries	except	for	.	and	...		Always	set	for	the

													super-user.

					-a						Include	directory	entries	whose	names	begin	with	a	dot	(.).

					...	on	purpose	cut	...	instead	try	it	yourslef

command1;	command2

command1;	command2

To	execute	command	1	in	the	background	use

4.4.5	Keyboard	Shortcuts

These	 shortcuts	will	 come	 in	handy.	Note	 that	many	overlap	with	emacs	 short
cuts.

.

Keys Description
Up	Arrow Show	the	previous	command
Ctrl	+	z Stops	the	current	command

Resume	with	fg	in	the	foreground
Resume	with	bg	in	the	background

Ctrl	+	c Halts	the	current	command
Ctrl	+	l Clear	the	screen
Ctrl	+	a Return	to	the	start	of	the	line
Ctrl	+	e Go	to	the	end	of	the	line
Ctrl	+	k Cut	everything	after	the	cursor	to	a	special	clipboard
Ctrl	+	y Paste	from	the	special	clipboard
Ctrl	+	d Logout	of	current	session,	similar	to	exit

4.4.6	bashrc,	bash_profile	or	zprofile

Usage	of	a	particular	command	and	all	 the	attributes	associated	with	 it,	use	 man
command.	Avoid	using	rm	-r	command	to	delete	files	recursively.	A	good	way	to
avoid	accidental	deletion	is	to	include	the	following	in	the	file	.bash_profile	or	.zprofile
on	macOS	or	.bashrc	on	other	platforms:

4.4.7	Makefile

command1	&

alias	rm='rm	-i'

alias	mv='mv	-i'

alias	h='history'

Makefiles	 allow	 developers	 to	 coordinate	 the	 execution	 of	 code	 compilations.
This	not	only	includes	C	or	C++	code,	but	any	translation	from	source	to	a	final
format.	For	us	 this	could	 include	 the	creation	of	PDF	 files	 from	 latex	 sources,
creation	 of	 docker	 images,	 and	 the	 creation	 of	 cloud	 services	 and	 their
deployment	 through	 simple	 workflows	 represented	 in	 makefiles,	 or	 the
coordination	of	execution	targets.

As	makefiles	include	a	simple	syntax	allowing	structural	dependencies	they	can
easily	adapted	 to	 fulfill	 simple	activities	 to	be	executed	 in	 repeated	 fashion	by
developers.

An	 example	 of	 how	 to	 use	 Makefiles	 for	 docker	 is	 provided	 at
http://jmkhael.io/makefiles-for-your-dockerfiles/.

An	 example	 on	 how	 to	 use	 Makefiles	 for	 LaTeX	 is	 provided	 at
https://github.com/cloudmesh/book/blob/master/Makefile.

Makefiles	 include	 a	number	of	 rules	 that	 are	defined	by	 a	 target	 name.	Let	 us
define	a	target	called	hello	that	prints	out	the	string	“Hello	World”.

Important	to	remember	is	that	the	commands	after	a	target	are	not	indented	just
by	spaces,	but	actually	by	a	single	TAB	character.	Editors	such	as	emacs	will	be
ideal	 to	 edit	 such	 Makefiles,	 while	 allowing	 syntax	 highlighting	 and	 easy
manipulation	 of	 TABs.	Naturally	 other	 editors	will	 do	 that	 also.	 Please	 chose
your	editor	of	choice.	One	of	the	best	features	of	targets	is	that	they	can	depend
on	other	targets.	Thus,	iw	we	define

our	makefile	will	first	execute	hello	and	than	all	commands	in	hallo.	As	you	can
see	this	can	be	very	useful	for	defining	simple	dependencies.

In	addition	we	can	define	variables	in	a	makefile	such	as

				hello:

								@echo	"Hello	World"

				hallo:	hello

								@echo	"Hallo	World"

				HELLO="Hello	World"

				hello:

								@echo	$(HELLO)

http://jmkhael.io/makefiles-for-your-dockerfiles/
https://github.com/cloudmesh/book/blob/master/Makefile

and	can	use	them	in	our	text	with	$	invocations.

Moreover,	in	sophisticated	Makefiles,	we	could	even	make	the	targets	dependent
on	 files	 and	 a	 target	 rules	 could	be	defined	 that	 only	 compiles	 those	 files	 that
have	changed	since	our	last	invocation	of	the	Makefile,	saving	potentially	a	lot
of	time.	However,	for	our	work	here	we	just	use	the	most	elementary	makefiles.

For	more	information	we	recommend	you	to	find	out	about	it	on	the	internet.	A
convenient	 reference	 card	 sis	 available	 at
http://www.cs.jhu.edu/~joanne/unixRC.pdf.

4.4.8	chmod

The	 chmod	 command	 stand	 for	 change	 mode	 and	 changes	 the	 access
permissions	 for	a	given	 file	 system	object(s).	 It	uses	 the	 following	syntax:	 chmod	
[options]	mode[,mode]	file1	[file2…].	 The	 option	 parameters	modify	 how	 the	 process	 runs,
including	what	information	is	outputted	to	the	shell:

Option: Description:
-f,	--silent,	--quiet Forces	process	to	continue	even	if	errors	occur
-v,	--verbose Outputs	for	every	file	that	is	processed
-c,	--changes Outputs	when	a	file	is	changed
--reference=RFile Uses	RFile	instead	of	Mode	values
-R,	--recursive Make	changes	to	objects	in	subdirectories	as	well
--help Show	help
--version Show	version	information

Modes	 specify	which	 rights	 to	give	 to	which	users.	Potential	users	 include	 the
user	who	 owns	 the	 file,	 users	 in	 the	 file’s	Group,	 other	 users	 not	 in	 the	 file’s
Group,	and	all,	and	are	abbreviated	as	 u,	g,	 o,	and	 a	 respectively.	More	 than	one
user	 can	 be	 specified	 in	 the	 same	 command,	 such	 as	 chmod	–v	ug(operator)(permissions)	
file.txt.	If	no	user	is	specified,	the	command	defaults	to	a.	Next,	a	+	or	-	 indicates
whether	permissions	 should	be	added	or	 removed	 for	 the	 selected	user(s).	The
permissions	are	as	follows:

http://www.cs.jhu.edu/~joanne/unixRC.pdf

Permission: Description:
r Read
w Write
x Execute	file	or	access	directory
X Execute	only	if	the	object	is	a	directory
s Set	the	user	or	group	ID	when	running
t Restricted	deletion	flag	or	sticky	mode
u Specifies	the	permissions	the	user	who	owns	the	file	has
g Specifies	the	permissions	of	the	group
o Specifies	the	permissions	of	users	not	in	the	group

More	than	one	permission	can	be	also	be	used	in	the	same	command	as	follows:

Multiple	files	can	also	be	specified:

4.4.9	Exercises

E.Linux.1

Familiarize	yourself	with	the	commands

E.Linux.2

Find	more	commands	that	you	find	useful	and	add	them	to	this	page.

E.Linux.3

Use	 the	 sort	 command	 to	 sort	 all	 lines	 of	 a	 file	 while	 removing
duplicates.

E.Linux.4

Should	 there	 be	 other	 commands	 listed	 in	 the	 table	 with	 the	 Linux

$	chmod	–v	o+rw	file.txt

$	chmod	a-x,o+r	file1.txt	file2.txt

commands	If	so	which?	Create	a	pull	request	for	them.

E.Linux.5

Write	a	section	explaining	chmod.	Use	letters	not	numbers

E.Linux.6

Write	a	section	explaining	chown.	Use	letters	not	numbers

E.Linux.7

Write	a	section	explaining	su	and	sudo

E.Linux.8

Write	a	section	explaining	cron,	at,	and	crontab

4.5	SECURE	SHELL	☁�

	Learning	Objectives

This	is	a	very	important	sections	of	the	book,	studdy	it	carefully.
learn	how	to	use	SSH	keys
Learn	 how	 to	 use	 ssh-add	 and	 ssh-keycahin	 so	 you	 only	 have	 to	 type	 in
your	password	once
Understand	that	each	computer	needs	its	own	ssh	key

Secure	Shell	is	a	network	protocol	allowing	users	to	securely	connect	to	remote
resources	over	the	internet.	In	many	services	we	need	to	use	SSH	to	assure	that
we	protect	he	messages	send	between	the	communicating	entities.	Secure	Shell
is	based	on	public	key	technology	requiring	to	generate	a	public-private	key	pair
on	 the	computer.	The	public	key	will	 than	be	uploaded	 to	 the	 remote	machine
and	 when	 a	 connection	 is	 established	 during	 authentication	 the	 public	 private
key	pair	 is	 tested.	 If	 they	match	authentication	 is	granted.	As	many	users	may
have	 to	 share	 a	 computer	 it	 is	 possible	 to	 add	 a	 list	 of	 public	 keys	 so	 that	 a

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh.md
http://openssh.com/manual.html

number	 of	 computers	 can	 connect	 to	 a	 server	 that	 hosts	 such	 a	 list.	 This
mechanism	builds	the	basis	for	networked	computers.

In	this	section	we	will	introduce	you	to	some	of	the	commands	to	utilize	secure
shell.	We	will	 reuse	 this	 technology	 in	 other	 sections	 to	 for	 example	 create	 a
network	 of	 workstations	 to	 which	 we	 can	 log	 in	 from	 your	 laptop.	 For	 more
information	please	also	consult	with	the	SSH	Manual.

	Whatever	others	tell	you,	the	private	key	should	never	be	copied
to	 another	machine.	 You	 almost	 always	want	 to	 have	 a	 passphrase
protecting	your	key.

4.5.1	ssh-keygen

The	first	thing	you	will	need	to	do	is	to	create	a	public	private	key	pair.	Before
you	do	this	check	whether	there	are	already	keys	on	the	computer	you	are	using:

If	 there	 are	 files	 named	 id_rsa.pub	 or	 id_dsa.pub,	 then	 the	 keys	 are	 set	 up
already,	and	we	can	skip	the	generating	keys	step.	However	you	must	know	the
passphrase	of	the	key.	If	you	forgot	it	you	will	need	to	recreate	the	key.	However
you	will	 lose	any	ability	 to	connect	with	 the	old	key	 to	 the	resources	 to	which
you	uploaded	the	public	key.	So	be	careful.

To	generate	a	key	pair	use	the	command	ssh-keygen.	This	program	is	commonly
available	on	most	UNIX	systems	and	most	recently	even	Windows	10.

To	generate	the	key,	please	type:

The	 comment	will	 remind	 you	where	 the	 key	 has	 been	 created,	 you	 could	 for
example	use	the	hostname	on	which	you	created	the	key.

In	 the	 following	 text	we	will	 use	 localname	 to	 indicate	 the	 username	 on	 your
computer	on	which	you	execute	the	command.

ls	~/.ssh

$	ssh-keygen	-t	rsa	-C	<comment>

http://openssh.com/manual.html
http://linux.die.net/man/1/ssh-keygen

The	command	requires	the	interaction	of	the	user.	The	first	question	is:

We	 recommend	using	 the	default	 location	~/.ssh/	 and	 the	default	 name	 id_rsa.
To	do	so,	just	press	the	enter	key.

The	second	and	third	question	is	to	protect	your	ssh	key	with	a	passphrase.	This
passphrase	will	protect	your	key	because	you	need	to	type	it	when	you	want	to
use	it.	Thus,	you	can	either	type	a	passphrase	or	press	enter	to	leave	it	without
passphrase.	To	avoid	security	problems,	you	MUST	chose	a	passphrase.

It	will	ask	you	for	the	location	and	name	of	the	new	key.	It	will	also	ask	you	for
a	 passphrase,	 which	 you	MUST	 provide.	 Please	 use	 a	 strong	 passphrase	 to
protect	it	appropriately.	Some	may	advise	you	(including	teachers	and	TA’s)	to
not	use	passphrases.	This	is	WRONG	as	it	allows	someone	that	gains	access	to
your	computer	to	also	gain	access	to	all	resources	that	have	the	public	key.	Only
for	 some	 system	 related	 services	 you	may	 create	 passwordless	 keys,	 but	 such
systems	need	to	be	properly	protected.

	Not	using	passphrases	poses	a	security	risk!

Make	sure	to	not	just	type	return	for	an	empty	passphrase:

and:

If	executed	correctly,	you	will	see	some	output	similar	to:

Enter	file	in	which	to	save	the	key	(/home/localname/.ssh/id_rsa):

Enter	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

Generating	public/private	rsa	key	pair.

Enter	file	in	which	to	save	the	key	(/home/localname/.ssh/id_rsa):

Enter	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

Your	identification	has	been	saved	in	/home/localname/.ssh/id_rsa.

Your	public	key	has	been	saved	in	/home/localname/.ssh/id_rsa.pub.

The	key	fingerprint	is:

34:87:67:ea:c2:49:ee:c2:81:d2:10:84:b1:3e:05:59	localname@indiana.edu

+--[RSA	2048]----+

|.+...Eo=	.							|

|	..=.o	+	o	+o				|

|O.		=					|

Once,	you	have	generated	your	key,	you	should	have	them	in	the	 .ssh	directory.
You	can	check	it	by:

If	everything	is	normal,	you	will	see	something	like:

The	 directory	 ~/.ssh	 will	 also	 contain	 the	 private	 key	 id_rsa	 which	 you	must	 not
share	or	copy	to	another	computer.

	Never,	copy	your	private	key	to	another	machine	or	check	it	into
a	repository!

To	see	what	is	in	the	.ssh	directory,	please	use

Typically	you	will	se	a	list	of	files	such	as

In	case	you	need	to	change	your	change	passphrase,	you	can	simply	run	ssh-keygen	-p
command.	 Then	 specify	 the	 location	 of	 your	 current	 key,	 and	 input	 (old	 and)
new	passphrases.	There	is	no	need	to	re-generate	keys:

You	will	see	the	following	output	once	you	have	completed	that	step:

|	=	.			.	.							|

+-----------------+

$	cat	~/.ssh/id_rsa.pub

ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABAQCXJH2iG2FMHqC6T/U7uB8kt

6KlRh4kUOjgw9sc4Uu+Uwe/kshuispauhfsjhfm,anf6787sjgdkjsgl+EwD0

thkoamyi0VvhTVZhj61pTdhyl1t8hlkoL19JVnVBPP5kIN3wVyNAJjYBrAUNW

4dXKXtmfkXp98T3OW4mxAtTH434MaT+QcPTcxims/hwsUeDAVKZY7UgZhEbiE

xxkejtnRBHTipi0W03W05TOUGRW7EuKf/4ftNVPilCO4DpfY44NFG1xPwHeim

Uk+t9h48pBQj16FrUCp0rS02Pj+4/9dNeS1kmNJu5ZYS8HVRhvuoTXuAY/UVc

ynEPUegkp+qYnR	user@myemail.edu

$	ls	~/.ssh

authorized_keys

id_rsa

id_rsa.pub

known_hosts

ssh-keygen	-p

Enter	file	in	which	the	key	is	(/home/localname/.ssh/id_rsa):

Enter	old	passphrase:

Key	has	comment	'/home/localname/.ssh/id_rsa'

Enter	new	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

Your	identification	has	been	saved	with	the	new	passphrase.

4.5.2	ssh-add

Often	 you	 wil	 find	 wrong	 information	 about	 passphrases	 on	 the	 internet	 and
people	recommending	you	not	to	use	one.	However	it	is	in	almost	all	cases	better
to	create	a	key	pair	and	use	ssh-add	to	add	the	key	to	the	current	session	so	it	can	be
used	in	behalf	of	you.	This	is	accomplished	with	an	agent.

The	ssh-add	command	adds	SSH	private	keys	into	the	SSH	authentication	agent	for
implementing	 single	 sign-on	 with	 SSH.	 ssh-add	 allows	 the	 user	 to	 use	 any
number	of	servers	 that	are	spread	across	any	number	of	organizations,	without
having	to	type	in	a	password	every	time	when	connecting	between	servers.	This
is	commonly	used	by	system	administrators	to	login	to	multiple	server.

ssh-add	 can	 be	 run	without	 arguments.	When	 run	without	 arguments,	 it	 adds	 the
following	default	files	if	they	do	exist:

~/.ssh/identity	-	Contains	the	protocol	version	1	RSA	authentication	identity	of
the	user.
~/.ssh/id_rsa	 -	Contains	 the	protocol	version	1	RSA	authentication	 identity	of
the	user.
~/.ssh/id_dsa	 -	Contains	 the	protocol	version	2	DSA	authentication	 identity	of
the	user.
~/.ssh/id_ecdsa	-	Contains	the	protocol	version	2	ECDSA	authentication	identity
of	the	user.

To	add	a	key	you	can	provide	the	path	of	the	key	file	as	an	argument	to	ssh-add.
For	example,

would	add	the	file	~/.ssh/id_rsa

If	 the	key	being	added	has	a	passphrase,	 ssh-add	will	 run	 the	 ssh-askpass	program	to
obtain	 the	passphrase	from	the	user.	 If	 the	 SSH_ASKPASS	environment	variable	 is	set,
the	program	given	by	that	environment	variable	is	used	instead.

Some	 people	 use	 the	 SSH_ASKPASS	 environment	 variable	 in	 scripts	 to	 provide	 a
passphrase	for	a	key.	The	passphrase	might	then	be	hard-coded	into	the	script,	or
the	script	might	fetch	it	from	a	password	vault.

ssh-add	~/.ssh/id_rsa

The	command	line	options	of	ssh-add	are	as	follows:

Option Description

-c

Causes	a	confirmation	to	be	requested	from	the	user	every
time	the	added	identities	are	used	for	authentication.	The
confirmation	is	requested	using	ssh-askpass.

-D Deletes	all	identities	from	the	agent.

-d

Deletes	the	given	identities	from	the	agent.	The	private	key
files	for	the	identities	to	be	deleted	should	be	listed	on	the
command	line.

-e	pkcs11 Remove	key	provided	by	pkcs11

-L
Lists	public	key	parameters	of	all	identities	currently
represented	by	the	agent.

-l
Lists	fingerprints	of	all	identities	currently	represented	by	the
agent.

-s	pkcs11 Add	key	provided	by	pkcs11.

-t	life

Sets	the	maximum	time	the	agent	will	keep	the	given	key.
After	the	timeout	expires,	the	key	will	be	automatically
removed	from	the	agent.	The	default	value	is	in	seconds,	but
can	be	suffixed	for	m	for	minutes,	h	for	hours,	d	for	days,	or
w	for	weeks.

-X Unlocks	the	agent.	This	asks	for	a	password	to	unlock.

-x

Locks	the	agent.	This	asks	for	a	password;	the	password	is
required	for	unlocking	the	agent.	When	the	agent	is	locked,	it
cannot	be	used	for	authentication.

4.5.3	SSH	Add	and	Agent

To	not	always	type	in	your	password,	you	can	use	ssh-add	as	previously	discussed

It	 prompts	 the	 user	 for	 a	 private	 key	 passphrase	 and	 add	 it	 to	 a	 list	 of	 keys
managed	by	 the	ssh-agent.	Once	 it	 is	 in	 this	 list,	you	will	not	be	asked	for	 the
passphrase	as	long	as	the	agent	is	running.with	your	public	key.	To	use	the	key
across	terminal	shells	you	can	start	an	ssh	agent.

To	start	the	agent	please	use	the	following	command:

or	use

It	is	important	that	you	use	the	backquote,	located	under	the	tilde	(US	keyboard),
rather	than	the	single	quote.	Once	the	agent	is	started	it	will	print	a	PID	that	you
can	use	to	interact	with	later

To	add	the	key	use	the	command

To	remove	the	agent	use	the	command

To	execute	 the	command	upon	 logout,	place	 it	 in	your	 .bash_logout	 (assuming	you
use	bash).

On	OSX	you	 can	 also	 add	 the	 key	 permanently	 to	 the	 keychain	 if	 you	 do	 toe
following:

Modify	the	file	.ssh/config	and	add	the	following	lines:

4.5.3.1	Using	SSH	on	Mac	OS	X

Mac	OS	X	 comes	with	 an	 ssh	 client.	 In	 order	 to	 use	 it	 you	 need	 to	 open	 the	
Terminal.app	application.	Go	 to	 Finder,	 then	click	 Go	 in	 the	menu	bar	at	 the	 top	of	 the
screen.	Now	click	Utilities	and	then	open	the	Terminal	application.

4.5.3.2	Using	SSH	on	Linux

All	Linux	versions	come	with	ssh	and	can	be	used	right	from	the	terminal.

$	eval	`ssh-agent`

$	eval	"$(ssh-agent	-s)"

$	ssh-add

kill	$SSH_AGENT_PID

ssh-add	-K	~/.ssh/id_rsa

Host	*

		UseKeychain	yes

		AddKeysToAgent	yes

		IdentityFile	~/.ssh/id_rsa

4.5.3.3	Using	SSH	on	Raspberry	Pi	3/4

SSH	is	available	on	Raspbian.	However,	to	ssh	into	the	PI	you	have	to	activate	it
via	the	configuration	menu.

4.5.3.4	Accessing	a	Remote	Machine

Once	 the	key	pair	 is	generated,	you	can	use	 it	 to	access	a	 remote	machine.	To
dod	 so	 the	 public	 key	 needs	 to	 be	 added	 to	 the	 authorized_keys	 file	 on	 the	 remote
machine.

The	easiest	way	to	do	tis	is	to	use	the	command	ssh-copy-id.

Note	that	the	first	time	you	will	have	to	authenticate	with	your	password.

Alternatively,	 if	 the	ssh-copy-id	 is	not	available	on	your	system,	you	can	copy
the	file	manually	over	SSH:

Now	try:

and	you	will	not	be	prompted	for	a	password.	However,	if	you	set	a	passphrase
when	creating	your	SSH	key,	you	will	be	asked	 to	enter	 the	passphrase	at	 that
time	 (and	 whenever	 else	 you	 log	 in	 in	 the	 future).	 To	 avoid	 typing	 in	 the
password	all	the	time	we	use	the	ssh-add	command	that	we	described	earlier.

4.5.4	SSH	Port	Forwarding	�

�	TODO:	Add	images	to	illustrate	the	concepts

SSH	 Port	 forwarding	 (SSH	 tunneling)	 creates	 an	 encrypted	 secure	 connection
between	a	local	computer	and	a	remote	computer	through	which	services	can	be
relayed.	 Because	 the	 connection	 is	 encrypted,	 SSH	 tunneling	 is	 useful	 for
transmitting	information	that	uses	an	unencrypted	protocol.

$	ssh-copy-id	user@host

$	cat	~/.ssh/id_rsa.pub	|	ssh	user@host	'cat	>>	.ssh/authorized_keys'

$	ssh	user@host

$	ssh-add

4.5.4.1	Prerequisites

Before	you	begin,	you	need	to	check	if	forwarding	is	allowed	on	the	SSH
server	you	will	connect	to.
You	also	need	to	have	a	SSH	client	on	the	computer	you	are	working	on.

If	you	are	using	the	OpenSSH	server:

and	look	and	change	the	following:

Set	 the	 GatewaysPorts	 variable	 only	 if	 you	 are	 going	 to	 use	 remote	 port	 forwarding
(discussed	 later	 in	 this	 tutorial).	 Then,	 you	 need	 to	 restart	 the	 server	 for	 the
change	to	take	effect.

4.5.4.2	How	to	Restart	the	Server

If	you	are	on:

Linux,	depending	upon	the	init	system	used	by	your	distribution,	run:

Note	 that	 depending	 on	 your	 distribution,	 you	 may	 have	 to	 change	 the
service	to	ssh	instead	of	sshd.

Mac,	you	can	restart	the	server	using:

Windows	 and	 want	 to	 set	 up	 a	 SSH	 server,	 have	 a	 look	 at	 MSYS2	 or
Cygwin.

4.5.4.3	Types	of	Port	Forwarding

There	are	three	types	of	SSH	Port	forwarding:

$	vi	/etc/ssh/sshd_config

AllowTcpForwarding	=	Yes

GatewayPorts	=	Yes

	$	sudo	systemctl	restart	sshd

	$	sudo	service	sshd	restart

$	sudo	launchctl	unload	/System/Library/LaunchDaemons/ssh.plist

$	sudo	launchctl	load	-w	/System/Library/LaunchDaemons/ssh.plist

4.5.4.4	Local	Port	Forwarding

Local	 port	 forwarding	 lets	 you	 connect	 from	 your	 local	 computer	 to	 another
server.	 It	allows	you	 to	 forward	 traffic	on	a	port	of	your	 local	computer	 to	 the
SSH	 server,	 which	 is	 forwarded	 to	 a	 destination	 server.	 To	 use	 local	 port
forwarding,	you	need	to	know	your	destination	server,	and	two	port	numbers.

Example	1:

Where	 <host>	 should	 be	 replaced	 by	 the	 name	 of	 your	 laptop.	 The	 -L	 option
specifies	 local	 port	 forwarding.	 For	 the	 duration	 of	 the	 SSH	 session,	 pointing
your	browser	at	http://localhost:8080/	would	send	you	to	http://cloudcomputing.com

Example	2:

This	example	opens	a	connection	to	the	www.cloudcomputing.com	jump	server,
and	 forwards	 any	 connection	 to	 port	 80	 on	 the	 local	 machine	 to	 port	 80	 on	
intra.example.com.

Example	3:

By	 default,	 anyone	 (even	 on	 different	 machines)	 can	 connect	 to	 the	 specified
port	on	the	SSH	client	machine.	However,	this	can	be	restricted	to	programs	on
the	same	host	by	supplying	a	bind	address:

Example	4:

This	 would	 forward	 two	 connections,	 one	 to	 www.cloudcomputing.com,	 the	 other	 to	
www.cloud.com.	Pointing	your	browser	at	http://localhost:8080/	would	download	pages	from
www.cloudcomputing.com,	and	pointing	your	browser	to	http://localhost:12345/	would
download	pages	from	www.cloud.com.

Example	5:

$	ssh	-L	8080:www.cloudcomputing.org:80	<host>

$	ssh	-L	80:intra.example.com:80	www.cloudcomputing.com

$	ssh	-L	127.0.0.1:80:intra.example.com:80	www.cloudcomputing.com

$	ssh	-L	8080:www.Cloudcomputing.com:80	-L	12345:cloud.com:80	<host>

The	destination	server	can	even	be	the	same	as	the	SSH	server.

The	LocalForward	option	in	the	OpenSSH	client	configuration	file	can	be	used
to	configure	forwarding	without	having	to	specify	it	on	command	line.

4.5.4.5	Remote	Port	Forwarding

Remote	 port	 forwarding	 is	 the	 exact	 opposite	 of	 local	 port	 forwarding.	 It
forwards	traffic	coming	to	a	port	on	your	server	to	your	local	computer,	and	then
it	 is	 sent	 to	 a	destination.	The	 first	 argument	 should	be	 the	 remote	port	where
traffic	will	be	directed	on	the	remote	system.	The	second	argument	should	be	the
address	and	port	to	point	the	traffic	to	when	it	arrives	on	the	local	system.

SSH	 does	 not	 by	 default	 allow	 remote	 hosts	 to	 forwarded	 ports.	 To	 enable
remote	forwarding	add	the	following	to:	/etc/ssh/sshd_config

and	restart	SSH

After	completing	the	previous	steps	you	should	be	able	to	connect	to	the	server
remotely,	 even	 from	your	 local	machine.	 ssh	-R	 first	 creates	 an	 SSH	 tunnel	 that
forwards	 traffic	 from	 the	 server	 on	 port	 9000	 to	 your	 local	 machine	 on	 port
3000.

4.5.4.6	Dynamic	Port	Forwarding

Dynamic	 port	 forwarding	 turns	 your	 SSH	 client	 into	 a	 SOCKS	 proxy	 server.
SOCKS	 is	 a	 little-known	 but	 widely-implemented	 protocol	 for	 programs	 to
request	any	Internet	connection	through	a	proxy	server.	Each	program	that	uses
the	proxy	server	needs	to	be	configured	specifically,	and	reconfigured	when	you
stop	using	the	proxy	server.

$	ssh	-L	5900:localhost:5900	<host>

$	ssh	-R	9000:localhost:3000	user@clodcomputing.com

GatewayPorts	yes

$	sudo	vim	/etc/ssh/sshd_config

$	sudo	service	ssh	restart

The	SSH	client	 creates	 a	SOCKS	proxy	 at	 port	 5000	 on	 your	 local	 computer.
Any	traffic	sent	to	this	port	is	sent	to	its	destination	through	the	SSH	server.

Next,	you’ll	need	to	configure	your	applications	to	use	this	server.	The	Settings
section	of	most	web	browsers	allow	you	to	use	a	SOCKS	proxy.

4.5.4.7	ssh	config

Defaults	 and	 other	 configurations	 can	 be	 added	 to	 a	 configuration	 file	 that	 is
placed	in	the	system.	The	ssh	program	on	a	host	receives	its	configuration	from

the	command	line	options
a	user-specific	configuration	file:	~/.ssh/config
a	system-wide	configuration	file:	/etc/ssh/ssh_config

Next	we	provide	an	example	on	how	to	use	a	config	file

4.5.4.8	Tips

Use	SSH	keys

You	will	need	to	use	ssh	keys	to	access	remote	machines

No	blank	passphrases

In	most	cases	you	must	use	a	passphrase	with	your	key.	In	fact	if	we	find
that	 you	 use	 passwordless	 keys	 to	 futuresystems	 and	 to	 chameleon	 cloud
resources,	we	may	 elect	 to	 give	 you	 anF	 for	 the	 assignment	 in	 question.
There	are	some	exceptions,	but	they	will	be	clearly	communicated	to	you	in
class.	You	will	as	part	of	your	cloud	drivers	 license	 test	explain	how	you
gain	access	to	futuresystems	and	chameleon	to	explicitly	explain	this	point
and	provide	us	with	reasons	what	you	can	not	do.

A	key	for	each	server

Under	 no	 circumstances	 copy	 the	 same	 private	 key	 on	 multiple	 servers.
This	 violates	 security	best	 practices.	Create	 for	 each	 server	 a	 new	private

$	ssh	-D	5000	user@clodcomputing.com

key	and	use	their	public	keys	to	gain	access	to	the	appropriate	server.

Use	SSH	agent

So	as	to	not	to	type	in	all	the	time	the	passphrase	for	a	key,	we	recommend
using	ssh-agent	to	manage	the	login.	This	will	be	part	of	your	cloud	drivers
license.

But	shut	down	the	ssh-agent	if	not	in	use

keep	an	offline	backup,	put	encrypt	the	drive

You	may	for	some	of	our	projects	need	to	make	backups	of	private	keys	on
other	servers	you	set	up.	If	you	like	to	make	a	backup	you	can	do	so	on	a
USB	stick,	but	make	sure	that	access	to	the	stick	is	encrypted.	Do	not	store
anything	else	on	that	key	and	look	it	 in	a	safe	place.	If	you	lose	the	stick,
recreate	all	keys	on	all	machines.

4.5.4.9	References

The	Secure	Shell:	The	Definitive	Guide,	2	Ed	(O’Reilly	and	Associates)

4.5.5	SSH	to	FutureSystems	Resources	☁�

	Learning	Objectives

Obtain	a	Future	system	account	so	you	can	use	kubernetes	or	dockerswarm
or	other	services	offered	by	FutureSystems.

Next,	 you	 need	 to	 upload	 the	 key	 to	 the	 portal.	 You	must	 be	 logged	 into	 the
portal	to	do	so.

Step	1:	Log	into	the	portal	https://portal.futuresystems.org/

Step	2:	Click	on	the	“MY	ACCOUNT”	link.

http://shop.oreilly.com/product/9780596008956.do
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh-futuresystems.md
https://portal.futuresystems.org/

Step	3:	Click	on	“EDIT”

Step	 4:	 Paste	 your	 ssh	 key	 into	 the	 box	marked	 Public	 SSH	Key.	 Use	 a	 text
editor	to	open	the	 id_rsa.pub.	Copy	the	entire	contents	of	 this	file	 into	 the	ssh	key
field	as	part	of	your	profile	information.	Many	errors	are	introduced	by	users	in
this	step	as	they	do	not	paste	and	copy	correctly.

If	you	need	to	add	keys,	use	the	Add	another	item	button

At	this	point,	you	have	uploaded	your	key.	However,	you	will	still	need	to	wait
till	all	accounts	have	been	set	up	to	use	the	key,	or	if	you	did	not	have	an	account
till	it	has	been	created	by	an	administrator.	Please,	check	your	email	for	further
updates.	 You	 can	 also	 refresh	 this	 page	 and	 see	 if	 the	 boxes	 in	 your	 account
status	information	are	all	green.	Then	you	can	continue.

4.5.5.1	Testing	your	FutureSystems	ssh	key

If	you	have	had	no	FutureSystem	account	before,	you	need	to	wait	for	up	to	two
business	days	so	we	can	verify	your	 identity	and	create	 the	account.	So	please
wait.	Otherwise,	testing	your	new	key	is	almost	instantaneous	on	india.	For	other
clusters	like	it	can	take	around	30	minutes	to	update	the	ssh	keys.

To	log	into	india	simply	type	the	usual	ssh	command	such	as:

The	first	time	you	ssh	into	a	machine	you	will	see	a	message	like	this:

You	have	to	type	yes	and	press	enter.	Then	you	will	be	logging	into	india.	Other
FutureSystem	 machines	 can	 be	 reached	 in	 the	 same	 fashion.	 Just	 replace	 the
name	india,	with	the	appropriate	FutureSystems	resource	name.

4.5.6	Exercises	☁�

E.SSH.1:

$	ssh	portalname@india.futuresystems.org

The	authenticity	of	host	'india.futuresystems.org	(192.165.148.5)'	cannot	be	established.

RSA	key	fingerprint	is	11:96:de:b7:21:eb:64:92:ab:de:e0:79:f3:fb:86:dd.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh-excerise.md

Create	an	SSH	key	pair

E.SSH.2:

Upload	the	public	key	to	git	repository	you	use.

E.SSH.3:

What	is	the	output	of	a	key	that	has	a	passphrase	when	executing	the
following	command.	Test	it	out	on	your	key

E.SSH.4

Get	an	account	on	futuresystems.org	(if	you	are	authorized	to	do	so).
Upload	 your	 key	 to	 https://futuresystems.org.	 Login	 to
india.futuresystems.org.	 Note	 that	 this	 could	 take	 some	 time	 as
administrators	need	to	approve	you.	Be	patient.

E.SSH.5:

What	can	happen	 if	 you	copy	your	private	 key	 to	a	machine	on	 the
network?

E.SSH.6:

Should	I	share	my	provate	key	with	others?

E.SSH.7:

Assume	I	participate	in	a	video	conference	call	and	I	accidently	share
my	private	key.	What	should	I	do?

E.SSH.8:

Assume	I	participate	in	a	video	conference	call	and	I	accidently	share
my	public	key.	What	should	I	do?

4.6	GITHUB	☁�

	$	grep	ENCRYPTED	~/.ssh/id_rsa

https://futuresystems.org
https://github.com/cloudmesh-community/book/blob/master/chapters/git/github.md

	Learning	Objectives

Be	 able	 to	 use	 the	 github	 cloud	 sevices	 to	 collaborately	 develop	 contents
and	programs.
Be	able	to	use	github	as	part	of	an	open	source	project.

In	 some	 classes	 the	material	may	 be	 openly	 shared	 in	 code	 repositories.	 This
includes	class	material,	papers	and	project.	Hence,	we	need	some	mechanism	to
share	content	with	a	large	number	of	students.

First,	 we	 like	 to	 introduce	 you	 to	 git	 and	 github.com	 (Section	 1.1).	Next,	we
provide	you	with	the	basic	commands	to	interact	with	git	from	the	commandline
(Section	1.12).	Than	we	will	introduce	you	how	you	can	contribute	to	this	set	of
documentations	with	pull	requests.

4.6.1	Overview

Github	is	a	code	repository	that	allows	the	development	of	code	and	documents
with	many	contributors	 in	a	distributed	 fashion.	There	are	many	good	 tutorials
about	 github.	 Some	 of	 them	 can	 be	 found	 on	 the	 github	 Web	 page.	 An
interactive	tutorial	is	for	example	available	at

https://try.github.io/

However,	although	these	tutorials	are	helpful	in	many	cases	they	do	not	address
some	 cases.	 For	 example,	 you	 have	 already	 a	 repository	 set	 up	 by	 your
organization	 and	 you	 do	 not	 have	 to	 completely	 initialize	 it.	 Thus	 do	 not	 just
replicate	 the	 commands	 in	 the	 tutorial,	 or	 the	once	we	present	here	before	not
evaluating	their	consequences.	In	general	make	sure	you	verify	if	the	command
does	what	you	expect	before	you	execute	it.

A	more	extensive	list	of	tutorials	can	be	found	at

https://help.github.com/articles/what-are-other-good-resources-for-learning-
git-and-github

https://try.github.io/
https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github

The	 github	 foundation	 has	 a	 number	 of	 excellent	 videos	 about	 git.	 If	 you	 are
unfamiliar	 with	 git	 and	 you	 like	 to	 watch	 videos	 in	 addition	 to	 reading	 the
documentation	we	recommend	these	videos

https://www.youtube.com/user/GitHubGuides/videos

Next,	we	introduce	some	important	concepts	used	in	github.

4.6.2	Upload	Key

Before	you	can	work	with	a	repository	in	an	easy	fashion	you	need	to	upload	a
public	key	in	order	to	access	your	repository.	Naturally,	you	need	to	generate	a
key	first	which	is	explained	in	the	section	about	ssh	key	generation	(�	TODO:
lessons-ssh-generate-key	 include	 link)	 before	 you	 upload	 one.	 Copy	 the
contents	of	your	.ssh/id_rsa.pub	file	and	add	them	to	your	github	keys.

More	information	on	this	topic	can	be	found	on	the	github	Web	page.

4.6.3	Fork

Forking	 is	 the	 first	 step	 to	 contributing	 to	 projects	 on	GitHub.	Forking	 allows
you	to	copy	a	repository	and	work	on	it	under	your	own	account.	Next,	creating
a	 branch,	 making	 some	 changes,	 and	 offering	 a	 pull	 request	 to	 the	 original
repository,	rounds	out	your	contribution	to	the	open	source	project.

	Git	1:41	Fork

4.6.4	Rebase

When	 you	 start	 editing	 your	 project,	 you	 diverge	 from	 the	 original	 version.
During	 your	 developing,	 the	 original	 version	 may	 be	 updated,	 or	 other
developers	may	 have	 some	 of	 their	 branches	 implementing	 good	 features	 that
you	would	like	 to	 include	in	your	current	work.	That	 is	when	Rebase	becomes
useful.	When	 you	Rebase	 to	 certain	 points,	 could	 be	 a	 newer	Master	 or	 other
custom	branch,	consider	you	graft	all	your	on-going	work	right	to	that	point.

Rebase	may	 fail,	 because	 some	 times	 it	 is	 impossible	 to	 achieve	what	we	 just

https://www.youtube.com/user/GitHubGuides/videos
https://github.com/settings/keys
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://www.youtube.com/watch?v=5oJHRbqEofs

described	as	conflicts	may	exist.	For	example,	you	and	 the	 to-be-rebased	copy
both	edited	some	common	text	section.	Once	 this	happens,	human	intervention
needs	to	take	place	to	resolve	the	conflict.

	Git	4:20	Rebase

4.6.5	Remote

Collaborating	 with	 others	 involves	 managing	 the	 remote	 repositories	 and
pushing	 and	 pulling	 data	 to	 and	 from	 them	 when	 you	 need	 to	 share	 work.
Managing	remote	repositories	includes	knowing	how	to	add	remote	repositories,
remove	 remotes	 that	are	no	 longer	valid,	manage	various	 remote	branches	and
define	them	as	being	tracked	or	not,	and	more.

Though	out	this	semester,	you	will	typically	work	on	two	remote	repos.	One	is
the	office	class	repo,	and	another	is	the	repo	you	forked	from	the	class	repo.	The
class	 repo	 is	 used	 as	 the	 centralized,	 authority	 and	 final	 version	 of	 all	 student
submissions.	 The	 repo	 under	 your	 own	 Github	 account	 is	 for	 your	 personal
storage.	To	show	progress	on	a	weekly	basis	you	need	to	commit	your	changes
on	 a	 weekly	 basis.	 However	 make	 sure	 that	 things	 in	 the	 master	 branch	 are
working.	If	not,	just	use	another	branch	to	conduct	your	changes	and	merge	at	a
later	time.	We	like	you	to	call	your	development	branch		dev.

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

4.6.6	Pull	Request

Pull	 requests	 are	 a	means	 of	 starting	 a	 conversation	 about	 a	 proposed	 change
back	 into	 a	 project.	We	will	 be	 taking	 a	 look	 at	 the	 strength	 of	 conversation,
integration	options	 for	 fuller	 information	about	 a	 change,	 and	cleanup	 strategy
for	when	a	pull	request	is	finished.

	Git	4:26	Pull	Request

4.6.7	Branch

Branches	 are	 an	 excellent	 way	 to	 not	 only	 work	 safely	 on	 features	 or

https://www.youtube.com/watch?v=SxzjZtJwOgo
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://www.youtube.com/watch?v=d5wpJ5VimSU

experiments,	 but	 they	 are	 also	 the	 key	 element	 in	 creating	 Pull	 Requests	 on
GitHub.	 Lets	 take	 a	 look	 at	why	we	want	 branches,	 how	 to	 create	 and	 delete
branches,	and	how	to	switch	branches	in	this	episode.

	Git	2:25	Branch

4.6.8	Checkout

Change	 where	 and	 what	 you	 are	 working	 on	 with	 the	 checkout	 command.
Whether	we	 are	 switching	 branches,	 wanting	 to	 look	 at	 the	working	 tree	 at	 a
specific	 commit	 in	 history,	 or	 discarding	 edits	we	want	 to	 throw	 away,	 all	 of
these	can	be	done	with	the	checkout	command.

	Git	3:11	Checkout

4.6.9	Merge

Once	you	know	branches,	merging	that	work	into	master	is	the	natural	next	step.
Find	out	how	to	merge	branches,	identify	and	clean	up	merge	conflicts	or	avoid
conflicts	until	a	later	date.	Lastly,	we	will	look	at	combining	the	merged	feature
branch	into	a	single	commit	and	cleaning	up	your	feature	branch	after	merges.

	Git	3:11	Merge

4.6.10	GUI

Using	Graphical	User	Interfaces	can	supplement	your	use	of	the	command	line
to	get	the	best	of	both	worlds.	GitHub	for	Windows	and	GitHub	for	Mac	allow
for	switching	to	command	line,	ease	of	grabbing	repositories	from	GitHub,	and
participating	 in	 a	 particular	 pull	 request.	 We	 will	 also	 see	 the	 auto-updating
functionality	helps	us	stay	up	to	date	with	stable	versions	of	Git	on	the	command
line.

	Git	3:47	GUI

There	 are	many	 other	 git	 GUI	 tools	 available	 that	 directly	 integrate	 into	 your

https://www.youtube.com/watch?v=H5GJfcp3p4Q
https://www.youtube.com/watch?v=HwrPhOp6-aM
https://www.youtube.com/watch?v=yyLiplDQtf0
https://www.youtube.com/watch?v=BMYOs5jflGE

operating	system	finders,	windows,	…,	or	PyCharm.	It	 is	up	 to	you	to	 identify
such	tools	and	see	if	they	are	useful	for	you.	Most	of	the	people	we	work	with	us
git	from	the	command	line,	even	if	they	use	PyCharm,	eclipse,	or	other	tools	that
have	build	in	git	support.	You	can	identify	a	tool	that	works	best	for	you.

4.6.11	Windows

This	is	a	quick	tour	of	GitHub	for	Windows.	It	offers	GitHub	newcomers	a	brief
overview	 of	 what	 this	 feature-loaded	 version	 control	 tool	 and	 an	 equally
powerful	web	application	can	do	for	developers,	designers,	and	managers	using
Windows	 in	 both	 the	 open	 source	 and	 commercial	 software	 worlds.	 More:
http://windows.github.com

	Git	1:25	Windows

4.6.12	Git	from	the	Commandline

Although	github.com	provides	a	powerful	GUI	and	other	GUI	tools	are	available
to	interface	with	github.com,	the	use	of	git	from	the	commandline	can	often	be
faster	and	in	many	cases	may	be	simpler.

Git	commandline	tools	can	be	easily	installed	on	a	variety	of	operating	systems
including	 Linux,	 macOS,	 and	 Windows.	 Many	 great	 tutorials	 exist	 that	 will
allow	 you	 to	 complete	 this	 task	 easily.	We	 found	 the	 following	 two	 tutorials
sufficient	to	get	the	task	accomplished:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.atlassian.com/git/tutorials/install-git

Although	 the	 later	 is	 provided	 by	 an	 alternate	 repository	 to	 github.	 The
installation	instructions	are	very	nice	and	are	not	impacted	by	it.	Once	you	have
installed	git	you	need	to	configure	it.

4.6.13	Configuration

Once	 you	 installed	 Git,	 you	 can	 need	 to	 configure	 it	 properly.	 This	 includes
setting	up	your	username,	email	address,	line	endings,	and	color,	along	with	the

http://windows.github.com
https://www.youtube.com/watch?v=YBbkvCrfDSo
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.atlassian.com/git/tutorials/install-git

settings’	associated	configuration	scopes.

	Git	2:47	Configuration

It	is	important	that	make	sure	that	use	the	 git	config	 command	 to	 initialize	git	 for
the	first	time	on	each	new	computer	system	or	virtual	machine	you	use.	This	will
ensure	that	you	use	on	all	resources	the	same	name	and	e-mail	so	that	git	history
and	 log	will	 show	consistently	your	checkins	across	all	devices	and	computers
you	use.	If	you	do	not	do	this,	your	checkins	in	git	do	not	show	up	in	a	consistent
fashion	 as	 a	 single	 user.	 Thus	 on	 each	 computer	 execute	 the	 following
commands:

where	you	replace	the	information	with	the	information	related	to	you.	You	can
set	the	editor	to	emacs	with:

Naturally	if	you	happen	to	want	to	use	other	editors	you	can	configure	them	by
specifying	the	command	that	starts	them	up.	You	will	also	need	to	decide	if	you
want	to	push	branches	individually	or	all	branches	at	the	same	time.	It	will	be	up
to	you	to	make	what	will	work	for	you	best.	We	found	that	the	following	seems
to	work	best:

More	information	about	a	first	time	setup	is	documented	at:

To	check	your	setup	you	can	say:

One	 problem	 we	 observed	 is	 that	 students	 often	 simply	 copy	 and	 paste
instructions,	but	do	not	read	carefully	the	error	that	is	reported	back	and	do	not
fix	 it.	Overlooking	 the	proper	set	of	 the	push.default	 is	often	overlooked.	Thus
we	remind	you:	Please	read	the	information	on	the	screen	when	you	set	up.

4.6.14	Upload	your	public	key

$	git	config	--global	user.name	"Albert	Zweistein"

$	git	config	--global	user.email	albert.zweistein@gmail.com

$	git	config	--global	core.editor	emacs

git	config	--global	push.default	matching

*	http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup

$	git	config	--list

https://www.youtube.com/watch?v=ZChtKFLiaNw

Please	upload	your	public	key	to	the	repository	as	documented	in	github,	while
going	 to	your	account	and	 find	 it	 in	 settings.	There	you	will	 find	a	panel	SSH
key	that	you	can	click	on	which	brings	you	to	the	window	allowing	you	to	add	a
new	 key.	 If	 you	 have	 difficulties	 with	 this	 find	 a	 video	 from	 the	 github
foundation	that	explains	this.

4.6.15	Working	with	a	directory	that	will	be	provided	for	you

In	case	your	course	provided	you	with	a	github	directory,	starting	and	working	in
it	is	going	to	be	real	simple.	Please	wait	till	an	announcement	to	the	class	is	send
before	you	ask	us	questions	about	it.

If	 you	 are	 the	 only	 student	 working	 on	 this	 you	 still	 need	 to	 make	 sure	 that
papers	or	programs	you	manage	in	the	repository	work	and	do	not	interfere	with
scripts	that	instructors	may	use	to	check	your	assignments.	Thus	it	is	god	to	still
create	a	branch,	work	 in	 the	branch	and	than	merge	 the	branch	 into	 the	master
once	you	verified	things	work.	After	you	merged	you	can	push	the	content	to	the
github	repository.

Tip:	Please	use	only	lowercase	characters	in	the	directory	names	and	no	special
characters	such	as	 @	;	/	_	 and	 spaces.	 In	 general	 we	 recommend	 that	 you	 avoid
using	 directory	 names	 with	 capital	 letters	 spaces	 and	 _	 in	 them.	 This	 will
simplify	your	documentation	efforts	and	make	the	URLs	from	git	more	readable.
Also	 while	 on	 some	 OS’s	 the	 directories	 MyDirectory	 is	 different	 from
mydirectory	on	macOS	it	is	considered	the	same	and	thus	renaming	from	capital
to	lower	case	can	not	be	done	without	first	renaming	it	to	another	directory.

Your	homework	for	submission	should	be	organized	according	to	folders	in	your
clone	repository.	To	submit	a	particular	assignment,	you	must	first	add	it	using:

Afterwards,	commit	it	using:

Then	push	it	to	your	remote	repository	using:

git	add	<name	of	the	file	you	are	adding>

git	commit	-m	"message	describing	your	submission"

git	push

If	you	want	to	modify	your	submission,	you	only	need	to:

afterwards:

If	 you	 lose	 any	 documents	 locally,	 you	 can	 retrieve	 them	 from	 your	 remote
repository	using:

4.6.16	README.yml	and	notebook.md

In	 case	 you	 take	 classes	 e516	 and	 e616	 with	 us	 you	 will	 have	 to	 create	 a
README.yaml	 and	 notebook.md	 file	 in	 the	 top	 most	 directory	 of	 your
repository.	 It	 serves	 the	purpose	of	 identifying	your	 submission	 for	homework
and	information	about	yourself.

It	 is	 important	 to	 follow	 the	 format	 precisely.	 As	 it	 is	 yaml	 it	 is	 an	 easy
homework	to	write	a	4	line	python	script	that	validates	if	the	README.yaml	file
is	valid.	In	addition	you	can	use	programs	such	as	yamllint	which	is	documented	at

https://yamllint.readthedocs.io/en/latest/

This	file	is	used	to	integrate	your	assignments	into	a	proceedings.	An	example	is
provided	at

https://github.com/cloudmesh-community/hid-
sample/blob/master/README.yml

Any	derivation	from	this	format	will	not	allow	us	to	see	your	homework	as	our
automated	scripts	will	use	the	README.yml	to	detect	them.	Make	sure	the	file
does	not	contain	ay	TABs.	Please	also	mind	that	all	filenames	of	all	homework
and	the	main	directory	must	be	lowercase	and	do	not	include	spaces.	This	will
simplify	your	task	of	managing	the	files	across	different	operating	systems.

In	 case	 you	 work	 in	 a	 team,	 on	 a	 submission,	 the	 document	 will	 only	 be
submitted	 in	 the	 author	 and	hid	 that	 is	 listed	 first.	All	 other	 readme	 files,	will

git	commit	-m	"message	relating	to	updated	file"

git	push

git	pull

https://yamllint.readthedocs.io/en/latest/
https://github.com/cloudmesh-community/hid-sample/blob/master/README.yml

have	for	that	particular	artifact	a	duplicate:	yes	entry	to	indicate	that	this	submission
is	managed	elsewhere.	The	 team	will	be	 responsible	 to	manage	 their	own	pull
requests,	 but	 if	 the	 team	 desires	 we	 can	 grant	 access	 for	 all	 members	 to	 a
repository	by	a	user.	Please	be	aware	 that	you	must	make	sure	you	coordinate
with	your	team.

We	will	not	accept	submission	of	homework	as	pdf	documents	or	 tar	files.	All
assignments	must	 be	 submitted	 as	 code	 and	 the	 reports	 in	 native	 latex	 and	 in
github.	We	have	a	script	that	will	automatically	create	the	PDF	and	include	it	in
a	 proceedings.	 There	 is	 no	 exception	 from	 this	 rule	 and	 all	 reports	 not
compilable	 will	 be	 returned	 without	 review	 and	 if	 not	 submitted	 within	 the
deadline	receive	a	penalty.

Please	check	with	your	instructor	on	the	format	of	the	README.yaml	file	as	it
could	be	different	for	your	class.

To	see	an	example	for	 the	notebook.md	file,	you	can	visit	our	sample	hid,	and
browse	to	the	notebook.md	file.	Alternatively	you	can	visit	the	following	link

https://github.com/cloudmesh-community/hid-
sample/blob/master/notebook.md

The	purpose	of	the	notebook	md	file	is	to	record	what	you	did	in	the	class	to	us.
We	will	use	this	file	at	the	end	of	the	class	to	make	sure	you	have	recorded	on	a
weekly	 basis	 what	 you	 did	 for	 the	 class.	 Inactivity	 is	 a	 valid	 response.	 Not
updating	the	notebook,	is	not.

The	sample	directory	contains	other	useful	directories	and	samples,	that	you	may
want	 to	 investigate	 in	 more	 detail.	 One	 of	 the	 most	 important	 samples	 is	 the
github	issues	(see	Section	1.19).	There	is	even	a	video	in	that	section	about	this
and	showcases	you	how	to	organize	your	tasks	within	this	class,	while	copying
the	 assignments	 from	 piazza	 into	 one	 or	more	 github	 issues.	As	we	 are	 about
cloud	 computing,	 using	 the	 services	 offered	 by	 a	 prominent	 cloud	 computing
service	such	as	github	is	part	of	the	learning	experience	of	this	course.

4.6.17	Contributing	to	the	Document

It	is	relatively	easy	to	contribute	to	the	document	if	you	understand	how	to	use

https://github.com/cloudmesh-community/hid-sample/blob/master/notebook.md

github.	The	first	 thing	you	will	need	to	do	is	 to	create	a	fork	of	 the	repository.
The	easiest	way	to	do	this	is	to	visit	the	URL

https://github.com/cloudmesh-community/book

Towards	the	upper	right	corner	you	will	find	a	link	called	Fork.	Click	on	it	and
chose	into	which	account	you	like	to	fork	the	original	repository.	Next	you	will
create	 a	 colne	 from	 your	 corked	 directory.	 You	will	 see	 in	 your	 fork	 a	 green
clone	button.	You	will	 see	a	URL	 that	you	can	copy	 into	your	 terminal.	 If	 the
links	does	not	include	your	username,	it	is	the	wrong	link.

In	your	terminal	you	now	say

Now	cd	into	this	directory	and	make	your	changes.

Use	the	usual	git	commands	such	as	git	add,	git	commit,	git	push

Note	you	will	push	into	your	local	directory.

4.6.17.1	Stay	up	to	date	with	the	original	repo

Form	time	to	time	you	will	see	that	others	are	contributing	to	the	original	repo.
To	stay	up	to	date	you	want	to	not	only	sync	from	your	local	copy,	but	also	from
the	original	repo.	To	link	your	repo	with	what	is	called	the	upstream	you	need	to
do	the	following	once,	so	you	can	issue	git	pull	tha	also	pulls	from	the	upstream

Make	sure	you	have	upstream	repo	defined:

Now	Get	latest	from	upstream:

In	this	step,	the	conflicting	file	shows	up	(in	my	case	it	was	refs.bib):

git	colne		https://github.com/<yourusername>/book

$	cd	book

$	git	remote	add	upstream	\

						https://github.com/cloudmesh-community/book

$	git	rebase	upstream/master

$	git	status

https://github.com/cloudmesh-community/book

should	show	the	name	of	the	conflicting	file:

should	show	the	actual	differences.	May	be	 in	some	cases,	 It	 is	easy	 to	simply
take	latest	version	from	upstream	and	reapply	your	changes.

So	 you	 can	 decide	 to	 checkout	 one	 version	 earlier	 of	 the	 specific	 file.	At	 this
stage,	 the	 re-base	 should	 be	 complete.	 So,	 you	 need	 to	 commit	 and	 push	 the
changes	to	your	fork:

Then	 reapply	your	changes	 to	 refs.bib	 -	 simply	use	 the	backed	up	version	and
use	the	editor	to	redo	the	changes.

At	this	stage,	only	refs.bib	is	changed:

should	show	the	changes	only	in	refs.bib.	Commit	this	change	using:

And	finally	push	the	last	committed	change:

The	 changes	 in	 the	 file	 to	 resolve	 merge	 conflict	 automatically	 goes	 to	 the
original	pull	request	and	the	pull	request	can	be	merged	automatically.

You	 still	 have	 to	 issue	 the	 pull	 request	 from	 the	 Github	 Web	 page	 so	 it	 is
registered	with	the	upstream	repository.

4.6.17.2	Resources

Pro	Git	book
Official	tutorial
Official	documentation
TutorialsPoint	on	git
Try	git	online

$	git	diff	<file	name>

$	git	commit

$	git	rebase	origin/master

$	git	push

$	git	status

$	git	commit	-a	-m	"new:usr:	<message>"

$	git	push

https://git-scm.com/book/en/v2
https://git-scm.com/docs/gittutorial
https://git-scm.com/doc
http://www.tutorialspoint.com/git/
https://try.github.io

GitHub	resources	for	learning	git	Note:	this	is	for	github	and	not	for	gitlab.
However	as	it	is	for	gt	the	only	thing	you	have	to	do	is	replace	github,	for
gitlab.
Atlassian	tutorials	for	git

In	 addition	 the	 tutorials	 from	 atlassian	 are	 a	 good	 source.	However	 remember
that	you	may	not	use	bitbucket	as	 the	 repository,	 so	 ignore	 those	 tutorials.	We
found	the	following	useful

What	is	git:	https://www.atlassian.com/git/tutorials/what-is-git
Installing	git:	https://www.atlassian.com/git/tutorials/install-git
git	 config:	 https://www.atlassian.com/git/tutorials/setting-up-a-
repository#git-config
git	 clone:	 https://www.atlassian.com/git/tutorials/setting-up-a-
repository#git-clone
saving	changes:	https://www.atlassian.com/git/tutorials/saving-changes
collaborating	with	git:	https://www.atlassian.com/git/tutorials/syncing

4.6.18	Exercises

E.Github.1:

How	do	you	set	your	favorite	editor	as	a	default	with	github	config

E.Github.2:

What	is	the	differencebetween	merge	and	rebase?

E.Github.3:

Assume	you	have	made	a	 change	 in	 your	 local	 fork,	 however	other
users	have	since	committed	to	the	master	branch,	how	can	you	make
sure	your	commit	works	off	from	the	latest	information	in	the	master
branch?

E.Github.4:

Find	a	spelling	error	in	the	Web	page	or	a	contribution	and	create	a
pull	request	for	it.

https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://www.atlassian.com/git/tutorials/
https://www.atlassian.com/git/tutorials/what-is-git
https://www.atlassian.com/git/tutorials/install-git
https://www.atlassian.com/git/tutorials/setting-up-a-repository#git-config
https://www.atlassian.com/git/tutorials/setting-up-a-repository#git-clone
https://www.atlassian.com/git/tutorials/saving-changes
https://www.atlassian.com/git/tutorials/syncing

E.Gitlab.5:

Create	a	README.yml	in	your	github	account	directory	provided	for
you	for	class.

4.6.19	Github	Issues

	Github	8:29	Issues

When	we	work	in	teams	or	even	if	we	work	by	ourselves,	it	is	prudent	to	identify
a	system	to	coordinate	your	work.	While	conduction	projects	that	use	a	variety
of	cloud	services,	it	is	important	to	have	a	system	that	enables	us	to	have	a	cloud
service	 that	 enables	 us	 to	 facilitate	 this	 coordination.	 Github	 provides	 such	 a
feature	through	its	issue	service	that	is	embedded	in	each	repository.

Issues	allow	 for	 the	 coordination	of	 tasks,	 enhancements,	bugs,	 as	well	 as	 self
defined	labeled	activities.	Issues	are	shared	within	your	team	that	has	access	to
your	repository.	Furthermore,	in	an	open	source	project	the	issues	are	visible	to
the	community,	allowing	to	easily	communicate	the	status,	as	well	as	a	roadmap
to	new	features.

This	enables	the	community	to	participate	also	in	reporting	of	bugs.	Using	such	a
system	transforms	the	development	of	software	from	the	traditional	closed	shop
development	toa	truly	open	source	development	encouraging	contributions	from
others.	Furthermore	it	is	also	used	as	bug	tracker	in	which	not	only	you,	but	the
community	can	communicate	bugs	to	the	project.

A	good	resource	for	learning	more	about	issues	is	provided	at

https://guides.github.com/features/issues/

4.6.19.1	Git	Issue	Features

A	git	issue	has	the	following	features:

title

https://youtu.be/qozgBPQJx0A
https://guides.github.com/features/issues/

–	a	short	description	of	what	the	issue	is	about

description

a	 more	 detailed	 description.	 Descriptions	 allow	 also	 to	 conveniently	 add
check-boxed	todo’s.

label

a	color	enhanced	label	that	can	be	used	to	easily	categorize	the	issue.	You
can	define	your	own	labels.

milestone

a	milestone	 so	 you	 can	 identify	 categorical	 groups	 issues	 as	well	 as	 their
due	date.	You	can	for	example	group	all	tasks	for	a	week	in	a	milestone,	or
you	could	for	example	put	all	tasks	for	a	topic	such	as	developing	a	paper	in
a	milestone	and	provide	a	deadline	for	it.

assignee

an	 assignee	 is	 the	 person	 that	 is	 responsible	 for	 making	 sure	 the	 task	 is
executed	or	on	 track	 if	a	 team	works	on	 it.	Often	projects	allow	only	one
assignee,	but	 in	certain	cases	 it	 is	useful	 to	assign	a	group,	and	 the	group
identifies	if	the	task	can	be	split	up	and	assigns	them	through	check-boxed
todo’s.

comments

allow	anyone	with	access	to	provide	feedback	via	comments.

4.6.19.2	Github	Markdown

Github	uses	markdown	which	we	introduce	you	in	Section	[S:markdown].

As	github	has	its	own	flavor	of	markdown	we	however	also	point	you	to

as	 a	 reference.	 We	 like	 to	 mention	 the	 special	 enhancements	 fo	 github’s
markdown	that	integrate	well	to	support	project	management.

4.6.19.2.1	Task	lists

Taks	lists	can	be	added	to	any	description	or	comment	in	github	issues	To	create
a	task	list	you	can	add	to	any	item	[].	This	includes	a	task	to	be	done.	To	make	it
as	complete	simple	change	it	to	[x].	Whoever	the	great	feature	of	tasks	is	that	you
do	not	even	have	to	open	the	editor	but	you	can	simply	check	the	task	on	and	of
via	a	mouse	click.	An	example	of	a	task	list	could	be

In	 case	you	need	 to	use	 a	 (have	 at	 the	beginning	ot	 the	 task	 text,	 you	need	 to
escape	it	with	a	\

4.6.19.2.2	Team	integration

A	 person	 or	 team	 on	 GitHub	 can	 be	 mentioned	 by	 typing	 the	 username
proceeded	 by	 the	 @	 sign.	When	 posting	 the	 text	 in	 the	 issue,	 it	 will	 trigger	 a
notification	 to	 them	and	allow	 them	 to	 react	 to	 it.	 It	 is	 even	possible	 to	notify
entire	teams,	which	are	described	in	more	detail	at

https://help.github.com/articles/about-teams/

4.6.19.2.3	Referencing	Issues	and	Pull	requests

Each	issue	has	a	number.	If	you	use	the	#	followed	by	the	issue	number	you	can
refer	 to	 it	 in	 the	 text	which	will	 also	 automatically	 include	 a	 hyperlink	 to	 the
task.	The	same	is	valid	for	pull	requests.

4.6.19.2.4	Emojis

Although	github	supports	emojis	such	as	:+1:	we	do	not	use	them	typically	in	our
class.

4.6.19.3	Notifications

Github	 allows	 you	 to	 set	 preferences	 on	 how	 you	 lik	 to	 receive	 notifications.

Post	Bios

*	[x]	Post	bio	on	piazza

*	[]	Post	bio	on	google	docs

*	[]	Post	bio	on	github

*	[]	\(optional)	integrate	image	in	google	docs	bio

https://help.github.com/articles/about-teams/

You	 can	 receive	 them	 either	 via	 e-mail	 or	 the	 Web.	 This	 is	 controlled	 by
configuring	 it	 in	 your	 settings,	 where	 you	 can	 set	 the	 preferences	 for
participating	 projects	 as	 well	 as	 projects	 you	 decide	 to	 watch.	 To	 access	 the
notifications	 you	 can	 simply	 look	 at	 them	 in	 the	 notification	 screen.	 In	 this
screen	when	you	press	the	?	you	will	see	a	number	of	commands	that	allow	you
to	control	the	notification	when	pressing	on	one	of	them.

4.6.19.4	cc

To	carbon	copy	users	in	your	issue	text,	simply	use	/cc	followed	by	the	@	sign	and
their	github	user	name.

4.6.19.5	Interacting	with	issues

Github	has	the	ability	to	search	issues	with	a	search	query	and	a	search	language
that	you	can	find	out	more	about	it	at

https://guides.github.com/features/issues/#search

A	dashboard	gives	convenient	overviews	of	the	issues	including	a	pulse	that	lists
todo’s	status	if	you	use	them	in	the	issue	description.

4.6.20	Glossary

The	Glossary	is	copied	from

https://cdcvs.fnal.gov/redmine/projects/cet-is-
public/wiki/GitTipsAndTricks#A-suggested-work-flow-for-distributed-
projects-NoSY

Add
put	a	file	(or	particular	changes	thereto)	into	the	index	ready	for	a	commit
operation.	 Optional	 for	 modifications	 to	 tracked	 files;	 mandatory	 for
hitherto	un-tracked	files.

Branch
a	 divergent	 change	 tree	 (eg	 a	 patch	 branch)	which	 can	me	merged	 either
wholesale	or	piecemeal	with	the	master	tree.

https://guides.github.com/features/issues/#search

Commit
save	 the	current	 state	of	 the	 index	and/or	other	 specified	 files	 to	 the	 local
repository.

Commit	object
an	object	which	contains	the	information	about	a	particular	revision,	such	as
parents,	 committer,	 author,	 date	 and	 the	 tree	 object	which	 corresponds	 to
the	top	directory	of	the	stored	revision.

Fast-forward
an	update	operation	consisting	only	of	the	application	of	a	linear	part	of	the
change	tree	in	sequence.

Fetch
update	 your	 local	 repository	 database	 (not	 your	 working	 area)	 with	 the
latest	changes	from	a	remote.

HEAD
the	latest	state	of	the	current	branch.

Index
a	 collection	 of	 files	 with	 stat	 information,	 whose	 contents	 are	 stored	 as
objects.	The	 index	 is	 a	 stored	version	of	your	working	 tree.	Files	may	be
staged	to	an	index	prior	to	committing.

Master
the	main	branch:	known	as	the	trunk	in	other	SCM	systems.

Merge
join	two	trees.	A	commit	is	made	if	this	is	not	a	fast-forward	operations	(or
one	is	requested	explicitly.

Object
the	unit	of	storage	in	git.	It	is	uniquely	identified	by	the	SHA1	hash	of	its
contents.	Consequently,	an	object	can	not	be	changed.

Origin
the	default	 remote,	usually	 the	 source	 for	 the	 clone	operation	 that	 created
the	local	repository.

Pull
shorthand	 for	 a	 fetch	 followed	by	 a	merge	 (or	 rebase	 if	 –rebase	option	 is
used).

Push
transfer	 the	 state	 of	 the	 current	 branch	 to	 a	 remote	 tracking	 branch.	 This
must	be	a	fast-forward	operation	(see	merge).

Rebase

a	merge-like	operation	in	which	the	change	tree	is	rewritten	(see	Rebasing
below).	Used	to	turn	non-trivial	merges	into	fast-forward	operations.

Remote
another	 repository	 known	 to	 this	 one.	 If	 the	 local	 repository	was	 created
with	“clone”	then	there	is	at	least	one	remote,	usually	called,	“origin.”

Stage
to	add	a	file	or	selected	changes	therefrom	to	the	index	in	preparation	for	a
commit.

Stash
a	stack	onto	which	the	current	set	of	uncommitted	changes	can	be	put	(eg	in
order	 to	 switch	 to	 or	 synchronize	 with	 another	 branch)	 as	 a	 patch	 for
retrieval	later.	Also	the	act	of	putting	changes	onto	this	stack.

Tag
human-readable	label	for	a	particular	state	of	the	tree.	Tags	may	be	simple
(in	 which	 case	 they	 are	 actually	 branches)	 or	 annotated	 (analogous	 to	 a
CVS	tag),	with	an	associated	SHA1	hash	and	message.	Annotated	tags	are
preferable	in	general.

Tracking	branch
a	 branch	 on	 a	 remote	 which	 is	 the	 default	 source	 /	 sink	 for	 pull	 /	 push
operations	respectively	for	the	current	branch.	For	instance,	origin/master	is
the	tracking	branch	for	the	local	master	in	a	local	repository.

Un-tracked
not	known	currently	to	git.

4.6.21	Example	commands

To	work	 in	 your	 local	 directory	 you	 can	 use	 the	 following	 commands.	 Please
note	that	these	commands	do	not	upload	your	work	to	github,	but	only	introduce
version	control	within	your	local	files.

The	command	list	is	copied	from

https://cdcvs.fnal.gov/redmine/projects/cet-is-
public/wiki/GitTipsAndTricks#A-suggested-work-flow-for-distributed-
projects-NoSY

4.6.21.1	Local	commands	to	version	contril	your	files

Obtain	differences	with

Move	files	from	one	part	of	your	directory	tree	to	another:

Delete	unwanted	tracked	files:

Add	un-tracked	files:

Stage	a	modified	file	for	commit:

Commit	currently-staged	files:

Commit	only	specific	files	(regardless	of	what	is	staged):

Commit	all	modified	files:

Un-stage	a	previously	staged	(but	not	yet	committed)	file:

Get	differences	with	respect	to	the	committed	(or	staged)	version	of	a	file:

Get	differences	between	local	file	and	committed	version:

Create	(but	do	not	switch	to)	a	new	local	branch	based	on	the	current	branch:

$	git	status

$	git	mv	<old-path>	<new-path>

$	git	rm	<path>

$	git	add	<un-tracked-file>

$	git	add	<file>

$	git	commit	-m	<log-message>

$	git	commit	-m	<log-message>

$	git	commit	-a	-m	<log-message>

$	git	reset	HEAD	<file>

$	git	diff	<file>

$	git	diff	--cached	<file>

$	git	branch	<new-branch>

Change	to	an	existing	local	branch:

Merge	another	branch	into	the	current	one:

4.6.21.2	Interacting	with	the	remote

Get	the	current	list	of	remotes	(including	URIs)	with

Get	the	current	list	of	defined	branches	with

Change	 to	 (creating	 if	 necessary)	 a	 local	 branch	 tracking	 an	 existing	 remote
branch	of	the	same	name:

Update	your	 local	 repository	 ref	database	without	 altering	 the	 current	working
area:

Update	your	current	 local	branch	with	respect	 to	your	repository’s	current	 idea
of	a	remote	branch’s	status:

Pull	remote	ref	information	from	all	remotes	and	merge	local	branches	with	their
remote	tracking	branches	(if	applicable):

Examine	changes	to	the	current	local	branch	with	respect	to	its	tracking	branch:

Push	changes	to	the	remote	tracking	branch:

$	git	checkout	<branch>

$	git	merge	<branch>

$	git	remote	-v

$	git	branch	-a

$	git	checkout	<branch>

$	git	fetch	<remote>

$	git	merge	<branch>

$	git	pull

$	git	cherry	-v

$	git	push

Push	all	changes	to	all	tracking	branches:

4.7	GIT	PULL	REQUEST	☁�
4.7.1	Introduction

Git	pull	requests	allow	developers	to	submit	work	or	changes	they	have	done	to
a	repository,	The	developers	can	then	check	the	changes	that	have	been	proposed
in	the	pull	request,	discuss	and	make	changes	if	needed.	After	the	content	off	the
pull	request	has	been	agreed	upon	it	can	be	merged	to	the	repository	to	add	the
information	or	changes	in	the	pull	request	into	the	repository.

4.7.2	How	to	create	a	pull	request

In	this	document	we	will	see	how	we	can	create	a	pull	request	for	the	Cloudmesh
technologies	repo	that	is	located	at

https://github.com/cloudmesh/technologies

However	if	you	do	pull	request	on	other	directories,	you	just	have	to	replace	the
url	with	that	of	the	repository	you	like	to	use.	A	common	one	four	our	classes	is
also

https://github.com/cloudmesh-community/book

Which	contains	this	book.

You	can	either	create	a	pull	request	through	a	branch	or	through	a	fork.	In	this
document	we	will	be	looking	at	how	we	can	create	a	pull	request	through	a	fork.

4.7.3	Fork	the	original	repository

First	 you	 need	 to	 create	 a	 fork	 of	 the	 original	 repository.	A	 fork	 is	 your	 own
copy	 of	 the	 repository	 to	 which	 you	 can	 make	 changes	 to.	 To	 fork	 the
Cloudmesh	 technologies	 goto	 Cloudmesh	 technologies	 repo	 and	 click	 on	 the
Fork	 button	 on	 the	 top	 right	 corner.	 Now	 you	 can	 notice	 that	 instead	 of	

$	git	push	--all

https://github.com/cloudmesh-community/book/blob/master/chapters/git/gitpullreqest.md
https://github.com/cloudmesh/technologies
https://github.com/cloudmesh-community/book
https://github.com/cloudmesh/technologies

cloudmesh/technologies	 the	name	of	the	repo	says	 YOURGITUSERNAME/technologies,	where	 YOURGITUSERANAME
is	indeed	your	github	user	name.	That	is	because	you	are	now	in	your	own	copy
of	the	cloudmesh/technologies	repository.	n	our	case	the	user	name	will	be	pulashti.

4.7.4	Clone	your	copy

Now	 that	 you	 have	 your	 fork	 created,	 we	 can	 go	 ahead	 and	 clone	 it	 into	 our
machine.	 Instructions	on	how	to	clone	a	repository	can	be	found	in	 the	Github
documentation	-	Cloning	a	repository.	Make	sure	that	you	clone	your	version	of
the	technologies	repo.

4.7.5	Adding	an	upstream

Before	we	 can	 start	working	 on	 our	 copy	 of	 the	 git	 repo	 it	 is	 good	 to	 add	 an
upstream	(a	link	to	the	original	repo)	so	that	we	can	get	all	the	latest	changes	in
the	 original	 repository	 into	 our	 copy.	Use	 the	 following	 commands	 to	 add	 an
upstream	to	cloudmesh/technologies.	First	go	into	the	folder	which	contains	your	git	repo
that	you	cloned	and	execute	the	following	command.

To	make	sure	you	have	added	it	correctly	execute	the	following	command

You	should	see	something	similar	to	the	following	as	the	output

4.7.6	Making	changes

Now	 you	 can	 make	 changes	 to	 your	 repo	 as	 with	 any	 normal	 git	 repository.
However	 to	make	 sure	 you	 have	 the	 latest	 copy	 from	 the	 original	 execute	 the
following	 command	before	 you	 start	making	 changes.	This	will	 pull	 the	 latest
changes	from	the	original	cloudmesh/technologies	into	your	local	copy

Now	make	the	needed	changes	commit	and	push,	the	changes	will	be	pushed	to

$	git	remote	add	upstream	https://github.com/cloudmesh/technologies.git'

$	git	remote	-v

origin		https://github.com/pulasthi/technologies.git	(fetch)

origin		https://github.com/pulasthi/technologies.git	(push)

upstream				https://github.com/cloudmesh/technologies.git	(fetch)

upstream				https://github.com/cloudmesh/technologies.git	(push)

$	git	pull	upstream	master

https://help.github.com/articles/cloning-a-repository/

your	copy	of	the	repo	i	Github,	not	the	cloudmesh/technologies	repo.

4.7.7	Creating	a	pull	request

Once	we	 have	 changes	 pushed,	 you	 can	 go	 into	 your	 repository	 in	 Github	 to
create	a	pull	 request.	As	 seen	 in	@#fig:button-pullrequest,	you	have	an	button
named	Pull	request

Figure	35:	Button	Pull	request

Once	 you	 click	 on	 that	 button	 you	 will	 be	 taken	 to	 a	 page	 to	 create	 the	 pull
request,	which	will	look	similar	to	Figure	36.

Figure	36:	Create	a	pull	request

Once	you	click	on	the	Create	pull	request	button	you	will	be	given	an	option	to	add	a
title	 and	 a	 comment	 for	 the	 pull	 request.	 Once	 you	 complete	 the	 details	 and
submit	the	pull	request	will	appear	in	the	original	cloudmesh/technologies	repo.

Note:	 Make	 sure	 you	 see	 the	 Able	to	merge	 sign	 before	 you	 submit	 the	 pull
request,	 otherwise	 your	 pull	 will	 not	 be	 able	 to	 directly	 merged	 to	 the
original	repo.	If	you	do	not	see	this	that	means	you	have	not	properly	done
the	git	pull	upstream	master	command	before	you	made	the	changes

	git	example	on	CL	10:09

4.8	TIG	☁�
Many	browsers	exist	to	gain	insight	into	git	repositories.	In	case	you	have	Linux
or	Ubuntu	a	tool	to	display	information	in	a	terminal	is	available.

https://jonas.github.io/tig/

On	OSX	it	can	be	installed	with:

Tig	 has	 many	 different	 views	 including	 views	 for	 main,	 log,	 diff,	 tree,	 blob,

$	brew	install	tig

https://youtu.be/8wyTtG0PsgM
https://github.com/cloudmesh-community/book/blob/master/chapters/git/git-tools.md

blame,	refs,	status,	stage.	stash,	grep,	and	pager	.

A	screenshot	shows	some	if	its	basic	functionality	is	shown	in	Figure	37

Figure	37:	Git	tig	main	vie

Example	infocations	are
$	tig

$	git	show	|	tig

$	git	log	|	tig

5	INTRODUCTION	TO	CLOUD	COMPUTING	AND	DATA

ENGINEERING	FOR	CLOUD	COMPUTING	AND	MACHINE

LEARNING	☁�
E222	Intelligent	Systems	II	and	E516	Engineering	Cloud	Computing

YouTube	 Playlist	 https://www.youtube.com/playlist?
list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb

PowerPoint	 of	 full	 set	 A)	 to	 U)	 https://drive.google.com/open?
id=1RQ8Q_A32ks02CSCZAzKiJJ9P9YntMRAo

5.1	A.	SUMMARY	OF	INTRODUCTION	TO	CLOUD	COMPUTING

&	DATA	ENGINEERING

This	 lesson	summarizes	 the	component	 lessons	CloudIntroB	to	CloudIntroU	of
Introduction	to	Cloud	Computing	and	Data	Engineering	Lecture

	Summary	Cloud	Computing	15:40

5.2	B.	DEFINING	CLOUDS	I

Basic	 definition	 of	 cloud	 and	 two	 very	 simple	 examples	 of	 why
virtualization	is	important.
How	clouds	are	situated	wrt	HPC	and	supercomputers
Why	multicore	chips	are	important
Typical	data	center

	Defining	Clouds	I	20:22

5.3	C.	DEFINING	CLOUDS	II

Service-oriented	 architectures:	 Software	 services	 as	 Message-linked

https://github.com/cloudmesh-community/book/blob/master/chapters/class/222-a.md
https://www.youtube.com/playlist?list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb
https://drive.google.com/open?id=1RQ8Q_A32ks02CSCZAzKiJJ9P9YntMRAo
https://www.youtube.com/watch?v=QYqpsjVTgNc&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=2&t=0s
https://www.youtube.com/watch?v=voOyaYUedSw&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=3&t=13s

computing	capabilities
The	different	aaS’s:	Network,	Infrastructure,	Platform,	Software
The	amazing	services	that	Amazon	AWS	and	Microsoft	Azure	have
Initial	Gartner	comments	on	clouds	(they	are	now	the	norm)	and	evolution
of	servers;	serverless	and	microservices
2016/2018	Infrastructure	Strategies	Hype	Cycle	and	Priority	Matrix

	Defining	Clouds	II	24:22

5.4	D.	DEFINING	CLOUDS	III

Cloud	Market	Share
How	important	are	they?
How	much	money	do	they	make?

	Defining	Clouds	III	12:23

5.5	E.	VIRTUALIZATION

Virtualization	Technologies,	Hypervisors	and	the	different	approaches

KVM	Xen,	Docker	and	Openstack

See:

https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Xen
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://medium.com/\@dbclin/aws-just-announced-a-move-from-xen-
towards-kvm-so-what-is-kvm-2091f123991
https://nickjanetakis.com/blog/comparing-virtual-machines-vs-docker-
containers
https://en.wikipedia.org/wiki/OpenStack

	Virtualization	11:21

https://www.youtube.com/watch?v=CZlferQHtlQ&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=4&t=0s
https://www.youtube.com/watch?v=7HFi2CwMF_o&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=5&t=0s
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Xen
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://medium.com/@dbclin/aws-just-announced-a-move-from-xen-towards-kvm-so-what-is-kvm-2091f123991
https://nickjanetakis.com/blog/comparing-virtual-machines-vs-docker-containers
https://en.wikipedia.org/wiki/OpenStack
https://www.youtube.com/watch?v=f4hSZOeH-CA&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=6&t=3s

5.6	F.	TECHNOLOGY	HYPECYCLE	I

Gartner’s	 Hypecycles	 and	 especially	 that	 for	 emerging	 technologies	 in
2018,	2017	and	2016
The	phases	of	hypecycles
Priority	Matrix	with	benefits	and	adoption	time
Today	clouds	have	got	through	the	cycle	(they	have	emerged)	but	features
like	blockchain,	serverless	and	machine	learning	are	on	cycle
Hypecycle	 and	 Priority	 Matrix	 for	 Data	 Center	 Infrastructure	 2017	 and
2018

	Technology	Hypecycle	I	31:23

5.7	G.	TECHNOLOGY	HYPECYCLE	II

Emerging	 Technologies	 hypecycles	 and	 Priority	 matrix	 at	 selected	 times
2008-2015
Clouds	star	from	2008	to	today
They	are	mixed	up	with	transformational	and	disruptive	changes
The	route	to	Digital	Business	(2015)

	Technology	Hypecycle	II	16:05

5.8	H.	CLOUD	INFRASTRUCTURE	I

Comments	on	trends	in	the	data	center	and	its	technologies
Clouds	physically	across	the	world
Green	computing
Fraction	of	world’s	computing	ecosystem	in	clouds	and	associated	sizes

	Cloud	Infrastructure	I	21:20

5.9	I.	CLOUD	INFRASTRUCTURE	II

https://www.youtube.com/watch?v=imDx6zgqulM&index=7&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s
https://www.youtube.com/watch?v=hVmn-HY5I7M&t=0s&index=8&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb
https://www.youtube.com/watch?v=RtjO9tGG9y8&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=9&t=0s

Gartner	hypecycle	and	priority	matrix	on	Infrastructure	Strategies	and	Compute
Infrastructure
Containers	compared	to	virtual	machines
The	emergence	of	artificial	intelligence	as	a	dominant	force

	Cloud	Infrastructure	II	17:52

5.10	J	CLOUD	SOFTWARE

HPC-ABDS	with	over	350	 software	packages	 and	how	 to	use	 each	of	21
layers
Google’s	software	innovations
MapReduce	in	pictures
Cloud	and	HPC	software	stacks	compared
Components	need	to	support	cloud/distributed	system	programming
Single	Program/Instruction	Multiple	Data	SIMD	SPMD

	Cloud	Software	37:56

5.11	K.	CLOUD	APPLICATIONS	I

Big	Data;	a	lot	of	best	examples	have	NOT	been	updated	so	some	slides	old
but	still	make	the	correct	points
Some	of	the	business	usage	patterns	from	NIST

	Cloud	Applications	I	11:58

5.12	L	CLOUD	APPLICATIONS	II

Clouds	 in	 science	where	area	called	cyberinfrastructure;	 the	usage	pattern
from	NIST
Artificial	Intelligence	from	Gartner

	Cloud	Applications	II	13:03

https://www.youtube.com/watch?v=UZxb8axd7Is&index=10&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s
https://www.youtube.com/watch?v=ee42X5mkOII&t=0s&index=11&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb
https://www.youtube.com/watch?v=kyJIqXtCD2Q&index=12&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s
https://www.youtube.com/watch?v=GEnKyqFpEfo&index=13&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s

5.13	M	CLOUD	APPLICATIONS	III

Characterize	Applications	using	NIST	approach
Internet	of	Things
Different	types	of	MapReduce

	Cloud	Applications	III	24:12

5.14	N.	CLOUDS	AND	PARALLEL	COMPUTING

Parallel	Computing	in	general
Big	Data	and	Simulations	Compared
What	is	hard	to	do?

:clapper	:Clouds	and	Parallel	Computing	35:03

5.15	O.	STORAGE

Cloud	data	approaches
Repositories,	File	Systems,	Data	lakes

	Storage	19:22

5.16	P.	HPC	AND	CLOUDS

The	Branscomb	Pyramid
Supercomputers	versus	clouds
Science	Computing	Environments

	HPC	and	Clouds	19:29

5.17	Q.	COMPARISON	OF	DATA	ANALYTICS	WITH

SIMULATION

https://www.youtube.com/watch?v=SVneA5UwMwg&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s&index=14
https://www.youtube.com/watch?v=w5mdlwmi4n4&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s&index=15
https://www.youtube.com/watch?v=kJZA_YZe-aA&index=16&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&t=0s
https://www.youtube.com/watch?v=fz36Cg1HFs4&t=0s&index=17&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb

Structure	of	different	applications	for	simulations	and	Big	Data
Software	implications
Languages

	Comparison	of	Data	Analytics	with	Simulation	16:19

5.18	R.	JOBS

Computer	Engineering
Clouds
Design
Data	Science/Engineering

	Jobs	15:30

5.19	S.	THE	FUTURE	I

Gartner	cloud	computing	hypecycle	and	priority	matrix
Hyperscale	computing
Serverless	and	FaaS
Cloud	Native
Microservices

	The	Future	I	29:29

5.20	T.	THE	FUTURE	AND	OTHER	ISSUES	II

Security
Blockchain

	The	Future	and	other	Issues	II	11:30

5.21	U.	THE	FUTURE	AND	OTHER	ISSUES	III

https://www.youtube.com/watch?v=3IPNxrQ-DOo&t=0s&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=18
https://www.youtube.com/watch?v=03hyNaqDlIs&t=0s&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=19
https://www.youtube.com/watch?v=Ufz1D4a9624&t=0s&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb&index=20
https://www.youtube.com/watch?v=WvbSn_vFl-o&t=0s&index=21&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb

Fault	Tolerance

	The	Future	and	other	Issues	III	9:10

https://www.youtube.com/watch?v=2yLGJ-6U5mg&t=1s&index=22&list=PLy0VLh_GFyz81ZFQ6Xrd1PHHI1EzjhhVb

6	REST

6.1	INTRODUCTION	TO	REST	☁�

	Learning	Objectives

Understand	REST	Servioces.
Understand	OpenAPI.
Develop	REST	services	in	Python	using	Eve.
Develop	REST	services	in	Python	using	OpenAPI	with	swagger.

REST	stands	for	REpresentational	State	Transfer.	REST	is	an	architecture	style
for	 designing	 networked	 applications.	 It	 is	 based	 on	 stateless,	 client-server,
cacheable	 communications	 protocol.	 In	 contrast	 to	 what	 some	 others	 write	 or
say,	 REST	 is	 not	 a	 standard.	 Although	 not	 based	 on	 http,	 in	 most	 cases,	 the
HTTP	protocol	is	used.	In	that	case,	RESTful	applications	use	HTTP	requests	to
(a)	 post	 data	 while	 creating	 and/or	 updating	 it,	 (b)	 read	 data	 while	 making
queries,	and	(c)	delete	data.

REST	was	first	introduced	in	a	thesis	from	Roy	T.	Fielding	[40].

Hence	REST	can	use	HTTP	for	the	four	CRUD	operations:

Create	resources
Read	resources
Update	resources
Delete	resources

As	part	of	the	HTTP	protocol	we	have	methods	such	as	GET,	PUT,	POST,	and
DELETE.	These	methods	can	than	be	used	to	implement	a	REST	service.	This	is
not	 surprising	 as	 the	 HTTP	 protocol	 was	 explicitly	 designed	 to	 support	 these
operations.	As	REST	introduces	collections	and	items	we	need	to	implement	the
CRUD	 functions	 for	 them.	We	 distinguish	 single	 resources	 and	 collection	 of
resources.	The	semantics	for	accessing	them	is	explained	next	illustrating	how	to

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest.md
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

implement	them	with	HTTP	methods	(See	REST	on	Wikipedia	[41]).

6.1.0.1	Collection	of	Resources

Let	us	assume	the	following	URI	identifies	a	collection	of	resources
http://.../resources/

than	we	need	to	implement	the	following	CRUD	methods:

GET

List	the	URIs	and	perhaps	other	details	of	the	collections	members

PUT

Replace	the	entire	collection	with	another	collection.

POST

Create	 a	 new	 entry	 in	 the	 collection.	 The	 new	 entry’s	 URI	 is	 assigned
automatically	and	is	usually	returned	by	the	operation.

DELETE

Delete	the	entire	collection.

6.1.0.2	Single	Resource

Let	us	assume	the	following	URI	 identifies	a	single	 resource	 in	a	collection	of
resources
http://.../resources/item42

than	we	need	to	implement	the	following	CRUD	methods:

GET

Retrieve	 a	 representation	 of	 the	 addressed	 member	 of	 the	 collection,
expressed	in	an	appropriate	internet	media	type.

https://en.wikipedia.org/wiki/Representational_state_transfer

PUT

Replace	 the	 addressed	 member	 of	 the	 collection,	 or	 if	 it	 does	 not	 exist,
create	it.

POST

Not	generally	used.	Treat	the	addressed	member	as	a	collection	in	its	own
right	and	create	a	new	entry	within	it.

DELETE

Delete	the	addressed	member	of	the	collection.

6.1.0.3	REST	Tool	Classification

Due	 to	 the	well	 defined	 structure	 that	REST	 provides	 a	 number	 of	 tools	 have
been	created	 that	manage	 the	creation	of	 the	specification	for	 rest	services	and
their	programming.	We	distinguish	several	different	categories:

REST	Specification	Frameworks:

These	 are	 frameworks	 that	 help	 defining	 rest	 servicice	 through
specifications	 to	 generate	 REST	 services	 in	 a	 language	 and	 framework
independent	way.	 This	 includes	 for	 example	 Swagger	 2.0	 [42],	OpenAPI
3.0	[43],	and	RAML	[44].

REST	programming	language	support:

These	 tools	and	services	are	 targeting	a	particular	programming	 language.
Such	tools	include	Flask	Rest	[45],	and	Django	Rest	Services	[46],	some	of
which	we	will	explore	in	more	detail.

REST	documentation	based	tools:

These	 tools	 are	 primarily	 focusing	 on	 documenting	 REST	 specifications.
Such	tools	include	Swagger	[47],	which	we	will	explore	in	more	detail.

REST	design	support	tools:

These	 tools	 are	 used	 to	 support	 the	 design	 process	 of	 developing	 REST
services	while	abstracting	on	top	of	the	programming	languages	and	define
reusable	 specifications	 that	 can	 be	 used	 to	 create	 clients	 and	 servers	 for
particular	 technology	 targets.	 Such	 tools	 include	 also	 swagger	 [47]	 as
additional	 tools	 are	 available	 that	 can	 generate	 code	 from	 OpenAPI
specifications	[48],	which	we	will	explore	in	more	detail.

A	list	of	such	efforts	is	available	at	OpenAPI	Tools	[49]

6.2	OPENAPI	REST	SERVICES	WITH	SWAGGER	☁�
Swagger	https://swagger.io/	is	a	tool	for	developing	API	specifications	based	on
the	OpenAPI	Specification	 (OAS).	 It	 allows	not	only	 the	specification,	but	 the
generation	of	code	based	on	the	specification	in	a	variety	of	languages.

Swagger	 itself	 has	 a	 number	 of	 tools	 which	 together	 build	 a	 framework	 for
developing	REST	services	for	a	variety	of	languages.

6.2.1	Swagger	Tools

The	major	Swagger	tools	of	interest	are:

Swagger	Core

includes	 libraries	 for	 working	 with	 Swagger	 specifications
https://github.com/swagger-api/swagger-core.

Swagger	Codegen

allows	 to	 generate	 code	 from	 the	 specifications	 to	 develop	 Client	 SDKs,
servers,	 and	 documentation.	 https://github.com/swagger-api/swagger-
codegen

Swagger	UI

is	 an	 HTML5	 based	 UI	 for	 exploring	 and	 interacting	 with	 the	 specified
APIs	https://github.com/swagger-api/swagger-ui

https://openapi.tools/
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger.md
https://swagger.io/
https://github.com/swagger-api/swagger-core
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-ui

Swagger	Editor

is	a	Web-browser	based	editor	 for	composing	specifications	using	YAML
https://github.com/swagger-api/swagger-editor

Swagger	Hub

is	a	Web	service	to	collaborativly	develop	and	host	OpenAPI	specifications
https://swagger.io/tools/swaggerhub/

The	developed	APIs	can	be	hosted	and	further	developed	on	an	online	repository
named	 SwaggerHub	 https://app.swaggerhub.com/home	 The	 convenient	 online
editor	 is	available	which	also	can	be	 installed	 locally	on	a	variety	of	operating
systems	including	macOS,	Linux,	and	Windows.

6.2.2	Swagger	Community	Tools

notify	us	about	other	tools	that	you	find	and	would	like	us	to	mention	here.

6.2.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

Swagger	 toolbox	 is	 a	utility	 that	 can	convert	 json	 to	 swagger	compatible	yaml
models.	It	is	hosted	online	at

https://swagger-toolbox.firebaseapp.com/

The	source	code	to	this	tool	is	available	on	github	at

https://github.com/essuraj/swagger-toolbox

It	is	important	to	make	sure	that	the	json	model	is	properly	configured.	As	such
each	datatype	must	be	wrapped	in	“quotes”	and	the	last	element	must	not	have	a	
,	behind	it.

In	case	you	have	large	models,	we	recommend	that	you	gradually	add	more	and
more	 features	 so	 that	 it	 is	 easier	 to	debug	 in	 case	of	 an	 error.	This	 tool	 is	 not
designed	to	provide	back	a	full	 featured	OpenAPI,	but	help	you	getting	started
deriving	one.

https://github.com/swagger-api/swagger-editor
https://swagger.io/tools/swaggerhub/
https://app.swaggerhub.com/home
https://swagger-toolbox.firebaseapp.com/
https://github.com/essuraj/swagger-toolbox

Let	us	look	at	a	small	example.	Let	us	assume	we	want	to	create	a	REST	service
to	execute	a	command	on	the	remote	service.	We	know	this	may	not	be	a	good
idea	if	it	is	not	properly	secured,	so	be	extra	careful.	A	good	way	to	simulate	this
is	to	just	use	a	return	string	instead	of	executing	the	command.

Let	us	assume	the	json	schema	looks	like:

The	output	the	swagger	toolbox	creates	is

As	you	can	see	it	is	far	from	complete,	but	it	could	be	used	to	get	you	started.

Based	on	this	tool	develop	a	rest	service	to	which	you	send	a	schema	in	JSON
format	from	which	you	get	back	the	YAML	model.

6.3	OPENAPI	2.0	SPECIFICATION	☁�
Swagger	 provides	 through	 its	 specification	 the	 definition	 of	 REST	 services
through	a	YAML	or	JSON	document.

When	 following	 the	 API-specification-first	 approach	 to	 define	 and	 develop	 a
RESTful	service,	the	first	and	foremost	step	is	to	define	the	API	conforming	to
the	 OpenAPI	 specification,	 and	 then	 using	 codegen	 tools	 to	 conveniently
generate	server	side	stub	code,	client	code,	documentations,	in	the	language	you
desire.	In	Section	REST	Service	Generation	with	OpenAPI	we	have	introduced
the	codegen	tool	and	how	to	use	that	to	generate	server	side	and	client	side	code
and	documentation.	In	this	Section	The	Virtual	Cluster	example	API	Definition
we	will	 use	 a	 slightly	more	 complex	 example	 to	 show	 how	 to	 define	 an	API
following	 the	 OpenAPI	 2.0	 specification.	 The	 example	 is	 to	 retrieve	 virtual
cluster	(VC)	object	from	the	server.

{

			"host":	"string",

			"command":	"string"

}

		required:

				-	"host"

				-	"command"

		properties:

				host:

						type:	"string"

				command:

						type:	"string"

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-spec.md

The	 OpenAPI	 Specification	 is	 formerly	 known	 as	 Swagger	 RESTful	 API
Documentation	Specification.	It	defines	a	specification	to	describe	and	document
a	RESTful	service	API.	It	is	also	known	under	version	3.0	of	swagger.	However,
as	 the	 tools	 for	 3.0	 are	 not	 yet	 completed,	 we	 will	 continue	 for	 now	 to	 use
version	swagger	2.0,	till	the	transition	has	been	completed.	This	is	especially	of
importance,	as	we	need	to	use	the	swagger	codegen	tool,	which	currently	support
only	up	to	specification	v2.	Hence	we	are	at	this	time	using	OpenAPI/Swagger
v2.0	in	our	example.	There	are	some	structure	and	syntax	changes	in	v3,	while
the	essence	is	very	similar.	For	more	details	of	the	changes	between	v3	and	v2,
please	 refer	 to	 A	 document	 published	 on	 the	 Web	 titled	 Difference	 between
OpenAPI	3.0	and	Swagger	2.0.

You	 can	write	 the	API	 definition	 in	 json	 for	 yaml	 format.	 Let	 us	 discuss	 this
format	briefly	and	focus	on	yaml	as	it	is	easier	to	read	and	maintain.

On	the	root	level	of	the	yaml	document	we	see	fields	like	swagger,	info,	and	so
on.	Among	these	fields,	swagger,	info,	and	path	are	required.	Their	meaning	is
as	follows:

swagger

specifies	the	version	number.	In	our	case	a	string	value	‘2.0’	is	used	as	we
are	writing	the	definition	conforming	to	the	v2.0	specification.

info

defines	metadata	information	related	to	the	API.	E.g.,	the	API	version,	title
and	 description,	 termsOfService	 if	 applicable,	 contact	 information	 and
license,	 etc.	 Among	 these	 attributes,	 version	 and	 title	 are	 required	 while
others	are	optional.

path

defines	 the	 actual	 endpoints	 of	 the	 exposed	 RESTful	 API	 service.	 Each
endpoint	has	a	field	pattern	as	the	key,	and	a	Path	Item	Object	as	the	value.
In	 this	 example	 we	 have	 defined	 /vc	 and	 /vc/{id}	 as	 the	 two	 service
endpoints.	They	will	 be	part	of	 the	 final	 service	URL,	appended	after	 the
service	host	and	basePath,	which	will	be	explained	later.

https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/

Let	 us	 focus	 on	 the	Path	 Item	Object.	 It	 contains	 one	 or	more	 supported
operations	on	the	service	endpoint.	An	operation	is	keyed	by	a	valid	HTTP
operation	verb,	e.g.,	one	of	get,	put,	post,	delete,	or	patch.	It	has	a	value	of
Operation	Object	that	describes	the	operations	in	more	detail.

The	Operation	Object	will	always	require	a	Response	Object.	A	Response
Object	 has	 a	HTTP	status	code	 as	 the	 key,	 e.g.,	200	 as	 successful	 return;
40X	 as	 authentication	 and	 authorization	 related	 errors;	 and	 50x	 as	 other
server	side	servers.	It	can	also	has	a	default	response	keyed	by	default	 for
undeclared	 http	 status	 return	 code.	 The	 Response	 Object	 value	 has	 a
required	description	field,	and	if	anything	is	returned,	a	schema	indicating
the	object	type	to	be	returned,	which	could	be	a	primitive	type,	e.g.,	string,
or	an	array	or	customized	object.	 In	case	of	object	 or	 an	array	 of	object,
use	$ref	to	point	to	the	definition	of	the	object.	In	this	example,	we	have

$ref:	“#/definitions/VC”

to	 point	 to	 the	 VC	 definition	 in	 the	 definitions	 section	 in	 the	 same
specification	file,	which	will	be	explained	later.

Besides	 the	 required	 field,	 the	Operation	Object	 can	 have	 summary	 and
description	 to	 indicate	 what	 the	 operation	 is	 about;	 and	 operationId	 to
uniquely	 identify	 the	 operation;	 and	 consumes	 and	 produces	 to	 indicate
what	MIME	types	it	expects	as	input	and	for	returns,	e.g.,	application/json
in	most	modern	RESTful	APIs.	It	can	further	specify	what	input	parameter
is	 expected	using	parameters,	which	 requires	 a	name	 and	 in	 fields.	name
specifies	the	name	of	the	parameter,	and	in	specifies	from	where	to	get	the
parameter,	 and	 its	 possible	 values	 are	 query,	 header,	 path,	 formData	 or
body.	In	this	example	in	the	/vc/{id}	path	we	obtain	the	id	parameter	 from
the	URL	path	wo	it	has	the	path	value.	When	the	 in	has	path	as	its	value,
the	required	field	is	required	and	has	to	be	set	as	true;	when	the	in	has	value
other	than	body,	a	type	field	is	required	to	specify	the	type	of	the	parameter.

While	the	three	root	level	fields	mentioned	previously	are	required,	in	most
cases	we	will	also	use	other	optional	fields.

host

to	indicate	where	the	service	is	to	be	deployed,	which	could	be	localhost	or
a	 valid	 IP	 address	 or	 a	DNS	name	of	 the	 host	where	 the	 service	 is	 to	 be
deployed.	 If	other	port	number	other	 than	80	 is	 to	be	used,	write	 the	port
number	as	well,	e.g.,	localhost:8080.

schemas

to	specify	the	transfer	protocol,	e.g,	http	or	https.

basePath

to	specify	 the	common	base	URL	 to	be	append	after	 the	host	 to	 form	 the
base	path	for	all	the	endpoints,	e.g.,	/api	or	/api/1.0/.	 In	 this	example	with
the	 values	 specified	 we	 would	 have	 the	 final	 service	 endpoints
http://localhost:8080/api/vcs	 and	 http://localhost:8080/api/vc/{id}	 by
combining	the	schemas,	host,	basePath	and	paths	values.

consumes	and	produces

can	also	be	specified	on	the	top	level	to	specify	the	default	MIME	types	of
the	input	and	return	if	most	paths	and	the	defined	operations	have	the	same.

definitions

as	 used	 in	 in	 the	 paths	 field,	 in	 order	 to	 point	 to	 a	 customized	 object
definition	with	a	$ref	keyword.

The	definitions	field	really	contains	the	object	definition	of	the	customized
objects	 involved	 in	 the	 API,	 similar	 to	 a	 class	 definition	 in	 any	 Object
Oriented	programming	language.	In	this	example,	we	defined	a	VC	object,
and	hierarchically	a	Node	object.	Each	object	defined	is	a	 type	of	Schema
Object	in	which	many	field	could	be	used	to	specify	the	object	(see	details
in	the	REF	link	at	top	of	the	document),	but	the	most	frequently	used	ones
are:

type

to	specify	the	type,	and	in	the	customized	definition	case	the	value	is	mostly
object.

required

field	to	list	the	names	of	the	required	attributes	of	the	object.

properties

has	 the	 detailed	 information	 of	 each	 attribute/property	 of	 the	 object,	 e.g,
type,	format.	It	also	supports	hierarchical	object	definition	so	a	property	of
one	 object	 could	 be	 another	 customized	 object	 defined	 elsewhere	 while
using	schema	and	$ref	keyword	 to	point	 to	 the	definition.	 In	 this	example
we	have	defined	a	VC,	 or	virtual	 cluster,	object,	while	 it	 contains	another
object	definition	of

Node

as	part	of	a	cluster.

6.3.1	The	Virtual	Cluster	example	API	Definition

6.3.1.1	Terminology

VC

A	 virtual	 cluster,	 which	 has	 one	 Front-End	 (FE)	 management	 node	 and
multiple	compute	nodes.	A	VC	object	also	has	id	and	name	 to	identify	the
VC,	and	nnodes	to	indicate	how	many	compute	nodes	it	has.

FE

A	management	node	from	which	to	access	the	compute	nodes.	The	FE	node
usually	connects	to	all	the	compute	nodes	via	private	network.

Node

A	computer	node	object	that	the	info	ncores	to	indicate	number	of	cores	it
has,	and	ram	and	localdisk	to	show	the	size	of	RAM	and	local	disk	storage.

6.3.1.2	Specification

swagger:	"2.0"

info:

		version:	"1.0.0"

		title:	"A	Virtual	Cluster"

		description:	"Virtual	Cluster	as	a	test	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"IU	ISE	software	and	system	team"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/vcs:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"A	list	of	VCs."

										schema:

												type:	"array"

												items:

														$ref:	"#/definitions/VC"

		/vcs/{id}:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						operationId:	getVCById

						parameters:

								-	name:	id

										in:	path

										description:	ID	of	VC	to	fetch

										required:	true

										type:	string

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"The	vc	with	the	given	id."

										schema:

												$ref:	"#/definitions/VC"

								default:

										description:	unexpected	error

										schema:

												$ref:	'#/definitions/Error'

definitions:

		VC:

				type:	"object"

				required:

						-	"id"

						-	"name"

						-	"nnodes"

						-	"FE"

						-	"computes"

				properties:

						id:

								type:	"string"

						name:

								type:	"string"

						nnodes:

								type:	"integer"

								format:	"int64"

						FE:

								type:	"object"

								schema:

										$ref:	"#/definitions/Node"

						computes:

								type:	"array"

								items:

										$ref:	"#/definitions/Node"

						tag:

								type:	"string"

		Node:

				type:	"object"

6.3.2	References

The	official	OpenAPI	2.0	Documentation

6.4	OPENAPI	3.0	REST	SERVICE	VIA	INTROSPECTION	☁�
The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	read	in	the	specification	from	its	yaml	file.	It	will	than	be	introspected	and
dynamically	 methods	 are	 created	 that	 are	 used	 for	 the	 implementation	 of	 the
server.

The	full	example	for	this	is	available	in

https://github.com/cloudmesh-
community/book/tree/master/examples/rest/cpu

An	extensive	documentation	is	available	at

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 will	 return	 dynamically	 the	 cpu	 information	 of	 a	 computer	 to
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

				required:

						-	"ncores"

						-	"ram"

						-	"localdisk"

				properties:

						ncores:

								type:	"integer"

								format:	"int64"

						ram:

								type:	"integer"

								format:	"int64"

						localdisk:

								type:	"integer"

								format:	"int64"

		Error:

				required:

				-	code

				-	message

				properties:

						code:

								type:	integer

								format:	int32

						message:

								type:	string

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-introspection.md
https://github.com/cloudmesh-community/book/tree/master/examples/rest/cpu
https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py
files	as	our	yaml	file	calls	out	methods	from	cpu.py

The	yaml	file	looks	as	follows

Here	we	 simply	 implement	 a	 get	method	 and	 associate	 is	with	 the	URL	 /cpu.
The	 operationid,	 defines	 the	 method	 that	 we	 call	 which	 as	 we	 used	 the	 local
directory	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

operation	id.

A	very	simple	function	to	return	the	cpu	information	is	defined	in	cpu.py	which	we
list	next

We	have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	servoer	in	two	different	terminals

When	we	call

our	demo	is	run.

6.4.1	Verification

It	is	important	to	be	able	to	verify	if	a	yaml	file	is	correct.	To	identify	this,	the

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

				osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

				pip	install	-r	requirements.txt

demo:

				$(call	terminal,	python	server.py)

				sleep	3

				@echo	"==="

				@echo	"Get	the	info"

				@echo	"==="

				curl	http://localhost:8080/cloudmesh/cpu

				@echo

				@echo	"==="

make	demo

easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	verion	available
at:

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example	and	simply	paste	your
yaml	file	in	it.	Debug	meessages	will	be	helping	you	to	correct	things.

A	terminal	based	command	may	als	be	helpful,	but	is	a	bit	difficult	to	read.

6.4.2	Swagger-UI

Swagger	comes	with	a	convenient	UI	to	invoke	REST	API	calls	using	the	web
browser	rather	than	relying	on	the	curl	commands.

Once	 the	 request	and	 response	definitions	are	properly	 specified,	you	can	start
the	server	by,

Then	 the	 UI	 would	 also	 be	 spawned	 under	 the	 service	 URL	 http://[service
url]/ui/

Example:	http://localhost:8080/cloudmesh/ui/

6.4.3	Mock	service

In	some	cases	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case	it	is	useful	to	run	a	mock
service.	YOu	can	invoce	such	a	service	with

6.4.4	Exercise

OpenAPI.Conexion.1:

Modify	the	makefile	so	it	works	also	on	ubuntu,	but	do	not	disable	the

$	connexion	run	cpu.yaml	--stub	--debug

$	python	server.py

$	connexion	run	cpu.yaml	--mock=all	-v

https://editor.swagger.io/
http://localhost:8080/cloudmesh/ui/

ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on	the
OS.	You	can	look	at	 the	makefiles	 that	create	 this	book	as	example.
find	alternatives	to	sarting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile	 so	 it	 works	 also	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	powershell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	gitbash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	 compute	 service	 interfacing	with	 aws,	 azure,	 google	 or
openstack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
github,	iCloud,	ftp,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	and	 than	 implement	 it	 for	different	 providers.	The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so
that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service

framework	in	Tornado	so	the	service	could	run	in	production.

6.5	OPENAPI	REST	SERVICE	VIA	CODEGEN	☁�

	REST	36:02	Swagger

In	 this	 subsection	 we	 are	 discussing	 how	 to	 use	 OpenAPI	 2.0	 and	 Swagger
Codegen	to	define	and	develop	a	REST	Service.

We	assume	you	have	been	familiar	with	the	concept	of	REST	service,	OpenAPI
as	discussed	in	section	Overview	of	Rest.

In	next	section	we	will	further	look	into	the	Swagger/OpenAPI	2.0	specification
Swagger	 Specification	 and	 use	 a	 slight	 more	 complex	 example	 to	 walk	 you
through	 the	 design	 of	 a	 RESTful	 service	 following	 the	 OpenAPI	 2.0
specifications.

We	will	use	a	simple	example	to	demonstrate	the	process	of	developing	a	REST
service	with	Swagger/OpenAPI	2.0	specification	and	the	tools	related	to	is.	The
general	steps	are:

Step	 1	 (Section	 Step	 1:	 Define	 Your	 REST	 Service.	 Define	 the	 REST
service	 conforming	 to	Swagger/OpenAPI	 2.0	 specification.	 It	 is	 a	YAML
document	 file	 with	 the	 basics	 of	 the	 REST	 service	 defined,	 e.g.,	 what
resources	it	has	and	what	actions	are	supported.

Step	 2	 (Section	 Step	 2:	 Server	 Side	 Stub	 Code	 Generation	 and
Implementation.	 Use	 Swagger	 Codegen	 to	 generate	 the	 server	 side	 stub
code.	Fill	in	the	actual	implementation	of	the	business	logic	portion	in	the
code.

Step	3	(Section	Step	3:	Install	and	Run	the	REST	Service.	Install	the	server
side	code	and	run	it.	The	service	will	then	be	available.

Step	 4	 (Section	 Step	 4:	 Generate	 Client	 Side	 Code	 and	Verify.	Generate
client	side	code.	Develop	code	to	call	the	REST	service.	Install	and	run	to
verify.

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-codegen.md
https://youtu.be/0_Ub13py_K8

6.5.1	Step	1:	Define	Your	REST	Service

In	 this	 example	 we	 define	 a	 simple	 REST	 service	 that	 returns	 the	 hosting
server’s	basic	CPU	info.	The	example	specification	in	yaml	is	as	follows:

6.5.2	Step	2:	Server	Side	Stub	Code	Generation	and
Implementation

With	 the	REST	 service	 having	 been	 defined,	we	 can	 now	 generate	 the	 server
side	stub	code	easily.

6.5.2.1	Setup	the	Codegen	Environment

You	will	need	to	install	the	Swagger	Codegen	tool	if	not	yet	done	so.	For	macOS
we	recommend	that	you	use	the	homebrew	install	via

On	Ubuntu	you	can	install	swagger	as	follows	(update	the	version	as	needed):

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"cpuinfo"

		description:	"A	simple	service	to	get	cpuinfo	as	an	example	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	Example"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/cpu:

				get:

						description:	"Returns	cpu	information	of	the	hosting	server"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"CPU	info"

										schema:

												$ref:	"#/definitions/CPU"

definitions:

		CPU:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

								type:	"string"

$	brew	install	swagger-codegen

https://swagger.io/docs/swagger-tools/

Add	the	alias	to	your	.bashrc	or	.bash_profile	 file.	After	you	start	a	new	terminal	you
can	use	in	that	terminal	now	the	command

For	other	platforms	you	can	just	use	the	.jar	file,	which	can	be	downloaded	from
this	link.

Also	make	sure	Java	7	or	8	is	installed	in	your	system.	To	have	a	well	defined
location	we	recommend	that	you	place	the	code	in	the	directory	~/cloudmesh.	In	this
directory	you	will	also	place	the	cpu.yaml	file.

6.5.2.2	Generate	Server	Stub	Code

After	 you	have	 the	 codegen	 tool	 ready,	 and	with	 Java	7	or	 8	 installed	 in	your
system,	you	can	run	the	following	to	generate	the	server	side	stub	code:

or	if	you	have	not	created	an	alias

In	 the	 specified	 directory	 under	 flaskConnexion	 you	 will	 find	 the	 generated
python	 flask	code,	with	python	2	compatibility.	 It	 is	best	 to	place	 the	swagger
code	under	the	directory	~/cloudmesh	to	have	a	location	where	you	can	easily	find	it.
If	you	want	to	use	python	3	make	sure	to	chose	the	appropriate	option.	To	switch
between	python	2	and	python	3	we	recommend	that	you	use	pyenv	as	discussed
in	our	python	section.

6.5.2.3	Fill	in	the	actual	implementation

$	mkdir	~/swagger

$	cd	~/swagger

$	wget	https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar

$	alias	swagger-codegen="java	-jar	~/swagger/swagger-codegen-cli-2.3.1.jar"

swagger-codegen

$	swagger-codegen	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

$	java	-jar	swagger-codegen-cli.jar	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar

Under	 the	 flaskConnexion	 directory,	 you	will	 find	 a	 swagger_server	 directory,
under	which	you	will	find	directories	with	models	defined	and	controllers	code
stub	resides.	The	models	code	are	generated	from	the	definition	in	Step	1.	On	the
controller	 code	 though,	we	will	 need	 to	 fill	 in	 the	 actual	 implementation.	You
may	 see	 a	 default_controller.py	 file	 under	 the	 controllers	 directory	 in	 which	 the
resource	and	action	 is	defined	but	yet	 to	be	 implemented.	 In	our	example,	you
will	find	such	a	function	definition	which	we	list	next:

Please	note	 the	 do	some	magic!	 string	 at	 the	 return	 of	 the	 function.	This	 ought	 to	 be
replaced	with	actual	implementation	what	you	would	like	your	REST	call	to	be
really	 doing.	 In	 reality	 this	 could	 be	 some	 call	 to	 a	 backend	 database	 or
datastore;	 a	 call	 to	 another	 API;	 or	 even	 calling	 another	 REST	 service	 from
another	location.	In	this	example	we	simply	retrieve	the	cpu	model	information
from	the	hosting	server	through	a	simple	python	call	to	illustrate	this	principle.
Thus	you	can	define	the	following	code:

And	then	change	the	cpu_get()	function	to	the	following:

Please	 note	 we	 are	 returning	 a	 CPU	 object	 as	 defined	 in	 the	 API	 and	 later

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	cpu	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	'do	some	magic!'

import	os,	platform,	subprocess,	re

def	get_processor_name():

				if	platform.system()	==	"Windows":

								return	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								return	subprocess.check_output(command,	shell=True).strip()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																return	re.sub(".*model	name.*:",	"",	line,	1)

				return	"cannot	find	cpuinfo"

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	cpu	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	CPU(get_processor_name())

generated	by	the	codegen	tool	in	the	models	directory.

It	is	best	not	to	include	the	definition	of	get_processor_name()	in	the	same	file	as	you	see
the	definition	of	cpu_get().	The	reason	for	this	is	that	in	case	you	need	to	regenerate
the	 code,	 your	modified	 code	will	 naturally	be	overwritten.	Thus,	 to	minimize
the	changes,	we	do	recommend	to	maintain	that	portion	in	a	different	filename
and	import	the	function	as	to	keep	the	modifications	small.

At	this	step	we	have	completed	the	server	side	code	development.

6.5.3	Step	3:	Install	and	Run	the	REST	Service:

Now	we	can	install	and	run	the	REST	service.	It	is	strongly	recommended	that
you	run	this	in	a	pyenv	or	a	virtualenv	environment.

6.5.3.1	Start	a	virtualenv:

In	case	you	are	not	using	pyenv,	please	use	virtual	env	as	follows:

6.5.3.2	Make	sure	you	have	the	latest	pip:

6.5.3.3	Install	the	requirements	of	the	server	side	code:

6.5.3.4	Install	the	server	side	code	package:

Under	the	same	directory,	run:

6.5.3.5	Run	the	service

Under	the	same	directory:

$	virtualenv	RESTServer

$	source	RESTServer/bin/activate

$	pip	install	-U	pip

$	cd	~/cloudmesh/swagger_example/server/cpu/flaskConnexion

$	pip	install	-r	requirements.txt

$	python	setup.py	install

You	should	see	a	message	like	this:

6.5.3.6	Verify	the	service	using	a	web	browser:

Open	a	web	browser	and	visit:

http://localhost:8080/api/cpu

to	see	if	it	returns	a	json	object	with	cpu	model	info	in	it.

Assignment:	How	would	you	verify	that	your	service	works	with	a	curl	call?

6.5.4	Step	4:	Generate	Client	Side	Code	and	Verify

In	addition	to	the	server	side	code	swagger	can	also	create	a	client	side	code.

6.5.4.1	Client	side	code	generation:

Generate	 the	client	side	code	 in	a	similar	 fashion	as	we	did	 for	 the	server	side
code:

6.5.4.2	Install	the	client	side	code	package:

Although	 we	 could	 have	 installed	 the	 client	 in	 the	 same	 python	 pyenv	 or
virtualenv,	we	 showcase	 here	 that	 it	 can	 be	 installed	 in	 a	 completely	 different
environment.	That	would	make	 it	even	possible	 to	use	a	python	3	based	client
and	 a	 python	 2	 based	 server	 showcasing	 interoperability	 between	 python
versions	(although	we	just	use	python	2	here).	Thus	we	create	ane	new	python
virtual	environment	and	conduct	our	install.

$	python	-m	swagger_server

*	Running	on	http://0.0.0.0:8080/	(Press	CTRL+C	to	quit)

$	java	-jar	swagger-codegen-cli.jar	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python	\

				-o	~/cloudmesh/swagger_example/client/cpu	\

				-D	supportPython2=true

$	virtualenv	RESTClient

$	source	RESTClient/bin/activate

$	pip	install	-U	pip

6.5.4.3	Using	the	client	API	to	interact	with	the	REST	service

Under	 the	directory	swagger_example/client/cpu	you	will	 find	a	README.md
file	which	serves	as	an	API	documentation	with	example	client	code	in	it.	E.g.,	if
we	save	the	following	code	into	a	.py	file:

We	 can	 then	 run	 this	 code	 to	 verify	 the	 calling	 to	 the	 REST	 service	 actually
works.	We	are	expecting	to	see	a	return	similar	to	this:

Obviously,	we	could	have	applied	additional	cleanup	of	the	information	returned
by	the	python	code,	such	as	removing	duplicated	spaces.

6.5.5	Towards	a	Distributed	Client	Server

Although	we	develop	and	 run	 the	example	on	one	 localhost	machine,	you	can
separate	the	process	into	two	separate	machines.	E.g.,	on	a	server	with	external
IP	or	even	DNS	name	 to	deploy	 the	server	side	code,	and	on	a	 local	 laptop	or
workstation	to	deploy	the	client	side	code.	In	this	case	please	make	changes	on
the	API	definition	accordingly,	e.g.,	the	host	value.

6.6	FLASK	RESTFUL	SERVICES	☁�
Flask	 is	 a	micro	 services	 framework	 allowing	 to	write	web	 services	 in	 python
quickly.	One	of	its	extensions	is	Flask-RESTful.	It	adds	for	building	REST	APIs
based	on	a	class	definition	making	it	relatively	simple.	Through	this	interface	we
can	than	integrate	with	your	existing	Object	Relational	Models	and	libraries.	As

$	cd	swagger_example/client/cpu

$	pip	install	-r	requirements.txt

$	python	setup.py	install

from	__future__	import	print_function

import	time

import	swagger_client

from	swagger_client.rest	import	ApiException

from	pprint	import	pprint

#	create	an	instance	of	the	API	class

api_instance	=	swagger_client.DefaultApi()

try:

				api_response	=	api_instance.cpu_get()

				pprint(api_response)

except	ApiException	as	e:

				print("Exception	when	calling	DefaultApi->cpu_get:	%s\n"	%	e)

{'model':	'Intel(R)	Core(TM)2	Quad	CPU				Q9550		@	2.83GHz'}

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-restful.md

Flask-RESTful	 leverages	 the	 main	 features	 from	 Flask	 an	 extensive	 set	 of
documentation	 is	available	allowing	you	 to	get	started	quickly	and	 thoroughly.
The	Web	page	contains	extensive	documentation:

https://flask-restful.readthedocs.io/en/latest/

We	will	provide	a	simple	example	 that	showcases	some	hard	coded	data	 to	be
served	as	a	rest	service.	It	will	be	easy	to	replace	this	for	example	with	functions
and	 methods	 that	 obtain	 such	 information	 dynamically	 from	 the	 operating
system.

This	 example	 has	 not	 been	 tested.	 We	 like	 that	 the	 class	 defines	 a	 beautiful
example	to	contribute	to	this	section	and	explains	what	happens	in	this	example.
				from	flask	import	Flask

				from	flask_restful	import	reqparse,	abort

				from	flask_restful	import	Api,	Resource

				app	=	Flask(__name__)

				api	=	Api(app)

				COMPUTERS	=	{

								'computer1':	{

										'processor':	'iCore7'

								},

								'computer2':	{

										'processor':	'iCore5'

								},

								'computer3':	{

										'processor':	'iCore3'

								},

				}

				def	abort_if_cluster_doesnt_exist(computer_id):

								if	computer_id	not	in	COMPUTERS:

												abort(404,	message="Computer	{}	does	not	exist".format(computer_id))

				parser	=	reqparse.RequestParser()

				parser.add_argument('processor')

				class	Computer(Resource):

								'''	shows	a	single	computer	item	and	lets	you	delete	a	computer

												item.'''

								def	get(self,	computer_id):

												abort_if_computer_doesnt_exist(computer_id)

												return	COMPUTERS[computer_id]

								def	delete(self,	computer_id):

												abort_if_computer_doesnt_exist(computer_id)

												del	COMPUTERS[computer_id]

												return	'',	204

								def	put(self,	computer_id):

												args	=	parser.parse_args()

												processor	=	{'processor':	args['processor']}

												COMPUTERS[computer_id]	=	processor

												return	processor,	201

				#	ComputerList

				class	ComputerList(Resource):

								'''	shows	a	list	of	all	computers,	and	lets	you	POST	to	add	new	computers'''

https://flask-restful.readthedocs.io/en/latest/

6.7	REST	SERVICES	WITH	EVE	☁�
Next,	we	will	 focus	on	how	to	make	a	RESTful	web	service	with	Python	Eve.
Eve	 makes	 the	 creation	 of	 a	 REST	 implementation	 in	 python	 easy.	 More
information	about	Eve	can	be	found	at:

http://python-eve.org/

Although	we	do	recommend	Ubuntu	17.04,	at	this	time	there	is	a	bug	that	forces
us	to	use	16.04.	Furthermore,	we	require	you	to	follow	the	instructions	on	how
to	 install	pyenv	and	use	 it	 to	set	up	your	python	environment.	We	recommend
that	 you	 use	 either	 python	 2.7.14	 or	 3.6.4.	We	 do	 not	 recommend	 you	 to	 use
anaconda	as	it	is	not	suited	for	cloud	computing	but	targets	desktop	computing.
If	you	use	pyenv	you	also	avoid	the	issue	of	interfering	with	your	system	wide
python	install.	We	do	recommend	pyenv	regardless	if	you	use	a	virtual	machine
or	are	working	directly	on	your	operating	system.	After	you	have	set	up	a	proper
python	 environment,	 make	 sure	 you	 have	 the	 newest	 version	 of	 pip	 installed
with

To	install	Eve,	you	can	say

As	Eve	also	needs	a	backend	database,	and	as	MongoDB	is	an	obvious	choice
for	 this,	 we	 will	 have	 to	 first	 install	 MongoDB.	 MongoDB	 is	 a	 Non-SQL
database	which	helps	to	store	light	weight	data	easily.

								def	get(self):

												return	COMPUTERS

								def	post(self):

												args	=	parser.parse_args()

												computer_id	=	int(max(COMPUTERS.keys()).lstrip('computer'))	+	1

												computer_id	=	'computer%i'	%	computer_id

												COMPUTERS[computer_id]	=	{'processor':	args['processor']}

												return	COMPUTERS[computer_id],	201

				##

				##	Setup	the	Api	resource	routing	here

				##

				api.add_resource(ComputerList,	'/computers')

				api.add_resource(Computer,	'/computers/<computer_id>')

				if	__name__	==	'__main__':

								app.run(debug=True)

$	pip	install	pip	-U

$	pip	install	eve

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-eve.md
http://python-eve.org/

6.7.1	Ubuntu	install	of	MongoDB

On	Ubuntu	you	can	install	MongoDB	as	follows

6.7.2	macOS	install	of	MongoDB

On	macOS	you	can	use	the	command

6.7.3	Windows	10	Installation	of	MongoDB

A	student	or	student	group	of	this	class	are	invited	to	discuss	on	piazza	on	how
to	 install	 mongoDB	 on	 Windows	 10	 and	 come	 up	 with	 an	 easy	 installation
solution.	Naturally	we	have	the	same	2	different	ways	on	how	to	run	mongo.	In
user	 space	 or	 in	 the	 system.	 As	 we	 want	 to	 make	 sure	 your	 computer	 stays
secure.	 the	 solution	must	 have	 an	 easy	way	 on	 how	 to	 shut	 down	 the	Mongo
services.

An	enhancement	of	this	task	would	be	to	integrate	this	function	into	cloudmesh
cmd5	with	 a	 command	mongo	 that	 allows	 for	 easily	 starting	 and	 stopping	 the
service	from	cms.

6.7.4	Database	Location

After	 downloading	Mongo,	 create	 the	 db	 directory.	 This	 is	 where	 the	Mongo
data	files	will	live.	You	can	create	the	directory	in	the	default	location	and	assure
it	has	 the	right	permissions.	Make	sure	 that	 the	 /data/db	directory	has	 the	right
permissions	by	running

6.7.5	Verification

In	order	to	check	the	MongoDB	installation,	please	run	the	following	commands

$	sudo	apt-key	adv	--keyserver	hkp://keyserver.ubuntu.com:80	\

																			--recv	2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5

$	echo	"deb	[arch=amd64,arm64]	https://repo.mongodb.org/apt/ubuntu	\

				xenial/mongodb-org/3.6	multiverse"	|	\

				sudo	tee	/etc/apt/sources.list.d/mongodb-org-3.6.list

$	sudo	apt-get	update

$	sudo	apt-get	install	-y	mongodb-org

$	brew	update

$	brew	install	mongodb

in	one	terminal:

In	another	terminal	we	try	to	connect	to	mongo	and	issue	a	mongo	command	to
show	the	databases:

If	 they	 execute	 without	 errors,	 you	 have	 successfully	 installed	 MongoDB.	 In
order	to	stop	the	running	database	instance	run	the	following	command.	simply
CTRL-C	the	running	mongod	process

6.7.6	Building	a	simple	REST	Service

In	this	section	we	will	focus	on	creating	a	simple	rest	service.	To	organize	our
work	we	will	create	the	following	directory:

As	Eve	needs	a	configuration	and	it	is	read	in	by	default	from	the	file	settings.py	we
place	the	following	content	in	the	file	~/cloudmesh/eve/settings.py:

The	DOMAIN	object	specifies	the	format	of	a	student	object	that	we	are	using	as
part	of	our	REST	service.	In	addition	we	can	specify	RESOURCE_METHODS	which	methods

$	mkdir	-p	~/cloudmesh/data/db

$	mongod	--dbpath	~/cloudmesh/data/db

$	mongo	--host	127.0.0.1:27017

$	show	databases

$	mkdir	-p	~/cloudmesh/eve

$	cd	~/cloudmesh/eve

MONGO_HOST	=	'localhost'

MONGO_PORT	=	27017

MONGO_DBNAME	=	'student_db'

DOMAIN	=	{

				'student':	{

								'schema':	{

												'firstname':	{

																'type':	'string'

												},

												'lastname':	{

																'type':	'string'

												},

												'university':	{

																'type':	'string'

												},

												'email':	{

																'type':	'string',

																	'unique':	True

												}

												'username':	{

																'type':	'string',

																	'unique':	True

												}

								}

				}

}

RESOURCE_METHODS	=	['GET',	'POST']

are	 activated	 for	 the	 REST	 service.	 This	 way	 the	 developer	 can	 restrict	 the
available	 methods	 for	 a	 REST	 service.	 To	 pass	 along	 the	 specification	 for
mongoDB,	we	 simply	 specify	 the	 hostname,	 the	 port,	 as	well	 as	 the	 database
name.

Now	that	we	have	defined	the	settings	for	our	example	service,	we	need	to	start
it	with	a	simple	python	program.	We	could	name	that	program	anything	we	like,
but	often	it	is	called	simply	run.py.	This	file	is	placed	in	the	same	directory	where
you	 placed	 the	 settings.py.	 In	 our	 case	 it	 is	 in	 the	 file	 ~/cloudmesh/eve/run.py	 and
contains	the	following	python	program:

This	is	the	most	minimal	application	for	Eve,	that	uses	the	settings.py	file	for	its
configuration.	 Naturally,	 if	 we	 were	 to	 change	 the	 configuration	 file	 and	 for
example	 change	 the	 DOMAIN	 and	 its	 schema,	 we	 would	 naturally	 have	 to
remove	 the	 database	 previously	 created	 and	 start	 the	 service	 new.	 This	 is
especially	important	as	during	the	development	phase	we	may	frequently	change
the	schema	and	the	database.	Thus	it	is	convenient	to	develop	necessary	cleaning
actions	as	part	of	a	Makefile	which	we	leave	as	easy	exercise	for	the	students.

Next,	we	need	 to	 start	 the	 services	which	can	easily	be	achieved	 in	a	 terminal
while	running	the	commands:

Previously	we	started	the	mongoDB	service	as	follows:

This	 is	 done	 in	 its	 own	 terminal,	 so	we	 can	 observe	 the	 log	messages	 easily.
Next	we	start	in	another	window	the	Eve	service	with

You	 can	 find	 the	 codes	 and	 commands	 up	 to	 this	 point	 in	 the	 following
document.

6.7.7	Interacting	with	the	REST	service

from	eve	import	Eve

app	=	Eve()

if	__name__	==	'__main__':

				app.run()

$	mongod	--dbpath	~/cloudmesh/data/db/

$	cd	~/cloudmesh/eve

$	python	run.py

Yet	in	another	window,	we	can	now	interact	with	the	REST	service.	We	can	use
the	commandline	to	save	the	data	in	the	database	using	the	REST	api.	The	data
can	be	 retrieved	 in	XML	or	 in	 json	 format.	 Json	 is	 often	more	 convenient	 for
debugging	as	it	is	easier	to	read	than	XML.

Naturally,	we	need	first	to	put	some	data	into	the	server.	Let	us	assume	we	add
the	user	Albert	Zweistein.

To	achieve	this,	we	need	to	specify	the	header	using	H	 tag	saying	we	need	the
data	to	be	saved	using	json	format.	And	X	tag	says	the	HTTP	protocol	and	here
we	use	POST	method.	And	the	tag	d	specifies	 the	data	and	make	sure	you	use
json	format	to	enter	the	data.	Finally,	the	REST	api	endpoint	to	which	we	must
save	data.	This	allows	us	to	save	the	data	in	a	table	called	student	in	MongoDB
within	a	database	called	eve.

In	order	to	check	if	the	entry	was	accepted	in	mongo	and	included	in	the	server
issue	the	following	command	sequence	in	another	terminal:

Now	you	can	query	mongo	directly	with	its	shell	interface

Naturally	this	is	not	really	necessary	for	A	REST	service	such	as	eve	as	we	show
you	next	how	to	gain	access	to	the	data	via	mongo	while	using	REST	calls.	We
can	simply	retrieve	the	information	with	the	help	of	a	simple	URI:

Naturally,	 you	 can	 formulate	 other	URLs	 and	 query	 attributes	 that	 are	 passed
along	after	the	?.

This	will	now	allow	you	to	develop	sophisticated	REST	services.	We	encourage
you	 to	 inspect	 the	 documentation	 provided	 by	 Eve	 to	 showcase	 additional
features	that	you	could	be	using	as	part	of	your	efforts.

$	curl	-H	"Content-Type:	application/json"	-X	POST	\

							-d	'{"firstname":"Albert","lastname":"Zweistein",	\

							"school":"ISE","university":"Indiana	University",	\

							"email":"albert@iu.edu",	"username":	"albert"}'	\

							http://127.0.0.1:5000/student/

$	mongo

>	show	databases

>	use	student_db

>	show	tables	#	query	the	table	names

>	db.student.find().pretty()		#	pretty	will	show	the	json	in	a	clear	way

$	curl	http://127.0.0.1:5000/student?firstname=Albert

Let	us	explore	how	to	properly	use	additional	REST	API	calls.	We	assume	you
have	MongoDB	up	and	running.	To	query	the	service	itself	we	can	use	the	URI
on	the	Eve	port

Your	payload	should	look	like	the	one	listed	next,	if	your	output	is	not	formatted
like	this	try	adding	?pretty=1

Remember	that	the	API	entry	points	include	additional	information	such	as	links
and	a	child,	and	href.

Set	 up	 a	 python	 environment	 that	 works	 for	 your	 platform.	 Provide	 explicit
reasons	why	 anaconda	 and	 other	 prepackaged	 python	 versions	 have	 issues	 for
cloud	related	activities.	When	may	you	use	anaconda	and	when	should	you	not
use	anaconda.	Why	would	you	want	to	use	pyenv?

What	is	the	meaning	and	purpose	of	links,	child,	and	href

In	this	case	how	many	child	resources	are	available	through	our	API?

Develop	a	REST	service	with	Eve	and	start	and	stop	it

Define	curl	calls	to	store	data	into	the	service	and	retrieve	it.

Write	 a	 Makefile	 and	 in	 it	 a	 target	 clean	 that	 cleans	 the	 data	 base.	 Develop
additional	 targets	 such	 as	 start	 and	 stop,	 that	 start	 and	 stop	 the	mongoDB	 but
also	the	Eve	REST	service

Issue	the	command

$	curl	-i	http://127.0.0.1:5000

$	curl	-i	http://127.0.0.1:5000?pretty=1

HTTP/1.0	200	OK

Content-Type:	application/json

Content-Length:	150

Server:	Eve/0.7.6	Werkzeug/0.11.15	Python/2.7.16

Date:	Wed,	17	Jan	2018	18:34:07	GMT

{

				"_links":	{

								"child":	[

												{

																"href":	"student",

																"title":	"student"

												}

]

				}

What	does	the	_links	section	describe?

What	does	the	_items	section	describe?

6.7.8	Creating	REST	API	Endpoints

Next	we	wont	 to	 enhance	 our	 example	 a	 bit.	 First,	 let	 us	 get	 back	 to	 the	 eve
working	directory	with

Add	the	following	content	to	a	file	called	run2.py

After	 creating	 and	 saving	 the	 file.	 Run	 the	 following	 command	 to	 start	 the
service

$	curl	-i	http://127.0.0.1:5000/people

				{

								"_items":	[],

								"_links":	{

												"self":	{

																"href":	"people",

																"title":	"people"

												},

												"parent":	{

																"href":	"/",

																"title":	"home"

												}

								},

								"_meta":	{

												"max_results":	25,

												"total":	0,

												"page":	1

								}

				}

	$	cd	~/cloudmesh/eve

from	eve	import	Eve

from	flask	import	jsonify

import	os

import	getpass

	app	=	Eve	()

	@app.route('/student/albert')

def	alberts_information():

				data	=	{

								'firstname':	'Albert',

								'lastname':	'Zweistsein',

								'university':	'Indiana	University',

								'email':	'albert@example.com'

								}

				try:

								data['username']	=	getpass.getuser()

				except:

								data['username']	=	'not-found'

				return	jsonify(**data)

if	__name__	==	'__main__':

				app.run(debug=True,	host="127.0.0.1")

	$	python	run2.py

After	running	the	command,	you	can	interact	with	the	service	while	entering	the
following	url	in	the	web	browser:

You	can	also	open	up	a	second	terminal	and	type	in	it

The	following	information	will	be	returned:

This	example	illustrates	how	easy	it	is	to	create	REST	services	in	python	while
combining	information	from	a	dict	with	information	retrieved	from	the	system.
The	 important	 part	 is	 to	 understand	 the	 decorator	 app.route.	 The	 parameter
specifies	the	route	of	the	API	endpoint	which	will	be	the	address	appended	to	the
base	path,	http://127.0.0.1:5000.	It	is	important	that	we	return	a	jsonified	object,	which
can	easily	be	done	with	the	jsonify	function	provided	by	flask.As	you	can	see	the
name	of	the	decorated	function	can	be	anything	you	lok.	The	route	specifies	how
we	access	it	from	the	service.

6.7.9	REST	API	Output	Formats	and	Request	Processing

Another	way	 of	managing	 the	 data	 is	 to	 utilize	 class	 definitions	 and	 response
types	that	we	explicitly	define.

If	we	want	 to	create	an	object	 like	Student,	we	can	first	define	a	python	class.
Create	a	file	called	student.py.	Please,	note	the	get	method	that	returns	simply
the	 information	 in	 the	 dict	 for	 the	 class.	 It	 is	 not	 related	 to	 the	 REST	 get
function.

http://127.0.0.1:5000/student/alberts

$	curl	http://127.0.0.1:5000/student/alberts

{

		"firstname":	"Albert",

		"lastname":	"Zweistain",

		"university":	"Indiana	University",

		"email":	"albert@example.com",

		"username":	"albert"

}

class	Student(object):

				def	__init__(self,	firstname,	lastname,	university,	email):

								self.firstname	=	firstname

								self.lastname	=	lastname

								self.university	=	university

								self.email	=	email

								self.username	=	'undefined'

					def	get(self):

							return	self.__dict__

					def	setUsername(self,	name):

							self.username	=	name

							return	name

Next	we	define	a	REST	service	with	Eve	as	shown	in	the	following	listing

In	contrast	to	our	earlier	example,	we	are	not	using	the	jsonify	object,	but	create
explicitly	a	response	that	we	return	to	the	clients.	The	response	includes	a	header
that	we	return	the	information	in	json	format,	a	status	of	200,	which	means	the
object	was	returned	successfully,	and	the	actual	data.

6.7.10	REST	API	Using	a	Client	Application

�	This	example	is	not	tested.	Please	provide	feedback	and	improve.

In	the	Section	Rest	Services	with	Eve	we	created	our	own	REST	API	application
using	 Python	 Eve.	Now	 once	 the	 service	 running,	 a	we	 need	 to	 learn	 how	 to
interact	with	it	through	clients.

First	go	back	to	the	working	folder:

Here	we	create	a	new	python	file	called	client.py.	The	file	include	the	following
content.

from	eve	import	Eve

from	student	import	Student

import	platform

import	psutil

import	json

from	flask	import	Response

import	getpass

	app	=	Eve()

		@app.route('/student/albert',	methods=['GET'])

def	processor():

				student	=	Student("Albert",

																						"Zweistein",

																						"Indiana	University",

																						"albert@example.edu")

				response	=	Response()

				response.headers["Content-Type"]	=	"application/json;	charset=utf-8"

				try:

								student.setUsername(getpass.getuser())

								response.headers["status"]	=	200

				except:

								response.headers["status"]	=	500

				response.data	=	json.dumps(student.get())

				return	response

if	__name__	==	'__main__':

				app.run(debug=True,	host='127.0.0.1')

	$	cd	~/cloudmesh/eve

import	requests

import	json

def	get_all():

				response	=	requests.get("http://127.0.0.1:5000/student")

Run	the	following	command	in	a	new	terminal	to	execute	the	simple	client	by

Here	when	you	run	this	class	for	the	first	time,	it	will	run	successfully,	but	if	you
tried	 it	 for	 the	 second	 time,	 it	will	 give	 you	 an	 error.	 Because	we	 did	 set	 the
email	to	be	a	unique	field	in	the	schema	when	we	designed	the	settings.py	file	in
the	beginning.	So	if	you	want	to	save	another	record	you	must	have	entries	with
unique	emails.	In	order	to	make	this	dynamic	you	can	include	a	input	reading	by
using	the	terminal	to	get	the	student	data	first	and	instead	of	the	static	data	you
can	use	 the	user	 input	data	 from	the	 terminal	 to	get	dynamic	data.	But	 for	 this
exercise	we	do	not	expect	that	or	any	other	form	data	functionality.

In	order	to	get	the	saved	data,	you	can	comment	the	record	saving	function	and
uncomment	the	get	all	function.	In	python	commenting	is	done	by	using	#.

This	client	 is	using	 the	requests	 python	 library	 to	 send	GET,	POST	and	other
HTTP	 requests	 to	 the	 server	 so	you	can	 leverage	build	 in	methods	 to	 simplify
your	work.

The	 get_all	 function	provides	a	way	 to	get	 the	output	 to	 the	console	with	all	 the
data	in	the	student	database.	The	save_record	function	provides	a	way	to	save	data	in
the	database.	You	can	create	dynamic	functions	in	order	 to	save	dynamic	data.
However	it	may	take	some	time	for	you	to	apply	as	exercise.

Write	a	RESTful	service	to	determine	a	useful	piece	of	information	off	of	your

				print(json.dumps(response.json(),	indent=4,	sort_keys=True))

def	save_record():

				headers	=	{

								'Content-Type':	'application/json'

				}

				data	=	'{"firstname":"Gregor",

													"lastname":"von	Laszewski",

													"university":	"Indiana	University",

													"email":"jane@iu.edu",

													"username":	"jane"}'

				response	=	requests.post('http://localhost:5000/student/',

																														headers=headers,

																														data=data)

				print(response.json())

if	__name__	==	'__main__':

				save_record()

				get_all()

	$	python	client.py

computer	i.e.	disk	space,	memory,	RAM,	etc.	In	this	exercise	what	you	need	to
do	is	use	a	python	library	to	extract	data	about	computer	information	mentioned
previously	 and	 send	 these	 information	 to	 the	 user	 once	 the	 user	 calls	 an	 API
endpoint	 like	 http://localhost:5000/performance/ram,	 it	 must	 return	 the	 RAM	 value	 of	 the
given	machine.	For	each	information	like	disk	space,	RAM,	etc	you	can	use	an
endpoint	per	each	feature	needed.	As	a	tip	for	this	exercise,	use	the	psutil	library
in	python	to	retrieve	the	data,	and	then	get	these	information	into	an	string	then
populate	a	class	called	Computer	and	try	to	save	the	object	like	wise.

6.7.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	�

�

	 Part	 of	 this	 section	 related	 to	 management	 of	 the	 mongo	 db
serviceis	done	by	the	cm4	command	we	will	be	developping	as	part	of
this	 class	 cms	mongo	admin	 that	 does	 all	 of	 the	 things	 explained	 next	 and
more.

Naturally	it	is	of	advantage	to	have	in	cms	administration	commands	to	manage
mongo	and	eve	from	cmd	instead	of	targets	in	the	Makefile.	Hence,	we	propose
that	 the	 class	develops	 such	an	extension.	We	will	 create	 in	 the	 repository	 the
extension	 called	 admin	 and	hope	 that	 students	 through	 collaborative	work	 and
pull	requests	complete	such	an	admin	command.

The	proposed	command	is	located	at:

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py

It	will	be	up	to	the	class	to	implement	such	a	command.	Please	coordinate	with
each	other.

The	implementation	based	on	what	we	provided	in	the	Make	file	seems	straight
forward.	 A	 great	 extension	 is	 to	 load	 the	 objects	 definitions	 or	 eve
e.g.	settings.py	not	from	the	class,	but	from	a	place	in	.cloudmesh.	I	propose	to
place	the	file	at:
~/.cloudmesh/db/settings.py

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py

the	location	of	 this	file	 is	used	when	the	Service	class	 is	 initialized	with	None.
Prior	 to	 starting	 the	 service	 the	 file	 needs	 to	 be	 copied	 there.	 This	 could	 be
achieved	with	a	set	command.

6.8	HATEOAS	☁�
In	 the	 previous	 section	 we	 discussed	 the	 basic	 concepts	 about	 RESTful	 web
service.	Next	we	introduce	you	to	the	concept	of	HATEOAS

HATEOAS	stands	for	Hypermedia	as	the	Engine	of	Application	State	and	this	is
enabled	 by	 the	 default	 configuration	 within	 Eve.	 It	 is	 useful	 to	 review	 the
terminology	and	attributes	used	as	part	of	this	configuration.	HATEOS	explains
how	REST	API	endpoints	are	defined	and	it	provides	a	clear	description	on	how
the	API	can	be	consumed	through	these	terms:

_links

Links	describe	the	relation	of	current	resource	being	accessed	to	the	rest	of
the	 resources.	 It	 is	 like	 if	 we	 have	 a	 set	 of	 links	 to	 the	 set	 of	 objects	 or
service	endpoints	that	we	are	referring	in	the	RESTful	web	service.	Here	an
endpoint	 refers	 to	a	service	call	which	 is	 responsible	 for	executing	one	of
the	CRUD	operations	on	a	particular	object	or	set	of	objects.	More	on	the
links,	the	links	object	contains	the	list	of	serviceable	API	endpoints	or	list
of	 services.	When	we	are	calling	a	GET	 request	or	 any	other	 request,	we
can	 use	 these	 service	 endpoints	 to	 execute	 different	 queries	 based	 on	 the
user	 purpose.	 For	 instance,	 a	 service	 call	 can	 be	 used	 to	 insert	 data	 or
retrieve	 data	 from	 a	 remote	 database	 using	 a	 REST	 API	 call.	 About
databases	we	will	discuss	in	detail	in	another	chapter.

title

The	 title	 in	 the	 rest	 endpoint	 is	 the	 name	 or	 topic	 that	 we	 are	 trying	 to
address.	It	describes	the	nature	of	the	object	by	a	single	word.	For	instance
student,	bank-statement,	salary,etc	can	be	a	title.

parent

The	 term	 parent	 refers	 to	 the	 very	 initial	 link	 or	 an	 API	 endpoint	 in	 a

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-haetos.md

particular	RESTful	web	service.	Generally	this	is	denoted	with	the	primary
address	like	http://example.com/api/v1/.

href

The	term	href	refers	to	the	url	segment	that	we	use	to	access	the	a	particular
REST	 API	 endpoint.	 For	 instance	 “student?page=1”	 will	 return	 the	 first
page	of	student	list	by	retrieving	a	particular	number	of	items	from	a	remote
database	 or	 a	 remote	 data	 source.	 The	 full	 url	 will	 look	 like	 this,
“http://www.exampleapi.com/student?page=1”.

In	 addition	 to	 these	 fields	 eve	 will	 automatically	 create	 the	 follwoing
information	when	resources	are	created	as	showcased	ot

http://python-eve.org/features.html

Field Description
_created item	creation	date.
_updated item	last	updated	on.
_etag ETag,	to	be	used	for	concurrency	control	and	conditional	requests.
_id unique	item	key,	also	needed	to	access	the	individual	item	endpoint.

Pagenation	information	can	be	included	in	the	_meta	field.

6.8.1	Filtering

Clients	can	submit	query	strings	to	the	rest	service	to	retrieve	resources	based	on
a	 filter.	This	 also	 allows	 sorting	of	 the	 results	 queried.	One	nice	 feature	 about
using	 mongo	 as	 a	 backend	 database	 is	 that	 Eve	 not	 only	 allows	 python
conditional	expressions,	but	also	mongo	queries.

A	number	of	examples	to	conduct	such	queries	include:

A	python	expression

$	curl	-i	-g	http://eve-demo.herokuapp.com/people?where={%22lastname%22:%20%22Doe%22}

$	curl	-i	http://eve-demo.herokuapp.com/people?where=lastname=="Doe"

http://python-eve.org/features.html

6.8.2	Pretty	Printing

Pretty	printing	is	typically	supported	by	adding	the	parameter	?pretty	or	?pretty=1

If	this	does	not	work	you	can	always	use	python	to	beautify	a	json	output	with

or

6.8.3	XML

If	for	some	reason	you	like	to	retrieve	the	information	in	XML	you	can	specify
this	for	example	through	curl	with	an	Accept	header

6.9	EXTENSIONS	TO	EVE	☁�
A	number	of	extensions	have	been	developed	by	the	community.	This	includes
eve-swagger,	eve-sqlalchemy,	eve-elastic,	eve-mongoengine,	eve-neo4j,	eve.net,
eve-auth-jwt,	and	flask-sentinel.

Naturally	there	are	many	more.

Students	 have	 the	 opportunity	 to	 pic	 one	 of	 the	 community	 extensions	 and
provide	a	section	for	the	handbook.

Pick	 one	 of	 the	 extension,	 research	 it	 and	 provide	 a	 small	 section	 for	 the
handbook	so	we	add	it.

6.9.1	Object	Management	with	Eve	and	Evegenie

http://python-eve.org/

Eve	 makes	 the	 creation	 of	 a	 REST	 implementation	 in	 python	 easy.	 We	 will
provide	you	with	an	implementation	example	that	showcases	that	we	can	create
REST	services	without	writing	a	single	line	of	code.	The	code	for	this	is	located

$	curl	-i	http://localhost/people?pretty

$	curl	-i	http://localhost/people	|	python	-m	json.tool

$	curl	-H	"Accept:	application/xml"	-i	http://localhost

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-eve-extensions.md
http://python-eve.org/

at	https://github.com/cloudmesh/rest

This	code	will	have	a	master	branch	but	will	also	have	a	dev	branch	in	which	we
will	add	gradually	more	objects.	Objects	in	the	dev	branch	will	include:

virtual	directories
virtual	clusters
job	sequences
inventories

You	 may	 want	 to	 check	 our	 active	 development	 work	 in	 the	 dev	 branch.
However	for	the	purpose	of	this	class	the	master	branch	will	be	sufficient.

6.9.1.1	Installation

First	we	have	to	install	mongodb.	The	installation	will	depend	on	your	operating
system.	For	the	use	of	 the	rest	service	it	 is	not	 important	 to	integrate	mongodb
into	 the	 system	 upon	 reboot,	 which	 is	 focus	 of	 many	 online	 documents.
However,	 for	 us	 it	 is	 better	 if	we	 can	 start	 and	 stop	 the	 services	 explicitly	 for
now.

On	ubuntu,	you	need	to	do	the	following	steps:

�	TODO:	Section	can	be	contributed	by	student.

On	windows	10,	you	need	to	do	the	following	steps:

�	TODO:	Section	can	be	contributed	by	student.	If	you	elect	Windows	10.	You
could	be	using	the	online	documentation	provided	by	starting	it	on	Windows,	or
running	it	in	a	docker	container.

On	macOS	you	can	use	home-brew	and	install	it	with:

In	future	we	may	want	to	add	ssl	authentication	in	which	case	you	may	need	to
install	it	as	follows:

$	brew	update

$	brew	install	mongodb

$	brew	install	mongodb	--with-openssl

https://github.com/cloudmesh/rest

6.9.1.2	Starting	the	service

We	have	provided	a	convenient	Makefile	that	currently	only	works	for	macOS.
It	will	be	easy	for	you	to	adapt	it	to	Linux.	Certainly	you	can	look	at	the	targets
in	the	makefile	and	replicate	them	one	by	one.	Important	targets	are	deploy	and
test.

When	using	the	makefile	you	can	start	the	services	with:

IT	will	start	two	terminals.	IN	one	you	will	see	the	mongo	service,	in	the	other
you	 will	 see	 the	 eve	 service.	 The	 eve	 service	 will	 take	 a	 file	 called
sample.settings.py	 that	 is	 base	 on	 sample.json	 for	 the	 start	 of	 the	 eve	 service.
The	mongo	 service	 is	 configured	 in	 such	 a	way	 that	 it	 only	 accepts	 incoming
connections	from	the	local	host	which	will	be	sufficient	for	our	case.	The	mongo
data	is	written	into	the	$USER/.cloudmesh	directory,	so	make	sure	it	exists.

To	test	the	services	you	can	say:

You	will	se	a	number	of	json	text	been	written	to	the	screen.

6.9.1.3	Creating	your	own	objects

The	example	demonstrated	how	easy	 it	 is	 to	create	a	mongodb	and	an	eve	rest
service.	 Now	 let	 us	 use	 this	 example	 to	 create	 your	 own.	 For	 this	 we	 have
modified	a	tool	called	evegenie	to	install	it	onto	your	system.

The	original	documentation	for	evegenie	is	located	at:

http://evegenie.readthedocs.io/en/latest/

However,	 we	 have	 improved	 evegenie	 while	 providing	 a	 commandline	 tool
based	on	it.	The	improved	code	is	located	at:

https://github.com/cloudmesh/evegenie

You	clone	it	and	install	on	your	system	as	follows:

$	make	deploy

$	make	test

http://evegenie.readthedocs.io/en/latest/
https://github.com/cloudmesh/evegenie

This	should	install	in	your	system	evegenie.	YOu	can	verify	this	by	typing:

If	 you	 see	 the	 path	 evegenie	 is	 installed.	With	 evegenie	 installed	 its	 usage	 is
simple:

It	takes	a	json	file	as	input	and	writes	out	a	settings	file	for	the	use	in	eve.	Lets
assume	 the	 file	 is	 called	 sample.json,	 than	 the	 settings	 file	 will	 be	 called
sample.settings.py.	Having	 the	 evegenie	program	will	 allow	us	 to	generate	 the
settings	 files	 easily.	 You	 can	 include	 them	 into	 your	 project	 and	 leverage	 the
Makefile	 targets	 to	start	 the	services	 in	your	project.	 In	case	you	generate	new
objects,	make	sure	you	rerun	evegenie,	kill	all	previous	windows	in	which	you
run	 eve	 and	 mongo	 and	 restart.	 In	 case	 of	 changes	 to	 objects	 that	 you	 have
designed	and	run	previously,	you	need	to	also	delete	the	mongod	database.

6.10	DJANGO	REST	FRAMEWORK	☁�
Django	REST	framework	is	a	large	toolkit	to	develop	Web	APIs.	The	developers
of	 the	 framework	 provide	 the	 following	 reasons	 for	 using	 it	 aggording	 to	 the
developers	of	that	module:

1.	 The	Web	browsable	API	improves	usability.
2.	 Authentication	 policies	 including	 packages	 for	 OAuth1a	 and
OAuth2.

3.	 Serialization	 that	 supports	 both	 ORM	 and	 non-ORM	 data
sources.

4.	 Customizable	all	the	way	down	-	just	use	regular	function-based
views	if	you	do	not	need	the	more	powerful	features.

5.	 Extensive	documentation,	and	great	community	support.
6.	 Used	 and	 trusted	 by	 internationally	 recognised	 companies

$	cd	~/github

$	git	clone	https://github.com/cloudmesh/evegenie

$	cd	evegenie

$	python	setup.py	install

$	pip	install	.

$	which	evegenie

$	evegenie

Usage:

		evegenie	--help

		evegenie	FILENAME

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-django.md

including	Mozilla,	Red	Hat,	Heroku,	and	Eventbrite."

https://www.django-rest-framework.org/

En	example	is	provided	on	their	Web	Page	at

https://www.django-rest-framework.org/#example

To	 document	 your	 django	 framework	 with	 Swagger	 you	 can	 look	 at	 this
example:

https://www.django-rest-framework.org/topics/documenting-your-api/

However,	we	believe	that	for	our	purposes	the	approach	to	use	conexion	from	an
OpenAPI	 is	much	more	 appealing,	 also	 using	 conexion	 and	 also	 flask	 for	 the
REST	 service	 is	 easier	 to	 acomplish.	Django	 is	 a	 large	 package	 that	will	 take
mor	time	to	getting	used	to.

6.11	GITHUB	REST	SERVICES	☁�
In	this	section	we	want	to	explore	a	more	features	of	REST	services	and	how	to
access	them.	Naturally	many	cloud	services	provide	such	REST	sinterfaces.	This
is	valid	for	IaaS,	PaaS,	and	SaaS.

Instead	of	using	a	REST	service	for	IaaS,	let	us	here	inspect	a	REST	service	for
the	Github.com	platform.

Its	interfaces	are	documented	nicely	at

https://developer.github.com/v3/

We	 see	 that	 Github	 offers	 many	 resources	 that	 can	 be	 accessed	 by	 the	 users
which	includes

Activities
Checks
Gists
Git	Data

https://www.django-rest-framework.org/
https://www.django-rest-framework.org/#example
https://www.django-rest-framework.org/topics/documenting-your-api/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/github.md
https://developer.github.com/v3/

GitHub	Apps
Issues
Migrations
Miscellaneous
Organizations
Projects
Pull	Requests
Reactions
Repositories
Searches
Teams
Users

Most	 likely	 we	 forgot	 the	 one	 or	 the	 other	 Resource	 that	 we	 can	 access	 via
REST.	It	will	be	out	of	scope	for	us	to	explore	all	of	these	issues,	so	let	us	focus
on	how	we	for	example	access	Github	Issues.	In	fact	we	will	use	the	script	that
we	use	to	create	issue	tables	for	this	book	to	showcase	how	easy	the	interaction
is	and	to	retrieve	the	information.

6.11.1	Issues

The	 REST	 service	 for	 issues	 is	 described	 in	 the	 following	 Web	 page	 as
specification

https://developer.github.com/v3/issues/

We	see	the	following	functionality:

List	issues
List	issues	for	a	repository
Get	a	single	issue
Create	an	issue
Edit	an	issue
Lock	an	issue
Unlock	an	issue
Custom	media	types

As	 we	 have	 learned	 in	 our	 REST	 section	 we	 need	 to	 issue	 GET	 requests	 to

https://developer.github.com/v3/issues/
https://developer.github.com/v3/issues/#list-issues
https://developer.github.com/v3/issues/#list-issues-for-a-repository
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.github.com/v3/issues/#edit-an-issue
https://developer.github.com/v3/issues/#edit-an-issue
https://developer.github.com/v3/issues/#lock-an-issue
https://developer.github.com/v3/issues/#unlock-an-issue
https://developer.github.com/v3/issues/#custom-media-types

obtain	information	about	the	issues.	Such	as

As	 response	 we	 obtain	 a	 json	 object	 with	 the	 information	 we	 need	 to	 further
process	it.	Unfortunately,	the	free	tier	of	github	has	limitations	in	regards	to	the
frequency	we	can	issue	such	requests	to	the	service,	as	well	as	in	the	volume	in
regards	to	number	of	pages	returned	to	us.

Let	us	now	explore	how	 to	easily	query	some	 information.	 In	our	example	we
like	 to	 retrive	 the	 list	 of	 issues	 for	 a	 repository	 as	 LaTeX	 table	 but	 also	 as
markdown.	 This	 way	we	 can	 conveniently	 integrate	 it	 in	 documents	 of	 either
format.	As	LaTeX	has	a	more	sophisticated	table	management,	let	us	first	create
a	 LaTeX	 table	 document	 and	 than	 use	 a	 program	 to	 convert	 LaTeX	 to
markdown.	For	the	later	we	can	reuse	a	program	called	pandoc	that	can	convert	the
table	for	LaTeX	to	markdown.

Let	us	assume	we	have	a	program	called	issues.py	that	prints	the	table	in	markdown
format

An	example	for	such	a	program	is	listes	at.

https://github.com/cloudmesh-community/book/blob/master/bin/issues.py

Although	python	provides	the	very	nice	module	requests	which	we	typically	use	for
such	issues.	we	have	here	just	wrapped	the	commandline	call	to	curl	into	a	system
command	 and	 redirect	 its	 output	 to	 a	 file.	 However,	 as	 we	 only	 get	 limited
information	back	in	pages,	we	need	to	continue	such	a	request	multiple	times.	To
keep	things	simple	we	identified	that	for	the	project	at	this	time	not	more	that	n
pages	need	to	be	fetched,	so	we	append	the	output	from	each	page	to	the	file.

Your	 task	 is	 it	 to	 improve	 this	 script	 and	 automatize	 this	 activity	 so	 that	 no
maximum	fetches	have	to	be	entered.

The	reason	why	this	program	is	so	short	is	that	we	leverage	the	build	in	function
for	json	data	structure	manipulation,	hear	a	read	and	a	dump.	When	we	look	in	the
issue.json	file	that	is	created	as	intermediary	file	we	see	a	list	of	items	such	as

GET	/issues

GET	/user/issues

$	python	issues.py

https://github.com/cloudmesh-community/book/blob/master/bin/issues.py

[

...

	{

								"url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46",

								"repository_url":	"https://api.github.com/repos/cloudmesh-community/book",

								"labels_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/labels{/name}",

								"comments_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/comments",

								"events_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/events",

								"html_url":	"https://github.com/cloudmesh-community/book/issues/46",

								"id":	360613438,

								"node_id":	"MDU6SXNzdWUzNjA2MTM0Mzg=",

								"number":	46,

								"title":	"Taken:	Virtualization",

								"user":	{

												"login":	"laszewsk",

												"id":	425045,

												"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

												"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

												"gravatar_id":	"",

												"url":	"https://api.github.com/users/laszewsk",

												"html_url":	"https://github.com/laszewsk",

												"followers_url":	"https://api.github.com/users/laszewsk/followers",

												"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

												"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

												"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

												"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

												"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

												"repos_url":	"https://api.github.com/users/laszewsk/repos",

												"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

												"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

												"type":	"User",

												"site_admin":	false

								},

								"labels":	[],

								"state":	"open",

								"locked":	false,

								"assignee":	{

												"login":	"laszewsk",

												"id":	425045,

												"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

												"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

												"gravatar_id":	"",

												"url":	"https://api.github.com/users/laszewsk",

												"html_url":	"https://github.com/laszewsk",

												"followers_url":	"https://api.github.com/users/laszewsk/followers",

												"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

												"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

												"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

												"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

												"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

												"repos_url":	"https://api.github.com/users/laszewsk/repos",

												"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

												"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

												"type":	"User",

												"site_admin":	false

								},

								"assignees":	[

												{

																"login":	"laszewsk",

																"id":	425045,

																"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

																"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

																"gravatar_id":	"",

																"url":	"https://api.github.com/users/laszewsk",

																"html_url":	"https://github.com/laszewsk",

																"followers_url":	"https://api.github.com/users/laszewsk/followers",

																"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

																"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

																"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

																"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

																"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

																"repos_url":	"https://api.github.com/users/laszewsk/repos",

																"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

																"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

																"type":	"User",

																"site_admin":	false

												}

],

								"milestone":	null,

								"comments":	0,

								"created_at":	"2018-09-16T07:35:35Z",

As	we	can	see	from	this	entry	there	is	a	lot	of	information	associated	that	for	our
purposes	we	do	not	need,	but	certainly	could	be	used	to	mine	github	in	general.

We	like	to	point	out	that	github	is	actively	mined	for	exploits	where	passwords
are	 posted	 in	 clear	 text	 for	AWS,	Azure	 and	 other	 clouds.	 This	 is	 a	 common
mistake	as	many	sample	programs	ask	the	student	to	place	the	password	directly
into	their	programs	instead	of	using	a	configuration	file	that	is	never	part	of	the
code	repository.

6.11.2	Exercise

E.github.issues.1:

Develop	 a	 new	 code	 like	 the	 one	 in	 this	 section,	 but	 use	 python
requests	instead	of	the	os.system	call.

E.github.issues.2:

In	 the	 simple	 program	we	 hardcoded	 the	 number	 of	 page	 requests.
How	can	we	 find	out	exactly	how	many	pages	we	need	 to	 retrieve?
Implement	your	solution

E.github.issues.3:

Be	 inspired	by	 the	many	REST	 interfaces.	How	can	 they	be	used	 to
mine	interesting	things.

E.github.issues.4:

Can	 you	 create	 a	 project,	 author,	 or	 technology	 map	 based	 on
information	that	is	available	in	github.	For	example	python	projects
may	 include	 a	 requirements	 file,	 or	 developers	 may	 work	 on	 some
projects	 together,	 but	 others	 do	 other	 projects	 with	 others	 can	 you
create	a	network?

								"updated_at":	"2018-09-16T07:35:35Z",

								"closed_at":	null,

								"author_association":	"CONTRIBUTOR",

								"body":	"Develop	a	section	about	Virtualization"

				},

...

]

E.github.issues.5:

Use	 github	 to	 develop	 some	 cool	 python	 programs	 that	 show	 some
statistics	 about	 github.	 An	 example	 would	 be:	 Given	 a	 github
repository,	show	the	checkins	by	data	and	visualize	them	graphically
for	one	committer	and	all	committers.	Use	bokeah	or	matplotlib.

E.github.issues.6:

Develop	 a	 python	 program	 that	 retrieves	 a	 file.	 Deevlop	 a	 python
program	that	uploads	a	file.	Develop	a	class	that	does	this	and	use	it
in	 your	 proggram.	 Use	 docopt	 to	 create	 a	 manual	 page.	 Please
remember	this	prepares	you	for	your	project	so	this	is	very	useful	to
do.

7	MAPREDUCE

7.1	INTRODUCTION	TO	MAPREDUCE	☁�
In	 this	 section	 we	 discuss	 about	 the	 background	 of	 Mapreduce	 along	 with
Hadoop	and	core	components	of	Hadoop.

We	start	out	our	section	with	a	review	of	the	python	lambda	expression	as	well
as	 the	 map	 function.	 Understanding	 these	 concepts	 is	 helpful	 for	 our	 overall
understanding	of	map	reduce.

So	before	you	watch	the	video,	we	encourage	you	to	learn	Sections	{#s-python-
lambda}	and	{#s-python-map}.

Now	that	you	have	a	basic	understanding	of	the	map	function	we	recommend	to
watch	our	videos	about	mapreduce,	hadoop	and	spark	which	we	provide	within
this	chapter.

	Map	Reduce,	Hadoop,	and	Spark	(19:02)	Hadoop	A

MapReduce	is	a	programming	technique	or	processing	capability	which	operates
in	 a	 cluster	 or	 a	 grid	 on	 a	 massive	 data	 set	 and	 brings	 out	 reliable	 output.	 It
works	 on	 essentially	 two	 main	 functions	 –	 map()	 and	 reduce().	 MapReduce
processes	 large	 chunks	 of	 data	 so	 its	 highly	 beneficial	 to	 operate	 in	 multi-
threaded	 fashion	 meaning	 parallel	 processing.	 MapReduce	 can	 also	 take
advantage	of	data	 locality	 so	 that	we	do	not	 loose	much	on	communication	of
data	from	place	to	another.

7.1.1	MapReduce	Algorithm

MapReduce	 can	 operate	 on	 a	 filesystem,	 which	 is	 an	 unstructured	 data	 or	 a
database,	 a	 structured	 data	 and	 these	 are	 the	 following	 three	 stages	 of	 its
operation	(see	Figure	38):

1.	 Map:	This	method	processes	the	very	initial	data	set.	Generally,	the	data	is
in	 file	 format	which	 can	 be	 stored	 in	HDFS	 (Hadoop	 File	 System).	Map

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/mapreduce.md
https://youtu.be/HfuP2RJnQ6k?t=73

function	reads	the	data	line	by	line	and	creates	several	chunks	of	data	and
that	is	again	stored	in	HDFS.	This	broken	set	of	data	is	in	key/value	pairs.
So	 in	 multi-threaded	 environment,	 there	 will	 be	 many	 worker	 nodes
operating	on	the	data	using	this	map()	function	and	write	this	intermediate
data	in	form	of	key/value	to	temporary	data	storage.

2.	 Shuffle:	In	this	stage,	worker	nodes	will	shuffle	or	redistribute	the	data	in
such	a	way	that	there	is	only	one	copy	for	each	key.

3.	 Reduce:	 This	 function	 always	 comes	 at	 last	 and	 it	 works	 on	 the	 data
produced	 by	map	 and	 shuffle	 stages	 and	 produces	 even	 smaller	 chunk	 of
data	which	is	used	to	calculate	output.

Figure	38:	MapReduce	Conceptual	diagram

The	Shuffle	 operation	 is	 very	 important	 here	 as	 that	 is	mainly	 responsible	 for
reducing	 the	 communication	 cost.	 The	 main	 advantage	 of	 using	 MapReduce
algorithm	is	that	it	becomes	very	easy	to	scale	up	data	processing	just	by	adding
some	 extra	 computing	 nodes.	 Building	 up	 map	 and	 reduce	 methods	 are
sometimes	nontrivial	but	once	done,	scaling	up	the	applications	is	so	easy	that	it
is	just	a	matter	of	changing	configuration.	Scalability	is	really	big	advantage	of
MapReduce	model.	 In	 the	 traditional	way	of	 data	processing,	 data	was	moved
from	nodes	to	the	master	and	then	the	processing	happens	in	master	machine.	In
this	approach,	we	lose	bandwidth	and	time	on	moving	data	to	master	and	parallel
operation	 cannot	 happen.	 Also	 master	 can	 get	 over-burdened	 and	 fail.	 In
MapReduce	approach,	Master	node	distributes	the	data	to	the	worker	machines
which	 are	 in	 themselves	 a	 processing	 unit.	 So	 all	 worker	 process	 the	 data	 in
parallel	 and	 the	 time	 taken	 to	 process	 the	 data	 is	 reduced	 tremendously.	 (see
Figure	39)

Figure	39:	MapReduce	Master	worker	diagram

7.1.1.1	MapReduce	Example:	Word	Count

Let	us	understand	MapReduce	by	an	example.	For	example:	we	have	a	text	file
as	 Sample.txt	 as	Cat,	 Bear,	Camel,	Bird,	Cat,	Bird,	Camel,	Cat,	Bear,	Camel,
Cat,	Camel

1.	 First	we	divide	the	input	into	four	parts	so	that	individual	nodes	can	handle
the	load.

2.	 We	tokenize	each	word	and	assign	weightage	of	value	“1”	to	each	word.
3.	 This	way	we	will	have	a	list	of	key-value	pairs	with	key	being	the	word	and

value	as	1.
4.	 After	this	mapping	phase,	shuffling	phase	starts	where	all	maps	with	same

key	are	sent	corresponding	reducer.
5.	 Now	each	reducer	will	have	a	unique	key	and	a	list	of	values	for	each	key

which	in	this	case	is	all	1s.
6.	 After	that,	each	reducer	will	count	the	total	number	of	1s	and	assigns	final

count	to	each	word.
7.	 The	final	output	is	then	written	to	a	file.	(see	Figure	40)

Figure	40:	MapReduce	WordCount	[50]

Let	 us	 see	 an	 example	 of	 map()	 and	 reduce()	 methods	 in	 code	 for	 this	 word
count	example.

Here	 we	 have	 created	 a	 class	 Map	 which	 extends	 Mapper	 from	 MapReduce
framework	and	we	override	map()	method	to	declare	the	key/value	pairs.	Next,
there	will	be	a	reduce	method	defined	inside	Reduce	class	as	next	and	both	input
and	output	here	is	a	key/value	pairs:

7.1.2	Hadoop	MapReduce	and	Hadoop	Spark

public	static	class	Map	extends	Mapper<LongWritable,

																																Text,

																																Text,

																																IntWritable>	{

			public	void	map(LongWritable	key,

																			Text	value,

																			Context	context)

																			throws	IOException,InterruptedException	{

							String	line	=	value.toString();

							StringTokenizer	tokenizer	=	new	StringTokenizer(line);

							while	(tokenizer.hasMoreTokens())	{

											value.set(tokenizer.nextToken());

											context.write(value,	new	IntWritable(1));

							}

}

public	static	class	Reduce	extends	Reducer<Text,

																																			IntWritable,

																																			Text,IntWritable>	{

			public	void	reduce(Text	key,

																						Iterable<IntWritable>	values,

																						Context	context)

					throws	IOException,InterruptedException	{

									int	sum=0;

									for(IntWritable	x:	values)	{

												sum+=x.get();

									}

									context.write(key,	new	IntWritable(sum));

				}

}

In	earlier	version	of	Hadoop,	we	could	use	MapReduce	with	HDFS	directly	but
from	2.0	onwards,	YARN(Cluster	Resource	Management)	 is	 introduced	which
acts	 as	 a	 layer	 between	MapReduce	 and	 HDFS	 and	 using	 this	 YARN,	 many
other	BigData	frameworks	can	connect	to	HDFS	as	well.	(see	Figure	41)

Figure	41:	MapReduce	Hadoop	and	Spark	[51]

There	are	many	big	data	frameworks	available	and	there	is	always	a	question	as
to	which	one	is	the	right	one.	Leading	frameworks	are	Hadoop	MapReduce	and
Apache	 Spark	 and	 choice	 depends	 on	 business	 needs.	 Let	 us	 start	 comparing
both	of	these	frameworks	with	respect	to	their	processing	capability.

7.1.2.1	Apache	Spark

Apache	 Spark	 is	 lightning	 fast	 cluster	 computing	 framework.	 Spark	 is	 in-
memory	system.	Spark	is	100	time	faster	than	Hadoop	MapReduce.

7.1.2.2	Hadoop	MapReduce

Hadoop	MapReduce	reads	and	writes	on	disk	because	of	this	it	is	a	slow	system
and	that	affects	the	volume	of	data	been	processed.	But	Hadoop	is	a	scalable	and
fault	tolerant,	it	us	good	for	linear	processing.

7.1.2.3	Key	Differences

The	key	differences	between	them	are	as	follows:

1.	 Speed:	Spark	is	lightning	fast	cluster	computing	framework	and	operates	up
to	100	time	faster	in-memory	and	10	times	faster	than	Hadoop	on	disk.	In-
memory	 processing	 reduces	 the	 disk	 read/write	 processes	which	 are	 time
consuming.

2.	 Complexity:	Spark	is	easy	to	use	since	there	are	many	APIs	available	but
for	Hadoop,	developers	need	to	code	the	functions	which	makes	it	harder.

3.	 Application	Management:	Spark	can	perform	batch	processing,	interactive
and	Machine	Learning	and	Streaming	of	data,	all	in	the	same	cluster,	which
makes	it	a	complete	framework	for	data	analysis	whereas	Hadoop	is	just	a
batch	engine	and	it	requires	other	frameworks	for	other	tasks	which	makes
it	somewhat	difficult	to	manage.

4.	 Real-Time	Data	Analysis	 Spark	 is	 capable	 of	 processing	 real	 time	 data
with	 great	 efficiency.	 But	 Hadoop	 was	 designed	 primarily	 for	 batch
processing	so	it	cannot	live	data.

5.	 Fault	Tolerance:	Both	the	systems	are	fault	tolerant	so	there	is	no	need	to
restart	the	applications	from	scratch.

6.	 Data	Volume:	As	the	data	for	spark	is	held	in	memory	larger	data	volumes
are	better	managed	in	Hadoop.

7.1.3	References

[52]	https://www.ibm.com/analytics/hadoop/mapreduce
[53]	https://en.wikipedia.org/wiki/MapReduce
[54]	https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
[50]	 https://www.edureka.co/blog/mapreduce-tutorial/?
utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-
wr&utm_medium=description
[55]	 https://www.quora.com/What-is-the-difference-between-Hadoop-and-
Spark
[56]	https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce
[51]	 https://www.youtube.com/watch?
v=SqvAaB3vK8U&list=WL&index=25&t=2547s

7.2	HADOOP	☁�
Hadoop	is	an	open	source	framework	for	storage	and	processing	of	large	datasets
on	commodity	clusters.	Hadoop	internally	uses	its	own	file	system	called	HDFS

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-lectures.md

(Hadoop	Distributed	File	System).

The	motivation	for	Hadoop	was	introduced	in	Section	Mapreduce

7.2.1	Hadoop	and	MapReduce

In	this	section	we	discuss	about	the	usage	Hadoop	MapReduce	architecture.

	Hadoop	13:19	Hadoop	B

7.2.2	Hadoop	EcoSystem

In	this	section	we	discuss	about	the	Hadoop	EcoSystem	and	the	architecture.

	Hadoop	12:57	Hadoop	C

7.2.3	Hadoop	Components

In	this	section	we	discuss	about	Hadoop	Components	in	detail.

	Hadoop	15:14	Hadoop	D

7.2.4	Hadoop	and	the	Yarn	Resource	Manager

In	this	section	we	discuss	about	Yarn	resource	manager	and	novel	components
added	 to	 the	 Hadoop	 framework	 in	 case	 of	 improving	 the	 performance	 and
minimizing	fault	tolerance.

	Hadoop	14:55	Hadoop	E

7.2.5	PageRank

In	 this	section	we	discuss	about	a	 real	world	problem	that	can	be	solved	using
the	MapReduce	technique.	PageRank	is	a	problem	solved	by	the	earliest	stages
of	 the	Google.inc.	 In	 this	 section	we	 discuss	 about	 the	 theoretical	 background
about	this	problem	and	we	discuss	how	this	can	be	solved	using	the	map	reduce

https://youtu.be/-N5PpD2sy3Q?t=17
https://youtu.be/BaRHay32I80?t=18
https://youtu.be/MYOosbF6-dA?t=20
https://youtu.be/DVbtubsKrdg?t=40

concepts.

	Hadoop	25:41	Hadoop	F

7.3	INSTALLATION	OF	HADOOP	☁�
This	 section	 is	using	Hadoop	version	3.1.1	 in	Ubuntu	18.04.	We	also	describe
the	installation	of	the	Yarn	resource	manager.	We	assume	that	you	have	ssh,	and
rsync	installed	and	use	emacs	as	editor.

If	you	use	a	newer	version,	and	like	to	update	this	text	please	help

7.3.1	Releases

Hadoop	changes	on	regular	basis.	Before	follwoing	this	section,	we	recommend
that	you	visit

https://hadoop.apache.org/releases.html

The	list	of	downloadable	files	is	also	available	at

and	verify	 that	you	use	an	up	 to	dat	version.If	 the	verison	of	 this	 instalation	 is
outdated.	we	ask	you	as	excrsise	to	update	it.

7.3.2	Prerequisites

7.3.3	User	and	User	Group	Creation

For	security	reasons	we	will	 install	hadoop	in	a	particular	user	and	user	group.
We	will	use	the	following

These	steps	will	provide	sudo	privileges	to	the	created	hduser	user	and	add	the

sudo	apt-get	install	ssh

sudo	apt-get	install	rsync

sudo	apt-get	install	emacs

sudo	addgroup	hadoop_group

sudo	adduser	--ingroup	hadoop_group	hduser

sudo	adduser	hduser	sudo

https://youtu.be/qr6mU04d69o?t=30
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-installation.md
https://hadoop.apache.org/releases.html

user	to	the	group	hadoop_group.

7.3.4	Configuring	SSH

Here	we	configure	SSH	key	for	the	local	user	to	install	hadoop	with	a	ssh-key.
This	 is	 different	 from	 the	 ssh-key	 you	 used	 for	 Github,	 FutureSystems,	 etc.
Follow	this	section	to	configure	it	for	Hadoop	installation.

The	 ssh	 content	 is	 included	 here	 because,	 we	 are	 making	 a	 ssh	 key	 for	 this
specific	user.	Next,	we	have	to	configure	ssh	to	be	used	by	the	hadoop	user.

Follow	 the	 instructions	 as	 provided	 in	 the	 commandline.	 When	 you	 see	 the
following	console	input,	press	ENTER.	Here	only	we	will	create	password	less
keys.	IN	general	this	is	not	a	good	idea,	but	for	this	case	we	make	an	exception.

Next	you	will	be	asked	to	enter	a	password	for	ssh	configuration,

Here	enter	the	same	password

Finally	you	will	see	something	like	this	after	these	steps	are	finished.

				sudo	su	-	hduser

				ssh-keygen	-t	rsa

Enter	file	in	which	to	save	the	key	(/home/hduser/.ssh/id_rsa):

Enter	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

				Generating	public/private	rsa	key	pair.

				Enter	file	in	which	to	save	the	key	(/home/hduser/.ssh/id_rsa):

				Created	directory	'/home/hduser/.ssh'.

				Enter	passphrase	(empty	for	no	passphrase):

				Enter	same	passphrase	again:

				Your	identification	has	been	saved	in	/home/hduser/.ssh/id_rsa.

				Your	public	key	has	been	saved	in	/home/hduser/.ssh/id_rsa.pub.

				The	key	fingerprint	is:

				SHA256:0UBCPd6oYp7MEzCpOhMhNiJyQo6PaPCDuOT48xUDDc0	hduser@computer

				The	key's	randomart	image	is:

				+---[RSA	2048]----+

				|				.+ooo								|

				|	.			oE.oo							|

				|+	+.						|

				|X+=		.		o..						|

				|XX.o		o.S								|

				|Bo+	+	.o									|

				|*o	*	+.										|

				|*..	*.											|

				|	+.o..											|

				+----[SHA256]-----+

You	have	successfully	configured	ssh.

7.3.5	Installation	of	Java

If	you	are	already	logged	into	su,	you	can	skip	the	next	command:

Now	execute	the	following	commands	to	download	and	install	java

Please	note	that	users	must	accept	Oracle	OTN	license	before	downloading	JDK.

7.3.6	Installation	of	Hadoop

First	we	will	take	a	look	on	how	to	install	Hadoop	3.1.1	on	Ubuntu

16.04.	We	may	need	a	prior	folder	structure	to	do	the	installation	properly.

7.3.7	Hadoop	Environment	Variables

In	Ubuntu	the	environmental	variables	are	setup	in	a	file	called	bashrc	at	it	can
be	accessed	the	following	way

Now	add	the	following	to	your	~/.bashrc	file

In	Emacs	to	save	the	file	Ctrl-X-S	and	Ctrl-X-C	to	exit.	After	editing	you	must	update
the	variables	in	the	system.

su	-	hduser

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	-c	--header	"Cookie:	\

oraclelicense=accept-securebackup-cookie"	\

"http://download.oracle.com/otn-pub/java/jdk/8u191-b12/2787e4a523244c269598db4e85c51e0c/jdk-8u191-linux-x64.tar.gz"

	tar	xvzf	jdk-8u191-linux-x64.tar.gz

cd	~/cloudmesh/bin/

wget	http://mirrors.sonic.net/apache/hadoop/common/hadoop-3.1.1/hadoop-3.1.1.tar.gz

tar	-xzvf	hadoop-3.1.1.tar.gz

emacs	~/.bashrc

export	JAVA_HOME=~/cloudmesh/bin/jdk1.8.0_191

export	HADOOP_HOME=~/cloudmesh/bin/hadoop-3.1.1

export	YARN_HOME=$HADOOP_HOME

export	HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

export	PATH=$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH

source	~/.bashrc

java	-version

If	 you	 have	 installed	 things	 properly	 there	will	 be	 no	 errors.	 It	 will	 show	 the
version	as	follows,

And	verifying	the	hadoop	installation,

If	you	have	successfully	installed	this,	there	must	be	a	message	shown	as	next.

7.4	HADOOP	VIRTUAL	CLUSTER	INSTALLATION	USING

CLOUDMESH	�	☁�

No

	This	version	is	dependent	on	an	older	version	of	cloudmesh.

	:TODO:	we	need	to	add	the	instalation	instructions	based	on	this	version

7.4.1	Cloudmesh	Cluster	Installation

Before	you	start	this	lesson,	you	MUST	finish	cm_install.

This	 lesson	 is	 created	 and	 test	 under	 the	 newest	 version	 of	Cloudmesh	 client.
Update	yours	if	not.

java	version	"1.8.0_191"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_191-b12)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.191-b12,	mixed	mode)

hadoop

				Usage:	hadoop	[--config	confdir]	COMMAND

											where	COMMAND	is	one	of:

						fs																			run	a	generic	filesystem	user	client

						version														print	the	version

						jar	<jar>												run	a	jar	file

						checknative	[-a|-h]		check	native	hadoop	and	compression	libraries	availability

						distcp	<srcurl>	<desturl>	copy	file	or	directories	recursively

						archive	-archiveName	NAME	-p	<parent	path>	<src>*	<dest>	create	a	hadoop	archive

						classpath												prints	the	class	path	needed	to	get	the

						credential											interact	with	credential	providers

																											Hadoop	jar	and	the	required	libraries

						daemonlog												get/set	the	log	level	for	each	daemon

						trace																view	and	modify	Hadoop	tracing	settings

					or

						CLASSNAME												run	the	class	named	CLASSNAME

				Most	commands	print	help	when	invoked	w/o	parameters.

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/cm-hadoop.md

To	manage	virtual	cluster	on	cloud,	 the	command	is	 cm	cluster.	Try	 cm	cluster	help	 to
see	what	other	commands	are	and	what	options	they	supported.

7.4.1.1	Create	Cluster

To	 create	 a	 virtual	 cluster	 on	 cloud,	 we	 must	 define	 an	 active	 cluster
specification	with	cm	cluster	define	command.	For	example,	we	define	a	cluster	with	3
nodes:

All	options	will	use	the	default	setting	if	not	specified	during	cluster

define.	Try	 cm	cluster	help	 command	 to	 see	what	 options	 cm	cluster	define	 has	 and
means,	here	is	part	of	the	usage	information:	:

Floating	IP	is	a	valuable	and	limited	resource	on	cloud.

cm	cluster	define	will	 assign	 floating	 IP	 to	 every	node	within	 the	 cluster	 by	default.
Cluster	creation	will	fail	if	the	floating	IPs	run	out	on	cloud.	When	you	run	into
error	like	this,	use	option	-I	or	--no-floating-ip	to	avoid	assigning	floating	IPs	during
cluster	creation:

Then	manually	assign	floating	IP	to	one	of	the	nodes.	Use	this	node
as	a	logging	node	or	head	node	to	log	in	to	all	the	other	nodes.

We	can	have	multiple	specifications	defined	at	the	same	time.	Every	time	a	new
cluster	 specification	 is	 defined,	 the	 counter	 of	 the	 default	 cluster	 name	 will

$	cm	cluster	define	--count	3

$	cm	cluster	help

usage:	cluster	create	[-n	NAME]	[-c	COUNT]	[-C

CLOUD]	[-u	NAME]	[-i	IMAGE]	[-f	FLAVOR]	[-k	KEY]	[-s	NAME]

[-AI]

Options:

-A	--no-activate	Do	not	activate	this	cluster

-I	--no-floating-ip	Do	not	assign	floating	IPs

-n	NAME	--name=NAME	Name	of	the	cluster

-c	COUNT	--count=COUNT	Number	of	nodes	in	the	cluster

-C	NAME	--cloud=NAME	Name	of	the	cloud

-u	NAME	--username=NAME	Name	of	the	image	login	user

-i	NAME	--image=NAME	Name	of	the	image

-f	NAME	--flavor=NAME	Name	of	the	flavor

-k	NAME	--key=NAME	Name	of	the	key

-s	NAME	--secgroup=NAME	NAME	of	the	security	group

-o	PATH	--path=PATH	Output	to	this	path	...

$	cm	cluster	define	--count	3	--no-floating-ip

increment.	Hence,	the	default	cluster	name	will	be	cluster-001,	cluster-002,	cluster-003	and
so	on.	Use	cm	cluster	avail	to	check	all	the	available	cluster	specifications:

With	cm	cluster	use	[NAME],	we	are	able	to	switch	between	different	specifications	with
given	cluster	name:

This	will	activate	specification	cluster-001	which	assigns	floating	IP	during	creation
rather	than	the	latest	one	cluster-002.

With	our	cluster	specification	ready,	we	create	the	cluster	with	command	cm	cluster	
allocate.	 This	 will	 create	 a	 virtual	 cluster	 on	 the	 cloud	 with	 the	 activated
specification:

Each	specification	can	have	one	active	cluster,	which	means	cm	cluster			allocate	 does
nothing	if	there	is	a	successfully	active	cluster.

7.4.1.2	Check	Created	Cluster

$	cm	cluster	avail

		cluster-001

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	True

				cloud																									:	chameleon

>	cluster-002

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	False

				cloud																									:	chameleon

$	cm	cluster	use	cluster-001

$	cm	cluster	avail

>	cluster-001

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	True

				cloud																									:	chameleon

		cluster-002

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	False

				cloud																									:	chameleon

$	cm	cluster	allocate

With	command	cm	cluster	list,	we	can	see	the	cluster	with	the	default	name	cluster-001
we	just	created:

Using	cm	cluster	nodes	[NAME],	we	can	also	see	the	nodes	of	the	cluster	along	with	their
assigned	floating	IPs	of	the	cluster:

If	 option	 --no-floating-ip	 is	 included	 during	 definition,	 you	will	 see	 nodes	without
floating	IP:

To	log	in	one	of	them,	use	command	 cm	vm	assign	IP	[NAME]	 to	 assign	 a	 floating	 IP	 to
one	of	them:

Then	you	can	log	in	this	node	as	a	head	node	of	your	cluster	by	cm	vm	ssh	[NAME]:

7.4.1.3	Delete	Cluster

Using	cm	cluster	delete	[NAME],	we	are	able	to	delete	the	cluster	we	created:

Option	--all	can	delete	all	the	clusters	created,	so	be	careful:

:

$	cm	cluster	delete	–all

Then	we	need	to	undefine	our	cluster	specification	with	command	cm	cluster	undefine	

$	cm	cluster	list

cluster-001

$	cm	cluster	nodes	cluster-001

xl41-001	129.114.33.147

xl41-002	129.114.33.148

xl41-003	129.114.33.149

$	cm	cluster	nodes	cluster-002

xl41-004	None

xl41-005	None

xl41-006	None

$	cm	vm	ip	assign	xl41-006

$	cm	cluster	nodes	cluster-002

xl41-004	None

xl41-005	None

xl41-006	129.114.33.150

$	cm	vm	ssh	xl41-006

cc@xl41-006	$

$	cm	cluster	delete	cluster-001

[NAME]:

Option	--all	can	delete	all	the	cluster	specifications:

7.4.2	Hadoop	Cluster	Installation

This	section	is	built	upon	the	previous	one.	Please	finish	the	previous	one	before
start	this	one.

7.4.2.1	Create	Hadoop	Cluster

To	create	 a	Hadoop	cluster,	we	need	 to	 first	 define	 a	 cluster	with	 cm	cluster	define
command:

To	deploy	a	Hadoop	cluster,	we	only	support	image	CC-Ubuntu14.04

on	Chameleon.	DO	NOT	use	CC-Ubuntu16.04	or	any	other	images.	You	will	need
to	specify	it	if	it’s	not	the	default	image:

$	cm	cluster	define	–count	3	–image	CC-Ubuntu14.04

Then	we	define	the	Hadoop	cluster	upon	the	cluster	we	defined	using	cm	hadoop	define
command:

Same	 as	 cm	cluster	define,	 you	 can	 define	 multiple	 specifications	 for	 the	 Hadoop
cluster	and	check	them	with	cm	hadoop	avail:

We	can	use	cm	hadoop	use	[NAME]	to	activate	the	specification	with	the	given	name:

$	cm	cluster	undefine	cluster-001

$	cm	cluster	undefine	--all

$	cm	cluster	define	--count	3

$	cm	hadoop	define

$	cm	hadoop	avail

>	stack-001

		local_path																				:	/Users/tony/.cloudmesh/stacks/stack-001

		addons																								:	[]

$	cm	hadoop	use	stack-001

May	not	be	available	for	current	version	of	Cloudmesh	Client.

Before	deploy,	we	need	to	use	cm	hadoop	sync	to	checkout	/	synchronize	the	Big	Data
Stack	from	Github.com:

To	avoid	errors,	make	sure	you	are	able	to	connect	to	Github.com	using	SSH:

https://help.github.com/articles/connecting-to-github-with-ssh/.

Finally,	we	are	ready	to	deploy	our	Hadoop	cluster:

This	process	could	take	up	to	10	minutes	based	on	your	network.

To	 check	Hadoop	 is	 working	 or	 not.	 Use	 cm	vm	ssh	 to	 log	 into	 the	 Namenode	 of	 the
Hadoop	cluster.	It’s	usually	the	first	node	of	the	cluster:

Switch	to	user	hadoop	and	check	HDFS	is	set	up	or	not:

Now	the	Hadoop	cluster	is	properly	installed	and	configured.

7.4.2.2	Delete	Hadoop	Cluster

To	 delete	 the	 Hadoop	 cluster	 we	 created,	 use	 command	 cm	cluster	delete	[NAME]	 to
delete	the	cluster	with	given	name:

Then	undefine	the	Hadoop	specification	and	the	cluster	specification:

May	not	be	available	for	current	version	of	Cloudmesh	Client.

$	cm	hadoop	sync

$	cm	hadoop	deploy

$	cm	vm	ssh	node-001

cc@hostname$

cc@hostname$	sudo	su	-	hadoop

hadoop@hostname$	hdfs	dfs	-ls	/

Found	1	items

drwxrwx---			-	hadoop	hadoop,hadoopadmin										0	2017-02-15	17:26	/tmp

$	cm	cluster	delete	cluster-001

$	cm	hadoop	undefine	stack-001

$	cm	cluster	undefine	cluster-001

https://help.github.com/articles/connecting-to-github-with-ssh/

7.4.3	Advanced	Topics	with	Hadoop

7.4.3.1	Hadoop	Virtual	Cluster	with	Spark	and/or	Pig

To	 install	Spark	and/or	Pig	with	Hadoop	cluster,	we	 first	use	command	 cm	hadoop	
define	but	with	ADDON	to	define	the	cluster	specification.

For	example,	we	create	a	3-node	Spark	cluster	with	Pig.	To	do	that,	all	we	need
is	to	specify	spark	as	an	ADDON	during	Hadoop	definition:

Using	cm	hadoop	addons,	we	are	able	to	check	the	current	supported	addon:

With	cm	hadoop	avail,	we	can	see	the	detail	of	the	specification	for	the	Hadoop	cluster:

Then	we	use	cm	hadoop	sync	and	cm	hadoop	deploy	to	deploy	our	Spark	cluster:

This	process	will	take	15	minutes	or	longer.

Before	we	proceed	to	the	next	step,	there	is	one	more	thing	we	need	to,	which	is
to	make	sure	we	are	able	to	ssh	from	every	node	to	others	without	password.	To
achieve	that,	we	need	to	execute	cm	cluster	cross_ssh:

7.4.3.2	Word	Count	Example	on	Spark

Now	with	the	cluster	ready,	let’s	run	a	simple	Spark	job,	Word	Count,	on	one	of
William	 Shakespeare’s	 work.	 Use	 cm	vm	ssh	 to	 log	 into	 the	 Namenode	 of	 the	 Spark
cluster.	It	should	be	the	first	node	of	the	cluster:

$	cm	cluster	define	--count	3

$	cm	hadoop	define	spark	pig

$	cm	hadoop	addons

$	cm	hadoop	avail

>	stack-001

		local_path																				:	/Users/tony/.cloudmesh/stacks/stack-001

		addons																								:	[u'spark',	u'pig']

$	cm	hadoop	sync

$	cm	hadoop	deploy

$	cm	cluster	cross_ssh

$	cm	vm	ssh	node-001

cc@hostname$

Switch	to	user	hadoop	and	check	HDFS	is	set	up	or	not:

Download	the	input	file	from	the	Internet:

You	can	also	use	any	other	text	file	you	preferred.	Create	a	new	directory	wordcount
within	HDFS	to	store	the	input	and	output:

Store	the	input	text	file	into	the	directory:

Save	the	following	code	as	wordcount.py	on	the	local	file	system	on	Namenode:

Next	submit	the	job	to	Yarn	and	run	in	distribute:

Finally,	take	a	look	at	the	result	in	the	output	directory:

cc@hostname$	sudo	su	-	hadoop

hadoop@hostname$

wget	--no-check-certificate	-O	inputfile.txt	\

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

$	hdfs	dfs	-mkdir	/wordcount

$	hdfs	dfs	-put	inputfile.txt	/wordcount/inputfile.txt

import	sys

from	pyspark	import	SparkContext,	SparkConf

if	__name__	==	"__main__":

		#	tak	two	arguments,	input	and	output

		if	len(sys.argv)	!=	3:

				print("Usage:	wordcount	<input>	<output>")

				exit(-1)

		#	create	Spark	context	with	Spark	configuration

		conf	=	SparkConf().setAppName("Spark	Count")

		sc	=	SparkContext(conf=conf)

		#	read	in	text	file

		text_file	=	sc.textFile(sys.argv[1])

		#	split	each	line	into	words

		#	count	the	occurrence	of	each	word

		#	sort	the	output	based	on	word

		counts	=	text_file.flatMap(lambda	line:	line.split("	"))	\

											.map(lambda	word:	(word,	1))	\

											.reduceByKey(lambda	a,	b:	a	+	b)	\

											.sortByKey()

		#	save	the	result	in	the	output	text	file

		counts.saveAsTextFile(sys.argv[2])

$	spark-submit	--master	yarn	--deploy-mode	client	--executor-memory	1g	\

--name	wordcount	--conf	"spark.app.id=wordcount"	wordcount.py	\

hdfs://192.168.0.236:8020/wordcount/inputfile.txt	\

hdfs://192.168.0.236:8020/wordcount/output

7.5	SPARK

7.5.1	Spark	Lectures	☁�

This	section	covers	an	introduction	to	Spark	that	is	split	up	into	eight	parts.	We
discuss	Spark	background,	RDD	operations,	Shark,	Spark	ML,	Spark	vs	Other
Frameworks.

7.5.1.1	Motivation	for	Spark

In	this	section	we	discuss	about	the	background	of	Spark	and	core	components
of	Spark.

	Spark	15:57	Spark	A

7.5.1.2	Spark	RDD	Operations

In	this	section	we	discuss	about	the	background	of	RDD	operations	along	with
other	transformation	functionality	in	Spark.

	Spark	12:17	Spark	B

7.5.1.3	Spark	DAG

In	this	section	we	discuss	about	the	background	of	DAG	(direct	acyclic	graphs)
operations	along	with	other	components	like	Shark	in	the	earlier	stages	of	Spark.

$	hdfs	dfs	-ls	/wordcount/outputfile/

Found	3	items

-rw-r--r--			1	hadoop	hadoop,hadoopadmin										0	2017-03-07	21:28	/wordcount/output/_SUCCESS

-rw-r--r--			1	hadoop	hadoop,hadoopadmin					483182	2017-03-07	21:28	/wordcount/output/part-00000

-rw-r--r--			1	hadoop	hadoop,hadoopadmin					639649	2017-03-07	21:28	/wordcount/output/part-00001

$	hdfs	dfs	-cat	/wordcount/output/part-00000	|	less

(u'',	517065)

(u'"',	241)

(u'"\'Tis',	1)

(u'"A',	4)

(u'"AS-IS".',	1)

(u'"Air,"',	1)

(u'"Alas,',	1)

(u'"Amen"',	2)

(u'"Amen"?',	1)

(u'"Amen,"',	1)

...

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-lectures.md
https://youtu.be/zfrzMuRwltU
https://youtu.be/q6JES9P6IV0

	Spark	10:37	Spark	C

7.5.1.4	Spark	vs.	other	Frameworks

In	 this	 section	 we	 discuss	 about	 the	 real	 world	 applications	 that	 can	 be	 done
using	 Spark.	 And	 also	 we	 discuss	 some	 comparision	 results	 obtained	 from
experiments	done	in	Spark	along	with	Frameworks	like	Harp,	Harp	DAAL,	etc.
We	discuss	the	benchmarks	and	performance	obtained	from	such	experiments.

	Spark	26:18	Spark	D

7.5.2	Installation	of	Spark	☁�

In	this	section	we	will	discuss	how	to	install	Spark	2.3.2	in	Ubuntu	18.04.

7.5.2.1	Prerequisites

We	assume	that	you	have	ssh,	and	rsync	installed	and	use	emacs	as	editor.

7.5.2.2	Installation	of	Java

First	download	Java	8.

Then	add	the	environmental	variables	to	the	bashrc	file.

Source	the	bashrc	file	after	adding	the	environmental	variables.

sudo	apt-get	install	ssh

sudo	apt-get	install	rsync

sudo	apt-get	install	emacs

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	-c	--header	"Cookie:	oraclelicense=accept-securebackup-cookie"	"http://download.oracle.com/otn-pub/java/jdk/8u161-b12/2f38c3b165be4555a1fa6e98c45e0808/jdk-8u161-linux-x64.tar.gz"

tar	xvzf	jdk-8u161-linux-x64.tar.gz

emacs	~/.bashrc

export	JAVA_HOME=~/cloudmesh/bin/jdk1.8.0_161

export	PATH=$JAVA_HOME/bin:$PATH

		source	~/.bashrc

https://youtu.be/DX-oaUzjZAM
https://youtu.be/rQb5zspUmow
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-installation.md

7.5.2.3	Install	Spark	with	Hadoop

Here	we	use	Spark	packaged	with	Hadoop.	In	this	package	Spark	uses	Hadoop
2.7.0	 in	 the	packaged	version.	Note	 that	 in	Section	Hadoop	Installation	we	use
for	the	vanilla	Hadoop	installation	Hadoop	3.0.1.

Create	the	base	directories	and	go	to	the	directory.

Then	download	Spark	2.3.2	as	follows.

Now	extract	the	file,

7.5.2.4	Spark	Environment	Variables

Open	up	bashrc	file	and	add	environmental	variables	as	follows.

Go	to	the	last	line	and	add	the	following	content.

Source	the	bashrc	file.

7.5.2.5	Test	Spark	Installation

Open	up	a	new	terminal	and	then	run	the	following	command.

If	it	has	been	configured	properly,	it	will	display	the	following	content.

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	https://archive.apache.org/dist/spark/spark-2.3.2/spark-2.3.2-bin-hadoop2.7.tgz

tar	xzf	spark-2.3.2-bin-hadoop2.7.tgz

mv	spark-2.3.2-bin-hadoop2.7	spark-2.3.2

emacs	~/.bashrc

export	SPARK_HOME=~/cloudmesh/bin/spark-2.3.2

export	PATH=$SPARK_HOME/bin:$PATH

source	~/.bashrc

spark-shell

				Spark	context	Web	UI	available	at	http://192.168.1.66:4041

				Spark	context	available	as	'sc'	(master	=	local[*],	app	id	=	local-1521674331361).

				Spark	session	available	as	'spark'.

Please	check	 the	console	LOGS	and	 find	 the	port	number	on	which	 the	Spark
Web	UI	is	hosted.	It	will	show	something	like:

Spark	context	Web	UI	available	at:	<some	url>

Then	take	a	look	the	following	address	in	the	browser.

If	you	see	 the	Spark	Dashboard,	 then	you	can	realize	you	have	 installed	Spark
successfully.

7.5.2.6	Install	Spark	With	Custom	Hadoop

Installing	Spark	with	 pre-existing	Hadoop	 version	 is	 favorable,	 if	 you	want	 to
use	 the	 latest	 features	 from	 the	 latest	 Hadoop	 version	 or	 when	 you	 need	 a
specific	Hadoop	version	depending	on	the	external	dependencies	to	your	project.

First	we	need	to	download	the	Spark	packaged	without	Hadoop.

Then	download	Spark	2.3.2	as	follows.

Now	extract	the	file,

Then	add	the	environmental	variables,

If	you	have	already	installed	Spark	with	Hadoop	by	following	section	1.3	please
update	the	current	SPARK	HOME	variable	with	the	new	path.

				Welcome	to

										____														__

									/	__/__		___	_____/	/__

								_\	\/	_	\/	_	`/	__/		'_/

							/___/	.__/_,_/_/	/_/_\			version	2.3.2

										/_/

				Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	Server	VM,	Java	1.8.0_151)

				Type	in	expressions	to	have	them	evaluated.

				Type	:help	for	more	information.

http://localhost:4041

		mkdir	-p	~/cloudmesh/bin

		cd	~/cloudmesh/bin

wget	https://archive.apache.org/dist/spark/spark-2.3.2/spark-2.3.2-bin-without-hadoop.tgz

		tar	xzf	spark-2.3.2-bin-without-hadoop.tgz

		emacs	~/.bashrc

Go	to	the	last	line	and	add	the	following	content.

Source	the	bashrc	file.

7.5.2.7	Configuring	Hadoop

Now	we	must	add	the	current	Hadoop	version	that	we	are	using	for	Spark.	Open
up	a	new	terminal	and	then	run	the	following.

Now	we	need	to	add	a	new	line	to	show	the	current	path	to	hadoop	installation.
Add	the	following	variable	in	to	the	spark-env.sh	file.

Spark	Web	UI	-	Hadoop	Path

7.5.2.8	Test	Spark	Installation

Open	up	a	new	terminal	and	then	run	the	following	command.

If	it	has	been	configured	properly,	it	will	display	the	following	content.

export	SPARK_HOME=~/cloudmesh/bin/spark-2.3.2-bin-without-hadoop

export	PATH=$SPARK_HOME/bin:$PATH

source	~/.bashrc

cd	$SPARK_HOME

		cd	conf

		cp	spark-env.sh.template	spark-evn.sh

		emacs	spark-env.sh

		export	SPARK_DIST_CLASSPATH=$($HADOOP_HOME/bin/hadoop	classpath)

spark-shell

				To	adjust	logging	level	use	sc.setLogLevel(newLevel).	For	SparkR,	use	setLogLevel(newLevel).

				Spark	context	Web	UI	available	at	http://149-160-230-133.dhcp-bl.indiana.edu:4040

				Spark	context	available	as	'sc'	(master	=	local[*],	app	id	=	local-1521732740077).

				Spark	session	available	as	'spark'.

				Welcome	to

										____														__

									/	__/__		___	_____/	/__

								_\	\/	_	\/	_	`/	__/		'_/

							/___/	.__/_,_/_/	/_/_\			version	2.3.2

										/_/

				Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	Server	VM,	Java	1.8.0_151)

				Type	in	expressions	to	have	them	evaluated.

Then	take	a	look	the	following	address	in	the	browser.

Please	check	 the	console	LOGS	and	 find	 the	port	number	on	which	 the	Spark
Web	UI	is	hosted.	It	will	show	something	like:	Spark	context	Web	UI	available
at	the	logs	folder

7.5.3	Spark	Streaming	☁�

7.5.3.1	Streaming	Concepts

Spark	 Streaming	 is	 one	 of	 the	 components	 extending	 from	Core	 Spark.	 Spark
streaming	 provides	 a	 scalable	 fault	 tolerant	 system	with	 high	 throughput.	 For
streaming	data	 into	spark,	 there	are	many	 libraries	 like	Kafka,	Flume,	Kinesis,
etc.

7.5.3.2	Simple	Streaming	Example

In	this	section,	we	are	going	to	focus	on	making	a	simple	streaming	application
using	 the	network	 in	your	computer.	Here	we	are	going	 to	expose	a	particular
port	and	from	that	port	we	are	going	to	continuously	stream	data	by	user	entries
and	the	word	count	is	being	calculated	as	the	output.

First,	create	a	Makefile

Then	add	the	following	content	to	Makefile.

Please	 add	 a	 tab	 when	 adding	 the	 corresponding	 command	 for	 a	 given
instruction	in	Makefile.	In	pdf	mode	the	tab	is	not	clearly	shown.

Now	we	need	to	create	file	called	streaming.py

				Type	:help	for	more	information.

http://localhost:4040

		mkdir	-p	~/cloudmesh/spark/examples/streaming

		cd	~/cloudmesh/spark/examples/streaming

		emacs	Makefile

		SPARKHOME	=	${SPARK_HOME}

		run-streaming:

				${SPARKHOME}/bin/spark-submit	streaming.py	localhost	9999

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-streaming.md

Then	add	the	following	content.

To	run	the	code,	we	need	to	open	up	two	terminals.
Terminal	1	:

First	use	netstat	to	open	up	a	port	to	start	communication.

Terminal	2	:

Now	run	the	Spark	programme	in	the	second	terminal.

In	this	terminal	you	can	see	an	script	running	trying	to	read	the	stream	coming
from	the	port	9999.	You	can	enter	texts	in	the	Terminal	1	and	these	texts	will	be
tokenized	 and	 the	 word	 count	 is	 calculated	 and	 the	 result	 is	 shown	 in	 the
Terminal	2.

7.5.3.3	Spark	Streaming	For	Twitter	Data

In	 this	 section	we	are	going	 to	 learn	how	 to	use	Twitter	data	 as	 the	 streaming
data	source	and	use	Spark	Streaming	capabilities	to	process	the	data.	As	the	first
step	you	must	install	the	python	packages	using	pip.

		emacs	streaming.py

				from	pyspark	import	SparkContext

				from	pyspark.streaming	import	StreamingContext

				#	Create	a	local	StreamingContext	with	two	working	thread	and	batch	interval	of	1	second

				sc	=	SparkContext("local[2]",	"NetworkWordCount")

				log4jLogger	=	sc._jvm.org.apache.log4j

				LOGGER	=	log4jLogger.LogManager.getLogger(__name__)

				LOGGER.info("Pyspark	script	logger	initialized")

				ssc	=	StreamingContext(sc,	1)

				#	Create	a	DStream	that	will	connect	to	hostname:port,	like	localhost:9999

				lines	=	ssc.socketTextStream("localhost",	9999)

				#	Split	each	line	into	words

				words	=	lines.flatMap(lambda	line:	line.split("	"))

				#	Count	each	word	in	each	batch

				pairs	=	words.map(lambda	word:	(word,	1))

				wordCounts	=	pairs.reduceByKey(lambda	x,	y:	x	+	y)

				#	Print	the	first	ten	elements	of	each	RDD	generated	in	this	DStream	to	the	console

				wordCounts.pprint()

				ssc.start()													#	Start	the	computation

				ssc.awaitTermination(100)		#	Wait	for	the	computation	to	terminate

		nc	-lk	9999

		make	run-streaming

7.5.3.3.1	Step	1

7.5.3.3.2	Step	2

Then	you	need	to	create	an	account	in	Twitter	Apps.	Go	to	and	sign	in	to	your
twitter	account	or	create	a	new	twitter	account.	Then	you	need	to	create	a	new
application,	let’s	name	this	application	as	Cloudmesh-Spark-Streaming.

First	you	need	to	create	an	app	with	the	app	name	we	suggested	in	this	section.
The	way	to	create	the	app	is	mentioned	in	+Figure	42.

Figure	42:	Create	Twitter	App

Next	we	need	to	to	take	a	look	at	the	dashboard	created	for	the	app.	You	can	see
how	your	dashboard	looks	like	in	+Figure	43.

		sudo	pip	install	tweepy

Figure	43:	Go	To	Twitter	App	Dashboard

Next	the	application	tokens	generated	must	be	reviewed	and	it	can	be	found	in
+Figure	44,	you	need	to	go	to	the	Keys	and	Access	Tokens	tab.

Figure	44:	Create	Your	Twitter	Settings

Now	you	need	 to	generate	 the	 access	 tokens	 for	 the	 first	 time	 if	 you	have	not
generated	 access	 tokens	 and	 this	 can	 be	 done	 by	 clicking	 the	 Create	my	access	token
button.	See	+Figure	45

Figure	45:	Create	Your	Twitter	Access	Tokens

The	access	tokens	and	keys	are	blurred	in	this	section	for	privacy	issues.

7.5.3.3.3	Step	3

Let	us	build	a	simple	Twitter	App	to	see	if	everything	is	okay.

Add	 the	 following	 content	 to	 the	 file	 and	 make	 sure	 you	 update	 the
corresponding	token	keys	with	your	token	values.

		mkdir	-p	~/cloudmesh/spark/streaming

		cd	~/cloudmesh/spark/streaming

		emacs	twitterstreaming.py

				import	tweepy

				CONSUMER_KEY	=	'your_consumer_key'

				CONSUMER_SECRET	=	'your_consumer_secret'

				ACCESS_TOKEN	=	'your_access_token'

				ACCESS_TOKEN_SECRET	=	'your_access_token_secret'

7.5.3.3.4	Step	4

Let	us	start	the	twitter	streaming	exercise.	We	need	to	create	a	Tweet	Listener	in
order	 to	 retrieve	 data	 from	 twitter	 regarding	 a	 topic	 of	 your	 choice.	 In	 this
exercise,	we	have	tried	keywords	like	trump,	indiana,	messi.

Make	your	to	replace	strings	related	to	secret	keys	and	ip	addresses	by	replacing
these	values	depending	on	your	machine	configuration	and	twitter	keys.

Now	add	the	following	content.

				auth	=	tweepy.OAuthHandler(CONSUMER_KEY,	CONSUMER_SECRET)

				auth.set_access_token(ACCESS_TOKEN,	ACCESS_TOKEN_SECRET)

				api	=	tweepy.API(auth)

				status	=	"Testing!"

				api.update_status(status=status)

						python	twitterstreaming.py

		mkdir	-p	~/cloudmesh/spark/streaming

		cd	~/cloudmesh/spark/streaming

		emacs	tweetlistener.py

				import	tweepy

				from	tweepy	import	OAuthHandler

				from	tweepy	import	Stream

				from	tweepy.streaming	import	StreamListener

				import	socket

				import	json

				CONSUMER_KEY	=	'YOUR_CONSUMER_KEY'

				CONSUMER_SECRET	=	'YOUR_CONSUMER_SECRET'

				ACCESS_TOKEN	=	'YOUR_ACCESS_TOKEN'

				ACCESS_SECRET	=	'YOUR_SECRET_ACCESS'

				class	TweetListener(StreamListener):

						def	__init__(self,	csocket):

										self.client_socket	=	csocket

						def	on_data(self,	data):

										try:

														msg	=	json.loads(data)

														print(msg['text'].encode('utf-8'))

														self.client_socket.send(msg['text'].encode('utf-8'))

														return	True

										except	BaseException	as	e:

														print("Error	on_data:	%s"	%	str(e))

										return	True

						def	on_error(self,	status):

										print(status)

										return	True

				def	sendData(c_socket):

						auth	=	OAuthHandler(CONSUMER_KEY,	CONSUMER_SECRET)

						auth.set_access_token(ACCESS_TOKEN,	ACCESS_SECRET)

						twitter_stream	=	Stream(auth,	TweetListener(c_socket))

						twitter_stream.filter(track=['messi'])	#	you	can	change	this	topic

				if	__name__	==	"__main__":

7.5.3.3.5	step	5

Please	replace	the	local	file	paths	mentioned	in	this	code	with	a	file	path	of	your
preference	depending	on	your	workstation.	And	also	IP	address	must	be	replaced
with	your	ip	address.	The	log	folder	path	must	be	pre-created	and	make	sure	to
replace	 the	 registerTempTable	 name	with	 respect	 to	 the	 entity	 that	 you	 are	 referring.
This	will	minimize	the	conflicts	among	different	topics	when	you	need	to	plot	it
in	a	simple	manner.

Add	the	following	content	to	the	IpythonNote	book	as	follows

Open	up	a	terminal,

Then	 in	 the	browser	 the	 jupyter	notebook	 is	being	 loaded.	There	 create	 a	new
IPython	notebook	called	twittersparkstremer.

Then	add	the	following	content.

						s	=	socket.socket()

						host	=	"YOUR_MACHINE_IP"

						port	=	5555

						s.bind((host,	port))

						print("Listening	on	port:	%s"	%	str(port))

						s.listen(5)

						c,	addr	=	s.accept()

						print("Received	request	from:	"	+	str(addr))

						sendData(c)

		cd	~/cloudmesh/spark/streaming

		jupyter	notebook

				from	pyspark	import	SparkContext

				from	pyspark.streaming	import	StreamingContext

				from	pyspark.sql	import	SQLContext

				from	pyspark.sql.functions	import	desc

				sc	=	SparkContext('local[2]','twittersparkstreamer')

				ssc	=	StreamingContext(sc,	10)

				sqlContext	=	SQLContext(sc)

				ssc.checkpoint("file:///home/<your-username>/cloudmesh/spark/streaming/logs/messi")

				socket_stream	=	ssc.socketTextStream("YOUR_IP_ADDRESS",	5555)

				lines	=	socket_stream.window(20)

				from	collections	import	namedtuple

				fields	=	("tag",	"count")

				Tweet	=	namedtuple('Tweet',	fields)

				(lines.flatMap(lambda	text:	text.split("	"))

						.filter(lambda	word:	word.lower().startswith("#"))

						.map(lambda	word:	(word.lower(),	1))

7.5.3.3.6	step	6

Open	Terminal	1,	then	do	the	following

It	will	show	that:

Open	Terminal	2

Now	 we	 must	 start	 the	 Spark	 app	 by	 running	 the	 content	 in	 the	 IPython
Notebook	by	pressing	SHIFT-ENTER	in	each	box	to	run	each	command.	Make	sure	not
to	 run	 twice	 the	 starting	 command	 of	 the	 SparkContext	 or	 initialization	 of
SparkContext.

Now	you	will	see	streams	in	the	Terminal	1	and	you	can	see	plots	after	a	while	in	the
IPython	Notebook.

Sample	outputs	can	be	seen	in	+Figure	46,	+Figure	47,	+Figure	48,	+Figure	49.

						.reduceByKey(lambda	a,	b:	a	+	b)

						.map(lambda	rec:	Tweet(rec[0],	rec[1]))

						.foreachRDD(lambda	rdd:	rdd.toDF().sort(desc("count"))

																		.limit(10).registerTempTable("tweetsmessi")))#change	table	name	depending	on	your	entity

				sqlContext

				<pyspark.sql.context.SQLContext	at	0x7f51922ba350>

				ssc.start()

				import	matplotlib.pyplot	as	plt

				import	seaborn	as	sn

				import	time

				from	IPython	import	display

				count	=	0

				while	count	<	10:

						time.sleep(20)

						top_10_tweets	=	sqlContext.sql('Select	tag,	count	from	tweetsmessi')	#change	table	name	according	to	your	entity

						top_10_df	=	top_10_tweets.toPandas()

						display.clear_output(wait=True)

						#sn.figure(figsize	=	(10,	8))

						sn.barplot(x="count",	y="tag",	data=top_10_df)

						plt.show()

						count	=	count	+	1

				ssc.stop()

		cd	~/cloudmesh/spark/streaming

		python	tweetslistener.py

					Listening	on	port:	5555

Figure	46:	Twitter	Topic	Messi

Figure	47:	Twitter	Topic	Messi

Figure	48:	Twitter	Topic	Messi

Figure	49:	Twitter	Topic	Messi

7.5.4	User	Defined	Functions	in	Spark	☁�

Apache	Spark	is	a	fast	and	general	cluster-computing	framework	which	perform
computational	 tasks	up	 to	100x	faster	 than	Hadoop	MapReduce	 in	memory,	or
10x	 faster	 on	 disk	 for	 high	 speed	 large-scale	 streaming,	machine	 learning	 and
SQL	 workloads	 tasks.	 Spark	 offers	 support	 for	 the	 applications	 development
employing	over	80	high-level	operators	using	Java,	Scala,	Python,	and	R.	Spark
powers	the	combined	or	standalone	use	of	a	stack	of	libraries	including	SQL	and
DataFrames,	MLlib	for	machine	learning,	GraphX,	and	Spark	Streaming.	Spark
can	be	utilized	 in	 standalone	 cluster	mode,	 on	EC2,	on	Hadoop	YARN,	or	 on
Apache	 Mesos	 and	 it	 allows	 data	 access	 in	 HDFS,	 Cassandra,	 HBase,	 Hive,
Tachyon,	and	any	Hadoop	data	source.

User-defined	functions	(UDFs)	are	the	functions	created	by	developers	when	the
built-in	functionalities	offered	in	a	programming	language,	are	not	sufficient	to
do	 the	 required	work.	Similarly,	Apache	Spark	UDFs	also	allow	developers	 to
enable	new	functions	in	higher	level	programming	languages	by	extending	built-
in	 functionalities.	 It	 also	 allows	 developers	 to	 experiment	 with	 wide	 range	 of
options	for	integrating	UDFs	with	Spark	SQL,	MLib	and	GraphX	workflows.

This	tutorial	explains	following:

How	to	install	Spark	in	Linux,	Windows	and	MacOS.

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-udf.md

How	to	create	and	utilize	user	defined	functions(UDF)	in	Spark	using	Python.

How	to	run	the	provided	example	using	a	provided	docker	file	and	make	file.

7.5.4.1	Resources

https://spark.apache.org/
http://www.scala-lang.org/
https://docs.databricks.com/spark/latest/spark-sql/udf-in-python.html

7.5.4.2	Instructions	for	Spark	installation

7.5.4.2.1	Linux

First,	JDK	(Recommended	version	8)	should	be	installed	to	a	path	where	there	is
no	space.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	 setup	 environment	 variables	 for	 JDK	 by	 adding	 bin	 folder	 path	 to	 to
user	path	variable.

Next,	download	and	extract	Scala	pre-built	version	from

http://www.scala-lang.org/download/

Then,	setup	environment	variables	for	Scala	by	adding	bin	folder	path	to	the	user
path	variable.

Next,	download	and	extract	Apache	Spark	pre-built	version.

https://spark.apache.org/downloads.html

Then,	setup	environment	variables	for	spark	by	adding	bin	folder	path	to	the	user
path	variable.

This	$	export	PATH	=	$PATH:/usr/local/java8/bin

$	export	PATH	=	$PATH:/usr/local/scala/bin

https://spark.apache.org/
http://www.scala-lang.org/
https://docs.databricks.com/spark/latest/spark-sql/udf-in-python.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.scala-lang.org/download/
https://spark.apache.org/downloads.html

Finally,	for	testing	the	installation,	please	type	the	following	command.

7.5.4.3	Windows

First,	 JDK	 should	 be	 installed	 to	 a	 path	where	 there	 is	 no	 space	 in	 that	 path.
Recommended	JAVA	version	is	8.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	setup	environment	variables	for	jdk	by	adding	bin	folder	path	to	to	user
path	variable.

Next,	download	and	extract	Apache	Spark	pre-built	version.

https://spark.apache.org/downloads.html

Then,	setup	environment	varibale	for	spark	by	adding	bin	folder	path	to	the	user
path	variable.

Next,	 download	 the	 winutils.exe	 binary	 and	 Save	 winutils.exe	 binary	 to	 a
directory	(c:\hadoop\bin).

https://github.com/steveloughran/winutils

Then,	change	the	winutils.exe	permission	using	following	command	using	CMD
with	administrator	permission.

If	your	system	doesnt	have	hive	folder,	make	sure	to	create	C:\tmp\hive	directory.

Next,	 setup	environment	variables	 for	hadoop	by	adding	bin	 folder	path	 to	 the
user	path	variable.

$	export	PATH	=	$PATH:/usr/local/spark/bin

spark-shell

set	JAVA_HOME=c:\java8

set	PATH=%JAVA_HOME%\bin;%PATH%

set	SPARK_HOME=c:\spark

set	PATH=%SPARK_HOME%\bin;%PATH%

$	winutils.exe	chmod	-R	777	C:\tmp\hive

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spark.apache.org/downloads.html
https://github.com/steveloughran/winutils

Then,	 install	Python	3.6	with	 anaconda	 (This	 is	 a	 bundled	python	 installer	 for
pyspark).

https://anaconda.org/anaconda/python

Finally,	for	testing	the	installation,	please	type	the	following	command.

7.5.4.4	MacOS

First,	 JDK	 should	 be	 installed	 to	 a	 path	where	 there	 is	 no	 space	 in	 that	 path.
Recommanded	JAVA	version	is	8.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	setup	environment	variables	for	jdk	by	addding	bin	folder	path	to	to	user
path	variable.

Next,	Install	Apache	Spark	using	Homebrew	with	following	commands.

Then,	setup	environment	varibale	for	spark	with	following	commands.

Next,	 install	 Python	 3.6	with	 anaconda	 (This	 is	 a	 bundled	 python	 installer	 for
pyspark)

https://anaconda.org/anaconda/python

Finally,	for	testing	the	installation,	please	type	the	following	command.

set	HADOOP_HOME=c:\hadoop\bin

set	PATH=%HADOOP_HOME%\bin;%PATH%

$	pyspark

$	export	JAVA_HOME=$(/usr/libexec/java_home)

$	brew	update

$	brew	install	scala

$	brew	install	apache-spark

$	export	SPARK_HOME="/usr/local/Cellar/apache-spark/2.1.0/libexec/"

$	export	PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/build:$PYTHONPATH

$	export	PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH

$	pyspark

https://anaconda.org/anaconda/python
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://anaconda.org/anaconda/python

7.5.4.5	Instructions	for	creating	Spark	User	Defined	Functions

7.5.4.5.1	Example:	Temperature	conversion

In	 this	 example	we	 convert	 temperature	 data	 from	Celsius	 to	 Fahrenheit	 with
filtering	and	sorting

7.5.4.5.1.1	Description	about	data	set

The	file	temperature_data.csv	contains	temperature	data	of	different	wheather
stations	and	it	has	the	following	structure.
ITE00100554,18000101,TMAX,-75,,,E,

ITE00100554,18000101,TMIN,-148,,,E,

GM000010962,18000101,PRCP,0,,,E,

EZE00100082,18000101,TMAX,-86,,,E,

GM000010962,18000104,PRCP,0,,,E,

EZE00100082,18000104,TMAX,-55,,,E,

We	will	 only	 consider	wheather	 station	 ID	 (column	 0),	 entrytype	 (column	 2),
temperature	(column	3:	it	is	in	10*Celsius)

7.5.4.5.1.2	How	to	write	a	python	program	with	UDF

First,	 we	 need	 to	 import	 the	 relevent	 libraries	 to	 use	 Spark	 sql	 built	 in
functionalities	listed	as	follows.

Then,	we	need	create	a	user	defined	fuction	which	will	 read	 the	 text	 input	and
process	the	data	and	return	a	spark	sql	Row	object.	It	can	be	created	as	listed	as
follows.

Then	 we	 need	 to	 create	 a	 Spark	 SQL	 session	 as	 listed	 as	 follows	 with	 an
application	name.

Next,	 we	 read	 the	 raw	 data	 using	 spark	 build-in	 function	 textFile()	 as	 shown

from	pyspark.sql	import	SparkSession

from	pyspark.sql	import	Row

				def	process_data(line):

								fields	=	line.split(',')

								stationID	=	fields[0]

								entryType	=	fields[2]

								temperature	=	float(fields[3])	*	0.1	*	(9.0	/	5.0)	+	32.0

								return	Row(ID=stationID,	t_type=entryType,	temp=temperature)

spark	=	SparkSession.builder.appName("Simple	SparkSQL	UDF	example").getOrCreate()

next.

Then,	we	convert	 those	 read	 lines	 to	 a	Resilient	Distributed	Dataset	 (RDD)	of
Row	object	using	UDF	(process_data)	which	we	created	as	listed	as	follows.

Alternatively	we	colud	have	written	the	UDF	using	a	python	lamda	function	to
do	the	same	thing	as	shown	next.

Now,	we	 can	 convert	 our	RDD	object	 to	 a	 Spark	SQL	Dataframe	 as	 listed	 as
follows.

Next,	 we	 can	 print	 and	 see	 the	 first	 20	 rows	 of	 data	 to	 validate	 our	 work	 as
shown	next.

7.5.4.5.1.3	How	to	execute	a	python	spark	script

You	can	use	spark-submit	command	to	run	a	spark	script	as	shown	next.

If	everything	went	well,	you	should	see	the	following	output.

lines	=	spark.sparkContext.textFile("temperature_data.csv")

parsedLines	=	lines.map(process_data)

parsedLines	=	lines.map(lambda	line:	Row(ID=line.split(',')[0],

																								t_type=line.split(',')[2],

																								temp=float(line.split(',')[3])	*	0.1	*	(9.0

																								/	5.0)	+	32.0))

TempDataset	=	spark.createDataFrame(parsedLines)

TempDataset.show()

spark-submit	temperature_converter.py

+-----------+------+-----------------+

|									ID|t_type|													temp|

+-----------+------+-----------------+

|EZE00100082|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|												89.42|

|EZE00100082|		TMAX|												88.88|

|ITE00100554|		TMAX|												88.34|

|ITE00100554|		TMAX|87.80000000000001|

|ITE00100554|		TMAX|												87.62|

|ITE00100554|		TMAX|												87.62|

|EZE00100082|		TMAX|												87.26|

|EZE00100082|		TMAX|87.08000000000001|

|EZE00100082|		TMAX|87.08000000000001|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|EZE00100082|		TMAX|												86.72|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|

7.5.4.5.1.4	Filtering	and	sorting

Now	 we	 are	 trying	 to	 find	 what	 is	 the	 maximum	 temperature	 reported	 for	 a
particluar	whether	station	and	print	the	data	in	ascending	order.	We	can	achieve
this	by	using	where()	and	orderBy()	fundtions	as	shown	next.

We	 achieved	 the	 filtering	 using	 temperature	 type	 and	 it	 filters	 out	 all	 the	 data
which	is	not	a	TMAX.

Finally,	we	can	print	the	data	to	see	whether	this	worked	or	not	using	following
statement.

Now,	it	is	the	time	to	run	the	python	script	again	using	following	command.

If	everything	went	well,	you	should	see	the	following	sorted	and	filtered	output.

Complete	 python	 script	 is	 listed	 as	 follows	 as	 well	 as	 under	 this	 directory
(temperature_converter.py).

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|												85.64|

|ITE00100554|		TMAX|												85.64|

+-----------+------+-----------------+

only	showing	top	20	rows

TempDatasetProcessed	=	TempDataset.where(TempDataset['t_type']	==	'TMAX'

).orderBy('temp',	ascending=False).cache()

TempDatasetProcessed.show()

spark-submit	temperature_converter.py

+-----------+------+-----------------+

|									ID|t_type|													temp|

+-----------+------+-----------------+

|EZE00100082|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|												89.42|

|EZE00100082|		TMAX|												88.88|

|ITE00100554|		TMAX|												88.34|

|ITE00100554|		TMAX|87.80000000000001|

|ITE00100554|		TMAX|												87.62|

|ITE00100554|		TMAX|												87.62|

|EZE00100082|		TMAX|												87.26|

|EZE00100082|		TMAX|87.08000000000001|

|EZE00100082|		TMAX|87.08000000000001|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|EZE00100082|		TMAX|												86.72|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|												85.64|

|ITE00100554|		TMAX|												85.64|

+-----------+------+-----------------+

only	showing	top	20	rows

https://github.com/cloudmesh-community/hid-sp18-
409/blob/master/tutorial/spark_udfs/temperature_converter.py

7.5.4.6	Instructions	to	install	and	run	the	example	using	docker

Following	link	is	the	home	directory	for	the	example	explained	in	this	tutorial.

https://github.com/cloudmesh-community/hid-sp18-
409/tree/master/tutorial/spark_udfs

It	contains	following	files

Python	script	which	contains	the	example:	temperature_converter.py
Temperature	data	file:	temperature_data.csv
Required	python	dependencies	are	put	here:	requirements.txt
Docker	 file	 which	 automatically	 setup	 the	 codebase	 with	 dependency
installation:	Dockerfile

from	pyspark.sql	import	SparkSession

from	pyspark.sql	import	Row

def	process_data(line):

				fields	=	line.split(',')

				stationID	=	fields[0]

				entryType	=	fields[2]

				temperature	=	float(fields[3])	*	0.1	*	(9.0	/	5.0)	+	32.0

				return	Row(ID=stationID,	t_type=entryType,	temp=temperature)

#	Create	a	SparkSQL	Session

spark	=	SparkSession.builder.appName('Simple	SparkSQL	UDF	example'

).getOrCreate()

#	Get	the	raw	data

lines	=	spark.sparkContext.textFile('temperature_data.csv')

#	Convert	it	to	a	RDD	of	Row	objects

parsedLines	=	lines.map(process_data)

#	alternative	lamda	fundtion

parsedLines	=	lines.map(lambda	line:	Row(ID=line.split(',')[0],

																								t_type=line.split(',')[2],

																								temp=float(line.split(',')[3])	*	0.1	*	(9.0

																								/	5.0)	+	32.0))

#	Convert	that	to	a	DataFrame

TempDataset	=	spark.createDataFrame(parsedLines)

#	show	first	20	rows	temperature	converted	data

#	TempDataset.show()

#	Some	SQL-style	magic	to	sort	all	movies	by	popularity	in	one	line!

TempDatasetProcessed	=	TempDataset.where(TempDataset['t_type']	==	'TMAX'

).orderBy('temp',	ascending=False).cache()

#	show	first	20	rows	of	filtered	and	sorted	data

TempDatasetProcessed.show()

https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_converter.py
https://github.com/cloudmesh-community/hid-sp18-409/tree/master/tutorial/spark_udfs
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_converter.py%20%22temperature_converter.py%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_data.csv%20%22temperature_data.csv%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/requirements.txt%20%22requirements.txt%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/Dockerfile%20%22Dockerfile%22

Make	file	which	will	excute	the	example	with	a	single	command:	Makefile

To	install	the	example	using	docker	plesse	do	the	following	steps.

First,	you	should	install	docker	in	to	your	computer.

Next,	 git	 clone	 the	 project	 .	 Alternatively	 you	 can	 also	 download	 the	 docker
image	from	the	docker	hub.	Then	you	don’t	need	to	do	docker	build.

Then,	change	the	directory	to	spark_udfs	folder.

Next,	install	the	service	using	following	make	command

Finally,	start	the	service	using	following	make	command

Now	 you	 should	 see	 the	 same	 output	 we	 saw	 at	 the	 end	 of	 the	 example
explanation.

7.6	ADVANCED	HADOOP

7.6.1	Amazon	EMR	(Elastic	Map	Reduce)�	☁�

Amazon	EMR	facilitates	you	to	analyze	and	process	vast(huge)	amounts	of	data
by	distributing	the	computational	work	across	a	cluster	of	virtual	servers	running
in	 the	 AWS	 Cloud.	 The	 EMR	 cluster	 is	 managed	 using	 an	 open-source
framework	 called	 Hadoop.	 Amazon	 EMR	 lets	 you	 focus	 on	 crunching	 or
analyzing	 your	 data	 without	 having	 to	 worry	 about	 time-consuming	 setup,
management,	and	 tuning	of	Hadoop	clusters	or	 the	compute	capacity	 they	 rely
on	unlike	other	Hadoop	distributors	like	Cloudera,Hortonworks	etc.,

Easy:	To	maintain	on	demand	basis
Fast:	Auto	shrinking	of	cluster	and	dynamically	increase	memory	based	on
the	need
Cost-effective:	Scala	out	and	in	anytime	based	on	the	business	requirement

$	docker	pull	kadupitiya/tutorial

$	make	docker-build

$	make	docker-start

https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/Makefile%20%22Makefile%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/amazon-emr-1.md

or	models

EMR	 Supports	 other	 distributed	 framework	 such	 as	 Apache	 Spark,	 HBase,
Presto,	Flink	and	etc.	Interact	with	data	in	AWS	data	stores	such	as	Amazon	S3,
DynamoDB	and	etc.

Components	Of	EMR:

Storage
EC2	instance
Clusters
Security
KMS

7.6.1.1	Why	EMR?

The	following	ar	reasons	given	by	Amazone	for	using	EMR

Easy	 to	Use:	Launch	cluster	 in	a	5	 to	10	minutes	 time	as	many	cluster	of
nodes	as	you	need
Pay	 as	 you	 go:	 Pay	 an	 hourly	 rate	 (with	 AWS	 latest	 pricing	 model,
customers	can	choose	to	pay	in	minutes)
Flexible:	Easily	Add/	Remove	capacity(Auto	scale	out	and	in	anytime)
Reliable:	Spend	less	time	for	monitoring	and	can	utilize	in-built	AWS	tools
which	will	reduce	overhead
Secure:	Manage	firewall	(VPC	both	private	and	subnet)

7.6.1.2	Understanding	Clusters	and	Nodes

The	 component	 of	 Amazon	 EMR	 is	 the	 cluster.	 A	 cluster	 is	 a	 collection	 of
Amazon	Elastic	Compute	Cloud	(Amazon	EC2)	instances.	Each	instance	in	the
cluster	is	called	a	node.	Each	node	has	a	role	within	the	cluster,	referred	to	as	the
node	 type.	Amazon	 EMR	 also	 installs	 different	 software	 components	 on	 each
node	 type,	 giving	 each	 node	 a	 role	 in	 a	 distributed	 application	 like	 Apache
Hadoop.

The	node	types	in	Amazon	EMR	are	as	follows:

Master	 node:	 A	 node	 that	 manages	 the	 cluster	 by	 running	 software
components	 to	 coordinate	 the	 distribution	 of	 data	 and	 tasks	 among	 other
nodes	 for	 processing.	 The	 master	 node	 tracks	 the	 status	 of	 tasks	 and
monitors	the	health	of	the	cluster.	Every	cluster	has	a	master	node,	and	it	is
possible	to	create	a	single-node	cluster	with	only	the	master	node.

Core	node:	A	node	with	software	components	that	run	tasks	and	store	data
in	the	Hadoop	Distributed	File	System	(HDFS)	on	your	cluster.	Multi-node
clusters	have	at	least	one	core	node.

Task	node:	A	node	with	software	components	that	only	runs	tasks	and	does
not	store	data	in	HDFS.	Task	nodes	are	optional.

The	following	diagram	represents	a	cluster	with	one	master	node	and	four	core
nodes.

Cluser	and	Nodes

7.6.1.2.1	Submit	Work	to	a	Cluster

When	you	run	a	cluster	on	Amazon	EMR,	you	have	several	options	as	 to	how
you	specify	the	work	that	needs	to	be	done.

Provide	the	entire	definition	of	the	work	to	be	done	in	functions	that	you	specify

as	steps	when	you	create	a	cluster.	This	is	typically	done	for	clusters	that	process
a	set	amount	of	data	and	then	terminate	when	processing	is	complete.

Create	 a	 long-running	 cluster	 and	use	 the	Amazon	EMR	console,	 the	Amazon
EMR	API,	 or	 the	AWS	CLI	 to	 submit	 steps,	which	may	 contain	 one	 or	more
jobs.

Create	a	cluster,	connect	 to	 the	master	node	and	other	nodes	as	 required	using
SSH,	 and	 use	 the	 interfaces	 that	 the	 installed	 applications	 provide	 to	 perform
tasks	and	submit	queries,	either	scripted	or	interactively.

7.6.1.2.2	Processing	Data

When	you	 launch	your	cluster,	you	choose	 the	frameworks	and	applications	 to
install	 for	 your	 data	 processing	 needs.	 To	 process	 data	 in	 your	Amazon	EMR
cluster,	you	can	submit	jobs	or	queries	directly	to	installed	applications,	or	you
can	run	steps	in	the	cluster.

Submitting	Jobs	Directly	to	Applications:

You	can	submit	jobs	and	interact	directly	with	the	software	that	is	installed
in	 your	 Amazon	 EMR	 cluster.	 To	 do	 this,	 you	 typically	 connect	 to	 the
master	 node	 over	 a	 secure	 connection	 and	 access	 the	 interfaces	 and	 tools
that	 are	 available	 for	 the	 software	 that	 runs	 directly	 on	 your	 cluster.	 For
more	information,	see	Connect	to	the	Cluster.

Running	Steps	to	Process	Data

You	 can	 submit	 one	 or	 more	 ordered	 steps	 to	 an	 Amazon	 EMR	 cluster.
Each	step	is	a	unit	of	work	that	contains	instructions	to	manipulate	data	for
processing	by	software	installed	on	the	cluster.

The	following	is	an	example	process	using	four	steps:

1.	 Submit	an	input	dataset	for	processing.
2.	 Process	the	output	of	the	first	step	by	using	a	Pig	program.
3.	 Process	a	second	input	dataset	by	using	a	Hive	program.
4.	 Write	an	output	dataset.

Generally,	when	you	process	data	 in	Amazon	EMR,	 the	 input	 is	data	stored	as
files	in	your	chosen	underlying	file	system,	such	as	Amazon	S3	or	HDFS.	This
data	passes	from	one	step	to	the	next	in	the	processing	sequence.	The	final	step
writes	the	output	data	to	a	specified	location,	such	as	an	Amazon	S3	bucket.

Steps	are	run	in	the	following	sequence:

1.	 A	request	is	submitted	to	begin	processing	steps.
2.	 The	state	of	all	steps	is	set	to	PENDING.
3.	 When	the	first	step	in	the	sequence	starts,	 its	state	changes	to	RUNNING.

The	other	steps	remain	in	the	PENDING	state.
4.	 After	the	first	step	completes,	its	state	changes	to	COMPLETED.
5.	 The	next	 step	 in	 the	 sequence	 starts,	 and	 its	 state	 changes	 to	RUNNING.

When	it	completes,	its	state	changes	to	COMPLETED.
6.	 This	 pattern	 repeats	 for	 each	 step	 until	 they	 all	 complete	 and	 processing

ends.

The	following	diagram	represents	the	step	sequence	and	change	of	state	for	the
steps	as	they	are	processed.

Cluser	and	Nodes

If	 a	 step	 fails	 during	 processing,	 its	 state	 changes	 to
TERMINATED_WITH_ERRORS.	 You	 can	 determine	 what	 happens	 next	 for
each	 step.	 By	 default,	 any	 remaining	 steps	 in	 the	 sequence	 are	 set	 to
CANCELLED	 and	 do	 not	 run.	You	 can	 also	 choose	 to	 ignore	 the	 failure	 and
allow	remaining	steps	to	proceed,	or	to	terminate	the	cluster	immediately.

The	following	diagram	represents	the	step	sequence	and	default	change	of	state
when	a	step	fails	during	processing.

Cluser	and	Nodes

7.6.1.3	AWS	Storage

S3	 -	 Cloud	 based	 storage	 -	 Using	 EMRFS	 can	 directly	 connects	 s3	 storage	 -
Accessible	from	any	where

Instance	Store	-	Local	storage	-	Data	will	be	lost	on	start	and	stop	EC2	instances

EBS	-	Network	attached	storage	-	Data	preserved	on	start	and	stop	-	Accessible
only	through	EC2	instances

7.6.1.4	Create	EMR	in	AWS

7.6.1.4.1	Create	the	buckets

Login	 to	 AWS	 console	 and	 create	 the	 buckets	 at
https://aws.amazon.com/console/.	To	create	the	buckets,	go	to	services	(see
Figure	 50,	 Figure	 51),	 click	 on	 S3	 under	 Storage,	 Figure	 52,	 Figure	 53,
Figure	54.	Click	on	Create	bucket	button	and	then	provide	all	the	details	to
complete	bucket	creation.
AWS	Console

Figure	50:	AWS	Console

AWS	Login

Figure	51:	AWS	Login

S3	–	Amazon	Storage

Figure	52:	Amazon	Storage

S3	–	Create	buckets

Figure	53:	S3	buckets

Figure	54:	S3	buckets1

7.6.1.4.2	Create	Key	Pairs

Login	to	AWS	console,	go	to	services,	click	on	EC2	under	compute.	Select
the	Key	pairs	resoure,	click	on	Create	Key	Pair	and	provide	Key	Pair	name
to	complete	the	Key	pairs	creation.	See	Figure	55

Download	 the.	pem	file	once	Key	value	pair	 is	created.	This	 is	needed	 to
access	 AWS	 Hadoop	 environment	 from	 client	 machine.	 This	 need	 to	 be
imported	in	Putty	to	access	your	AWS	environemnt.	See	Figure	56

7.6.1.4.2.1	Create	Key	Value	Pair	Screen	shots

Figure	55:	AMS	Key	Value	Pair

Figure	56:	AMS	Key	Value	Pair1

7.6.1.5	Create	Step	Execution	–	Hadoop	Job

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	to	complete	to	complete	step
execution	creation.	See:	Figure	57,	Figure	58,	Figure	59,	Figure	60,	Figure	61

Cluster	name	(Example:	HadoopJobStepExecutionCluster)
Select	 Logging	 check	 box	 and	 provide	 S3	 folder	 location	 (Example:
s3://bigdata-raviAndOrlyiuproject/logs/)
Select	launch	mode	as	Step	execution
Select	the	step	type	and	complete	the	step	configuration
Complete	Software	Configuration
Complete	Hardware	Configuration
Complete	Security	and	access
And	then	click	on	create	cluster	button

Once	 job	 started,	 if	 there	 are	 no	 errors	 output	 file	 will	 be	 created	 in	 the
output	directory.

7.6.1.5.0.1	Screen	shots

Figure	57:	AWS	EMR

Figure	58:	AWS	Create	EMR

Figure	59:	AWS	Config	EMR

Figure	60:	AWS	Create	Cluster

Figure	61:	AWS	Create	Cluster1

7.6.1.6	Create	a	Hive	Cluster

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	 to	complete.	See,	Figure	62,
Figure	63,	Figure	64

Cluster	name	(Example:	MyFirstCluster-Hive)
Select	Logging	check	box	selected	and	provide	S3	folder	location
Select	launch	mode	as	Cluster
Complete	 software	 configuration	 (select	 hive	 application)	 and	 click	 on
create	cluster

7.6.1.6.1	Create	a	Hive	Cluster	-	Screen	shots

Figure	62:	Hive	Cluser

Figure	63:	Hive	Cluser1

Figure	64:	Hive	Cluser2

7.6.1.7	Create	a	Spark	Cluster

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	 to	complete.	See,	Figure	65,
Figure	66,	Figure	67

Cluster	name	(Example:	My	Cluster	-	Spark)
Select	Logging	check	box	selected	and	provide	S3	folder	location
Select	launch	mode	as	Cluster
Complete	software	configuration	and	click	on	create	cluster
Select	application	as	Spark

7.6.1.7.1	Create	a	Spark	Cluster	-	Screenshots

Figure	65:	Spark	Cluser

Figure	66:	Spark	Cluser

Figure	67:	Spark	Cluser

7.6.2	Twister2	☁�

7.6.2.1	Introduction

Twister2[57]	 provides	 a	 data	 analytics	 hosting	 environment	 where	 it	 supports
different	 data	 analytics	 including	 streaming,	 data	 pipelines	 and	 iterative
computations.	 The	 functionality	 of	 Twister2	 is	 similar	 to	 other	 Big	 data
frameworks	 such	as	Apache	Spark	and	Apache	Flink.	But	 there	are	 a	 few	key
differences	which	differentiates	Twister2	from	other	 frameworks.	Unlike	many
other	big	data	systems	that	are	designed	around	user	APIs,	Twister2	is	built	from
bottom	up	 to	 support	different	APIs	and	workloads.	The	aim	of	Twister2	 is	 to
develop	a	complete	computing	environment	for	data	analytics.

One	major	goal	of	Twister2	is	 to	provide	independent	components,	 that	can	be
used	 by	 other	 big	 data	 systems	 and	 evolve	 separately.	 To	 this	 end	 Twister2
supports	a	composable	architecture	where	developers	can	easily	replace	a	small
component	 in	 the	system	with	a	new	 implementation	very	easily.	For	example
the	 resource	 scheduling	 layer	 has	 several	 implementations	 it	 supports,
Kubernetes,	Mesos,	Slurm,	Nomad	and	a	 standalone	 implementation,	 If	 a	user
wants	 to	 add	 support	 for	 another	 resources	 scheduler	 such	 as	 Yarn	 they	 can
easily	do	so	by	implementing	the	well	defined	interfaces.

Twister2	supports	both	batch	and	streaming	applications.	Unlike	other	big	data
frameworks	which	either	support	batch	or	streaming	in	the	core	and	develop	the

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister.md

other	on	top	of	that,	Twister2	natively	supports	both	batch	and	streaming.	Which
allows	Twister2	to	make	separate	optimizations	for	each	type.

Twister2	 project	 is	 still	 less	 than	 2	 years	 old	 and	 still	 in	 it’s	 early	 stages	 and
going	 through	 rapid	 development	 to	 complete	 its	 functionality.	 It	 is	 an	 Open
Source	project	which	is	licenced	under	the	Apache	2.0[58]

7.6.2.2	Twister2	API’s

Twister2	 provides	 users	 with	 3	 levels	 on	 API’s	 which	 can	 be	 used	 to	 write
applications.	The	3	API	levels	are	shown	in	Figure	Figure	68.

Figure	68:	Twister2	API’s

As	 shown	 in	 Figure	 68	 each	API	 level	 has	 different	 levels	 of	 abstraction	 and
programming	complexities.	TSet	API	is	the	most	high	level	in	Twister2	which	in
someways	is	simlar	to	the	RDD	API	in	Apache	Spark	or	DataSet	API	in	Apache
Flink.	If	the	user	wants	more	control	over	the	application	development	they	can
opt	to	use	a	more	lower	level	API’s.

7.6.2.2.1	TSet	API

TSet	API	 is	 the	most	 abstract	 API	 provided	 by	 Twister2.	 This	 allows	 user	 to
develop	 their	programs	at	 the	data	 layer,	 similar	 to	 the	programming	model	of
Apache	Spark.	Similar	to	RDD	in	Spark	users	can	perform	operations	on	top	of
TSet	objects	which	will	be	automatically	parallelized	by	the	framework.	To	get	a
slight	understanding	of	the	Tset	API	take	a	look	at	the	abstract	example	given	on
how	TSet	API	can	be	used	to	implement	KMeans	algorithm.
public	class	KMeansJob	extends	TaskWorker	{

				//......

				@Override

				public	void	execute()	{

								//.....

								TSet<double[][]>	points	=	TSetBuilder.newBuilder(config).createSource(new	Source<double[][]>()	{

												//Code	for	source	function	to	read	data	points

								}).cache();

When	programming	at	the	TSet	API	level	the	developer	does	need	to	handle	any
information	related	to	task	and	communications.

Note:	The	TSet	API	 is	currently	under	development	and	has	not	been	 released
yet	and	therefore	the	API	may	change	from	what	was	discussed	in	this	section,
anyone	who	 is	 interested	can	 follow	 the	development	progress	or	contribute	 to
the	project	through	the	GitHub	repo[58].

7.6.2.2.2	Task	API

The	Task	API	allows	developers	to	create	their	application	at	the	Task	level.	The
developer	is	responsible	of	managing	task	level	details	when	developing	at	this
API	 level,	 the	upside	of	using	 the	Task	API	 is	 that	 it	 is	more	 flexible	 than	 the
TSet	API	so	it	allows	developers	to	add	custom	optimizations	to	the	application
code.	The	TSet	API	is	built	on	top	of	the	Task	API	therefore	the	added	layer	of
abstraction	 is	bound	 to	add	slightly	more	overheads	 to	 the	 runtime,	which	you
might	be	able	to	avoid	by	directly	coding	at	the	Task	API	level.

To	get	a	better	understanding	of	the	Task	API	take	a	look	at	how	the	classic	map
reduce	 problem	 word	 count	 is	 implemented	 at	 using	 the	 Task	 API	 in	 the
following	code	segment.	This	is	only	a	portion	of	the	example	code,	you	can	find
the	complete	code	for	the	example	at[59].

								TSet<double[][]>	centroids	=	TSetBuilder.newBuilder(config).createSource(new	Source<double[][]>()	{

												//Code	for	source	function	to	read	centers	(or	generate	random	centers)

								}).cache();

								for	(

																int	i	=	0;

																i	<	iterations;	i++)	{

												TSet<double[][]>	KmeansTSet	=	points.map(new	MapFunction<double[][],	double[][]>()	{

																//Code	for	Kmeans	calculation,	this	will	have	access	to	the	centroids	which	are	passed	in

												});

												KmeansTSet.addInput("centroids",	centroids);

												Link<double[][]>	allReduced	=	KmeansTset.allReduce();

												TSet<double[][]>	newCentroids	=	allReduced.map(new	MapFunction<double[][],	Object>()	{

												/*	Code	that	produces	the	new	centers	for	the	next	iteration.	The	allReduce	will	result	in

													a	sum	or	all	the	centers	sent	by	each	worker	so	this	map	function	simply	needs	to	compute	the

													average	to	get	the	new	centers

													*/

												});

												centroids.override(newCentroids);

								}

								//.....

				}

}

public	class	WordCountJob	extends	TaskWorker	{

//.....

		@Override

		public	void	execute()	{

				//	source	and	aggregator

More	Task	API	examples	can	be	found	in	Twister2	documentations[60].

7.6.2.3	Operator	API

The	 lowest	 level	 API	 provided	 by	 Twister2	 is	 the	 Operator	 API,	 this	 allows
developers	 to	develop	applications	at	 the	 communication	 level.	However	 since
this	 API	 only	 abstracts	 out	 communication	 operations,	 details	 such	 as	 task
management	need	to	be	handled	by	the	application	developer.	Again	similar	 to
the	Task	API	 this	 provides	 the	 developer	with	more	 flexibility	 to	 create	more
optimized	applications,	at	the	cost	of	being	harder	to	program.	Twister2	supports
a	variety	of	communication	patterns,	known	as	collective	communications	in	the
HPC	world.	These	communications	are	highly	optimized	using	various	 routing
patterns	 to	 reduce	 the	 number	 of	 communication	 calls	 that	 go	 through	 the
network	to	provide	users	with	a	extremely	efficient	Operator	API.	The	following
list	show	the	communication	operations	that	are	supported	by	Twister2.	You	can
find	 more	 information	 on	 each	 or	 these	 operations	 in	 the	 Twister2
documentation[61].

Reduce
Gather
AllReduce
AllGather
Partition
Broadcast
Keyed	Reduce
Keyed	Partition
Keyed	Gather

				WordSource	source	=	new	WordSource();

				WordAggregator	counter	=	new	WordAggregator();

				//	build	the	task	graph

				TaskGraphBuilder	builder	=	TaskGraphBuilder.newBuilder(config);

				builder.addSource("word-source",	source,	4);

				builder.addSink("word-aggregator",	counter,	4).keyedReduce("word-source",	EDGE,

								new	ReduceFn(Op.SUM,	DataType.INTEGER),	DataType.OBJECT,	DataType.INTEGER);

				builder.setMode(OperationMode.BATCH);

				//	execute	the	graph

				DataFlowTaskGraph	graph	=	builder.build();

				ExecutionPlan	plan	=	taskExecutor.plan(graph);

				taskExecutor.execute(graph,	plan);

		}

		//.....

}

Initial	 Performance	 comparisons	 that	 are	 discussed	 in[62]	 show	 how	Twister2
out	performs	popular	frameworks	such	Apache	Flink,	Apache	Spark	and	Apache
Strom	in	many	areas.	For	example	the	Figure	69	shows	a	comparision	between
Twister2,	MPI	 and	 Apache	 Spark	 versions	 of	 KMeans	 algorithm,	 please	 note
that	the	graph	is	in	logarithmic	scale

Figure	69:	Kmeans	Performance	Comparison[63]

Notation	:	*	DFW	refers	to	Twister2	*	BSP	refers	to	MPI	(OpenMPI)

This	 shows	 that	Twister2	 performs	 around	~10x	 faster	 than	Apache	Spark	 for
KMeans.	And	that	it	is	on	par	with	implementations	done	using	OpenMPI	which
is	a	widely	used	HPC	framework.

7.6.2.3.1	Resources

http://www.iterativemapreduce.org/

http://www.cs.allegheny.edu/sites/amohan/teaching/CMPSC441/paper10.pdf

https://twister2.gitbook.io/twister2/

http://dsc.soic.indiana.edu/publications/Twister2.pdf

https://www.computer.org/csdl/proceedings/cloud/2018/7235/00/723501a383-
abs.html

http://www.iterativemapreduce.org/
http://www.cs.allegheny.edu/sites/amohan/teaching/CMPSC441/paper10.pdf
https://twister2.gitbook.io/twister2/
http://dsc.soic.indiana.edu/publications/Twister2.pdf
https://www.computer.org/csdl/proceedings/cloud/2018/7235/00/723501a383-abs.html

7.6.3	Twister2	Installation	☁�

7.6.3.1	Prerequisites

Because	Twister2	 is	still	 in	 the	early	stages	of	development	a	binary	release	 is
not	available	as	of	yet,	therefore	to	try	out	Twister2	users	need	to	first	build	the
binaries	from	the	source	code.

Operating	System	:
Twister2	is	tested	and	known	to	work	on,
Red	Hat	Enterprise	Linux	Server	release	7
Ubuntu	14.05,	Ubuntu	16.10	and	Ubuntu	18.10

Java	(Jdk	1.8)	Covered	in	Section	[s:hadoop-local-installation].

G++	Compiler	sudo	apt-get	install	g++

Maven	Installation	Explained	in	Section	Maven

OpenMPI	Installation	Explained	in	Section	OpenMPI

Bazel	Build	Installation	Explained	in	Section	Bazel

Additional	Libraries	Explained	in	Section	Twister	Extra

7.6.3.1.1	Maven	Installation

Execute	the	following	commands	to	install	Maven	locally.

Adding	environmental	variables

Add	the	following	line	at	the	end	of	the	file.

		mkdir	-p	~/cloudmesh/bin/maven

		cd	~/cloudmesh/bin/maven

		wget	http://mirrors.ibiblio.org/apache/maven/maven-3/3.5.2/binaries/apache-maven-3.5.2-bin.tar.gz

		tar	xzf	apache-maven-3.5.2-bin.tar.gz

		emacs	~/.bashrc

		MAVEN_HOME=~/cloudmesh/bin/maven/apache-maven-3.5.2

		PATH=$MAVEN_HOME/bin:$PATH

		export	MAVEN_HOME	PATH

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister-installation.md

7.6.3.1.2	OpenMPI	Installation

When	 you	 compile	 Twister2	 it	 will	 automatically	 download	 and	 compile
OpenMPI	3.1.2	with	it.	If	you	don’t	like	this	version	of	OpenMPI	and	wants	to
use	your	own	version,	you	can	compile	OpenMPI	using	following	instructions.

We	recommend	using	OpenMPI	3.1.2
Download	 OpenMPI	 3.0.0	 from	 https://download.open-
mpi.org/release/open-mpi/v3.1/openmpi-3.1.2.tar.gz
Extract	the	archive	to	a	folder	named	openmpi-3.1.2
Also	create	a	directory	named	build	 in	some	 location.	We	will	use	 this	 to
install	OpenMPI
Set	the	following	environment	variables

The	instructions	to	build	OpenMPI	depend	on	the	platform.	Therefore,	we
highly	recommend	looking	into	the	$OMPI_1101/INSTALL	file.	Platform	specific	build
files	are	available	in	$OMPI_1101/contrib/platform	directory.

In	 general,	 please	 specify	 --prefix=$BUILD	 and	 --enable-mpi-java	 as	 arguments	 to
configure	script.	If	Infiniband	is	available	(highly	recommended)	specify	--
with-verbs=<path-to-verbs-installation>.	Usually,	 the	path	 to	verbs	 installation	 is	 /usr.	 In
summary,	the	following	commands	will	build	OpenMPI	for	a	Linux	system.

If	everything	goes	well	mpirun	--version	will	show	mpirun	(Open	MPI)	3.1.2.	 Execute	 the
following	command	to	instal	$OMPI_312/ompi/mpi/java/java/mpi.jar	as	a	Maven	artifact.

7.6.3.1.3	Install	Extras

Install	the	other	requirements	as	follows,

		source	~/.bashrc

BUILD=<path-to-build-directory>

OMPI_312=<path-to-openmpi-3.1.2-directory>

PATH=$BUILD/bin:$PATH

LD_LIBRARY_PATH=$BUILD/lib:$LD_LIBRARY_PATH

export	BUILD	OMPI_312	PATH	LD_LIBRARY_PATH

cd	$OMPI_312

./configure	--prefix=$BUILD	--enable-mpi-java

make	-j	8;make	install

mvn	install:install-file	-DcreateChecksum=true	-Dpackaging=jar	-Dfile=$OMPI_312/ompi/mpi/java/java/mpi.jar	-DgroupId=ompi	-DartifactId=ompijavabinding	-Dversion=3.1.2

sudo	 apt-get	 install	 g++	 git	 build-essential	 automake	 cmake	 libtool-bin	 zip
libunwind-setjmp0-dev	 zlib1g-dev	 unzip	 pkg-config	 python-setuptools	 -y	 sudo
apt-get	install	python-dev	python-pip

Now	 you	 have	 successfully	 installed	 the	 required	 packages.	 Let	 us	 compile
Twister2.

7.6.3.1.4	Compiling	Twister2

Now	lets	get	a	clone	of	the	source	code.

You	can	compile	the	Twister2	distribution	by	using	the	bazel	target	as	follows.

This	will	build	twister2	distribution	in	the	file

If	 you	 would	 like	 to	 compile	 the	 twister2	 without	 building	 the	 distribution
packages	use	the	command

For	compiling	a	specific	target	such	as	communications

7.6.3.1.5	Twister2	Distribution

After	 you’ve	 build	 the	 Twister2	 distribution,	 you	 can	 extract	 it	 and	 use	 it	 to
submit	jobs.

7.6.4	Twister2	Examples	☁�

Twister	 documentation	 lists	 several	 examples[64]	 that	 users	 can	 leverage	 to
better	 understand	 the	 Twister2	 API’s.	 Currently	 there	 are	 several

git	clone	https://github.com/DSC-SPIDAL/twister2.git

cd	twister2

bazel	build	--config=ubuntu	scripts/package:tarpkgs

bazel-bin/scripts/package/twister2-client-0.1.0.tar.gz

bazel	build	--config=ubuntu	twister2/...

bazel	build	--config=ubuntu	twister2/comms/src/java:comms-java

cd	bazel-bin/scripts/package/

tar	-xvf	twister2-0.1.0.tar.gz

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister2-example.md

Communication	API	examples	and	Task	API	examples	available	in	the	Twister2
documentation.	 In	 this	 section	 we	 will	 go	 through	 how	 an	 example	 can	 be
executed	with	Twister2.

7.6.4.1	Submitting	a	Job

In	order	to	run	an	example	users	need	to	submit	the	example	to	Twister2	using
the	 twister	 command.	 This	 command	 is	 found	 inside	 the	 bin	 directory	 of	 the
distribution.

Here	is	a	description	of	the	command

submit	is	the	command	to	execute
cluster	 which	 resource	 manager	 to	 use,	 i.e.	 standalone,	 kubernetes,	 this
should	 be	 the	 name	 of	 the	 configuration	 directory	 for	 that	 particular
resource	manager
job-type	at	the	moment	we	only	support	jar
job-file-name	the	file	path	of	the	job	file	(the	jar	file)
job-class-name	name	of	the	job	class	with	a	main	method	to	execute

Here	is	an	example	command

In	this	command,	cluster	is	standalone	and	has	program	arguments.

For	 this	 exercise	 we	 are	 using	 the	 standlone	mode	 to	 submit	 a	 job.	 However
Twister2	 does	 support	 Kubernetes,	 Mesos,	 Slurm	 and	 Nomad	 resource
schedulers	if	users	want	to	submit	jobs	to	larger	cluster	deployments.

7.6.4.2	Batch	WordCount	Example

In	 this	 section	 we	 will	 run	 a	 batch	 word	 count	 example	 from	 Twister2.	 This
example	 only	 uses	 communication	 layer	 and	 resource	 scheduling	 layer.	 The
threads	are	managed	by	the	user	program.

twister2	submit	cluster	job-type	job-file-name	job-class-name	[job-args]

./bin/twister2	submit	standalone	jar	examples/libexamples-java.jar	edu.iu.dsc.tws.examples.task.ExampleTaskMain	-itr	80	-workers	4	-size	1000	-op	

The	example	code	can	be	found	in
twister2/examples/src/java/edu/iu/dsc/tws/examples/basic/batch/wordcount/

When	 we	 install	 Twister2,	 it	 will	 compile	 the	 examples.	 Lets	 go	 to	 the
installation	directory	and	run	the	example.

This	will	run	4	executors	with	8	tasks.	So	each	executor	will	have	two	tasks.	At
the	 first	phase,	 the	0-3	 tasks	 running	 in	each	executor	will	generate	words	and
after	they	are	finished,	5-8	tasks	will	consume	those	words	and	create	a	count.

7.6.5	HADOOP	RDMA	☁�

Acknowledgement:	This	section	was	copied	and	modified	with	permission	from
https://www.chameleoncloud.org/appliances/17/docs/

In	Chameleon	 cloud	 it	 is	 possible	 to	 launch	 a	 virtual	Hadoop	 cluster	 on	 bare-
metal	InfiniBand	nodes	with	SR-IOV.

The	CentOS	7	SR-IOV	RDMA-Hadoop	is	based	on	a	CentOS	7	Virtual	Machine
image,	a	VM	startup	script	and	a	Hadoop	cluster	launch	script,	so	that	users	can
launch	VMs	with	SR-IOV	in	order	to	run	RDMA-Hadoop	across	these	VMs	on
SR-IOV	enabled	InfiniBand	clusters.

Image	name:	CC-CentOS7-RDMA-Hadoop
Default	user	account:	cc
Remote	access:	Key-Based	SSH
Root	access:	passwordless	sudo	from	the	cc	account
Chameleon	admin	access:	enabled	on	the	ccadmin	account
Cloud-init	enabled	on	boot:	yes
Repositories	(Yum):	EPEL,	RDO	(OpenStack)
Installed	packages:
Rebuilt	kernel	to	enable	IOMMU
Mellanox	SR-IOV	drivers	for	InfiniBand
KVM	hypervisor
Standard	development	tools	such	as	make,	gcc,	gfortran,	etc.
Config	management	tools:	Puppet,	Ansible,	Salt

cd	bazel-bin/scripts/package/twister2-dist/

./bin/twister2	submit	standalone	jar	examples/libexamples-java.jar	edu.iu.dsc.tws.examples.batch.wordcount.WordCountJob

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-rdma.md
https://www.chameleoncloud.org/appliances/17/docs/

OpenStack	command-line	clients
Included	VM	image	name:	chameleon-rdma-hadoop-appliance.qcow2
Included	VM	startup	script:	start-vm.sh
Included	Hadoop	cluster	launch	script:	launch-hadoop-cluster.sh
Default	VM	root	password:	nowlab

We	 refer	 to	 the	 chameleon	 cloud	 bare	metal	 user	 guide	 for	 documentation	 on
how	 to	 reserve	 and	 provision	 resources	 using	 the	 appliance	 of	 CC-CentOS7-
RDMA-Hadoop.

�	link	missing

7.6.5.1	Launching	a	Virtual	Hadoop	Cluster	on	Bare-metal	InfiniBand
Nodes	with	SR-IOV	on	Chameleon

We	provide	a	CentOS	7	VM	image	(chameleon-rdma-hadoop-appliance.qcow2)
and	a	Hadoop	cluster	launch	script	(launch-hadoop-cluster.sh)	to	facilitate	users
to	setup	Virtual	Hadoop	Clusters	effortlessly.

First,	 launch	bare-metal	 nodes	 using	 the	RDMA-Hadoop	Appliance	 and	 select
one	of	the	nodes	as	the	bootstrap	node.	This	node	will	serve	as	the	host	for	the
master	 node	 of	 the	 Hadoop	 cluster	 and	 will	 also	 be	 used	 to	 setup	 the	 entire
cluster.	Now,	 ssh	 to	 this	node.	Before	you	can	 launch	 the	cluster,	you	have	 to
download	 your	 OpenStack	 credentials	 file	 (see	 how	 to	 download	 your
credentials	file).	Then,	create	a	file	(henceforth	referred	to	as	ips-file)	with	the	ip
addresses	of	 the	bare-metal	 nodes	you	want	 to	 launch	your	Hadoop	cluster	on
(excluding	the	bootstrap	node),	each	on	a	new	line.	Next,	run	these	commands	as
root:

The	 launch	 cluster	 script	will	 launch	VMs	 for	 you,	 then	 install	 and	 configure
Hadoop	on	these	VMs.	Note	that	when	you	launch	the	cluster	for	the	first	time,	a
lot	of	initialization	is	required.	Depending	on	the	size	of	your	cluster,	it	may	take
some	time	to	setup	the	cluster.	After	the	cluster	setup	is	complete,	the	script	will
print	an	output	telling	you	that	the	cluster	is	setup	and	how	you	can	connect	to
the	Hadoop	master	node.	Note	that	the	minimum	required	memory	for	each	VM

[root@host]$	cd	/home/cc

[root@host]$./launch-hadoop-cluster.sh	<num-of-vms-per-node>	<num-of-MB-per-VM>	<num-of-cores-per-VM>	<ips-file>	<openstack-credentials-file

is	8,192	MB.	The	Hadoop	cluster	will	already	be	setup	for	use.	For	more	details
on	how	to	use	 the	RDMA-Hadoop	package	 to	run	 jobs,	please	refer	 to	 its	user
guide.

7.6.5.2	Launching	Virtual	Machines	Manually

We	provide	a	CentOS	7	VM	image	(chameleon-rdma-hadoop-appliance.qcow2)
and	a	VM	startup	script	(start-vm.sh)	to	facilitate	users	to	launch	VMs	manually.
Before	 you	 can	 launch	 a	VM,	 you	 have	 to	 create	 a	 network	 port.	 To	 do	 this,
source	your	OpenStack	 credentials	 file	 (see	how	 to	download	your	 credentials
file)	and	run	this	command:

Note	the	MAC	address	and	IP	address	are	in	the	output	of	 this	command.	You
should	use	this	MAC	address	while	launching	a	VM	and	the	IP	address	to	ssh	to
the	VM.	You	also	need	the	PCI	device	ID	of	the	virtual	function	that	you	want	to
assign	to	the	VM.	This	can	be	obtained	by	running	"lspci	|	grep	Mellanox"	and
looking	 for	 the	 device	 ID	 (with	 format	 -	 XX:XX.X)	 of	 one	 of	 the	 virtual
functions	as	shown	next:

The	PCI	device	ID	of	the	Virtual	Function	is	03:00:1	in	the	previous	example.

Now,	you	can	 launch	a	VM	on	your	 instance	with	SR-IOV	using	 the	provided
VM	startup	script	and	corresponding	arguments	as	follows	with	the	root	account.

Please	 note	 that	 and	 are	 the	 ones	 you	 get	 from	 the	 outputs	 of	 previous
commands.	And	is	the	name	of	VM	virtual	NIC	interface.	For	example:

You	 can	 also	 edit	 corresponding	 fields	 in	 VM	 startup	 script	 to	 change	 the
number	of	cores,	memory	size,	etc.

You	should	now	have	a	VM	running	on	your	bare	metal	instance.	If	you	want	to

[user@host]$	neutron	port-create	sharednet1

[cc@host]$	lspci	|	grep	Mellanox

03:00.0	Network	controller:	Mellanox	Technologies	MT27500	Family	[ConnectX-3]

03:00.1	Network	controller:	Mellanox	Technologies	MT27500/MT27520	Family	[ConnectX-3/ConnectX-3	Pro	Virtual	Function]

...

[root@host]$./start-vm.sh	<vm-mac>	<vm-ifname>	<virtual-function-device-id>

[root@host]$./start-vm.sh	fa:16:3e:47:48:00		tap0		03:00:1

run	more	VMs	 on	 your	 instance,	 you	will	 have	 to	 create	more	 network	 ports.
You	will	also	have	to	change	the	name	of	VM	virtual	NIC	interface	to	different
ones	(like	tap1,	tap2,	etc.)	and	select	different	device	IDs	of	virtual	functions.

7.6.5.3	Extra	Initialization	when	Launching	Virtual	Machines

In	order	to	run	RDMA-Hadoop	across	VMs	with	SR-IOV,	and	keep	the	size	of
VM	 image	 small,	 extra	 initialization	 will	 be	 executed	 when	 launching	 VM
automatically,	which	includes:

Detect	Mellanox	SR-IOV	drivers,	download	and	install	it	if	nonexistent
Detect	Java	package	installed,	download	and	install	if	non-existent
Detect	 RDMA-Hadoop	 package	 installed,	 download	 and	 install	 if	 non-
existent

After	 finishing	 the	 extra	 initialization	 procedure,	 you	 should	 be	 able	 to	 run
Hadoop	jobs	with	SR-IOV	support	across	VMs.	Note	that	this	initialization	will
be	 done	 automatically.	 For	 more	 details	 about	 the	 RDMA-Hadoop	 package,
please	refer	to	its	user	guide.

7.6.5.4	Important	Note	for	Tearing	Down	Virtual	Machines	and	Deleting
Network	Ports

Once	you	are	done	with	your	experiments,	you	should	kill	all	the	launched	VMs
and	delete	 the	 created	network	ports.	 If	 you	used	 the	 launch-hadoop-cluster.sh
script	to	launch	VMs,	you	can	do	this	by	running	the	kill-vms.sh	script	as	shown
next.	 This	 script	 will	 kill	 all	 launched	 VMs	 and	 also	 delete	 all	 the	 created
network	ports.

Please	note	that	it	is	important	to	delete	unused	ports	after	experiments.

[root@host]$	cd	/home/cc

[root@host]$./kill-vms.sh	<ips-file>	<openstack-credentials-file>

\end{vernatim}

If	you	launched	VMs	using	the	start-vm.sh	script,	you	should	first	manually	kill	all	the	VMs.	Then,	delete	all	the	created	network	ports	using	this	command:

[user@host]$	neutron	port-delete	PORT

8	CONTAINER

8.1	INTRODUCTION	TO	CONTAINERS	☁�

	Learning	Objectives

Knowing	what	a	container	is.
Differentiating	Containers	from	Virtual	Machines.
Understanding	the	historical	aspects	that	lead	to	containers.

This	section	covers	an	introduction	to	containers	that	is	split	up	into	four	parts.
We	discuss	microservices,	serverless	computing,	Docker,	and	kubernetes.

8.1.1	Motivation	-	Microservices

We	discuss	the	motivation	for	containers	and	contrast	them	to	virtual	machines.
Additionally	 we	 provide	 a	 motivation	 for	 containers	 as	 they	 can	 be	 used	 to
microservices.

	Container	11:01	Container	A

8.1.2	Motivation	-	Serverless	Computing

We	 enhance	 our	 motivation	 while	 contrasting	 containers	 and	 microservices
while	 relating	 them	 to	 serverless	 computing.	 We	 anticipate	 that	 serverless
computing	will	increase	in	importance	over	the	next	years

	Container	15:08	Container	B

8.1.3	Docker

In	order	for	us	to	use	containers,	we	go	beyond	the	historical	motivation	that	was

https://github.com/cloudmesh-community/book/blob/master/chapters/container/container.md
https://youtu.be/-HlB0eiwV10
https://youtu.be/fxDc5cL6MgQ

introduced	in	a	previous	section	and	focus	on	Docker	a	predominant	technology
for	containers	on	Windows,	Linux,	and	macOS

	Container	40:09	Container	C

8.1.4	Docker	and	Kubernetes

We	continue	our	discussion	about	docker	and	introduce	kubernetes,	allowing	us
to	run	multiple	containers	on	multiple	servers	building	a	cluster	of	containers.

	Container	50:14	Container	D

8.2	DOCKER

8.2.1	Introduction	to	Docker	☁�

Docker	is	 the	company	driving	the	container	movement	and	the	only	container
platform	provider	to	address	every	application	across	the	hybrid	cloud.	Today’s
businesses	 are	 under	 pressure	 to	 digitally	 transform	 but	 are	 constrained	 by
existing	 applications	 and	 infrastructure	 while	 rationalizing	 an	 increasingly
diverse	 portfolio	 of	 clouds,	 datacenters	 and	 application	 architectures.	 Docker
enables	 true	 independence	 between	 applications	 and	 infrastructure	 and
developers	 and	 IT	 ops	 to	 unlock	 their	 potential	 and	 creates	 a	model	 for	 better
collaboration	and	innovation.	An	overview	of	docker	is	provided	at

https://docs.docker.com/engine/docker-overview/

https://youtu.be/A2b-LrnoMqg
https://youtu.be/V41oi2Bh8Cc
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-intro.md
https://docs.docker.com/engine/docker-overview/

Figure	70:	Docker	Containers	[Image	Source]	[65]

Figure	70	shows	how	docker	containers	fit	into	the	system	##	Docker	platform

Docker	provides	users	 and	developers	with	 the	 tools	 and	 technologies	 that	 are
needed	 to	manage	 their	 application	 development	 using	 containers.	 Developers
can	easily	setup	different	environments	for	development,	testing	and	production.

8.2.1.1	Docker	Engine

The	Docker	 engine	 can	 be	 thought	 of	 as	 the	 core	 of	 the	 docker	 runtime.	 The
docker	 engine	 mainly	 provides	 3	 services.	 Figure	 71	 shows	 how	 the	 docker
engine	is	composed.

A	long	running	server	which	manages	the	containers
A	REST	API
A	command	line	interface

https://www.docker.com/sites/default/files/Package%20software%40x2.png

Figure	71:	Docker	Engine	Component	Flow	[Image	Source]	[65]

8.2.1.2	Docker	Architecture

The	main	concept	of	the	docker	architecture	is	based	on	the	simple	client-server
model.	Docker	clients	 communicate	with	 the	Docker	 server	also	known	as	 the
Docker	daemon	to	request	various	resources	and	services.	THe	daemon	manages
all	 the	background	tasks	that	need	to	be	performed	to	complete	client	requests.
Managing	 and	 distributing	 containers,	 running	 the	 containers,	 bulding
containers,	etc.	are	responsibilities	of	the	Docker	daemon.	Figure	72	shows	how
the	docker	architecture	is	setup.	The	client	module	and	server	can	run	either	in
the	same	machine	or	in	separate	machines.	In	the	latter	case	the	communication
between	the	client	and	server	are	done	through	the	network.

https://docs.docker.com/engine/docker-overview/#docker-engine

Figure	72:	Docker	Architecture	[Image	Source]	[65]

8.2.1.3	Docker	Survey

In	 2016	 Docker	 Inc.	 surveyed	 over	 500	 Docker	 developers	 and	 operations
experts	in	various	phases	of	deploying	container-based	technologies.	The	result
is	available	in	the	The	Docker	Survey	2016	as	seen	in	Figure	73.

https://www.docker.com/survey-2016

https://docs.docker.com/engine/docker-overview/#docker-architecture
https://www.docker.com/survey-2016

Figure	73:	Docker	Survey	Results	2016	[Image	Source]	[65]

8.2.2	Running	Docker	Locally	☁�

⚠�	Please	verify	if	the	instructions	are	still	up	to	date.	Rapid	changes	could	mean
they	can	be	outdated	quickly.	Also	we	assume	the	ubuntu	instalations	may	have
changed	and	may	be	different	between	18.04	and	19.04.

The	official	 installation	documentation	 for	docker	can	be	 found	by	visiting	 the
following	Web	page:

https://www.docker.com/community-edition

Here	you	will	find	a	variety	of	packages,	one	of	which	will	hopefully	suitable	for
your	operating	system.	The	supported	operating	systems	currently	include:

OSX,	Windows,	Centos,	Debian,	Fedora,	Ubuntu,	AWS,	Azure

Please	 chose	 the	 one	most	 suitable	 for	 you.	 For	 your	 convenience	we	 provide
you	with	installation	instructions	for	OSX	(Section	Docker	on	OSX),	Windows
10	(Section	Docker	on	Windows)	and	Ubuntu	(Section	Docker	on	ubuntu).

8.2.2.1	Instillation	for	OSX

The	docker	community	edition	for	OSX	can	be	found	at	the	following	link

https://blog.docker.com/2016/04/the-modern-software-supply-chain-runs-on-docker/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-local.md
https://www.docker.com/community-edition

https://store.docker.com/editions/community/docker-ce-desktop-mac

We	recommend	that	at	this	time	you	get	the	version	Docker	CE	for	MAC	(stable)

https://download.docker.com/mac/stable/Docker.dmg

Clicking	on	 the	 link	will	 download	 a	 dmg	 file	 to	 your	machine,	 that	 you	 than
will	need	to	install	by	double	clicking	and	allowing	access	to	the	dmg	file.	Upon
installation	a	whale	in	the	top	status	bar	shows	that	Docker	is	running,	and	you	can
access	it	via	a	terminal.

Docker	integrated	in	the	menu	bar	on	OSX

8.2.2.2	Installation	for	Ubuntu

In	 order	 to	 install	 Docker	 community	 edition	 for	 Ubuntu,	 you	 first	 have	 to
register	the	repository	from	where	you	can	download	it.	This	can	be	achieved	as
follows:

Now	that	you	have	configured	the	repository	location,	you	can	install	it	after	you
have	updated	the	operating	system.	The	update	and	install	is	done	as	follows:

Once	 installed	execute	 the	 following	command	 to	make	sure	 the	 installation	 is
done	properly

This	should	give	you	an	output	similar	to	the	next.

local$	sudo	apt-get	update

local$	sudo	apt-get	install	\

				apt-transport-https	\

				ca-certificates	\

				curl	\

				software-properties-common

local$	curl	-fsSL	https://download.docker.com/linux/ubuntu/gpg	|	sudo	apt-key	add	-

local$	sudo	apt-key	fingerprint	0EBFCD88

local$	sudo	add-apt-repository	\

			"deb	[arch=amd64]	https://download.docker.com/linux/ubuntu	\

			local$(lsb_release	-cs)	\

			stable"

local$	sudo	apt-get	update

local$	sudo	apt-get	install	docker-ce

local$	sudo	apt-get	update

local$	sudo	systemctl	status	docker

	docker.service	-	Docker	Application	Container	Engine

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://download.docker.com/mac/stable/Docker.dmg

8.2.2.3	Installation	for	Windows	10

Docker	needs	Microsoft’s	Hyper-V	to	be	enabled,	but	it	will	impact	running	the
virtual	machines

Steps	to	Install

Download	 Docker	 for	Windows(Community	 Edition)	 from	 the	 following
link
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
Follow	the	Wizard	steps	in	the	installer
Launch	docker
Docker	usually	lauches	automatically	during	windows	startup.

8.2.2.4	Testing	the	Install

To	test	if	it	works	execute	the	following	commands	in	a	terminal:

You	should	see	an	output	similar	to

To	see	if	you	can	run	a	container	use

			Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	enabled)

			Active:	active	(running)	since	Wed	2018-10-03	13:02:04	EDT;	15min	ago

					Docs:	https://docs.docker.com

	Main	PID:	6663	(dockerd)

				Tasks:	39

local$	docker	version

docker	version

Client:

		Version:						17.03.1-ce

		API	version:		1.27

		Go	version:			go1.7.5

		Git	commit:			c6d412e

		Built:								Tue	Mar	28	00:40:02	2017

		OS/Arch:						darwin/amd64

Server:

		Version:						17.03.1-ce

		API	version:		1.27	(minimum	version	1.12)

		Go	version:			go1.7.5

		Git	commit:			c6d412e

		Built:								Fri	Mar	24	00:00:50	2017

		OS/Arch:						linux/amd64

		Experimental:	true

local$	docker	run	hello-world

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe

Once	executed	you	should	see	an	output	similar	to

8.2.3	Dockerfile	☁�

In	order	for	us	to	build	containers,	we	need	to	know	what	is	in	the	container	and
how	 to	 create	 an	 image	 representing	 a	 container.	 To	 do	 this	 a	 convenient
specification	format	called	Dockerfile	can	be	used.	Once	a	Dockerfile	is	created,	we	can
build	images	from	it

We	showcase	here	 the	use	of	 a	dockerfile	on	a	 simple	example	using	a	REST
service.

This	example	is	copied	from	the	official	docker	documentation	hosted	at

https://docs.docker.com/get-started/part2/#publish-the-image

8.2.3.1	Specification

It	os	best	to	start	with	an	empty	directory	in	which	we	create	a	Dockerfile.

Unable	to	find	image	'hello-world:latest'	locally

latest:	Pulling	from	library/hello-world

78445dd45222:	Pull	complete

Digest:	sha256:c5515758d4c5e1e838e9cd307f6c6a

Status:	Downloaded	newer	image	for

								hello-world:latest

Hello	from	Docker!

This	message	shows	that	your	installation	appears

to	be	working	correctly.

To	generate	this	message,	Docker	took	the	following

steps:

1.	The	Docker	client	contacted	the	Docker	daemon.

2.	The	Docker	daemon	pulled	the	"hello-world"	image

			from	the	Docker	Hub.

3.	The	Docker	daemon	created	a	new	container	from	that

			image	which	runs	the	executable	that	produces	the

			output	you	are	currently	reading.

4.	The	Docker	daemon	streamed	that	output	to	the	Docker

			client,	which	sent	it	to	your	terminal.

To	try	something	more	ambitious,	you	can	run	an	Ubuntu

container	with:

local$	docker	run	-it	ubuntu	bash

Share	images,	automate	workflows,	and	more	with	a

free	Docker	ID:

https://cloud.docker.com/

For	more	examples	and	ideas,	visit:

https://docs.docker.com/engine/userguide/

https://github.com/cloudmesh-community/book/blob/master/chapters/container/dockerfile.md
https://docs.docker.com/get-started/part2/#publish-the-image

Next,	we	create	an	empty	file	called	Dockerfile

We	copy	the	following	contents	into	the	Dockerfile	and	after	that	create	a	simple
REST	service

We	also	create	a	requirements.txt	file	that	we	need	for	installing	the	necessary	python
packages

The	 example	 application	 we	 use	 here	 is	 a	 student	 info	 served	 via	 a	 RESTful
service	implemented	using	python	flask.	It	is	stored	in	the	file	app.py

To	build	the	container,	we	can	use	the	following	command:

To	run	the	service	open	a	new	window	and	cd	into	the	directory	where	you	code

local$	mkdir	~/cloudmesh/docker

local$	cd	~/cloudmesh/docker

local$	touch	Dockerfile

#	Use	an	official	Python	runtime	as	a	parent	image

FROM	python:3.7-slim

#	Set	the	working	directory	to	/app

WORKDIR	/app

#	Copy	the	current	directory	contents	into	the	container	at	/app

COPY	.	/app

#	Install	any	needed	packages	specified	in	requirements.txt

RUN	pip	install	--trusted-host	pypi.python.org	-r	requirements.txt

#	Make	port	80	available

EXPOSE	80

#	Run	app.py	when	the	container	launches

CMD	["python",	"app.py"]

Flask

from	flask	import	Flask,	jsonify

import	os

app	=	Flask(__name__)

@app.route('/student/albert')

def	alberts_information():

				data	=	{

								'firstname':	'Albert',

								'lastname':	'Zweistsein',

								'university':	'Indiana	University',

								'email':	'albert@example.com'

								}

				return	jsonify(**data)

if	__name__	==	'__main__':

				app.run(host="0.0.0.0",	port=80)

local$	docker	build	-t	students	.

is	located.	Now	say

Your	docker	container	will	run	and	you	can	visit	it	by	using	the	command

To	stop	the	container	do	a

and	locate	the	id	of	the	container,	e.g.,	2a19776ab812,	and	then	run	this

To	delete	 the	docker	 container	 image,	you	must	 first	 sop	all	 instances	using	 it
and	the	remove	the	image.	You	can	see	the	images	with	the	command

Then	you	can	locate	all	containers	using	that	image	while	looking	in	the	IMAGE
column	 or	 using	 a	 simple	 fgrep	 in	 case	 you	 have	 many	 images.	 stop	 the
containers	using	that	image	and	that	you	can	say

while	the	number	is	the	container	id

Once	you	killed	all	containers	using	that	image,	you	can	remove	the	image	with
the	rmi	command.

8.2.3.2	References

The	reference	documentation	about	docker	files	can	be	found	at

https://docs.docker.com/engine/reference/builder/

8.2.4	Docker	Hub	☁�

Docker	 Hub	 is	 a	 cloud-based	 registry	 service	 which	 provides	 a	 “centralized

local$	docker	run	-d	-p	4000:80	students

local$	curl	http://localhost:4000/student/albert

local$	docker	ps

local$	docker	stop	2a19776ab812

local$	docker	images

local$	docker	rm	74b9b994c9bd

local$	docker	rmi	8b3246425402

https://docs.docker.com/engine/reference/builder/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/dockerhub.md

resource	 for	 container	 image	 discovery,	 distribution	 and	 change	 management,
user	 and	 team	 collaboration,	 and	 workflow	 automation	 throughout	 the
development	 pipeline”	 [65].	 There	 are	 both	 private	 and	 public	 repositories.
Private	repository	can	only	be	used	by	people	within	their	own	organization.

Docker	Hub	is	integrated	into	Docker	as	the	default	registry.	This	means	that	the
docker	 pull	 command	will	 initialize	 the	 download	 automatically	 from	Docker
Hub	[66].	 It	 allows	users	 to	download	 (pull),	build,	 test	and	store	 their	 images
for	easy	deployment	on	any	host	they	may	have	[65].

8.2.4.1	Create	Docker	ID	and	Log	In

A	 log-in	 is	 not	 necessary	 for	 pulling	 Docker	 images	 from	 the	 Hub	 but	 it	 is
necessary	for	pushing	images	to	dockerhub	for	sharing.	Thus	to	store	images	on
Docker	hub	you	need	 to	create	an	account	by	visiting	Docker	Hub	Web	page.
Dockerhub	 offers	 in	 general	 a	 free	 account,	 but	 it	 has	 restrictions.	 The	 free
account	 allows	 you	 to	 share	 images	 that	 you	 distriuute	 publically,	 but	 it	 only
allows	 one	 private	 Docker	 Hub	 Repository.	 In	 case	 you	 need	more,	 you	 will
need	to	upgrade	to	a	paid	plan.

For	 the	 rest	 of	 the	 tutorial	 we	 assume	 that	 you	 use	 the	 environment	 variable
DOCKERHUB	to	indicate	yourusername.	It	is	easiset	if	you	set	it	in	your	shell
with

8.2.4.2	Searching	for	Docker	Images

There	are	two	ways	to	search	for	Docker	images	on	Docker	Hub:

One	way	is	to	use	the	Docker	command	line	tool.	We	can	open	a	terminal	and
run	the	docker	search	command.	For	example,	the	following	command	searches
for	centOS	images:

you	will	see	output	similar	to:

NAME DESCRIPTION STAR OFFICIAL AUTOMATED

local$	export	DOCKERHUB=<PUT	YOUR	DOCKER	USERNAME	HERE>

local$	sudo	docker	search	centos

https://hub.docker.com/

centos Official	CentOS 4130 [OK]

ansible/centos7 Ansible	on
Centos7 105 [OK]

…

If	you	do	not	want	to	use	sudo	with	docker	command	each	time	you	need	to	add
the	 current	 user	 into	 the	 docker	 group.	 You	 can	 do	 that	 using	 the	 following
command.

This	will	prompt	you	to	enter	the	password	for	the	current	user.	Now	you	should
be	able	to	execute	the	previous	command	without	using	sudo.

Official	repositories	in	dockerhub	are	public,	certified	repositories	from	vendors
and	 contributors	 to	 Docker.	 They	 contain	 Docker	 images	 from	 vendors	 like
Canonical,	 Oracle,	 and	 Red	 Hat	 that	 you	 can	 use	 as	 the	 basis	 to	 build	 your
applications	 and	 services.	 There	 is	 one	 official	 repository	 in	 this	 list,	 the	 first
one,	centos.

The	other	way	is	to	search	via	the	Web	Search	Box	at	the	top	of	the	Docker	web
page	by	typing	the	keyword.	The	search	results	can	be	sorted	by	number	of	stars,
number	of	pulls,	and	whether	it	is	an	official	image.	Then	for	each	search	result,
you	 can	 verify	 the	 information	 of	 the	 image	 by	 clicking	 the	 details	 button	 to
make	sure	this	is	the	right	image	that	fits	your	needs.

8.2.4.3	Pulling	Images

A	particular	image	(take	centos	as	an	example)	can	be	pulled	using	the	following
command:

Tags	 can	 be	 used	 to	 specify	 the	 image	 to	 pull.	 By	 default	 the	 tag	 is	 latest,
therefore	the	previous	command	is	the	same	as	the	following:

local$	sudo	usermod	-aG	docker	${USER}

local$	su	-	${USER}

local$	docker	pull	centos

local$	docker	pull	centos:latest

You	can	use	a	different	tag:

To	check	the	existing	local	docker	images,	run	the	following	command:

The	results	show:

REPOSITORY TAG IMAGE	ID CREATED SIZE
centos latest 26cb1244b171 2	weeks	ago 195MB
centos 6 2d194b392dd1 2	weeks	ago 195MB

8.2.4.4	Create	Repositories

In	 order	 to	 push	 images	 to	Docker	Hub,	 you	 need	 to	 have	 a	 and	 account	 and
create	a	repository.

When	you	first	create	a	Docker	Hub	user,	you	see	a	Get	started	with	Docker	Hub
screen,	from	which	you	can	click	directly	into	Create	Repository.	You	can	also
use	the	Create	menu	to	Create	Repository.	When	creating	a	new	repository,	you
can	choose	 to	put	 it	 in	your	Docker	ID	namespace,	or	 that	of	any	organization
that	you	are	in	the	owners	team	[67].

As	 an	 example,	we	 created	 a	 repository	 cloudtechnology	with	 the	 namespace	
$DOCKERHUB	 (here	 DOCKERHUB	 is	 your	 docker	 hub	 username).	 Hence	 the	 full	 name	 is	
$DOCKERHUB/cloudtechnology

8.2.4.5	Pushing	Images

To	push	an	image	to	the	repository	created,	the	following	steps	can	be	followed.

First,	log	into	Docker	Hub	from	the	command	line	by	specifying	the	username.
If	you	encounter	permission	issues	please	use	sudo	in	front	of	the	command

Enter	the	password	when	prompted.	If	everything	worked	you	will	get	a	message

local$	docker	pull	centos:6

local$	docker	images

$	docker	login	--username=$DOCKERHUB

similar	to:

Second,	check	the	image	ID	using:

the	result	looks	similar	to:

REPOSITORY TAG IMAGE	ID CREATED SIZE
cloudmesh-nlp latest 1f26a5f7a1b4 10	days	ago 1.79GB
centos latest 26cb1244b171 2	weeks	ago 195MB

centos latest 2d194b392dd1 2	weeks	ago 195MB

Here,	 the	 the	 image	with	 ID	1f26a5f7a1b4	 is	 the	 one	 to	 push	 to	Docker	Hub.
You	can	choose	another	image	instead	if	you	like.

Third,	tag	the	image

Here	we	have	 used	 a	 version	 number	 as	 a	 tag.	However	 another	 good	way	of
adding	 a	 tag	 is	 to	 use	 a	 keyword/tag	 that	 will	 help	 you	 understand	 what	 this
container	should	be	used	in	conjunction	with,	or	what	it	represents.

Fourth,	now	the	list	of	images	will	look	something	like

REPOSITORY TAG IMAGE	ID CREATED SIZE
cloudmesh-nlp latest 1f26a5f7a1b4 10	d	ago 1.79GB
$DOCKERHUB/cloudmesh v1.0 1f26a5f7a1b4 10	d	ago 1.79GB
centos latest 26cb1244b171 2	w	ago 195MB
centos latest 2d194b392dd1 2	w	ago 195MB

Fifth,	Now	you	can	see	an	images	under	the	name	$DOCKERHUB/cloudmesh,	we	now	need	to
push	this	image	to	the	repository	that	we	created	on	the	docker	hub	website.	For
that	execute	the	following	command.

Login	Succeeded

$	docker	images

$	docker	tag	1f26a5f7a1b4	$DOCKERHUB/cloudmesh:v1.0

It	shows	something	similar	to,	to	make	sure	you	can	check	on	docker	hub	if	the
images	that	was	pushed	is	listed	in	the	repository	that	we	created.

Sixth,	now	the	image	is	available	on	Docker	Hub.	Everyone	can	pull	it	since	it	is
a	public	repository	by	using	command:

Please	remember	that	the	USERNAME	is	the	username	for	the	user	that	makes
this	image	publically	available.	If	you	are	the	user	you	will	see	the	value	being
the	one	from	$DOCKERHUB,	If	not	you	will	see	here	the	username	of	the	user
uploading	the	image

8.2.4.6	Resources

The	offical	Overview	of	Docker	Hub	[65]
Information	about	using	docker	repositories	can	be	found	at	Repositories	on
Docker	Hub	[67]
How	to	Use	DockerHub	[66]
Docker	Tutorial	Series	[68]

8.3	DOCKER	AS	PAAS

8.3.1	Docker	Swarm	☁�

A	swarm	is	a	group	of	machines	that	are	running	Docker	and	are	joined	into	a
cluster.	Docker	commands	are	executed	on	a	cluster	by	a	swarm	manager.	The
machines	in	a	swarm	can	be	physical	or	virtual.	After	joining	a	swarm,	they	are
referred	to	as	nodes.

8.3.1.1	Terminology

$	docker	push	$DOCKERHUB/cloudmesh

The	push	refers	to	repository	[docker.io/$DOCKERHUB/cloudmesh]

18f9479cfc2c:	Pushed

e9ddee98220b:	Pushed

...

db584c622b50:	Mounted	from	library/ubuntu

a94e0d5a7c40:	Mounted	from	library/ubuntu

...

v1.0:	digest:	sha256:305b0f911077d9d6aab4b447b...	size:	3463

$	docker	pull	USERNAME/cloudmesh

https://docs.docker.com/docker-hub/#use-official-repositories
https://docs.docker.com/docker-hub/repos/
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub
https://rominirani.com/docker-tutorial-series-part-4-docker-hub-b51fb545dd8e
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-swarm.md

In	this	section	if	a	command	is	prefixed	with	local$	it	means	the	command	is	to	be
executed	 on	 your	 local	machine.	 If	 it	 is	 prefixed	with	 either	 master	 or	 worker	 that
means	 the	 command	 is	 to	be	 executed	 from	within	 a	 virtual	machine	 that	was
created.

8.3.1.2	Creating	a	Docker	Swarm	Cluster

A	swarm	is	made	up	of	multiple	nodes,	which	can	be	either	physical	or	virtual
machines.	We	use	master	as	the	name	of	the	host	that	is	run	as	master	and	worker-1	as
a	 host	 run	 as	 a	worker,	where	 the	 number	 indicatet	 the	 i-th	worker	The	 basic
steps	are:

1.	 run

to	enable	swarm	mode	and	make	your	current	machine	a	swarm	manager,

2.	 then	run

on	other	machines	 to	have	 them	join	 the	swarm	as	workers.	Choose	a	 tab
described	in	next	to	see	how	this	plays	out	in	various	contexts.	We	use	VMs
to	quickly	create	a	two-machine	cluster	and	turn	it	into	a	swarm.

8.3.1.3	Create	a	Swarm	Cluster	with	VirtualBox

In	case	you	do	not	have	access	to	multiple	physical	machines,	you	can	create	a
virtual	 cluster	 on	 your	machine	with	 the	 help	 of	 virtual	 box.	 Instead	 of	 using	
vagrant	 we	 can	 use	 the	 built	 in	 docker-machine	 command	 to	 start	 several	 virtual
machines.

If	you	do	not	have	virtualbox	installed	on	your	machine	install	it	on	your	machine.
Additionally	you	would	require	docker-machine	to	be	installed	on	your	local	machine.
To	install	docker-machine	on	please	follow	instructions	at	the	docker	documentation	at
Install	Docker	Machine

To	create	the	virtual	machines	you	can	use	the	command	as	follows:

master$	docker	swarm	init

worker-1$	docker	swarm	join

https://docs.docker.com/machine/install-machine/

To	 list	 the	 VMs	 and	 get	 their	 ip	 addresses.	 Use	 this	 command	 to	 list	 the
machines	and	get	their	IP	addresses.

8.3.1.4	Initialize	the	Swarm	Manager	Node	and	Add	Worker	Nodes

The	first	machine	acts	as	the	manager,	which	executes	management	commands
and	authenticates	workers	to	join	the	swarm,	and	the	second	is	a	worker.

To	instruct	 the	first	vm	to	become	the	master,	first	we	need	to	login	to	the	vm
that	was	named	 master.	To	login	you	can	use	 ssh,	execute	the	following	command
on	your	local	machine	to	login	to	the	master	vm.

Now	 since	we	 are	 inside	 the	 master	 vm	we	 can	 configure	 this	 vm	 as	 the	 docker
swarm	manager.	Execute	the	following	command	within	the	master	vm	in	initialize
swarm

If	you	get	an	error	stating	something	similar	to	“could	not	choose	an	IP	address
to	advertise	since	this	system	has	multiple	addresses	on	different	interfaces”,	use
the	 following	command	 instead.	To	 find	 the	 IP	address	 execute	 the	 command	
ifconfig	and	pick	the	ip	address	which	is	most	simmilar	to	192.x.x.x.

The	output	wil	look	like	this,	where	IP-myvm1	is	the	ip	address	of	the	first	vm

Now	that	we	have	the	docker	swarm	manager	up	we	can	add	worker	machines	to
the	swarm.	The	command	that	is	printed	in	the	output	shown	previously	can	be

local$	docker-machine	create	--driver	virtualbox	master

local$	docker-machine	create	--driver	virtualbox	worker-1

local$	docker-machine	ls

local$	docker-machine	ssh	master

master$	docker	swarm	init

master$	docker	swarm	init	--advertise-addr	192.x.x.x

master$	Swarm	initialized:	current	node	(p6hmohoeuggtwqj8xz91zbs5t)	is	now

a	manager.

To	add	a	worker	to	this	swarm,	run	the	following	command:

				worker-1$	docker	swarm	join	--token	SWMTKN-1-5c3anju1pwx94054r3vx0v7j4obyuggfu2cmesnx

				192.168.99.100:2377

To	add	a	manager	to	this	swarm,	run	'docker	swarm	join-token	manager'	and	follow	the	instructions.

used	to	join	workers	to	the	manager.	Please	note	that	you	need	to	use	the	output
command	that	is	generated	when	you	run	docker	swarm	init	since	the	token	values	will
be	different.

Now	we	need	to	use	a	separate	shell	to	login	to	the	worker	vm	that	we	created.
Open	up	a	new	shell	(or	terminal)	and	use	the	following	command	to	ssh	into	the
worker

Once	 you	 are	 in	 the	 worker	 execute	 the	 following	 command	 to	 join	 worker	 to	 the
swam	manager.

The	generic	version	of	the	command	would	be	as	follows,	you	need	to	fill	in	the
correct	values	to	values	marked	as	‘<>’	to	execute	the	command.

You	will	see	an	output	stating	that	this	machine	joined	the	docker	swarm.

If	 you	want	 to	 add	 another	 node	 as	 a	manager	 to	 the	 current	 swarm	 you	 can
execute	the	following	command	and	follow	the	instructions.	However	this	is	not
needed	for	this	exercise.

Run	docker-machine	ls	to	verify	that	worker	is	now	the	active	machine,	as	indicated	by	the
asterisk	next	to	it.

If	the	astrix	is	not	present	execute	the	following	command

The	output	will	look	similar	to

local$	docker-machine	ssh	worker-1

worker-1$	docker	swarm	join	--token

SWMTKN-1-5c3anju1pwx94054r3vx0v7j4obyuggfu2cmesnx	192.168.99.100:2377

worker-1$	docker	swarm	join	--token	<token>	<myvm	ip>:<port>

This	node	joined	a	swarm	as	a	worker.

newvm$	docker	swarm	join-token	manager'

local$	docker-machine	ls

local$	sudo	sh	-c	'eval	"$(docker-machine	env	worker-1)";	docker-machine	ls'

NAME							ACTIVE			DRIVER							STATE					URL																									SWARM			DOCKER								ERRORS

master			-								virtualbox			Running			tcp://192.168.99.100:2376											v18.06.1-ce

worker-1			*								virtualbox			Running			tcp://192.168.99.102:2376											v18.06.1-ce

8.3.1.5	Deploy	the	application	on	the	swarm	manager

Now	we	 can	 try	 to	 deploy	 a	 test	 application.	First	we	need	 to	 create	 a	 docker
configuration	file	which	we	will	name	 docker-compse.yml.	Since	we	are	 in	 the	vm	we
need	to	create	the	file	using	the	terminal.	follow	the	steps	given	next	the	create
and	save	the	file.	First	log	into	the	master

Then,

This	command	will	open	an	editor.	Press	 the	 Insert	button	 to	enable	editing	and
then	copy	paste	the	following	into	the	document.
version:	"3"

services:

		web:

				#	replace	username/repo:tag	with	your	name	and	image	details

				image:	username/repo:tag

				deploy:

						replicas:	5

						resources:

								limits:

										cpus:	"0.1"

										memory:	50M

						restart_policy:

								condition:	on-failure

				ports:

						-	"4000:80"

				networks:

						-	webnet

networks:

		webnet:

Then	pres	the	Ecs	button	and	enter	:wq	to	save	and	close	the	editor.

Once	we	 have	 the	 file	we	 can	 deploy	 the	 test	 application	 using	 the	 following
command.	which	will	be	executed	in	the	master

To	verify	 the	services	and	associated	containers	have	been	distributed	between
both	master	and	worker,	execute	the	following	command.

The	output	will	look	similar	to

```bash	 ID	 NAME	 IMAGE	 NODE	 DESIRED	 STATE	 CURRENT	 STATE
ERROR	PORTS	wpqtkv69qbee	getstartedlab_web.1	username/repo:tag	worker-

local$	docker-machine	ssh	worker-1

master$	vi	docker-compose.yml

master$	docker	stack	deploy	-c	docker-compose.yml	getstartedlab

master$	docker	stack	ps	getstartedlab



1	 Running	 Preparing	 4	 seconds	 ago	 whkiecyenuv0	 getstartedlab_web.2
username/repo:tag	 master	 Running	 Preparing	 4	 seconds	 ago	 13obecvxohh1
getstartedlab_web.3	 username/repo:tag	worker-1	Running	 Preparing	 5	 seconds
ago	 76srj0nflagi	 getstartedlab_web.4	 username/repo:tag	 worker-1	 Running
Preparing	5	seconds	ago	ymqoonad5c1f	getstartedlab_web.5	username/repo:tag
master	Running	Preparing	5	seconds	ago

8.3.2	Docker	and	Docker	Swarm	on	FutureSystems	☁�

This	section	is	for	IU	students	only	that	take	classes	with	us.

This	 section	 introduces	 how	 to	 run	 Docker	 container	 on	 FutureSystems.
Currently	we	have	deployed	Docker	swarm	on	Echo.

8.3.2.1	Getting	Access

You	will	need	an	account	on	FutureSystems	and	be	enrolled	in	an	active	project.
To	verify,	try	to	see	if	you	can	log	into	victor.futuresystems.org.	You	need	to	be
a	member	of	a	valid	FutureSystems	project,	and	had	submitted	an	ssh	public	key
via	the	FutureSystems	portal.

For	Fall	2018	classes	at	IU	you	need	to	be	in	the	following	project:

https://portal.futuresystems.org/project/553

If	 your	 access	 to	 the	 victor	 host	 has	 been	 verified,	 try	 to	 login	 to	 the	 docker
swarm	head	node.	To	conveniently	do	this	let	us	define	some	Linux	environment
variables	to	simplify	the	access	and	the	material	presented	here.	You	can	place
them	even	in	your	.bashrc	or	.bash_profile	so	the	information	gets	populated	whenever
you	start	a	new	terminal.If	you	directly	edit	 the	files	make	sure	 to	execute	 the	
source	command	to	refresh	the	environment	variables	for	the	current	session	using	
source	.bashrc	or	source	.bash_profile.	Or	you	can	close	the	current	shell	and	reopen	a	new
one.

Now	you	can	use	the	two	variables	that	were	set	to	login	to	the	Echo	serer,	using
the	following	command

local$	export	ECHO=149.165.150.76

local$	export	FS_USER=<put	your	futersystem	account	name	here>

https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-fs.md
https://portal.futuresystems.org/project/553


Note:	 If	 you	 have	 access	 to	 india	 but	 not	 the	 docker	 swarm	 system,	 your
project	may	not	have	been	authorized	to	access	 the	docker	swarm	cluster.
Send	a	ticket	to	FutureSystems	ticket	system	to	request	this.

Once	logged	in	to	the	docker	swarm	head	node,	try	to	run:

to	verify	docker	run	works.

8.3.2.2	Creating	a	service	and	deploy	to	the	swarm	cluster

While	docker	run	can	start	a	container	and	you	may	even	attach	 to	 its	console,	 the
recommended	way	to	use	a	docker	swarm	cluster	is	to	create	a	service	and	have
it	 run	 on	 the	 swarm	 cluster.	 The	 service	 will	 be	 scheduled	 to	 one	 or	 many
number	of	the	nodes	of	the	swarm	cluster,	based	on	the	configuration.	It	is	also
easy	 to	 scale	 up	 the	 service	 when	 more	 swarm	 nodes	 are	 available.	 Docker
swarm	really	makes	 it	easier	 for	service/application	developers	 to	 focus	on	 the
functionality	 development	 but	 not	worrying	 about	 how	 and	where	 to	 bind	 the
service	to	some	resources/server.	The	deployment,	access,	and	scaling	up/down
when	 necessary,	 are	 all	 managed	 transparently.	 Thus	 achieving	 the	 new
paradigm	of	serverless	computing.

As	 an	 example,	 the	 following	 command	 creates	 a	 service	 and	 deploy	 it	 to	 the
swarm	 cluster,	 if	 the	 port	 is	 in	 use	 the	 port	 9001	 used	 in	 the	 command	 can	 be
changed	to	an	available	port.

The	NOTEBOOK_PASS_HASH	can	be	generated	in	python:

So	pass	through	the	string	starting	with	‘sha1:......’.

The	command	pulls	a	published	image	from	docker	cloud,	starts	a	container	and
runs	a	script	to	start	the	service	inside	the	container	with	necessary	parameters.

local$	ssh	$FS_USER@$ECHO

echo$	docker	run	hello-world

echo$	docker	service	create	--name	notebook_test	-p	9001:8888	\

				jupyter/datascience-notebook	start-notebook.sh

				--NotebookApp.password=NOTEBOOK_PASS_HASH

>>>	import	IPython

>>>	IPython.lib.passwd("YOUR_SELECTED_PASSWROD")

'sha1:52679cadb4c9:6762e266af44f86f3d170ca1......'



The	option	“-p	9001:8888”	maps	the	service	port	inside	the	container	(8888)	to
an	external	port	of	the	cluster	node	(9001)	so	the	service	could	be	accessed	from
the	Internet.	In	this	example,	you	can	then	visit	the	URL:

to	access	 the	Jupyter	notebook.	Using	 the	 specified	password	when	you	create
the	service	to	login.

Please	 note	 the	 service	 will	 be	 dynamically	 deployed	 to	 a	 container	 instance,
which	 would	 be	 allocated	 to	 a	 swarm	 node	 based	 on	 the	 allocation	 policy.
Docker	makes	this	process	transparent	to	the	user	and	even	created	mesh	routing
so	you	can	access	the	service	using	the	IP	address	of	the	management	head	node
of	 the	 swarm	 cluster,	 no	 matter	 which	 actual	 physical	 node	 the	 service	 was
deployed	to.

This	also	 implies	 that	 the	external	port	number	used	has	 to	be	 free	at	 the	 time
when	the	service	was	created.

Some	useful	related	commands:

lists	the	currently	running	services.

lists	the	detailed	info	of	the	container	where	the	service	is	running.

lists	all	the	running	containers	of	a	node.

lists	all	the	nodes	in	the	swarm	cluster.

To	stop	the	service	and	the	container:

8.3.2.3	Create	your	own	service

local$	open	http://$ECHO:9001

echo$	docker	service	ls

echo$	docker	service	ps	notebook_test

echo$	docker	node	ps	NODE

echo$	docker	node	ls

echo$	docker	service	rm	noteboot_test



You	can	create	your	own	service	and	run	it.	To	do	so,	start	from	a	base	image,
e.g.,	a	ubuntu	image	from	the	docker	cloud.	Then	you	could:

Run	 a	 container	 from	 the	 image	 and	 attach	 to	 its	 console	 to	 develop	 the
service,	and	create	a	new	image	from	the	changed	instance	using	command
‘docker	commit’.

Create	 a	 dockerfile,	 which	 has	 the	 step	 by	 step	 building	 process	 of	 the
service,	and	then	build	an	image	from	it.

In	 reality,	 the	 first	 approach	 is	 probably	 useful	 when	 you	 are	 in	 the	 phase	 of
develop	 and	 debug	 your	 application/service.	 Once	 you	 have	 the	 step	 by	 step
instructions	developed	the	latter	approach	is	the	recommended	way.

Publish	the	image	to	the	docker	cloud	by	following	this	documentation:

https://docs.docker.com/docker-cloud/builds/push-images/

Please	 make	 sure	 no	 sensitive	 information	 is	 included	 in	 the	 image	 to	 be
published.	 Alternatively	 you	 could	 publish	 the	 image	 internally	 to	 the	 swarm
cluster.

8.3.2.4	Publish	an	image	privately	within	the	swarm	cluster

Once	the	image	is	published	and	available	to	the	swarm	cluster,	you	could	start	a
new	service	from	the	image	similar	to	the	Jupyter	Notebook	example.

8.3.2.5	Exercises

E.Docker.Futuresystems.1:

Obtain	an	account	on	future	systems.

E.Docker.Futuresystems.2:

Create	a	REST	service	with	swagger	codegen	and	run	it	on	the	echo
cloud	(see	example	in	this	section	)

https://docs.docker.com/docker-cloud/builds/push-images/


8.3.3	Hadoop	with	Docker	☁�

In	 this	 section	 we	 will	 explore	 the	 Map/Reduce	 framework	 using	 Hadoop
provided	through	a	Docker	container.

We	will	showcase	the	functionality	on	a	small	example	that	calculates	minimum,
maximum,	average	and	standard	deviation	values	using	several	input	files	which
contain	float	numbers.

This	 section	 is	 based	 on	 the	 hadoop	 release	 3.1.1	 which	 includes	 significant
enhancements	over	the	previous	version	of	Hadoop	2.x.	Changes	include	the	use
of	the	following	software:

CentOS	7
systemctl
Java	SE	Development	Kit	8

A	Dockerfile	to	create	the	hadoop	deployment	is	available	at

*https://github.com/cloudmesh-
community/book/blob/master/examples/docker/hadoop/3.1.1/Dockerfile

8.3.3.1	Building	Hadoop	using	Docker

You	can	build	hadoop	from	the	Dockerfile	as	follows:

The	complete	docker	image	for	Hadoop	consumes	1.5GB.

To	use	the	image	interactively	you	can	start	the	container	as	follows:

It	may	take	a	few	minutes	at	first	to	download	image.

$	mkdir	cloudmesh-community

$	cd	cloudmesh-community

$	git	clone	https://github.com/cloudmesh-community/book.git

$	cd	book/examples/docker/hadoop/3.1.1

$	docker	build	-t	cloudmesh/hadoop:3.1.1	.

$	docker	images

REPOSITORY							TAG			IMAGE	ID					CREATED				SIZE

cloudmesh/hadoop	3.1.1	ba2c51f94348	1	hour	ago	1.52GB

$	docker	run	-it	cloudmesh/hadoop:3.1.1	/etc/bootstrap.sh	-bash

https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-hadoop.md
https://github.com/cloudmesh-community/book/blob/master/examples/docker/hadoop/3.1.1/Dockerfile


8.3.3.2	Hadoop	Configuration	Files

The	configuration	files	are	included	in	the	conf	folder

8.3.3.3	Virtual	Memory	Limit

IN	case	you	need	more	memory,	you	can	increase	it	by	changing	the	parameters
in	the	file	mapred-site.xml,	for	example:

mapreduce.map.memory.mba	to	4096
mapreduce.reduce.memory.mb	to	8192

8.3.3.4	hdfs	Safemode	leave	command

A	Safemode	for	HDFS	is	a	read-only	mode	for	the	HDFS	cluster,	where	it	does
not	allow	any	modifications	of	files	and	blocks.	Namenode	disables	safe	mode
automatically	 after	 starting	up	normally.	 If	 required,	HDFS	could	be	 forced	 to
leave	the	safe	mode	explicitly	by	this	command:

8.3.3.5	Examples

We	 included	 a	 statistics	 and	 a	 PageRank	 examples	 into	 the	 container.	 The
examples	are	also	available	in	github	at

https://github.com/cloudmesh-
community/book/tree/master/examples/docker/hadoop/3.1.1/examples

We	explain	the	examples	next

8.3.3.5.1	Statistical	Example	with	Hadoop

After	 we	 launch	 the	 container	 and	 use	 the	 interactive	 shell,	 we	 can	 run	 the
statistics	Hadoop	application	which	calculates	the	minimum,	maximim,	average,
and	 standard	 derivation	 from	 values	 stored	 in	 a	 number	 of	 input	 files.	 Figure
Figure	74	shows	the	computing	phases	in	a	MapReduce	job.

$	hdfs	dfsadmin	-safemode	leave

https://github.com/cloudmesh-community/book/tree/master/examples/docker/hadoop/3.1.1/examples


To	 achieve	 this,	 this	 Hadoop	 program	 reads	 multiple	 files	 from	 HDFS	 and
provides	 calculated	 values.	We	walk	 through	 every	 step	 from	 compiling	 Java
source	code	to	reading	a	output	file	from	HDFS.	The	idea	of	this	exercise	is	to
get	 you	 started	with	Hadoop	 and	 the	MapReduce	 concept.	 You	may	 seen	 the
WordCount	 from	Hadoop	 official	 website	 or	 documentation	 and	 this	 example
has	a	same	functions	(Map/Reduce)	except	that	you	will	be	computing	the	basic
statistics	such	as	min,	max,	average,	and	standard	deviation	of	a	given	data	set.

The	input	to	the	program	will	be	a	text	file(s)	carrying	exactly	one	floating	point
number	 per	 line.	 The	 result	 file	 includes	 min,	 max,	 average,	 and	 standard
deviation.

Figure	74:	MapReduce	example	in	Docker

8.3.3.5.1.1	Base	Location

The	example	is	available	within	the	container	at:

8.3.3.5.1.2	Input	Files

A	test	input	files	are	available	under	/cloudmesh/examples/statistics/input_data	directory	inside
of	 the	 container.	The	 statistics	 values	 for	 this	 input	 are	Min:	 0.20	Max:	 19.99
Avg:	9.51	StdDev:	5.55	for	all	input	files.

10	 files	 contain	 55000	 lines	 to	 process	 and	 each	 line	 is	 a	 random	 float	 point
value	ranging	from	0.2	to	20.0.

8.3.3.5.1.3	Compilation

The	 source	 code	 file	 name	 is	 MinMaxAvgStd.java	 which	 is	 available	 at	

container$	cd	/cloudmesh/examples/statistics



/cloudmesh/examples/statistics/src.

There	are	three	functions	in	the	code	Map,	Reduce	and	Main	where	Map	reads
each	 line	of	 a	 file	 and	updates	values	 to	 calculate	minimum,	maximum	values
and	Reduce	collects	mappers	to	produce	average	and	standard	deviation	values
at	last.

These	commands	simply	prepare	compiling	the	example	code	and	the	compiled
class	files	are	generated	at	the	dest	location.

8.3.3.5.1.4	Archiving	Class	Files

Jar	 command	 tool	 helps	 archiving	 classes	 in	 a	 single	 file	 which	 will	 be	 used
when	Hadoop	 runs	 this	 example.	 This	 is	 useful	 because	 a	 jar	 file	 contains	 all
necessary	files	to	run	a	program.

8.3.3.5.1.5	HDFS	for	Input/Output

The	 input	 files	need	 to	be	uploaded	 to	HDFS	as	Hadoop	 runs	 this	example	by
reading	input	files	from	HDFS.

If	uploading	is	completed,	you	may	see	file	listings	like:

8.3.3.5.1.6	Run	Program	with	a	Single	Input	File

$	export	HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop	classpath`

$	mkdir	/cloudmesh/examples/statistics/dest

$	javac	-classpath	$HADOOP_CLASSPATH	-d	/cloudmesh/examples/statistics/dest	/cloudmesh/examples/statistics/src/MinMaxAvgStd.java

$	cd	/cloudmesh/examples/statistics

$	jar	-cvf	stats.jar	-C	./dest/	.

$	export	PATH=$PATH:/HADOOP_HOME/bin

$	hadoop	fs	-mkdir	stats_input

$	hadoop	fs	-put	input_data/*	stats_input

$	hadoop	fs	-ls	stats_input/

Found	10	items

-rw-r--r--	1	root	supergroup		13942	2018-02-28	23:16	stats_input/data_1000.txt

-rw-r--r--	1	root	supergroup	139225	2018-02-28	23:16	stats_input/data_10000.txt

-rw-r--r--	1	root	supergroup		27868	2018-02-28	23:16	stats_input/data_2000.txt

-rw-r--r--	1	root	supergroup		41793	2018-02-28	23:16	stats_input/data_3000.txt

-rw-r--r--	1	root	supergroup		55699	2018-02-28	23:16	stats_input/data_4000.txt

-rw-r--r--	1	root	supergroup		69663	2018-02-28	23:16	stats_input/data_5000.txt

-rw-r--r--	1	root	supergroup		83614	2018-02-28	23:16	stats_input/data_6000.txt

-rw-r--r--	1	root	supergroup		97490	2018-02-28	23:16	stats_input/data_7000.txt

-rw-r--r--	1	root	supergroup	111451	2018-02-28	23:16	stats_input/data_8000.txt

-rw-r--r--	1	root	supergroup	125337	2018-02-28	23:16	stats_input/data_9000.txt



We	are	 ready	 to	 run	 the	 program	 to	 calculate	 values	 from	 text	 files.	 First,	we
simply	 run	 the	 program	with	 a	 single	 input	 file	 to	 see	 how	 it	works.	 data_1000.txt
contains	1000	lines	of	floats,	we	use	this	file	here.

The	command	runs	with	input	parameters	which	indicate	a	jar	file	(the	program,
stats.jar),	 exercise.MinMaxAvgStd	 (package	 name.class	 name),	 input	 file	 path
(stats_input/data_1000.txt)	and	output	file	path	(stats_output_1000).

The	sample	results	that	the	program	produces	look	like	this:

$	hadoop	jar	stats.jar	exercise.MinMaxAvgStd	stats_input/data_1000.txt	stats_output_1000

18/02/28	23:48:50	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	/0.0.0.0:8032

18/02/28	23:48:50	INFO	input.FileInputFormat:	Total	input	paths	to	process:	1

18/02/28	23:48:50	INFO	mapreduce.JobSubmitter:	number	of	splits:1

18/02/28	23:48:50	INFO	mapreduce.JobSubmitter:	Submitting	tokens	for	job:	job_1519877569596_0002

18/02/28	23:48:51	INFO	impl.YarnClientImpl:	Submitted	application	application_1519877569596_0002

18/02/28	23:48:51	INFO	mapreduce.Job:	The	url	to	track	the	job:	http://f5e82d68ba4a:8088/proxy/application_1519877569596_0002/

18/02/28	23:48:51	INFO	mapreduce.Job:	Running	job:	job_1519877569596_0002

18/02/28	23:48:56	INFO	mapreduce.Job:	Job	job_1519877569596_0002	running	in	uber	mode:	false

18/02/28	23:48:56	INFO	mapreduce.Job:	map	0%	reduce	0%

18/02/28	23:49:00	INFO	mapreduce.Job:	map	100%	reduce	0%

18/02/28	23:49:05	INFO	mapreduce.Job:	map	100%	reduce	100%

18/02/28	23:49:05	INFO	mapreduce.Job:	Job	job_1519877569596_0002	completed	successfully

18/02/28	23:49:05	INFO	mapreduce.Job:	Counters:	49

		File	System	Counters

				FILE:	Number	of	bytes	read=81789

				FILE:	Number	of	bytes	written=394101

				FILE:	Number	of	read	operations=0

				FILE:	Number	of	large	read	operations=0

				FILE:	Number	of	write	operations=0

				HDFS:	Number	of	bytes	read=14067

				HDFS:	Number	of	bytes	written=86

				HDFS:	Number	of	read	operations=6

				HDFS:	Number	of	large	read	operations=0

				HDFS:	Number	of	write	operations=2

		Job	Counters

				Launched	map	tasks=1

				Launched	reduce	tasks=1

				Data-local	map	tasks=1

				Total	time	spent	by	all	maps	in	occupied	slots	(ms)=2107

				Total	time	spent	by	all	reduces	in	occupied	slots	(ms)=2316

				Total	time	spent	by	all	map	tasks	(ms)=2107

				Total	time	spent	by	all	reduce	tasks	(ms)=2316

				Total	vcore-seconds	taken	by	all	map	tasks=2107

				Total	vcore-seconds	taken	by	all	reduce	tasks=2316

				Total	megabyte-seconds	taken	by	all	map	tasks=2157568

				Total	megabyte-seconds	taken	by	all	reduce	tasks=2371584

		Map-Reduce	Framework

				Map	input	records=1000

				Map	output	records=3000

				Map	output	bytes=75783

				Map	output	materialized	bytes=81789

				Input	split	bytes=125

				Combine	input	records=0

				Combine	output	records=0

				Reduce	input	groups=3

				Reduce	shuffle	bytes=81789

				Reduce	input	records=3000

				Reduce	output	records=4

				Spilled	Records=6000

				Shuffled	Maps	=1

				Failed	Shuffles=0

				Merged	Map	outputs=1

				GC	time	elapsed	(ms)=31

				CPU	time	spent	(ms)=1440

				Physical	memory	(bytes)	snapshot=434913280

				Virtual	memory	(bytes)	snapshot=1497260032

				Total	committed	heap	usage	(bytes)=402653184

		Shuffle	Errors



The	second	line	of	the	following	logs	indicates	that	the	number	of	input	files	is
1.

8.3.3.5.1.7	Result	for	Single	Input	File

We	reads	results	from	HDFS	by:

The	sample	output	looks	like:

8.3.3.5.1.8	Run	Program	with	Multiple	Input	Files

The	first	run	was	done	pretty	quickly	(1440	milliseconds	took	according	to	the
previous	sample	result)	because	the	input	file	size	was	small	(1,000	lines)	and	it
was	 a	 single	 file.	 We	 provides	 more	 input	 files	 with	 a	 larger	 size	 (2,000	 to
10,000	 lines).	 Input	 files	 are	 already	 uploaded	 to	 HDFS.	 We	 simply	 run	 the
program	again	with	a	slight	change	in	the	parameters.

The	command	is	almost	same	except	that	an	input	path	is	a	directory	and	a	new
output	 directory.	 Note	 that	 every	 time	 that	 you	 run	 this	 program,	 the	 output
directory	will	be	created	which	means	that	you	have	to	provide	a	new	directory
name	unless	you	delete	it.

The	 sample	 output	messages	 look	 like	 the	 following	which	 is	 almost	 identical
compared	to	the	previous	run	except	 that	 this	 time	the	number	of	 input	files	 to
process	is	10,	see	the	line	two	next:

				BAD_ID=0

				CONNECTION=0

				IO_ERROR=0

				WRONG_LENGTH=0

				WRONG_MAP=0

				WRONG_REDUCE=0

		File	Input	Format	Counters

				Bytes	Read=13942

		File	Output	Format	Counters

				Bytes	Written=86

$	hadoop	fs	-cat	stats_output_1000/part-r-00000

Max:	19.9678704297

Min:	0.218880718983

Avg:	10.225467263249385

Std:	5.679809322880863

$	hadoop	jar	stats.jar	exercise.MinMaxAvgStd	stats_input/	stats_output_all

18/02/28	23:17:18	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	/0.0.0.0:8032

18/02/28	23:17:18	INFO	input.FileInputFormat:	Total	input	paths	to	process:	10



8.3.3.5.1.9	Result	for	Multiple	Files

The	expected	result	looks	like:

18/02/28	23:17:18	INFO	mapreduce.JobSubmitter:	number	of	splits:10

18/02/28	23:17:18	INFO	mapreduce.JobSubmitter:	Submitting	tokens	for	job:	job_1519877569596_0001

18/02/28	23:17:19	INFO	impl.YarnClientImpl:	Submitted	application	application_1519877569596_0001

18/02/28	23:17:19	INFO	mapreduce.Job:	The	url	to	track	the	job:	http://f5e82d68ba4a:8088/proxy/application_1519877569596_0001/

18/02/28	23:17:19	INFO	mapreduce.Job:	Running	job:	job_1519877569596_0001

18/02/28	23:17:24	INFO	mapreduce.Job:	Job	job_1519877569596_0001	running	in	uber	mode:	false

18/02/28	23:17:24	INFO	mapreduce.Job:	map	0%	reduce	0%

18/02/28	23:17:32	INFO	mapreduce.Job:	map	40%	reduce	0%

18/02/28	23:17:33	INFO	mapreduce.Job:	map	60%	reduce	0%

18/02/28	23:17:36	INFO	mapreduce.Job:	map	70%	reduce	0%

18/02/28	23:17:37	INFO	mapreduce.Job:	map	100%	reduce	0%

18/02/28	23:17:39	INFO	mapreduce.Job:	map	100%	reduce	100%

18/02/28	23:17:39	INFO	mapreduce.Job:	Job	job_1519877569596_0001	completed	successfully

18/02/28	23:17:39	INFO	mapreduce.Job:	Counters:	49

		File	System	Counters

				FILE:	Number	of	bytes	read=4496318

				FILE:	Number	of	bytes	written=10260627

				FILE:	Number	of	read	operations=0

				FILE:	Number	of	large	read	operations=0

				FILE:	Number	of	write	operations=0

				HDFS:	Number	of	bytes	read=767333

				HDFS:	Number	of	bytes	written=84

				HDFS:	Number	of	read	operations=33

				HDFS:	Number	of	large	read	operations=0

				HDFS:	Number	of	write	operations=2

		Job	Counters

				Launched	map	tasks=10

				Launched	reduce	tasks=1

				Data-local	map	tasks=10

				Total	time	spent	by	all	maps	in	occupied	slots	(ms)=50866

				Total	time	spent	by	all	reduces	in	occupied	slots	(ms)=4490

				Total	time	spent	by	all	map	tasks	(ms)=50866

				Total	time	spent	by	all	reduce	tasks	(ms)=4490

				Total	vcore-seconds	taken	by	all	map	tasks=50866

				Total	vcore-seconds	taken	by	all	reduce	tasks=4490

				Total	megabyte-seconds	taken	by	all	map	tasks=52086784

				Total	megabyte-seconds	taken	by	all	reduce	tasks=4597760

		Map-Reduce	Framework

				Map	input	records=55000

				Map	output	records=165000

				Map	output	bytes=4166312

				Map	output	materialized	bytes=4496372

				Input	split	bytes=1251

				Combine	input	records=0

				Combine	output	records=0

				Reduce	input	groups=3

				Reduce	shuffle	bytes=4496372

				Reduce	input	records=165000

				Reduce	output	records=4

				Spilled	Records=330000

				Shuffled	Maps	=10

				Failed	Shuffles=0

				Merged	Map	outputs=10

				GC	time	elapsed	(ms)=555

				CPU	time	spent	(ms)=16040

				Physical	memory	(bytes)	snapshot=2837708800

				Virtual	memory	(bytes)	snapshot=8200089600

				Total	committed	heap	usage	(bytes)=2213019648

		Shuffle	Errors

				BAD_ID=0

				CONNECTION=0

				IO_ERROR=0

				WRONG_LENGTH=0

				WRONG_MAP=0

				WRONG_REDUCE=0

		File	Input	Format	Counters

				Bytes	Read=766082

		File	Output	Format	Counters

				Bytes	Written=84

$	hadoop	fs	-cat	stats_output_all/part-r-00000



8.3.3.5.2	Conclusion

The	 example	 program	 of	 calculating	 some	 values	 by	 reading	 multiple	 files
shows	 how	Map/Reduce	 is	written	 by	 a	 Java	 programming	 language	 and	 how
Hadoop	 runs	 its	 program	 using	 HDFS.	We	 also	 observed	 the	 one	 of	 benefits
using	Docker	container	which	is	that	the	hassle	of	configuration	and	installation
of	Hadoop	is	not	necessary	anymore.

8.3.3.6	Refernces

The	 details	 of	 the	 new	 version	 is	 available	 from	 the	 official	 site	 at
http://hadoop.apache.org/docs/r3.1.1/index.html

8.3.4	Docker	Pagerank	☁�

PageRank	is	a	popular	example	algorithm	used	to	display	the	ability	of	big	data
applications	 to	 run	 parallel	 tasks.	 This	 example	 will	 show	 how	 the	 docker
hadoop	image	can	be	used	to	execute	the	Pagerank	example	which	is	available	in
/cloudmesh/examples/pagerank

8.3.4.1	Use	the	automated	script

We	make	 the	 steps	 of	 compiling	 java	 source,	 archiving	 class	 files,	 load	 input
files	and	run	the	program	into	one	single	script.	To	execute	it	with	the	input	file:
PageRankDataGenerator/pagerank5000g50.input.0,	 using	 5000	 urls	 and	 1
iteration:

Result	will	look	like

The	head	of	the	result	will	look	like

Max:	19.999191254

Min:	0.200268613863

Avg:	9.514884854468903

Std:	5.553921579413547

$	cd	/cloudmesh/examples/pagerank

$	./compileAndExecHadoopPageRank.sh	PageRankDataGenerator/pagerank5000g50.input.0	5000	1

output.pagerank/part-r-00000

head	output.pagerank/part-r-00000

http://hadoop.apache.org/docs/r3.1.1/index.html
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-pagerank-example-instruction.md


8.3.4.2	Compile	and	run	by	hand

If	 one	wants	 to	 generate	 the	 java	 class	 files	 and	 archive	 them	 as	 the	 previous
exercise,	 one	 could	 use	 the	 following	 code	 (which	 is	 actually	 inside
compileAndExecHadoopPageRank.sh)

Load	input	files	to	HDFS

Run	program	with	the	[PageRank	Inputs	File	Directory][PageRank	Output
Directory][Number	of	Urls][Number	Of	Iterations]

Result

8.3.5	Apache	Spark	with	Docker	☁�

8.3.5.1	Pull	Image	from	Docker	Repository

We	 use	 a	 Docker	 image	 from	 Docker	 Hub:
(https://hub.docker.com/r/sequenceiq/spark/)	 This	 repository	 contains	 a	Docker
file	to	build	a	Docker	image	with	Apache	Spark	and	Hadoop	Yarn.

0			2.9999999999999997E-5

1			2.9999999999999997E-5

2			2.9999999999999997E-5

3			2.9999999999999997E-5

4			2.9999999999999997E-5

5			2.9999999999999997E-5

6			2.9999999999999997E-5

7			2.9999999999999997E-5

8			2.9999999999999997E-5

9			2.9999999999999997E-5

export	HADOOP_CLASSPATH=`$HADOOP_PREFIX/bin/hadoop	classpath`

mkdir	/cloudmesh/examples/pagerank/dist

$	find	/cloudmesh/examples/pagerank/src/indiana/cgl/hadoop/pagerank/	\

			-name	"*.java"|xargs		javac	-classpath	$HADOOP_CLASSPATH	\

			-d	/cloudmesh/examples/pagerank/dist

$	cd	/cloudmesh/examples/pagerank/dist

$	jar	-cvf	HadoopPageRankMooc.jar	-C	.	.

$	export	PATH=$PATH:/$HADOOP_PREFIX/bin

$	cd	/cloudmesh/examples/pagerank/

$	hadoop	fs	-mkdir	input.pagerank

$	hadoop	fs	-put	PageRankDataGenerator/pagerank5000g50.input.0	input.pagerank

$	hadoop	jar	dist/HadoopPageRankMooc.jar	indiana.cgl.hadoop.pagerank.HadoopPageRank	input.pagerank	output.pagerank	5000	1

$	hadoop	fs	-cat	output.pagerank/part-r-00000

$	docker	pull	sequenceiq/spark:1.6.0

https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-spark.md


8.3.5.2	Running	the	Image

In	this	step,	we	will	launch	a	Spark	container.

8.3.5.2.1	Running	interactively

8.3.5.2.2	Running	in	the	background

8.3.5.3	Run	Spark

After	a	container	is	launched,	we	can	run	Spark	in	the	following	two	modes:	(1)
yarn-client	and	(2)	yarn-cluster.	The	differences	between	the	two	modes	can	be
found	here:	https://spark.apache.org/docs/latest/running-on-yarn.html

8.3.5.3.1	Run	Spark	in	Yarn-Client	Mode

8.3.5.3.2	Run	Spark	in	Yarn-Cluster	Mode

8.3.5.4	Observe	Task	Execution	from	Running	Logs	of	SparkPi

Let	us	observe	Spark	task	execution	by	adjusting	the	parameter	of	SparkPi	and
the	Pi	result	from	the	following	two	commands.

8.3.5.5	Write	a	Word-Count	Application	with	Spark	RDD

Let	 us	 write	 our	 own	 word-count	 with	 Spark	 RDD.	 After	 the	 shell	 has	 been

$	docker	run	-it	-p	8088:8088	-p	8042:8042	-h	sandbox	sequenceiq/spark:1.6.0	bash

$	docker	run	-d	-h	sandbox	sequenceiq/spark:1.6.0	-d

$	spark-shell	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

$	spark-submit	--class	org.apache.spark.examples.SparkPi	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1	

$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

				--master	yarn-client	--driver-memory	1g	\

				--executor-memory	1g	\

				--executor-cores	1	$SPARK_HOME/lib/spark-examples-1.6.0-hadoop2.6.0.jar	10

$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

				--master	yarn-client	--driver-memory	1g	\

				--executor-memory	1g	\

				--executor-cores	1	$SPARK_HOME/lib/spark-examples-1.6.0-hadoop2.6.0.jar	10000



started,	copy	and	paste	the	following	code	in	console	line	by	line.

8.3.5.5.1	Launch	Spark	Interactive	Shell

8.3.5.5.2	Program	in	Scala

8.3.5.5.3	Launch	PySpark	Interactive	Shell

8.3.5.5.4	Program	in	Python

8.3.5.6	Docker	Spark	Examples

8.3.5.6.1	K-Means	Example

First	we	need	to	pull	the	image	from	the	Docker	Hub	:

It	will	take	sometime	to	download	the	image.	Now	we	have	to	run	docker	spark
image	interactively.

This	will	take	you	to	the	interactive	mode.

Let	us	run	a	sample	KMeans	example.	This	is	already	built	with	Spark.

Here	we	specify	the	data	data	set	from	a	local	folder	inside	the	image	and	we	run
the	 sample	 class	KMeans	 in	 the	 sample	 package.	 The	 sample	 data	 set	 used	 is
inside	 the	 sample-data	 folder.	 Spark	 has	 it’s	 own	 format	 for	machine	 learning
datasets.	Here	the	kmeans_data.txt	file	contains	the	KMeans	dataset.

$	spark-shell	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

val	textFile	=	sc.textFile("file:///etc/hosts")

val	words	=	textFile.flatMap(line	=>	line.split("\\s+"))

val	counts	=	words.map(word	=>	(word,	1)).reduceByKey(_	+	_)

counts.values.sum()

$	pyspark	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

textFile	=	sc.textFile("file:///etc/hosts")

words	=	textFile.flatMap(lambda	line:line.split())

counts	=	words.map(lambda	word:(word,	1)).reduceByKey(lambda	x,y:	x+y)

counts.map(lambda	x:x[1]).sum()

$	docker	pull	sequenceiq/spark-native-yarn

$	docker	run	-i	-t	-h	sandbox	sequenceiq/spark-native-yarn	/etc/bootstrap.sh	-bash



If	you	run	this	successfully,	you	can	get	an	output	as	shown	here.

8.3.5.6.2	Join	Example

Run	 the	 following	command	 to	do	a	 sample	 join	operation	on	a	given	dataset.
Here	we	use	two	datasets,	namely	join1.txt	and	join2.txt.	Then	we	perform	the
join	operation	that	we	discussed	in	the	theory	section.

8.3.5.6.3	Word	Count

In	this	example	the	wordcount.txt	will	used	to	do	the	word	count	using	multiple
reducers.	 Number	 1	 at	 the	 end	 of	 the	 command	 determines	 the	 number	 of
reducers.	As	 spark	 can	 run	multiple	 reducers,	we	 can	 specify	 the	 number	 as	 a
parameter	to	the	programme.

8.3.5.7	Interactive	Examples

Here	we	need	a	new	image	to	work	on.	Let	us	run	the	following	command.	This
will	pull	the	necessary	repositories	from	docker	hub,	as	we	do	not	have	most	of
the	 dependencies	 related	 to	 it.	 This	 can	 take	 a	 few	 minutes	 to	 download
everything.

Here	you	will	get	the	following	output	in	the	terminal.

$	./bin/spark-submit	--class	sample.KMeans	\

				--master	execution-context:org.apache.spark.tez.TezJobExecutionContext

\

				--conf	update-classpath=true	\

				./lib/spark-native-yarn-samples-1.0.jar	/sample-data/kmeans_data.txt

Finished	iteration	(delta	=	0.0)

Final	centers:

DenseVector(0.15000000000000002,	0.15000000000000002,	0.15000000000000002)

DenseVector(9.2,	9.2,	9.2)

DenseVector(0.0,	0.0,	0.0)

DenseVector(9.05,	9.05,	9.05)

$	./bin/spark-submit	--class	sample.Join	--master	execution-context:org.apache.spark.tez.TezJobExecutionContext	--conf	update-classpath=true	./lib/spark-native-yarn-samples-1.0.jar	/sample-data/join1.txt	/sample-data/join2.txt

$	./bin/spark-submit	--class	sample.WordCount	--master	execution-context:org.apache.spark.tez.TezJobExecutionContext	--conf	update-classpath=true	./lib/spark-native-yarn-samples-1.0.jar	/sample-data/wordcount.txt	1

$	docker	run	-it-p	8888:8888	-v	$PWD:/cloudmesh/spark	--name	spark	jupyter/pyspark-notebook

docker	run	-it	-p	8888:8888	-v	$PWD:/cloudmesh/spark	--name	spark	jupyter/pyspark-notebook

Unable	to	find	image	'jupyter/pyspark-notebook:latest'	locally

latest:	Pulling	from	jupyter/pyspark-notebook

a48c500ed24e:	Pull	complete



Please	copy	the	url	shown	at	the	end	of	the	terminal	output	and	go	to	that	url	in
the	browser.

You	will	see	the	following	output	in	the	browser,	(Use	Google	Chrome)

Jupyter	Notebook	in	Browser

First	 navigate	 to	 the	work	 folder.	 Let	 us	 create	 a	 new	 python	 file	 here.	 Click
python3	in	the	new	menu.

1e1de00ff7e1:	Pull	complete

0330ca45a200:	Pull	complete

471db38bcfbf:	Pull	complete

0b4aba487617:	Pull	complete

d44ea0cd796c:	Pull	complete

5ac827d588be:	Pull	complete

d8d7747a335e:	Pull	complete

08790511e3e9:	Pull	complete

e3c68aea9a5f:	Pull	complete

484c6d5fc38a:	Pull	complete

0448c1360cb9:	Pull	complete

61d7e6dc705d:	Pull	complete

92f1091ed72b:	Pull	complete

8045d3663a7e:	Pull	complete

1bde7ba25439:	Pull	complete

5618f8ed38b4:	Pull	complete

f08523cb6144:	Pull	complete

99eee56fda2f:	Pull	complete

b37b1ce39785:	Pull	complete

aee4b9eac4ea:	Pull	complete

f810ef87439d:	Pull	complete

038786dce388:	Pull	complete

ded31312ea33:	Pull	complete

30221ffdd1a6:	Pull	complete

da1d368f8592:	Pull	complete

523809a30a21:	Pull	complete

47ab1b230dd2:	Pull	complete

442f9435e1a9:	Pull	complete

Digest:	sha256:f8b6309cd39481de1a169143189ed0879b12b56fe286d254d03fa34ccad90734

Status:	Downloaded	newer	image	for	jupyter/pyspark-notebook:latest

Container	must	be	run	with	group	"root"	to	update	passwd	file

Executing	the	command:	jupyter	notebook

[I	15:47:52.900	NotebookApp]	Writing	notebook	server	cookie	secret	to	/home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret

[I	15:47:53.167	NotebookApp]	JupyterLab	extension	loaded	from	/opt/conda/lib/python3.6/site-packages/jupyterlab

[I	15:47:53.167	NotebookApp]	JupyterLab	application	directory	is	/opt/conda/share/jupyter/lab

[I	15:47:53.176	NotebookApp]	Serving	notebooks	from	local	directory:	/home/jovyan

[I	15:47:53.177	NotebookApp]	The	Jupyter	Notebook	is	running	at:

[I	15:47:53.177	NotebookApp]	http://(3a3d9f7e2565	or	127.0.0.1):8888/?token=f22492fe7ab8206ac2223359e0603a0dff54d98096ab7930

[I	15:47:53.177	NotebookApp]	Use	Control-C	to	stop	this	server	and	shut	down	all	kernels	(twice	to	skip	confirmation).

[C	15:47:53.177	NotebookApp]

				Copy/paste	this	URL	into	your	browser	when	you	connect	for	the	first	time,

				to	login	with	a	token:

								http://(3a3d9f7e2565	or	127.0.0.1):8888/?token=f22492fe7ab8206ac2223359e0603a0dff54d98096ab7930



Create	a	new	python	file

Now	 add	 the	 following	 content	 in	 the	 new	 file.	 In	 Jupyter	 notebook,	 you	 can
enter	a	python	command	or	python	code	and	press

This	will	run	the	code	interactively.

Now	let’s	create	the	following	content.

Now	let	us	do	the	following.

In	the	following	stage	we	configure	spark	context	and	import	the	necessary	files.

Next	stage	we	use	sample	data	set	by	creating	them	in	form	of	an	array	and	we
train	the	kmeans	algorithm.

SHIFT	+	ENTER

import	os

os.getcwd()

import	pyspark

sc	=	pyspark.SparkContext('local[*]')

rdd	=	sc.parallelize(range(1000))

rdd.takeSample(False,	5)

os.makedirs("data")

from	pyspark.mllib.clustering	import	KMeans,	KMeansModel

from	numpy	import	array

from	math	import	sqrt

from	pyspark.mllib.linalg	import	Vectors

from	pyspark.mllib.linalg	import	SparseVector

sc.version

sparse_data	=	[

				SparseVector(3,	{1:1.0}),

				SparseVector(3,	{1:1.1}),

				SparseVector(3,	{2:1.0}),

				SparseVector(3,	{2:1.1})

]

model	=	KMeans.train(sc.parallelize(sparse_data),	2,	initializationMode='k-means||',

																				seed=50,	initializationSteps=5,	epsilon=1e-4)

model.predict(array([0.,1.,0.]))

model.predict(array([0.,0.,1.]))



In	the	final	stage	we	put	sample	values	and	check	the	predictions	on	the	cluster.
In	 addition	 to	 that	 feed	 the	 data	 using	 SparseVector	 format	 and	 we	 add	 the
kmeans	initialization	mode,	the	error	margin	and	the	palatalization.	We	put	the
step	 size	 as	 5	 for	 this	 example.	 In	 the	 previous	 one	 we	 did	 not	 specify	 any
parameters.

The	predict	term	predicts	the	cluster	id	which	it	belongs	to.

Then	in	the	following	way	you	can	check	whether	two	data	points	belong	to	one
cluster	or	not.

8.3.5.7.1	Stop	Docker	Container

8.3.5.7.2	Start	Docker	Container	Again

8.3.5.7.3	Remove	Docker	Container

8.4	KUBERNETES

8.4.1	Introduction	to	Kubernetes	☁�

	Learning	Objectives

model.predict(sparse_data[0])

model.predict(sparse_data[2])

data	=	array([0.0,	0.0,	1.0,	1.0,	9.0,	8.0,	8.0,	9.0]).reshape(4,	2)

model	=	KMeans.train(sc.parallelize(data),	2,	initializationMode='random',

																				seed=50,	initializationSteps=5,	epsilon=1e-4)

model.predict(array([0.0,	0.0]))	==	model.predict(array([1.0,	1.0]))

model.predict(array([8.0,	9.0]))

model.predict(array([8.0,	9.0]))	==	model.predict(array([9.0,	8.0]))

model.k

model.computeCost(sc.parallelize(data))

isinstance(model.clusterCenters,	list)

$	docker	stop	spark

$	docker	start	spark

$	docker	rm	spark

https://github.com/cloudmesh-community/book/blob/master/chapters/container/kubernetes-intro.md


What	is	Kubernetes?
What	are	containers?
Cluster	components	in	Kubernetes
Basic	Units	in	Kubernetes
Run	an	example	with	Minikube
Interactive	online	tutorial
Have	a	solid	understanding	of	Containers	and	Kubernetes
Understand	the	Cluster	components	of	Kubernetes
Understand	the	terminology	of	Kubernetes
Gain	practical	experience	with	kubernetes
With	minikube
With	an	interactive	online	tutorial

Kubernetes	is	an	open-source	platform	designed	to	automate	deploying,	scaling,
and	operating	application	containers.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

With	Kubernetes,	you	can:

Deploy	your	applications	quickly	and	predictably.
Scale	your	applications	on	the	fly.
Roll	out	new	features	seamlessly.
Limit	hardware	usage	to	required	resources	only.
Run	applications	in	public	and	private	clouds.

Kubernetes	is

Portable:	public,	private,	hybrid,	multi-cloud
Extensible:	modular,	pluggable,	hookable,	composable
Self-healing:	auto-placement,	auto-restart,	auto-replication,	auto-scaling

8.4.1.1	What	are	containers?

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/


Figure	75:	Kubernetes	Containers	[Image	Source]

Figure	75	shows	a	depiction	of	the	container	architecture.

8.4.1.2	Terminology

In	kubernetes	we	are	using	the	following	terminology

Pods:

A	 pod	 (as	 in	 a	 pod	 of	 whales	 or	 pea	 pod)	 is	 a	 group	 of	 one	 or	 more
containers	(such	as	Docker	containers),	with	shared	storage/network,	and	a
specification	for	how	to	run	the	containers.	A	pod’s	contents	are	always	co-
located	 and	 co-scheduled,	 and	 run	 in	 a	 shared	 context.	A	 pod	models	 an
application-specific	 logical	 host.	 It	 contains	 one	 or	 more	 application
containers	 which	 are	 relatively	 tightly	 coupled.	 In	 a	 pre-container	 world,
they	would	have	executed	on	the	same	physical	or	virtual	machine.

https://d33wubrfki0l68.cloudfront.net/e7b766e0175f30ae37f7e0e349b87cfe2034a1ae/3e391/images/docs/why_containers.svg


Services:

Service	is	an	abstraction	which	defines	a	logical	set	of	Pods	and	a	policy	by
which	to	access	them.	Sometimes	they	are	called	a	micro-service.	The	set	of
Pods	targeted	by	a	Service	is	(usually)	determined	by	a	Label	Selector.

Deployments:

A	 Deployment	 controller	 provides	 declarative	 updates	 for	 Pods	 and
ReplicaSets.	You	describe	a	desired	state	 in	a	Deployment	object,	and	the
Deployment	 controller	 changes	 the	 actual	 state	 to	 the	 desired	 state	 at	 a
controlled	rate.	You	can	define	Deployments	to	create	new	ReplicaSets,	or
to	 remove	 existing	 Deployments	 and	 adopt	 all	 their	 resources	 with	 new
Deployments.

8.4.1.3	Kubernetes	Architecture

The	architecture	of	kubernets	is	shown	in	Figure	76.



Figure	76:	Kubernetes	(Source:	Google)

8.4.1.4	Minikube

To	 try	 out	 kubernetes	 on	 your	 own	 computer	 you	 can	 download	 and	 install
minikube.	 It	 deploys	 and	 runs	 a	 single-node	 Kubernetes	 cluster	 inside	 a	 VM.
Hence	 it	 provide	 a	 reasonable	 environment	 not	 only	 to	 try	 it	 out,	 but	 also	 for
development	[cite].

In	this	section	we	will	first	discuss	how	to	install	minikube	and	then	showcase	an
example.

8.4.1.4.1	Install	minikube

8.4.1.4.1.0.1	OSX
$	curl	-Lo	minikube	https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-darwin-amd64	&&	chmod	+x	minikube	&&

https://kubernetes.io/docs/setup/minikube/


8.4.1.4.1.0.2	Windows	10

We	 assume	 that	 you	 have	 installed	Oracle	VirtualBox	 in	 your	machine	which
must	be	a	version	5.x.x.

Initially,	we	need	to	download	two	executables.

Download	Kubectl

Download	Minikube

After	downloading	these	two	executables	place	them	in	the	cloudmesh	directory
we	 earlier	 created.	 Rename	 the	 minikube-windows-amd64.exe	 to	 minikube.exe.	 Make	 sure
minikube.exe	and	kubectl.exe	lie	in	the	same	directory.

8.4.1.4.1.0.3	Linux

Installing	KVM2	is	important	for	Ubuntu	distributions

We	 are	 going	 to	 run	 minikube	 using	 KVM2	 libraries	 instead	 of	 virtualbox
libraries	for	windows	installation.

Then	install	the	drivers	for	KVM2,

8.4.1.4.2	Start	a	cluster	using	Minikube

8.4.1.4.2.0.1	OSX	Minikube	Start

8.4.1.4.2.0.2	Ubuntu	Minikube	Start

$	curl	-Lo	minikube	https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-linux-amd64	&&	chmod	+x	minikube	&&

$	sudo	apt	install	libvirt-bin	qemu-kvm

$	sudo	usermod	-a	-G	libvirtd	$(whoami)

$	newgrp	libvirtd

$	curl	-LO	https://storage.googleapis.com/minikube/releases/latest/docker-machine-driver-kvm2	&&	chmod	+x	docker-machine-driver-kvm2	

$	minikube	start

$	minikube	start	--vm-driver=kvm2

http://storage.googleapis.com/kubernetes-release/release/v1.4.0/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-windows-amd64.exe


8.4.1.4.2.0.3	Windows	10	Minikube	Start

In	this	case	you	must	run	Windows	PowerShell	as	administrator.	For	this	search
for	 the	 application	 in	 search	 and	 right	 click	 and	 click	Run	 as	 administrator.	 If
you	are	an	administrator	it	will	run	automatically	but	if	you	are	not	please	make
sure	you	provide	the	admin	login	information	in	the	pop	up.

8.4.1.4.3	Create	a	deployment

8.4.1.4.4	Expose	the	servi

8.4.1.4.5	Check	running	status

This	step	is	to	make	sure	you	have	a	pod	up	and	running.

8.4.1.4.6	Call	service	api

8.4.1.4.7	Take	a	look	from	Dashboard

If	you	want	to	get	an	interactive	dashboard,

Browse	to	http://192.168.99.101:30000	in	your	web	browser	and	it	will	provide
a	GUI	dashboard	regarding	minikube.

8.4.1.4.8	Delete	the	service	and	deployment

$	cd		C:\Users\<username>\Documents\cloudmesh

$	.\minikube.exe	start	--vm-driver="virtualbox"

$	kubectl	run	hello-minikube	--image=k8s.gcr.io/echoserver:1.4	--port=8080

$	kubectl	expose	deployment	hello-minikube	--type=NodePort

$	kubectl	get	pod

$	curl	$(minikube	service	hello-minikube	--url)

$	minikube	dashboard

$	minikube	dashboard	--url=true

http://192.168.99.101:30000

$	kubectl	delete	service	hello-minikube

$	kubectl	delete	deployment	hello-minikube



8.4.1.4.9	Stop	the	cluster

For	all	platforms	we	can	use	the	following	command.

8.4.1.5	Interactive	Tutorial	Online

Start	 cluster	 https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-
interactive/
Deploy	 app	 https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-
interactive
Explore	https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
Expose	https://kubernetes.io/docs/tutorials/kubernetes-basics/expose-intro/
Scale	https://kubernetes.io/docs/tutorials/kubernetes-basics/scale-intro/
Update	 https://kubernetes.io/docs/tutorials/kubernetes-basics/update-
interactive/
MiniKube	 https://kubernetes.io/docs/tutorials/stateless-application/hello-
minikube/

8.4.2	Using	Kubernetes	on	FutureSystems	☁�

This	 section	 introduces	 you	 on	 how	 to	 use	 the	 Kubernetes	 cluster	 on
FutureSystems.	 Currently	 we	 have	 deployed	 kubernetes	 on	 our	 cluster	 called
echo.

8.4.2.1	Getting	Access

You	 will	 need	 an	 account	 on	 FutureSystems	 and	 upload	 the	 ssh	 key	 to	 the
FutureSystems	portal	from	the	computer	from	which	you	want	to	login	to	echo.
To	 verify,	 if	 you	 have	 access	 try	 to	 see	 if	 you	 can	 log	 into
victor.futuresystems.org.	 You	 need	 to	 be	 a	 member	 of	 a	 valid	 FutureSystems
project.

For	Fall	2018	classes	at	IU	you	need	to	be	in	the	following	project:

https://portal.futuresystems.org/project/553

$	minikube	stop

https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update-interactive/
https://kubernetes.io/docs/tutorials/stateless-application/hello-minikube/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/kubernetes-fs.md
https://portal.futuresystems.org/project/553


If	you	have	verified	that	you	have	access	to	the	victor,	you	can	now	try	to	login
to	the	kubernetes	cluster	head	node	with	the	same	username	and	key.	Run	these
first	on	your	local	machine	to	set	the	username	and	login	host:

Then	you	can	login	to	the	kubernetes	head	node	by	running:

NOTE:	 If	 you	 have	 access	 to	 victor	 but	 not	 the	 kubernetes	 system,	 your
project	may	not	have	been	authorized	to	access	the	kubernetes	cluster.	Send
a	ticket	to	FutureSystems	ticket	system	to	request	this.

Once	 you	 are	 logged	 in	 to	 the	 kubernetes	 cluster	 head	 node	 you	 can	 run
commands	on	 the	remote	echo	kubernetes	machine	 (all	 commands	 shown	 in
next	except	stated	otherwise)	to	use	the	kubernetes	installation	there.	First	try	to
run:

This	 will	 let	 you	 know	 if	 you	 have	 access	 to	 kubernetes	 and	 verifies	 if	 the
kubectl	command	works	for	you.	Naturally	it	will	also	list	the	pods.

8.4.2.2	Example	Use

The	following	command	runs	an	image	called	Nginx	with	two	replicas,	Nginx	is
a	popular	web	sever	which	is	well	known	as	a	high	performance	load	balancer.

As	a	result	of	this	one	deployment	was	created,	and	two	PODs	are	created	and
started.	 If	 you	 encounter	 and	 error	 stating	 that	 the	 deployment	 already	 exists
when	executing	the	previous	command	that	is	because	the	command	has	already
been	executed.	To	see	the	deployment,	please	use	the	command,	this	command
should	work	even	if	you	noticed	the	error	mentioned.

This	will	result	in	the	following	output
				NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

$	export	ECHOK8S=149.165.150.85

$	export	FS_USER=<put	your	futersystem	account	name	here>

$	ssh	$FS_USER@$ECHOK8S

$	kubectl	get	pods

$	kubectl	run	nginx	--replicas=2	--image=nginx	--port=80

$	kubectl	get	deployment



				nginx					2									2									2												2											7m

To	see	the	pods	please	use	the	command

This	will	result	in	the	following	output
				NAME																			READY	STATUS		RESTARTS	AGE

				nginx-7587c6fdb6-4jnh6	1/1			Running	0								7m

				nginx-7587c6fdb6-pxpsz	1/1			Running	0								7m

If	we	want	to	see	more	detailed	information	we	cn	use	the	command

				NAME																			READY	STATUS		RESTARTS	AGE	IP								NODE

				nginx-75...-4jnh6	1/1			Running	0								8m		192.168.56.2			e003

				nginx-75...-pxpsz	1/1			Running	0								8m		192.168.255.66	e005

Please	note	the	IP	address	field.	Make	sure	you	are	using	the	IP	address	that	is
listed	when	you	execute	 the	command	since	the	IP	address	may	have	changed.
Now	if	we	try	to	access	the	nginx	homepage	with	wget	(or	curl)

we	see	the	following	output:
				--2018-02-20	14:05:59--		http://192.168.56.2/

				Connecting	to	192.168.56.2:80...	connected.

				HTTP	request	sent,	awaiting	response...	200	OK

				Length:	612	[text/html]

				Saving	to:	'index.html'

				index.html				100%[=========>]					612		--.-KB/s				in	0s

				2018-02-20	14:05:59	(38.9	MB/s)	-	'index.html'	saved	[612/612]

It	verifies	that	the	specified	image	was	running,	and	it	is	accessible	from	within
the	cluster.

Next	we	need	to	start	thinking	about	how	we	access	this	web	server	from	outside
the	cluster.	We	can	explicitly	exposing	the	service	with	the	following	command.
You	can	change	the	name	that	is	set	using	--name	to	what	you	want.	Given	that	is
adheres	to	the	naming	standards.	If	the	name	you	enter	is	already	in	the	system
your	command	will	return	an	error	saying	the	service	already	exists.

We	will	see	the	response
$	service	"nginx-external"	exposed

$	kubectl	get	pods

$	kubectl	get	pods	-o	wide

$	wget	192.168.56.2

$	kubectl	expose	deployment	nginx	--type=NodePort	--name=abc-nginx-ext



To	find	the	exposed	ip	addresses,	we	simply	issue	the	command

We	se	something	like	this
				NAME										TYPE						CLUSTER-IP				EXTERN	PORT(S)						AGE

																																										AL-IP

				kubernetes				ClusterIP	10.96.0.1					<none>	443/TCP						8h

				abc-nginx-ext	NodePort		10.110.177.35	<none>	80:31386/TCP	3s

please	note	that	we	have	given	a	unique	name.

For	IU	students:

You	 could	 use	 your	 username	 or	 if	 you	 use	 one	 of	 our	 classes	 your	 hid.	 The
number	part	will	typically	be	sufficient.	For	class	users	that	do	not	use	the	hid	in
the	name	we	will	terminate	all	instances	without	notification.	In	addition,	we	like
you	 explicitly	 to	 add	 “-ext”	 to	 every	 container	 that	 is	 exposed	 to	 the	 internet.
Naturally	we	want	you	to	shut	down	such	services	if	they	are	not	in	use.	Failure
to	do	so	may	result	in	termination	of	the	service	without	notice,	and	in	the	worst
case	revocation	of	your	privileges	to	use	echo.

In	 our	 example	 you	 will	 find	 the	 port	 on	 which	 our	 service	 is	 exposed	 and
remapped	 to.	We	 find	 the	port	31386	 in	 the	value	80:31386/TCP	 in	 the	 ports
column	for	the	running	container.

Now	if	we	visit	this	URL,	which	is	the	public	IP	of	the	head	node	followed	by
the	exposed	port	number,	from	a	browser	on	your	local	machine
				http://149.165.150.85:31386

you	should	see	the	‘Welcome	to	nginx’	page.

Once	 you	 have	 done	 all	 the	 work	 needed	 using	 the	 service	 you	 can	 delete	 it
using	the	following	command.

8.4.2.3	Exercises

$	kubectl	get	svc

$	kubectl	delete	service	<service-name>



E.Kubernetes.fs.1:

Explore	more	complex	service	examples.

E.Kubernetes.fs.2:

Explore	constructing	a	complex	web	app	with	multiple	services.

E.Kubernetes.fs.3:

Define	a	deployment	with	a	yaml	file	declaratively.

8.5	SINGULARITY

8.5.1	Running	Singularity	Containers	on	Comet	☁�

This	section	was	copied	from

https://www.sdsc.edu/support/user_guides/tutorials/singularity.html

and	 modified.	 To	 use	 it	 you	 will	 need	 an	 account	 on	 comet	 which	 can	 be
obtained	 via	 XSEDE.	 In	 case	 you	 use	 this	 material	 as	 part	 of	 a	 class	 please
contact	your	teacher	for	more	information.

8.5.1.1	Background

What	is	Singularity?

“Singularity	enables	users	to	have	full	control	of	 their	environment.
Singularity	 containers	 can	 be	 used	 to	 package	 entire	 scientific
workflows,	 software	 and	 libraries,	 and	 even	 data.	 This	 means	 that
you	don’t	have	to	ask	your	cluster	admin	to	install	anything	for	you	-
you	can	put	it	in	a	Singularity	container	and	run.”

[from	the	Singularity	web	site	at	http://singularity.lbl.gov/]

There	 are	 numerous	 good	 tutorials	 on	 how	 to	 install	 and	 run	 Singularity	 on
Linux,	OS	X,	or	Windows	so	we	won’t	go	into	much	detail	on	that	process	here.

https://github.com/cloudmesh-community/book/blob/master/chapters/container/singularity/singularity.md
https://www.sdsc.edu/support/user_guides/tutorials/singularity.html
http://singularity.lbl.gov/


In	 this	 tutorial	 you	will	 learn	 how	 to	 run	 Singularity	 on	Comet.	 First	we	will
review	how	to	access	a	compute	node	on	Comet	and	provide	a	simple	example
to	help	get	you	started.	There	are	numerous	tutorial	on	how	to	get	started	with
Singularity,	but	there	are	some	details	specific	to	running	Singularity	on	Comet
which	are	not	covered	in	those	tutorials.	This	tutorial	assumes	you	already	have
an	account	on	Comet.	You	will	also	need	access	to	a	basic	set	of	example	files	to
get	started.	SDSC	hosts	a	Github	repository	containing	a	’Hello	world!"	example
which	you	may	clone	with	the	following	command:

8.5.1.2	Tutorial	Contents

Why	Singularity?
Downloading	&	Installing	Singularity
Building	Singularity	Containers
Running	Singularity	Containers	on	Comet
Running	Tensorflow	on	Comet	Using	Singularity

8.5.1.3	Why	Singularity?

Listed	 next	 is	 a	 typical	 list	 of	 commands	 you	would	 need	 to	 issue	 in	 order	 to
implement	a	functional	Python	installation	for	scientific	research:

Singularity	allows	you	to	avoid	this	time-consuming	series	of	steps	by	packaging
these	 commands	 in	 a	 re-usable	 and	 editable	 script,	 allowing	 you	 to	 quickly,
easily,	 and	 repeatedly	 implement	 a	 custom	 container	 designed	 specifically	 for
your	analytical	needs.

Figure	77	compares	a	VM	vs.	Docker	vs.	Singularity.

git	clone	https://github.com/hpcdevops/singularity-hello-world.git

COMMAND=apt-get	-y	install	libx11-dev

COMMAND=apt-get	install	build-essential	python-libdev

COMMAND=apt-get	install	build-essentyial	openmpi-dev

COMMAND=apt-get	install	cmake

COMMAND=apt-get	install	g++

COMMAND=apt-get	install	git-lfs

COMMAND=apt-get	install	libXss.so.1

COMMAND=apt-get	install	libgdal1-dev	libproj-dev

COMMAND=apt-get	install	libjsoncpp-dev	libjsoncpp0

COMMAND=apt-get	install	libmpich-dev	--user

COMMAND=apt-get	install	libpthread-stubs0	libpthread-stubs0-dev	libx11-dev	libx11-d

COMMAND=apt-get	install	libudev0:i386

COMMAND=apt-get	install	numpy

COMMAND=apt-get	install	python-matplotlib

COMMAND=apt-get	install	python3`



Figure	77:	Singularity	Container	Architecture	[69]

8.5.1.4	Hands-On	Tutorials

The	 following	 tutorial	 includes	 links	 to	 asciinema	 video	 tutorials	 created	 by
SDSC	 HPC	 Systems	 Manager,	 Trevor	 Cooper	 which	 allow	 you	 to	 see	 the

console	 interactivity	 and	 output	 in	 detail.	 Look	 for	 the	 	 icon	 like	 the	 one
shown	to	the	right	corresponding	to	the	task	you	are	currently	working	on.

8.5.1.5	Downloading	&	Installing	Singularity

Download	&	Unpack	Singularity
Configure	&	Build	Singularity
Install	&	Test	Singularity

8.5.1.5.1	Download	&	Unpack	Singularity

First	 we	 download	 and	 upack	 the	 source	 using	 the	 following	 commands
(assuming	your	user	name	is	test_user	and	you	are	working	on	your	local	computer
with	super	user	privileges):

	Singularity	-	download	source	and	unpack	in	VirtualBox	VM	(CentOS	7)

If	the	file	is	successfully	extracted,	you	should	be	able	to	view	the	results:

[test_user@localhost	~]$	wget	https://github.com/singularityware/singularity/

releases/download/2.5.1/singularity-2.5.1.tar.gz	tar	-zxf	singularity-2.5.1.tar.gz

https://asciinema.org/a/12986


8.5.1.5.2	Configure	&	Build	Singularity

	Singularity	-	configure	and	build	in	VirtualBox	VM	(CentOS	7)

Next	 we	 configure	 and	 build	 the	 package.	 To	 configure,	 enter	 the	 following
command	(we	will	leave	out	the	command	prompts):

To	build,	issue	the	following	command:
make

This	may	take	several	seconds	depending	on	your	computer.

8.5.1.5.3	Install	&	Test	Singularity

	Singularity	-	install	and	test	in	VirtualBox	VM	(CentOS	7)

To	complete	the	installation	enter:
sudo	make	install

You	should	be	prompted	to	enter	your	admin	password.

Once	the	installation	is	completed,	you	can	check	to	see	if	it	succeeded	in	a	few
different	ways:

which	singularity	singularity	-version

You	can	also	run	a	selftest	with	the	following	command:
singularity	selftest

The	output	should	look	something	like:
+	sh	-c	test	-f	/usr/local/etc/singularity/singularity.conf	(retval=0)	OK		+	test	-u	

/usr/local/libexec/singularity/bin/action-suid	(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/create-suid	

(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/expand-suid	(retval=0)	OK		+	test	-u	

/usr/local/libexec/singularity/bin/export-suid	(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/import-suid	

(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/mount-suid	(retval=0)	OK

[test_user@localhost	~]$	cd	singularity-2.5.1/

[test_user@localhost	singularity-2.5.1]$	ls

./configure

https://asciinema.org/a/129867
https://asciinema.org/a/129868


8.5.1.6	Building	Singularity	Containers

The	process	of	building	a	Singularity	container	consists	of	a	few	distinct	steps	as
follows.

Upgrading	Singularity	(if	needed)
Create	an	Empty	Container
Import	into	Container
Shell	into	Container
Write	into	Container
Bootstrap	Container

We	will	go	through	each	of	these	steps	in	detail.

8.5.1.6.1	Upgrading	Singularity

We	recommend	building	containers	using	the	same	version	of	Singularity,	2.5.1,
as	exists	on	Comet.	This	is	a	2	step	process.

Step	1:	run	the	next	script	to	remove	your	existing	Singularity:

Step	2:	run	the	following	script	to	install	Singularity	2.5.1:

#!/bin/bash

#

#	A	cleanup	script	to	remove	Singularity

sudo	rm	-rf	/usr/local/libexec/singularity

sudo	rm	-rf	/usr/local/etc/singularity

sudo	rm	-rf	/usr/local/include/singularity

sudo	rm	-rf	/usr/local/lib/singularity

sudo	rm	-rf	/usr/local/var/lib/singularity/

sudo	rm	/usr/local/bin/singularity

sudo	rm	/usr/local/bin/run-singularity

sudo	rm	/usr/local/etc/bash_completion.d/singularity

sudo	rm	/usr/local/man/man1/singularity.1

#!/bin/bash

#

#	A	build	script	for	Singularity	(http://singularity.lbl.gov/)

declare	-r	SINGULARITY_NAME='singularity'

declare	-r	SINGULARITY_VERSION='2.5.1'

declare	-r	SINGULARITY_PREFIX='/usr/local'

declare	-r	SINGULARITY_CONFIG_DIR='/etc'

sudo	apt	update

sudo	apt	install	python	dh-autoreconf	build-essential	debootstrap

cd	../

tar	-xzvf	"${PWD}/tarballs/${SINGULARITY_NAME}-${SINGULARITY_VERSION}.tar.gz"

cd	"${SINGULARITY_NAME}-${SINGULARITY_VERSION}"

./configure	--prefix="${SINGULARITY_PREFIX}"	--sysconfdir="${SINGULARITY_CONFIG_DIR}"

make



8.5.1.7	Create	an	Empty	Container

	Singularity	-	create	container

To	 create	 an	 empty	 Singularity	 container,	 you	 simply	 issue	 the	 following
command:
singularity	create	centos7.img

This	will	create	a	CentOS	7	container	with	a	default	size	of	~805	Mb.	Depending
on	what	 additional	 configurations	 you	 plan	 to	make	 to	 the	 container,	 this	 size
may	 or	 may	 not	 be	 big	 enough.	 To	 specify	 a	 particular	 size,	 such	 as	 ~4	 Gb,
include	the	-s	parameter,	as	shown	in	the	following	command:
singularity	create	-s	4096	centos7.img

To	view	the	resulting	image	in	a	directory	listing,	enter	the	following:
ls

8.5.1.8	Import	Into	a	Singularity	Container

	Singularity	-	import	Docker	image

Next,	we	will	import	a	Docker	image	into	our	empty	Singularity	container:
singularity	import	centos7.img	docker://centos:7

8.5.1.9	Shell	Into	a	Singularity	Container

	Singularity	-	shell	into	container

Once	the	container	actually	contains	a	CentOS	7	installation,	you	can	‘shell’	into
it	with	the	following:
singularity	shell	centos7.img

Once	you	 enter	 the	 container	 you	 should	 see	 a	 different	 command	prompt.	At

sudo	make	install

https://asciinema.org/a/130106
https://asciinema.org/a/130107
https://asciinema.org/a/130109


this	new	prompt,	try	typing:
whoami

Your	user	id	should	be	identical	to	your	user	id	outside	the	container.	However,
the	 operating	 system	 will	 probably	 be	 different.	 Try	 issuing	 the	 following
command	from	inside	the	container	to	see	what	the	OS	version	is:
cat	/etc/*-release

8.5.1.10	Write	Into	a	Singularity	Container

	Singularity	-	write	into	container

Next,	let’s	trying	writing	into	the	container	(as	root):
sudo	/usr/local/bin/singularity	shell	-w	centos7.img

You	should	be	prompted	for	your	password,	and	then	you	should	see	something
like	the	following:
Invoking	an	interactive	shell	within	the	container...

Next,	let’s	create	a	script	within	the	container	so	we	can	use	it	to	test	the	ability
of	the	container	to	execute	shell	scripts:
vi	hello_world.sh

The	previous	command	assumes	you	know	the	vi	editor.	Enter	the	following	text
into	the	script,	save	it,	and	quit	the	vi	editor:
#!/bin/bash	echo	"Hello,	World!"

You	may	need	to	change	the	permissions	on	the	script	so	it	can	be	executable:
chmod	+x	hello_world.sh

Try	running	the	script	manually:
./hello_world.sh

The	output	should	be:
Hello,	World!

https://asciinema.org/a/130110


8.5.1.11	Bootstrapping	a	Singularity	Container

	Singularity	-	bootstrapping	a	container

Bootstrapping	 a	 Singularity	 container	 allows	 you	 to	 use	 what	 is	 called	 a
‘definitions	file’	so	you	can	reproduce	the	resulting	container	configurations	on
demand.

Let	 us	 say	 you	want	 to	 create	 a	 container	with	Ubuntu,	 but	 you	may	want	 to
create	 variations	 on	 the	 configurations	 without	 having	 to	 repeat	 a	 long	 list	 of
commands	 manually.	 First,	 we	 need	 our	 definitions	 file.	 Given	 next	 is	 the
contents	of	a	definitions	file	which	should	suffice	for	our	purposes.

To	bootstrap	your	container,	first	we	need	to	create	an	empty	container.
singularity	create	-s	4096	ubuntu.img

Now,	we	simply	need	to	issue	the	following	command	to	configure	our	container
with	Ubuntu:
sudo	/usr/local/bin/singularity	bootstrap	./ubuntu.img	./ubuntu.def

This	may	 take	a	while	 to	complete.	 In	principle,	you	can	accomplish	 the	same
result	by	manually	issuing	each	of	the	commands	contained	in	the	script	file,	but
why	do	that	when	you	can	use	bootstrapping	to	save	time	and	avoid	errors.

If	 all	 goes	 according	 to	 plan,	 you	 should	 then	 be	 able	 to	 shell	 into	 your	 new
Ubuntu	container.

Bootstrap:	docker

From:	ubuntu:latest

%runscript

exec	echo	"The	runscript	is	the	containers	default	runtime	command!"

%files

/home/testuser/ubuntu.def	/data/ubuntu.def

%environment

VARIABLE=HELLOWORLD

Export	VARIABLE

%labels

AUTHOR	testuser@sdsc.edu

%post

apt-get	update	&&	apt-get	-y	install	python3	git	wget

mkdir	/data

echo	"The	post	section	is	where	you	can	install	and	configure	your	container."

https://asciinema.org/a/130111


8.5.1.12	Running	Singularity	Containers	on	Comet

Of	 course,	 the	 purpose	 of	 this	 tutorial	 is	 to	 enable	 you	 to	 use	 the	 San	 Diego
Supercomputer	Center’s	Comet	 supercomputer	 to	 run	your	 jobs.	This	 assumes
you	have	an	account	on	Comet	already.	If	you	do	not	have	an	account	on	Comet
and	you	feel	you	can	justify	the	need	for	such	an	account	(i.e.	your	research	is
limited	 by	 the	 limited	 compute	 power	 you	 have	 in	 your	 government-funded
research	 lab),	you	can	 request	a	 ‘Startup	Allocation’	 through	 the	XSEDE	User
Portal:

https://portal.xsede.org/allocations-overview#types-trial

You	may	create	a	free	account	on	the	XUP	if	you	do	not	already	have	one	and
then	proceed	to	submit	an	allocation	request	at	the	previously	given	link.

NOTE:	SDSC	provides	a	Comet	User	Guide	to	help	get	you	started	with	Comet.
Learn	more	about	The	San	Diego	Supercomputer	Center	at	http://www.sdsc.edu.

This	 tutorial	walks	you	 through	 the	 following	 four	 steps	 towards	 running	your
first	Singularity	container	on	Comet:

Transfer	the	Container	to	Comet
Run	the	Container	on	Comet
Allocate	Resources	to	Run	the	Container
Integrate	the	Container	with	Slurm
Use	existing	Comet	Containers

8.5.1.12.1	Transfer	the	Container	to	Comet

	Singularity	-	transfer	container	to	Comet

Once	 you	 have	 created	 your	 container	 on	 your	 local	 system,	 you	will	 need	 to
transfer	it	to	Comet.	There	are	multiple	ways	to	do	this	and	it	can	take	a	varying
amount	of	time	depending	on	its	size	and	your	network	connection	speeds.

To	do	this,	we	will	use	scp	(secure	copy).	If	you	have	a	Globus	account	and	your
containers	are	more	 than	4	Gb	you	will	probably	want	 to	use	 that	 file	 transfer
method	instead	of	scp.

https://portal.xsede.org/allocations-overview#types-trial
http://www.sdsc.edu/support/user_guides/comet.html
http://www.sdsc.edu
https://asciinema.org/a/130195


Browse	 to	 the	 directory	 containing	 the	 container.	 Copy	 the	 container	 to	 your
scratch	directory	on	Comet.	By	issuing	the	following	command:
scp	./centos7.img	comet.sdsc.edu:/oasis/scratch/comet/test_user/temp_project/

The	container	is	~805	Mb	so	it	should	not	take	too	long,	hopefully.

8.5.1.12.2	Run	the	Container	on	Comet

	Singularity	-	run	container	on	Comet

Once	the	file	is	transferred,	login	to	Comet	(assuming	your	Comet	user	is	named
test_user):
ssh	test_user@comet.sdsc.edu

Navigate	to	your	scratch	directory	on	Comet,	which	should	be	something	like:
[test_user@comet-ln3	~]$	cd	/oasis/scratch/comet/test_user/temp_project/

Next,	you	should	submit	a	request	for	an	interactive	session	on	one	of	Comet’s
compute,	debug,	or	shared	nodes.
[test_user@comet-ln3	~]$	srun	--pty	--nodes=1	--ntasks-per-node=24	-p	compute	-t	01:00:00	--wait	0	/bin/bash

Once	 your	 request	 is	 approved	 your	 command	 prompt	 should	 reflect	 the	 new
node	id.

Before	you	can	run	your	container	you	will	need	to	load	the	Singularity	module
(if	 you	 are	 unfamiliar	 with	 modules	 on	 Comet,	 you	 may	 want	 to	 review	 the
Comet	User	Guide).	The	command	to	load	Singularity	on	Comet	is:
[test_user@comet-ln3	~]$	module	load	singularity

You	may	issue	the	previous	command	from	any	directory	on	Comet.	Recall	that
we	added	a	 hello_world.sh	 script	 to	our	 centos7.img	container.	Let	us	 try	 executing
that	script	with	the	following	command:
[test_user@comet-ln3	~]$	singularity	exec	/oasis/scratch/comet/test_user/temp_project/singularity/centos7.img	

/hello_world.sh

If	all	goes	well,Â	you	should	see	Hello,	World!	in	the	console	output.	You	might
also	see	some	warnings	pertaining	to	non-existent	bind	points.	You	can	resolve

https://asciinema.org/a/130196


this	 by	 adding	 some	 additional	 lines	 to	 your	 definitions	 file	 before	 you	 build
your	 container.	 We	 did	 not	 do	 that	 for	 this	 tutorial,	 but	 you	 would	 use	 a
command	like	the	following	in	your	definitions	file:
#	create	bind	points	for	SDSC	HPC	environment	mkdir	/oasis	/scratch/	/comet	/temp_project

You	will	find	additional	examples	located	in	the	following	locations	on	Comet:
/share/apps/examples/SI2017/Singularity

and
/share/apps/examples/SINGULARITY

8.5.1.12.3	Allocate	Resources	to	Run	the	Container

	Singularity	-	allocate	resources	to	run	container

It	 is	 best	 to	 avoid	 working	 on	 Comet’s	 login	 nodes	 since	 they	 can	 become	 a
performance	 bottleneck	 not	 only	 for	 you	 but	 for	 all	 other	 users.	 You	 should
rather	allocate	resources	specific	for	computationally-intensive	jobs.	To	allocate
a	‘compute	node’	for	your	user	on	Comet,	issue	the	following	command:
[test_user@comet-ln3	~]$	salloc	-N	1	-t	00:10:00

This	allocation	 requests	a	 single	node	 (-N	1)	 for	a	 total	 time	of	10	minutes	 (-t
00:10:00).	 Once	 your	 request	 has	 been	 approved,	 your	 computer	 node	 name
should	be	displayed,	e.g.	comet-17-12.

Now	you	may	login	to	this	node:
[test_user@comet-ln3	~]$	ssh	comet-17-12

Notice	that	the	command	prompt	has	now	changed	to	reflect	the	fact	that	you	are
on	a	compute	node	and	not	a	login	node.
[test_user@comet-06-04	~]$

Next,	 load	 the	 Singularity	 module,	 shell	 into	 the	 container,	 and	 execute	 the	
hello_world.sh	script:
[test_user@comet-06-04	~]$	module	load	singularity	[test_user@comet-06-04	~]$	singularity	shell	centos7.img	

[test_user@comet-06-04	~]$	./hello_world.sh

https://asciinema.org/a/130197


If	all	goes	well,	you	should	see	Hello,	World!	in	the	console	output.

8.5.1.12.4	Integrate	the	Container	with	Slurm

	Singularity	-	run	container	on	Comet	via	Slurm

Of	course,	most	users	simply	want	to	submit	their	jobs	to	the	Comet	queue	and
let	it	run	to	completion	and	go	on	to	other	things	while	waiting.	Slurm	is	the	job
manager	for	Comet.

Given	next	is	a	job	script	(which	we	will	name	singularity_mvapich2_hellow.run)	which	will
submit	 your	 Singularity	 container	 to	 the	 Comet	 queue	 and	 run	 a	 program,
hellow.c	(written	in	C	using	MPI	and	provided	as	part	of	the	examples	with	the
mvapich2	default	installation).
#!/bin/bash	``	#SBATCH	--job-name="singularity_mvapich2_hellow"		#SBATCH	--output="singularity_mvapich2_hellow.%j.out"		

#SBATCH	--error="singularity_mvapich2_hellow.%j.err"		#SBATCH	--nodes=2		#SBATCH	--ntasks-per-node=24		#SBATCH	--

time=00:10:00		#SBATCH	--export=all	module	load	mvapich2_ib	singularity
CONTAINER=/oasis/scratch/comet/$USER/temp_project/singularity/centos7-mvapich2.img

mpirun	singularity	exec	${CONTAINER}	/usr/bin/hellow

The	previous	script	requests	2	nodes	and	24	tasks	per	node	with	a	wall	time	of
10	minutes.	 Notice	 that	 two	modules	 are	 loaded	 (see	 the	 line	 beginning	 with
‘module’),	 one	 for	 Singularity	 and	 one	 for	 MPI.	 An	 environment	 variable
‘CONTAINER’	is	also	defined	to	make	it	a	little	easier	to	manage	long	reusable
text	strings	such	as	file	paths.

You	may	need	 to	add	a	 line	 specifying	with	allocation	 to	be	used	 for	 this	 job.
When	you	are	ready	to	submit	 the	job	to	the	Comet	queue,	 issue	the	following
command:
[test_user@comet-06-04	~]$	sbatch	-p	debug	./singularity_mvapich2_hellow.run

To	view	the	status	of	your	job	in	the	Comet	queue,	issue	the	following:
[test_user@comet-06-04	~]$	squeue	-u	test_user

When	the	job	is	complete,	view	the	output	which	should	be	written	to	the	output
file	 singularity_mvapich2_hellow.%j.out	 where	 %j	 is	 the	 job	 ID	 (let’s	 say	 the	 job	 ID	 is
1000001):

https://asciinema.org/a/130218


[test_user@comet-06-04	~]$	more	singularity_mvapich2_hellow.1000001.out

The	output	should	look	something	like	the	following:

8.5.1.12.5	Use	Existing	Comet	Containers

SDSC	User	 Support	 staff,	Marty	Kandes,	 has	 built	 several	 custom	Singularity
containers	designed	specifically	for	the	Comet	environment.

Learn	more	about	these	containers	for	Comet.

An	easy	way	to	pull	images	from	the	singularity	hub	on	comment	is	provided	in
the	next	video:

	Singularity	-	pull	from	singularity-hub	on	Comet

Comet	 supports	 the	 capability	 to	 pull	 a	 container	 directly	 from	 any	 properly
configured	 remote	 singularity	 hub.	 For	 example,	 the	 following	 command	 can
pull	 a	 container	 from	 the	 hpcdevops	 singularity	 hub	 straight	 to	 an	 empty
container	located	on	Comet:

The	 resulting	 container	 should	 be	 named	 something	 like	 singularity-hello-
world.img.

Learn	more	about	Singularity	Hubs	and	container	collections	at:

https://singularity-hub.org/collections

That’s	it!	Congratulations!	You	should	now	be	able	to	run	Singularity	containers
on	Comet	either	interactively	or	through	the	job	queue.	We	hope	you	found	this
tutorial	useful.	Please	contact	support@xsede.org	with	any	questions	you	might
have.	 Your	 Comet-related	 questions	 will	 be	 routed	 to	 the	 amazing	 SDSC

Hello	world	from	process	28	of	48

Hello	world	from	process	29	of	48

Hello	world	from	process	30	of	48

Hello	world	from	process	31	of	48

Hello	world	from	process	32	of	48

Hello	world	from	process	33	of	48

Hello	world	from	process	34	of	48

Hello	world	from	process	35	of	48

Hello	world	from	process	36	of	48

Hello	world	from	process	37	of	48

Hello	world	from	process	38	of	48

comet$	singularity	pull	shub://hpcdevops/singularity-hello-world:master

https://asciinema.org/a/129906
https://singularity-hub.org/collections
mailto:support@xsede.org


Support	Team.

8.5.1.13	Using	Tensorflow	With	Singularity

One	of	 the	more	common	advantages	of	using	Singularity	 is	 the	ability	 to	use
pre-built	containers	for	specific	applications	which	may	be	difficult	to	install	and
maintain	 by	 yourself,	 such	 as	 Tensorflow.	 The	 most	 common	 example	 of	 a
Tensorflow	application	 is	 character	 recognition	using	 the	MNIST	dataset.	You
can	learn	more	about	this	dataset	at	http://yann.lecun.com/exdb/mnist/.

XSEDE’s	Comet	supercomputer	supports	Singularity	and	provides	several	pre-
built	 container	 which	 run	 Tensorflow.	 Given	 next	 is	 an	 example	 batch	 script
which	runs	a	Tensorflow	job	within	a	Singularity	container	on	Comet.	Copy	this
script	and	paste	it	into	a	shell	script	named	mnist_tensorflow_example.sb.

8.5.1.14	Run	the	job

To	submit	the	script	to	Comet,	first	you’ll	need	to	request	a	compute	node	with
the	following	command	(replace	account	with	your	XSEDE	account	number):

To	submit	a	job	to	the	Comet	queue,	issue	the	following	command:

When	 the	 job	 is	 done	 you	 should	 see	 an	 output	 file	 in	 your	 output	 directory
containing	something	resembling	the	following:

#!/bin/bash

#SBATCH	--job-name="TensorFlow"

#SBATCH	--output="TensorFlow.%j.%N.out"

#SBATCH	--partition=gpu-shared

#SBATCH	--nodes=1

#SBATCH	--ntasks-per-node=6

#SBATCH	--gres=gpu:k80:1

#SBATCH	-t	01:00:00

module	load	singularity

singularity	exec

/share/apps/gpu/singularity/sdsc_ubuntu_gpu_tflow.img	lsb_release

-a

singularity	exec

/share/apps/gpu/singularity/sdsc_ubuntu_gpu_tflow.img	python	-m

tensorflow.models.image.mnist.convolutional

[test_user@comet-ln3	~]$	srun	--account=your_account_code	--partition=gpu-shared	--gres=gpu:1	--pty	--nodes=1	--ntasks-per-node=1	-t	00:30:00	--wait=0	--export=ALL	/bin/bash

[test_user@comet-06-04	~]$	sbatch	mnist_tensorflow_example.sb

Distributor	ID:	Ubuntu

Description:	Ubuntu	16.04	LTS

http://yann.lecun.com/exdb/mnist/


Congratulations!	You	 have	 successfully	 trained	 a	 neural	 network	 to	 recognize
ascii	numeric	characters.

8.6	EXERCISES	☁�
E.Docker.1:	MongoDB	Container

Develop	 a	 docker	 file	 that	 uses	 the	 mongo	 distribution	 from
Dockerhub	and	starts	a	MongoDB	database	on	the	regular	port	while
communicating	to	your	container.

What	 are	 the	 parameters	 on	 the	 command	 line	 that	 you	 need	 to
define?

E.Docker.2:	MongoDB	Container	with	authentication

Develop	a	MongoDB	container	 that	 includes	an	outhenticated	user.

Release:	16.04

Codename:	xenial

^[[33mWARNING:	Non	existent	bind	point	(directory)	in	container:	'/scratch'

^[[0mI	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcublas.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcudnn.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcufft.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcuda.so.1	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcurand.so	locally

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:102]	Found	device	0	with	properties:

name:	Tesla	K80

major:	3	minor:	7	memoryClockRate	(GHz)	0.8235

pciBusID	0000:85:00.0

Total	memory:	11.17GiB

Free	memory:	11.11GiB

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:126]	DMA:	0

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:136]	0:	Y

I	tensorflow/core/common_runtime/gpu/gpu_device.cc:838]	Creating	TensorFlow	device	(/gpu:0)	->	(device:	0,	name:	Tesla	K80,	pci	bus	id:	0000:85:00.0)

Extracting	data/train-images-idx3-ubyte.gz

Extracting	data/train-labels-idx1-ubyte.gz

Extracting	data/t10k-images-idx3-ubyte.gz

Extracting	data/t10k-labels-idx1-ubyte.gz

Initialized!

Step	0	(epoch	0.00),	40.0	ms

Minibatch	loss:	12.054,	learning	rate:	0.010000

Minibatch	error:	90.6%

Validation	error:	84.6%

Step	100	(epoch	0.12),	12.6	ms

Minibatch	loss:	3.293,	learning	rate:	0.010000

Minibatch	error:	6.2%

Validation	error:	7.0%

Step	8400	(epoch	9.77),	11.5	ms

Minibatch	loss:	1.596,	learning	rate:	0.006302

Minibatch	error:	0.0%

Validation	error:	0.9%

Step	8500	(epoch	9.89),	11.5	ms

Minibatch	loss:	1.593,	learning	rate:	0.006302

Minibatch	error:	0.0%

Validation	error:	0.8%

Test	error:	0.9%

https://github.com/cloudmesh-community/book/blob/master/chapters/container/exercise.md


You	must	use	 the	cloudmesh.yaml	 file	 for	specifying	the	 information
for	the	admin	user	and	password.

1.	 How	do	you	add	the	user?
2.	 How	do	you	start	the	container?
3.	 Showcase	 the	use	of	 the	authentication	with	a	 simple	 script	 or
pytest.

You	are	allowed	tou	sue	docker	compose,	but	make	sure	you	read	the
password	ond	username	from	the	yaml	file.	YoU	must	not	configure	it
by	hand	in	the	compose	yaml	file.	You	can	use	cloudmesh	commands
to	read	the	username	and	password.

E.Docker.3:	Cloudmesh	Container

In	this	assignment	we	will	explore	the	use	of	two	containers.	We	will
be	leveraging	the	asisgnment	E.Docker.2.

First,	you	wil	lstart	the	authenticated	docker	MongoDB	container

You	will	be	writing	an	additional	dockerfile,	 that	creates	cloudmesh
in	 a	 docker	 container.	 Upon	 start	 the	 parameter	 passed	 to	 the
container	will	be	executed	in	the	container.	You	will	use	the	.ssh	and
.cloudmesh	directory	from	your	native	file	system.

For	hints,	please	look	at

https://github.com/cloudmesh/cloudmesh-
cloud/blob/master/docker/ubuntu-19.04/Dockerfile
https://github.com/cloudmesh/cloudmesh-
cloud/blob/master/docker/ubuntu-19.04/Makefile

To	jump	start	you	try

Explore!	Understand	what	is	done	in	the	Makefile

cms	config	value	cloudmesh.data.mongo.MONGO_USERNAME

cms	config	value	cloudmesh.data.mongo.MONGO_PASSWORD

make	image

make	shell

https://github.com/cloudmesh/cloudmesh-cloud/blob/master/docker/ubuntu-19.04/Dockerfile
https://github.com/cloudmesh/cloudmesh-cloud/blob/master/docker/ubuntu-19.04/Makefile


Questions:

1.	 How	would	you	need	to	modify	the	Dockerfile	to	complete	it?
2.	 Whay	 did	 we	 outcomment	 the	 MongoDB	 related	 tasks	 in	 the
Dockerfile?

3.	 How	 do	we	 need	 to	 establish	 communication	 to	 the	MongoDB
container

4.	 Could	 docker	 compose	 help,	 or	 would	 it	 be	 too	 complicated,
e.g.	what	if	the	mongo	container	already	runs?

5.	 Why	 would	 it	 be	 dangerous	 to	 store	 the	 cloudmesh.yaml	 file
inside	the	container?	Hint:	DockerHub.

6.	 Why	should	you	at	this	time	not	upload	images	to	DockerHub?

E.Docker.Swarm.1:	Documentation

Develop	 a	 section	 in	 the	 handbook	 that	 deploys	 a	 Docker	 Swarm
cluster	on	a	number	of	ubuntu	machines.	Note	that	this	may	actually
be	 easier	 as	 docker	 and	 docker	 swarm	 are	 distributed	 with	 recent
versions	of	ubuntu.	Just	 in	case	we	are	providing	a	link	 to	an	effort
we	found	to	install	docker	swarm.	However	we	have	not	checked	it	or
identified	if	it	is	useful.

https://rominirani.com/docker-swarm-tutorial-b67470cf8872

E.Docker.Swarm.2:	Google	Compute	Engine

Develop	 a	 section	 that	 deploys	 a	Docker	 Swarm	 cluster	 on	Google
Compute	Engine.	Note	that	this	may	actually	be	easier	as	docker	and
docker	swarm	are	distributed	with	recent	versions	of	ubuntu.	Just	in
case	we	are	providing	a	 link	 to	an	effort	we	 found	 to	 install	docker
swarm.	However	we	have	not	checked	it	or	identified	if	it	is	useful.

https://rominirani.com/docker-swarm-on-google-compute-
engine-364765b400ed

E.SingleNodeHadoop:

Setup	a	single	node	hadoop	environment.

https://rominirani.com/docker-swarm-tutorial-b67470cf8872
https://rominirani.com/docker-swarm-on-google-compute-engine-364765b400ed


This	includes:

1.	 Create	a	Dockerfile	that	deploys	hadoop	in	a	container
2.	 Develop	sample	applications	and	tests	 to	 test	your	cluster.	You
can	use	wordcount	or	similar.

you	will	 find	a	comprehensive	 installation	 instruction	 that	 sets	up	a
hadoop	cluster	on	a	single	node	at

https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/SingleCluster.html

E.MultiNodeHadoop:

Setup	a	hadoop	cluster	in	a	distributed	environment.

This	includes:

1.	 Create	docker	compose	and	Dockerfiles	that	deploys	hadoop	in
kubernetes

2.	 Develop	sample	applications	and	tests	 to	 test	your	cluster.	You
can	use	wordcount	or	similar.

you	will	 find	a	comprehensive	 installation	 instruction	 that	 sets	up	a
hadoop	cluster	in	a	distributed	environment	at

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-common/ClusterSetup.html

You	can	use	this	set	of	instructions	or	identify	other	resources	on	the
internet	 that	 allow	 the	 creation	 of	 a	 hadoop	 cluster	 on	 kubernetes.
Alternatively	you	can	use	docker	compose	for	this	exercise.

E.SparkCluster:	Documentation

Develop	 a	 high	 quality	 section	 that	 installs	 a	 spark	 cluster	 in
kubernetes.	 Test	 your	 deployment	 on	 minikube	 and	 also	 on
Futuresystems	echo.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-common/ClusterSetup.html


You	 may	 want	 to	 get	 inspired	 from	 the	 talk	 Scalable	 Spark
Deployment	using	Kubernetes:

http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-1/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-2/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-3/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-4/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-5/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-6/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-7/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-8/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-9/

Make	sure	you	do	not	plagiarize.

http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-1/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-2/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-3/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-4/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-5/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-6/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-7/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-8/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-9/


9	NIST

9.1	NIST	BIG	DATA	REFERENECE	ARCHITECTURE	☁�

	Learning	Objectives

Obtain	an	overview	of	the	NIST	Big	Data	Refernce	Architecture.
Understand	that	you	can	contribute	to	it	as	part	of	this	class.

One	of	the	major	technical	areas	in	the	cloud	is	to	define	architectures	that	can
work	 with	 Big	 Data.	 For	 this	 reason	 NIST	 has	 work	 now	 for	 some	 time	 on
identifying	how	to	create	a	data	interoperability	framework.	The	idea	here	is	that
at	 one	 point	 architecture	 designers	 can	 pick	 services	 that	 they	 can	 chose	 to
combine	them	as	part	of	their	data	pipeline	and	integrate	in	a	convenient	fashion
into	their	solution.

Besides	just	being	a	high	level	description	NIST	also	encourages	the	verification
of	 the	 architecture	 through	 interface	 specifications,	 especially	 those	 that	 are
currently	under	way	in	Volume	8	of	the	document	series.	You	have	the	unique
opportunity	to	help	shape	this	interface	and	contribute	to	it.	We	will	provide	you
not	 only	mechanisms	 on	 how	 you	 theoretically	 can	 do	 this,	 but	 also	 how	 you
practically	can	contribute.

As	part	of	your	projects	 in	516	you	will	need	 to	 integrate	a	 significant	 service
that	you	can	contribute	to	the	NIST	document	in	form	of	a	specification	and	in
form	of	an	implementation.

9.1.1	Pathway	to	the	NIST-BDRA

The	 Nist	 Big	 Data	 Public	 Working	 Group	 (NBD-PWG)	 was	 established	 as
collaboration	 between	 industry,	 academia	 and	 government	 “to	 create	 a
consensus-based	 extensible	 Big	 Data	 Interoperability	 Framework	 (NBDIF)
which	 is	 a	 vendor-neutral,	 technology-	 and	 infrastructure-independent

https://github.com/cloudmesh-community/book/blob/master/chapters/nist/bdra.md


ecosystem”	 [70].	 It	 will	 be	 helpful	 for	 Big	 Data	 stakeholders	 such	 as	 data
architects,	data	scientists,	researchers,	implementers	to	integrate	and	utilize	“the
best	available	analytics	tools	to	process	and	derive	knowledge	through	the	use	of
standard	 interfaces	 between	 swappable	 architectural	 components”	 [70].	 The
NBDIF	is	being	developed	in	three	stages:

Stage	 1:	 “Identify	 the	 high-level	 Big	 Data	 reference	 architecture	 key
components,	 which	 are	 technology,	 infrastructure,	 and	 vendor	 agnostic,”
[70]	introduction	of	the	Big	Data	Reference	Architecture	(NBD-RA);
Stage	2:	“Define	general	interfaces	between	the	NBD-RA	components	with
the	 goals	 to	 aggregate	 low-level	 interactions	 into	 high-level	 general
interfaces	 and	 produce	 set	 of	white	 papers	 to	 demonstrate	 how	NBD-RA
can	be	used”	[70];
Stage	3:	“Validate	the	NBD-RA	by	building	Big	Data	general	applications
through	the	general	interfaces.[70]”

Nist	has	developed	the	following	volumes	as	listed	in	Table:	BDRA	volumes	that
surround	the	creation	of	the	NIST-BDRA.	We	recommend	that	you	take	a	closer
look	at	these	documents	as	in	this	section	we	provide	a	focussed	summary	with
the	aspect	of	cloud	computing	in	mind.

Table:	NIST	BDRA	Volumes

.

Volumes Volume Title
NIST	SP1500-1r1 Volume	1 Definitions
NIST	SP1500-2r1 Volume	2 Taxonomies
NIST	SP1500-3r1 Volume	3 Use	Cases	and	Requirements
NIST	SP1500-4r1 Volume	4 Security	and	Privacy
NIST	SP1500-5 Volume	5 Reference	Architectures	White	Paper	Survey
NIST	SP1500-6r1 Volume	6 Reference	Architecture

NIST	SP1500-7r1 Volume	7 Standards	Roadmap
NIST	SP1500-9 Volume	8 Reference	Architecture	Interface	(new)
NIST	SP1500-10 Volume	9 Adoption	and	Modernization	(new)

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-3r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-4r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-5.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-6r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-7r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-9.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-10.pdf


9.1.2	Big	Data	Characteristics	and	Definitions

Volume	1	of	the	series	introduces	the	community	to	common	definitions	that	are
used	as	part	of	the	field	of	Big	data.	This	includes	the	analysis	of	characteristics
such	 as	 volume,	 velocity,	 variety,	 variability	 and	 the	 use	 of	 structures	 and
unstructured	data.	As	part	of	 the	field	of	data	science	and	engineering	it	 lists	a
number	of	areas	that	are	to	be	believed	to	be	essential	including	that	they	must
master	 including	 data	 structures,	 parallelism,	 metadata,	 flow	 rate,	 visual
communication.	 In	 addition	 we	 believe	 that	 an	 additional	 skill	 set	 must	 be
prevalent	 that	 allows	 a	 data	 engineer	 to	 deploy	 such	 technologies	 onto	 actual
systems.

We	have	submitted	the	following	proposal	to	NIST:

3.3.6.	Deployments:

A	 significant	 challange	 exists	 for	 data	 engineers	 to	 develop
architectures	and	their	deployment	implications.	The	volume	of	data
and	the	processing	power	needed	to	analysis	them	may	require	many
thousands	 of	 distributed	 compute	 resources.	 They	 can	 be	 part	 of
private	data	centers,	virtualized	with	the	help	of	virtual	machines	or
containers	and	even	utilize	serverless	computing	to	focus	integration
of	 Big	 Data	 Function	 as	 a	 Service	 based	 architectures.	 As	 such
architectures	are	assumed	to	be	 large	community	standards	such	as
leveraging	DevOps	will	be	necessary	 for	 the	engineers	 to	setup	and
manage	such	architectures.	This	is	especially	important	with	the	swift
development	 of	 the	 field	 that	 may	 require	 rolling	 updates	 without
interruption	of	the	services	offered.

This	addition	reflects	the	newest	insight	into	what	a	data	scientist	needs	to	know
and	the	newest	job	trends	that	we	observed.

To	identify	what	big	data	is	we	find	the	following	characteristics

Volume:	 Big	 for	 data	 means	 lots	 of	 bytes.	 This	 could	 be	 achieved	 in	 many
different	ways.	Typically	we	look	at	 tha	actual	size	of	a	data	set,	but	also	how
this	data	set	is	stored	for	example	in	many	thousands	of	smaller	files	that	are	part



of	the	data	set.	It	is	clear	that	in	many	of	such	cases	analysis	of	a	large	volume	of
data	will	 impact	 the	 architectural	design	 for	 storage,	but	 also	 the	workflow	on
how	this	data	is	processed.

Velocity:	 We	 see	 often	 that	 big	 data	 is	 associated	 with	 high	 data	 flow	 rates
caused	 by	 for	 example	 streaming	 data.	 It	 can	 however	 also	 be	 caused	 by
functions	 that	 are	 applied	 to	 large	 volumes	 of	 data	 and	 need	 to	 be	 integrated
quickly	to	return	the	result	as	fast	as	posible.	Needs	for	real	time	processing	as
part	 of	 the	 quality	 of	 service	 offered	 contribute	 also	 to	 this.	 Examples	 of	 IoT
devices	that	integrate	not	only	data	in	the	cloud,	but	also	on	the	edge	need	to	be
considered.

Variety:	 In	 todays	world	we	have	many	different	data	 resources	 that	motivate
sophisticated	 data	 mashup	 strategies.	 Big	 data	 hence	 not	 only	 deals	 with
information	 from	 one	 source	 but	 a	 variety	 of	 sources.	 The	 architectures	 and
services	 utilized	 are	 multiple	 and	 needed	 to	 enable	 automated	 analysis	 while
incorporating	various	data	source.

Another	 aspect	 of	 variety	 is	 that	 data	 can	 be	 structured	 or	 unstructured.	NIST
finds	this	aspect	so	important	that	they	included	its	own	section	for	it.

Variability:	Any	data	over	time	will	change.	Naturally	that	is	not	an	exception
in	Big	data	where	data	may	be	a	time	to	live	or	needs	to	be	updated	in	order	not
to	 be	 stale	 or	 obsolete.	 Hence	 one	 of	 the	 characteristics	 that	 big	 data	 could
exhibit	is	that	its	data	be	variable	and	is	prone	to	changes.

In	 addition	 to	 these	 general	 observations	 we	 also	 have	 to	 adress	 important
characteristics	that	are	attached	with	the	Data	itself.	This	includes

Veracity:	Veracity	refers	to	the	accuracy	of	the	data.	Accuracy	can	be	increased
by	adding	metadata.

Validity:	Refers	to	data	that	is	valid.	While	data	can	be	accurately	measured,	it
could	be	invalid	by	the	time	it	is	processed.

Volatility:	Volatility	refers	to	the	change	in	the	data	values	over	time.

Value:	Naturally	we	can	store	lots	of	 information,	but	 if	 the	information	is	not
valuable	then	we	may	not	need	to	store	it.	This	is	recently	been	seen	as	a	trend	as



some	 companies	 have	 transitioned	 data	 sets	 to	 the	 community	 as	 they	 do	 not
provide	value	to	the	service	provider	to	justify	its	prolonged	maintenance.

In	other	cases	the	data	has	become	so	valuable	and	that	the	services	offered	have
been	 reduced	 for	 example	 as	 they	 provide	 too	 many	 resource	 needs	 by	 the
community.	A	 good	 example	 is	Google	 scholar	 that	 used	 to	 have	much	more
liberal	use	and	today	its	services	are	significantly	scaled	back	for	public	users.

9.1.3	Big	Data	and	the	Cloud

While	looking	at	the	characteristics	of	Big	Data	it	is	obvious	that	Big	data	is	on
the	one	hand	a	motivator	for	cloud	computing,	but	on	the	other	hand	existing	Big
Data	frameworks	are	a	motivator	for	developing	Big	Data	Architectures	a	certain
way.

Hence	 we	 have	 to	 always	 look	 from	 both	 sides	 towards	 the	 creation	 of
architectures	related	to	a	particular	application	of	big	data.

This	 is	 also	motivated	 by	 the	 rich	 history	we	have	 in	 the	 field	 of	 parallel	 and
distributed	 computing.	 For	 a	 long	 time	 engineers	 have	 dealt	with	 the	 issue	 of
horizontal	scaling,	which	is	defined	by	adding	more	nodes	or	other	resources	to
a	cluster.	Such	resources	may	include

shared	disk	file	systems,
distributed	file	systems,
distributed	 data	 processing	 and	 concurrency	 frameworks,	 such	 as
Concurrent	 sequential	 processes,	 workflows,	MPI,	 map/reduce,	 or	 shared
memory,
resource	negotiation	to	establish	quality	of	service,
data	movement,
and	data	tiers	(as	showcased	in	high	energy	physics	Ligo	[71]	and	Atlas)

In	 addition	 to	 the	 horizontal	 scaling	 issues	 we	 also	 have	 to	 worry	 about	 the
vertical	scaling	issues,	this	is	how	the	overall	sytem	architecture	fits	together	to
adress	an	end-to-end	use	case.	In	such	efforts	we	look	at

interface	designs,
workflows	between	components	and	services,



privacy	of	data	and	other	security	issues,
reusability	within	other	use-cases.

Naturally	the	cloud	offers	the	ability	to	cloudify	existing	relational	databases	as
cloud	services	while	leveraging	the	increased	performance	and	special	hardware
and	software	support	that	may	be	otherwise	unaffordable	for	an	individual	user.
However	we	see	also	the	explosive	growth	of	non	sql	databases	because	some	of
them	 can	 more	 effectively	 deal	 with	 the	 characteristics	 of	 big	 data	 than
traditional	 mostly	 weel	 structured	 data	 bases.	 In	 addition	 many	 of	 these
frameworks	 are	 able	 to	 introduce	 advanced	 capability	 such	 as	 distributed	 and
reliable	service	integration.

Although	we	have	been	used	to	the	term	cloud	wile	using	virtualized	resources
and	 the	 term	 Grid	 by	 offering	 a	 network	 of	 supercomputers	 in	 a	 virtual
organization,	We	should	not	forget	that	Cloud	service	providers	also	offer	High
performance	computers	resources	for	some	of	their	most	advanced	users.

Naturally	 such	 resources	 can	 be	 used	 not	 only	 for	 numerical	 intensif
computations	 but	 also	 for	 big	 data	 applications	 as	 the	 Physics	 community	 has
demonstrated.

9.1.4	Big	Data,	Edge	Computing	and	the	Cloud

When	looking	at	the	number	of	devices	that	are	being	added	daily	to	the	global
IT	 infrastructure	we	observe	 that	cellphones	and	soon	 Internet	of	Things	 (IoT)
devices	will	produce	the	bulk	of	all	data.	However	not	all	data	will	be	moved	to
the	 cloud	 and	 lots	 of	 data	will	 be	 analyzed	 locally	 on	 the	 devices	 or	 even	not
being	considered	to	be	uploaded	to	the	cloud	either	because	it	project	to	low	or
to	 high	 value	 to	 be	 moved.	 However	 a	 considerable	 portion	 will	 put	 new
constraints	on	our	services	we	offer	in	the	cloud	and	any	architecture	addressing
this	 must	 be	 properly	 deal	 with	 scaling	 early	 on	 in	 the	 architectural	 design
process.

9.1.5	Reference	Architecture

Next	we	present	the	Big	data	reference	architecture.	It	is	Depicted	in	Figure	78.
According	to	the	document	(Volume	2)	 the	five	main	components	representing
the	central	roles	include



System	Orchestrator:	Defines	 and	 integrates	 the	 required	 data	 application
activities	into	an	operational	vertical	system;
Data	Provider:	Introduces	new	data	or	information	feeds	into	the	Big	Data
system;
Big	Data	Application	Provider:	Executes	a	 life	cycle	 to	meet	security	and
privacy	requirements	as	well	as	System	Orchestrator-defined	requirements;
Big	 Data	 Framework	 Provider:	 Establishes	 a	 computing	 framework	 in
which	 to	 execute	 certain	 transformation	 applications	 while	 protecting	 the
privacy	and	integrity	of	data;	and
Data	Consumer:	Includes	end	users	or	other	systems	who	use	the	results	of
the	Big	Data	Application	Provider.

In	addition	we	recognize	two	fabrics	layers:

Security	and	Privacy	Fabric
Management	Fabric



Figure	78:	NIST-BDRA	(see	Volume	2)

While	 looking	at	 the	actors	depicted	 in	Figure	79	we	need	 to	be	aware	 that	 in
each	of	the	categories	a	service	can	be	added.	This	is	an	important	distinction	to
the	 original	 depiction	 in	 the	 definition	 as	 it	 is	 clear	 that	 an	 automated	 service
could	act	in	behalf	of	the	actors	listed	in	each	of	the	categories.

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf


Figure	79:	NIST	Roles	(see	Volume	2)

For	a	detailed	definition	wich	is	beyond	the	scope	of	this	document	we	refer	to
the	Volume	2	of	the	documents.

9.1.6	Framework	Providers

Traditionally	cloud	computing	has	started	with	offering	IaaS,	followed	by	PaaS
and	SaaS.	We	see	the	IaaS	reflected	in	three	categories	for	big	data:

1.	 Traditional	 compute	 and	 network	 resources	 including	 virtualization
frameworks

2.	 Data	 Organization	 and	 Distribution	 systems	 such	 as	 offered	 in	 Indexed
Storage	and	File	Systems

3.	 Processing	 engines	 offering	 batch,	 interactive,	 and	 streaming	 services	 to
provide	computing	and	analytics	activities

Messaging	 and	 communication	 takes	place	between	 these	 layer	while	 resource
management	is	used	to	address	efficiency.

Frameworks	 such	 as	 Spark	 and	Hadoop	 include	 components	 form	multiple	 of
these	categories	to	create	a	vertical	integrated	system.	Often	they	are	offered	by
a	service	provider.	However,	one	needs	to	be	reminded	that	such	offerings	may

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf


not	be	 tailored	 to	 the	 individual	use-case	 and	 inefficiencies	 could	be	prevalent
because	the	service	offer	is	outdated,	or	it	is	not	explicitly	tuned	to	the	problem
at	hand.

9.1.7	Application	Providers

The	 underlaying	 infrastructure	 is	 reused	 by	 big	 data	 application	 providers
supporting	services	and	task	such	as

Data	collections
Data	curation
Data	Analytics
Data	Visualization
Data	Access

Through	the	interplay	between	these	services	data	consumer	sand	data	producers
can	be	served.

9.1.8	Fabric

Security	and	general	management	are	part	of	the	governing	fabric	in	which	such
an	architecture	is	deployed.

9.1.9	Interface	definitions

The	interface	definitions	for	the	BDRA	are	specified	in	Volume	8.	We	are	in	the
second	 phase	 of	 our	 document	 specification	 while	 we	 switch	 from	 our	 pure
Resource	descripyion	to	an	OpenAPI	specification.	Before	we	can	provide	more
details	we	need	to	 introduce	you	to	REST	which	is	an	essential	 technology	for
many	moder	cloud	computing	services.



10	AI

10.1	ARTIFICIAL	INTELLIGENCE	SERVICE	WITH	REST	�
☁�
�	{#sec:ai}

10.1.1	Unsupervised	Learning

Keywords:	clustering,	kNN,	Markov	Model

Unsupervised	learning	is	a	learning	method	when	the	training	data	is	not	labeled.
This	problem	could	be	more	challenging	because	we	are	not	supposed	 to	have
pre-knowledge	and	find	patterns	from	the	data.

Unsupervised	 learning	 could	 be	 very	 computing	 intensive	 and	 it	 has	 very
complicated	math	principles,	but	very	useful.	 In	 this	chapter,	we	will	 illustrate
some	most	popular	unsupervised	learning	algorithms	and	raise	examples	how	we
apply	them,	which	includes	KMeans,	k-NN,	Markov	Model	and	others.

It	is	important	to	know	that	unsupervised	learning	is	just	a	way	how	we	look	at
the	 problem.	 Each	 algorithm	 is	 just	 an	 example	 on	 how	we	 solve	 a	 particular
problem.	Before	you	apply	an	algorithm,	attention	should	be	given	to	the	reason
why	we	apply	a	specific	algorithm.

10.1.2	KMeans

KMeans	is	one	of	the	most	straight	forward	unsupervised	learning	algorithms.

slidesAI	(40)	Unsupervised	Learning

10.1.3	Lab:Practice	on	AI

Keywords:	Docker,	REST	Service,	Spark

slides	Practice	on	AI	(40)	REST	services

https://github.com/cloudmesh-community/book/blob/master/chapters/ai/ai.md
https://drive.google.com/file/d/1r62DpK-yK0L_v_KEBnmP6tdLfQFD7Lok/view?usp=sharing
https://drive.google.com/file/d/1pD4zbrFKkS7d6SsxIw33NIoDHQLIedXn/view?usp=sharing


10.1.4	k-NN

k-NN	 is	 a	 non-parametric	 statistical	 method	 meaning	 there	 is	 no	 assumption
made	 about	 the	 distribution	 of	 the	 data.	 Additionally	 the	 distribution	 is	 not
assumed	to	be	fixed	i.e.	the	distribution	may	change	through	time.	These	relaxed
assumptions	make	non-parametric	tests	extremely	valuable	when	applied	to	real-
world	 data	 as	 a	 vast	 majority	 of	 real-world	 data	 have	 dynamic	 distributions
though	 time,	climate	data	 is	an	obvious	example.	Non-Parametric	data	 is	often
ordinal	 which	 means	 the	 variables	 have	 an	 inherent	 categorical	 order	 with
unknown	 distances	 between	 the	 categories.	 A	 common	 example	 of	 a	 non-
parametric	statistical	test	is	the	sign	test	where	values	are	assigned	a	positive	or
negative	sign	based	on	being	above	or	below	 the	median.	 In	k-NN	predictions
are	made	about	unknown	values	by	matching	 the	unknown	values	with	similar
known	 values.	 Naturally	 the	 determination	 of	 ‘similar’	 is	 of	 fundamental
importance.	 This	 is	 done	 through	 the	 application	 of	 the	 Euclidean	 distance
calculation	given	by	Equation	1.

d(i, j)= d(j, i)=√(i1 − j1)2+(i2 − j2)2+...(in − jn)2 =
⎷

n∑
n=1

(in − jn)2

To	 illustrate	 an	 example	 of	 calculating	 similarity	 using	 Equation	 1	 it	 can	 be
determiend	if	a	car	is	fast	or	not	by	using	the	data	in	Table	1.	Lets	pretend	we
know	nothing	about	cars	and	are	asked	if	we	think	a	Chevy	Corvette	 is	fast	or
not.

Car	 make	 and	 model	 with	 associated	 horsepower,	 whether	 the	 vehicle	 has	 a
racing	stripe	and	if	the	author	thinks	the	car	is	fast	or	not	Table	1.

Table	1:	Car	Data

Car	Name Horsepower
(HP)

Racing	Stripe	(Yes
or	No)

Fast	(Yes	or
No)

Toyota	Prius 120 0 0
Tesla	Roadster 288 0 1
Bugatti	Veyron 1200 1 1
Honda	Civic 158 1 0



Lamborghini
Aventador

695 1 1

Now	lets	say	our	friend	wants	to	know	if	a	Ford	Mustang	with	a	racing	stripe	is
fast	 or	 not.	 This	 particular	 friend	 knows	 nothing	 about	 cars	 so	 decided	 to	 put
analytics	to	work.	Since	a	Mustang	has	roughly	300	horse	power	the	closet	car	in
our	 dataset	 to	 this	 is	 the	 Tesla	Roadster	 and	 since	 the	 Tesla	 is	 fast	we	would
predict	 the	Mustang	 to	be	 fast.	Remember	 this	 is	completely	dependent	on	 the
authors	 initial	 classification	 of	 whether	 a	 car	 is	 fast	 or	 not.	 Clearly	 the
Lamborghini	and	 the	Bugatti	are	 fast	but	maybe	 the	Tesla	 is	not	 fast	 therefore
giving	 an	 incorrect	 answer.	 An	 example	 using	 the	 Mustang	 and	 the	 Tesla	 is
given	in	the	next	calculation:

d(i, j)= √(300 − 288)2+(1 − 0)2 = 12.04

We	were	able	to	determine	the	closest,	or	first	nearest	neighbor	by	inspection	of
this	data,	however	with	a	more	robust	dataset	this	may	not	be	the	case.	In	these
situations	 to	 find	 the	 nearest	 neighbor	 the	Euclidean	 distance	 is	 calculated	 for
every	 unique	 row	 entry	 and	 then	 ordered	 from	 smallest	 to	 largest	 distances,
naturally	 the	 smallest	 distances	 are	 the	most	 similar.	You	may	 notice	 that	 the
values	 of	 horsepower	 are	 significantly	 larger	 in	 magnitude	 than	 the	 values
associated	 with	 racing	 stripes.	 This	 could	 be	 problematic	 in	 many	 real	 world
scenarios	where	the	columns	associated	with	large	values	do	not	have	as	direct
of	an	impact	as	horsepower	does	on	the	variable	we	are	trying	to	predict–a	car
being	fast.	In	the	case	where	each	column	value	has	equal	predictive	power	data
normalization	should	be	performed.	This	is	the	process	of	centering	each	column
to	a	mean	of	zero	(0)	and	a	standard	deviation	of	one	(1).	This	is	done	by	taking
the	 column	means	 and	 subtracting	 the	 column	means	 from	 each	 column	 entry
and	dividing	by	the	column	standard	deviation.

Determine	for	yourself	if	we	use	2	nearest	neighbors	what	the	prediction	about
the	 Mustang	 would	 be	 given	 the	 data	 provided	 what	 about	 3,	 4	 nearest
neighbors?	What	is	the	maximum	number	of	k-nearest	neighbors	we	could	have
given	the	dataset	in	Table	1	?

Calculate	 the	 Euclidean	 Distances	 for	 all	 five	 row	 entries	 with	 respect	 to	 the
Mustang.



Normalize	 the	data	and	 recalculate	 the	 first	 and	 second	nearest	neighbors	with
respect	to	the	Mustang.	Does	anything	change?

In	 order	 to	 see	 k-NN	 in	 action	 we	 will	 look	 at	 an	 in	 depth	 example	 using	 a
dataset	 from	 the	 National	 Basketball	 Associated	 (NBA)	 from	 2013,	 naturally
there	are	more	up	to	date	datasets	but	as	sports	analytics	becomes	a	significant
market	more	and	more	data	is	becoming	proprietary.	This	example	will	pick	an
NBA	player	 and	 determine	 the	most	 similar	NBA	player	 in	 the	 dataset	 to	 the
selected	 player	 using	 k	 nearest	 neighbors.	 The	 following	 is	 set	 up	 for	 you	 to
execute	in	a	python	command	prompt	line	by	line	for	instructional	purposes.

The	previous	portion	of	code	uses	pandas	 to	open	the	downloaded	csv	file	and
name	it	nba,	naturally	you	could	name	the	file	anything.	If	you	want	to	view	the
columns	in	the	csv	file	the	following	command	can	be	used.

Now	we	 need	 to	 select	 a	 player	 from	 the	 dataset,	 we	will	 then	 determine	 the
most	similar	player	 to	our	selected	player.	Analysis	 like	 this	 is	becoming	more
and	more	 prevalent	 in	 professional	 sports	 due	 to	 the	 large	 amounts	 of	money
invested	 in	 players.	 Scouts	may	 use	 this	 type	 of	 analysis	 to	 determine	 who	 a
given	prospect	 is	most	 similar	 too.	This	 following	bit	 of	 code	 selects	 a	 player
from	the	dataset.	Notice	that	the	column	player	is	first	selected	followed	by	the
player	name.

The	next	step	is	to	remove	any	non-numeric	columns	from	our	analysis	since	we
are	 using	 the	Euclidean	 distance	 to	 calculate	 proximity	 and	 strings	 can	 not	 be
evaluated	 in	such	a	way.	One	 thing	you	can	do	 if	you	have	columns	 that	have
values	like	yes	and	no	is	assign	zeros	and	ones	accordingly.	In	our	case	we	will
only	select	the	columns	with	numeric	values.

#	This	code	was	adopted	from	Dataquest	-	K	nearest	neighbors	in	Python:

#	Written	by:	Vik	Paruchuri

import	pandas

import	math

with	open("/path/to/the/nba_2013.csv",	'r')	as	csvfile:

				nba	=	pandas.read_csv(csvfile)

print(nba.columns.values)

selected_player	=	nba[nba["player"]	==	"LastName	FirstName"].iloc[0]

numeric_columns	=	['age',	'g',	'gs',	'mp',	'fg',	'fga',	'fg.',	'x3p',

'x3pa',	'x3p.',	'x2p',	'x2pa',	'x2p.',	'efg.',	'ft',	'fta',	'ft.',

'orb',	'drb',	'trb',	'ast',	'stl',	'blk',	'tov',	'pf',	'pts']



We	now	have	everything	we	need	to	calculate	the	Euclidean	distance,	there	are
built	 in	 functions	 available	 in	 python	 to	 calculate	 this	 however	we	will	 define
our	own	as	it	is	a	straight	forward	computation.	It	is	also	good	practice	to	define
your	own	functions	whenever	possible.

Applying	 our	 function	 using	 the	 following	 command	 will	 determine	 the
Euclidean	 distance	 between	 the	 selected	 player	 and	 all	 other	 players	 in	 the
dataset.

For	 sake	 of	 argument	 we	 will	 assume	 that	 all	 the	 data	 columns	 have	 equal
predictive	capabilities	so	we	wish	to	normalize.	This	will	often	be	the	case	with
sports	 statistics	 as	 total	 points	 and	 field	 goal	 percentage	 vary	 in	 magnitude
significantly	 but	 total	 points	 does	 not	 necessarily	 hold	more	 predictive	 power
than	field	goal	percentage.	In	order	to	normalize	we	again	most	only	select	the
the	 numeric	 columns	 and	 text	 columns	 can	 not	 be	 normalized	 in	 the	 way
described	previously.

We	can	now	use	built	in	functions	to	calculate	the	nearest	neighbors	in	order	to
compare	to	our	results	attained	from	the	previous	exercise.	In	case	you	did	not
notice	the	selected_player_distance	array	is	an	array	that	lists	all	the	Euclidean	distances.
We	will	use	this	later	to	see	if	 the	same	result	 is	obtained	by	using	the	built	 in
functions.	First	we	will	import	the	necessary	libraries	shown	in	the	next	code.

If	you	inspected	the	the	selected_player_distance	array	you	would	have	noticed	that	there
were	 several	NaN’s	 present	 this	was	 due	 to	 having	 an	 incomplete	 dataset	 and
must	 be	 avoided.	 The	 following	 bit	 of	 code	 will	 replace	 all	 NA	 entries	 with
zeros.

def	euclidean_distance(row):

				"""

				Define	our	own	Euclidean	distance	function

				"""

				euc_distance	=	0

				for	k	in	numeric_columns:

								euc_distance	+=	(row[k]	-	selected_player[k])	**	2

				return	math.sqrt(euc_distance)

selected_player_distance	=	nba.apply(euclidean_distance,	axis=1)

nba_numeric	=	nba[numeric_columns]

#apply	normalization	formula	using	built	in	python	math

#functions	for	the	mean	and	standard	deviation

nba_normalized	=	(nba_numeric	-	nba_numeric.mean())	/	nba_numeric.std()

from	scipy.spatial	import	distance

nba_normalized.fillna(0,	inplace=True)



Using	the	built	in	Euclidean	distance	to	determine	the	Euclidean	distances	of	all
players	in	the	data	set	to	our	selected	player.

Here	we	create	a	data	frame	to	hold	the	distances	and	then	sort	the	values	from
lowest	 to	highest.	Since	our	player	will	naturally	be	 in	 the	dataset	 the	selected
player	will	be	 the	lowest	value,	 therefore	the	second	lowest	value	is	associated
with	the	player	most	closely	related	to	our	selected	player.

In	the	python	prompt	type:

The	most	similar	player	to	your	selected	player	should	appear.

10.1.5	Machine	Learning	and	Cloud	Services

10.1.5.1	Introduction	and	Regression

This	 video	 lecture	 covers	 logistic	 and	 linear	 regression	 models	 in	 additon	 to
clustering	 models.	 The	 algorithims	 for	 the	 three	 methods	 are	 formalized	 and
solutions	 are	 presented.	 Additionally	 visulization	 techinqies	 are	 introduced
including	WebPlotviz	and	matplotlib.

	Introduction	to	Machine	Learning	for	Cloud	Services	and	Regression	10:55

10.1.5.2	K-means	Clustering

Video	lecture	and	slides	cover	an	introduction	to	K-means	clusters.

	K-means	Clusters	17:15

10.1.5.3	Visulization

	player_normalized	=	nba_normalized[nba["player"]	==	"LastName	FirstName"]

	euclidean_distances	=	nba_normalized.apply(lambda	row:

			distance.euclidean(row,	player_normalized),	axis=1)

distance_frame	=	pandas.DataFrame(data={"dist":	euclidean_distances,

		"idx":	euclidean_distances.index})

distance_frame.sort_values("dist",	inplace=True)

second_smallest	=	distance_frame.iloc[1]["idx"]

most_similar_to_player	=	nba.loc[int(second_smallest)]["player"]

most_similar_to_player

https://www.youtube.com/watch?v=VdgGy0266Sk&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=2&t=0s
https://www.youtube.com/watch?v=aGRdp4TKc4c&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=2


Video	 lecture	and	 slides	cover	data	visulaitzation	 techinques	using	 state	of	 the
science	tools	like	WebPlotViz.

	Data	Visualization	30:10

10.1.5.4	Clustering	Examples

Video	lecture	and	slides	cover	clustering	examples.

	Examples	of	Clustering	5:48

10.1.5.5	General	Clustering	with	Examples

Video	lecture	and	slides	take	a	generalized	apprach	to	clustering	with	examples
from	Dr.	Geoffery	Fox’s	research.

	General	Clustering	and	Research	Examples	22:28

10.1.5.6	In	Depth	Example	with	four	centers

Video	lecture	and	slides	use	1000	data	points	and	four	artifical	centers	to	provide
and	in	depth	example	of	clustering.	Code	provided.

	Example	with	four	centers	20:53

10.1.5.7	Parallel	Computing	and	K-means

Video	 lecture	 and	 slides	 discuss	 parallel	 computing	 using	 K-means	 as	 an
example	 of	 how	 to	 accelerate	 time	 to	 completion	 by	 exploiting	 modern
computing	hardware.

	Parallel	Computing	and	K-means

10.1.6	Example	Project	with	SVM

https://www.youtube.com/watch?v=0WHhFAEwr9c&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=3
https://www.youtube.com/watch?v=_I23XQ-8hLg&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=4
https://www.youtube.com/watch?v=1Tn6LyiIhzw&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=5
https://www.youtube.com/watch?v=T2vssd_P2F4&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=6
https://www.youtube.com/watch?v=RXyktQ5KO48&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=7


The	following	code	is	set	up	as	an	example	project	and	will	show	how	to	use	a
RESTful	 service	 to	 download	 data.	 Additionally	 the	 differences	 between	 a
dynamic	 and	 static	 API	 will	 be	 showcased.	 First	 we	 begin	 by	 importing	 the
appropriate	libraries.

Next	 we	 define	 three	 functions	 required	 to	 run	 this	 example:	 a	 function	 to
download	the	data;	a	function	to	partition	the	data;	and	a	function	to	get	the	data
into	the	appropriate	format	once	downloaded.

Defining	 the	first	API	endpoint	with	 the	following	lines	of	code	will	allow	the
user	to	expose	the	API.	Prove	this	to	yourself	by	opening	a	browser,	preferably
google,	and	following	the	url	next	to	the	code.

Now	Open	the	application	in	your	browser	with

The	 first	 API	 endpoint	 we	 will	 define	 is	 the	 endpoint	 to	 download	 the	 data,

import	requests

from	flask	import	Flask

import	numpy	as	np

from	sklearn.externals.joblib	import	Memory

from	sklearn.datasets	import	load_svmlight_file

from	sklearn.svm	import	SVC

from	os	import	listdir

from	flask	import	Flask,	request

app	=	Flask(__name__)

def	download_data(url,	filename):

				r	=	requests.get(url,	allow_redirects=True)

				open(filename,	'wb').write(r.content)

def	data_partition(filename,	ratio):

				file	=	open(filename,'r')

				training_file=filename+'_train'

				test_file=filename+'_test'

				data	=	file.readlines()

				count	=	0

				size	=	len(data)

				ftrain	=open(training_file,'w')

				ftest	=open(test_file,'w')

				for	line	in	data:

								if(count<	int(size*ratio)):

												ftrain.write(line)

								else:

												ftest.write(line)

								count	=	count	+	1

def	get_data(filename):

				data	=	load_svmlight_file(filename)

				return	data[0],	data[1]

@app.route('/')

def	index():

				return	"Demo	Project!"

if	__name__	==	'__main__':

				app.run(debug=True)

http://127.0.0.1:5000/



which	is	done	by	the	following	lines	of	code.	Note	the	url	is	hardcoded	into	this
portion	of	the	code	as	passing	urls	to	an	API	is	not	good	practice.

The	 following	 three	api	endpoints	use	 the	data	partition	and	get	data	 functions
defined	previously.	The	partition	function	splits	 the	datasets	 into	 two	sections–
testing	and	training.	In	this	example	the	testing	portion	of	the	dataset	is	20	%	and
the	training	is	80	%	of	the	dataset.	Later	we	will	explore	how	to	make	this	part
dynamic,	allowing	the	user	to	choose	the	partitioning	percentage.

The	last	bit	of	code	is	the	implementation	of	SVM	into	a	RESTful	API	endpoint.
Again	 this	 is	 static	 and	 all	 parameters	 needed	 to	 tune	 the	 algorithm	 are
hardcoded.	 It	 will	 be	 worth	 your	 time	 to	 extrapolate	 the	 discussion	 about
dynamic	APIs	in	order	to	make	these	parameters	tunable	by	the	user	through	the
url.

@app.route('/api/download/data')

def	download():

				url	=

				'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/glass.scale'

				download_data(url=url,	filename='iris.scale')

				return	"Data	Downloaded"

@app.route('/api/data/partition')

def	partition():

				data_partition('iris.scale',0.8)

				return	"Successfully	Partitioned"

@app.route('/api/get/data/test')

def	gettestdata():

				Xtest,	ytest	=	get_data("iris.scale_test")

				return	"Return	Xtest	and	Ytest	arrays"

@app.route('/api/get/data/train')

def	gettraindata():

				Xtrain,	ytrain	=	get_data("iris.scale_train")

				return	"Return	Xtrain	and	Ytrain	arrays"

@app.route('/api/experiment/svm')

def	svm():

				Xtrain,	ytrain	=	get_data("iris.scale_train")

				Xtest,	ytest	=	get_data("iris.scale_test")

				clf	=	SVC(gamma=0.001,	C=100,	kernel='linear')

				clf.fit(Xtrain,	ytrain)

				test_size	=	Xtest.shape[0]

				accuarcy_holder	=	[]

				for	i	in	range(0,	test_size):

								prediction	=	clf.predict(Xtest[i])

								print("Prediction	from	SVM:	"+str(prediction)+",	Expected

								Label	:	"+str(ytest[i]))

								accuarcy_holder.append(prediction==ytest[i])

				correct_predictions	=	sum(accuarcy_holder)

				print(correct_predictions)

				total_samples	=	test_size

				accuracy	=

				float(float(correct_predictions)/float(total_samples))*100

				print("Prediction	Accuracy:	"+str(accuracy))



In	order	to	run	this	you	need	to	make	a	directory	in	a	location	of	your	choice	and
create	a	file	called	main.py	that	has	the	code	included	in	it.	Then	simply	type	the
following	command	 in	a	 terminal	where	you	have	navigated	 to	 the	 location	of
the	directory	that	your	created.

A	 continuous	 version	 of	 main.py	 is	 provided	 next	 for	 ease	 of	 use.	 Please	 be
careful	when	copying	and	pasting	as	additional	characters	may	show	up,	this	was
noticed	in	the	url	sections.

				return	"Prediction	Accuracy:	"+str(accuracy)

python	main.py

import	requests

from	flask	import	Flask

import	numpy	as	np

from	sklearn.externals.joblib	import	Memory

from	sklearn.datasets	import	load_svmlight_file

from	sklearn.svm	import	SVC

from	os	import	listdir

from	flask	import	Flask,	request

app	=	Flask(__name__)

def	download_data(url,	filename):

				r	=	requests.get(url,	allow_redirects=True)

				open(filename,	'wb').write(r.content)

def	data_partition(filename,	ratio):

				file	=	open(filename,'r')

				training_file=filename+'_train'

				test_file=filename+'_test'

				data	=	file.readlines()

				count	=	0

				size	=	len(data)

				ftrain	=open(training_file,'w')

				ftest	=open(test_file,'w')

				for	line	in	data:

								if(count<	int(size*ratio)):

												ftrain.write(line)

								else:

												ftest.write(line)

								count	=	count	+	1

def	get_data(filename):

				data	=	load_svmlight_file(filename)

				return	data[0],	data[1]

@app.route('/')

def	index():

				return	"Demo	Project!"

@app.route('/api/download/data')

def	download():

				url	=

				'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/glass.scale'

				download_data(url=url,	filename='iris.scale')

				return	"Data	Downloaded"

@app.route('/api/data/partition')

def	partition():

				data_partition('iris.scale',0.8)

				return	"Successfully	Partitioned"

@app.route('/api/get/data/test')

def	gettestdata():

				Xtest,	ytest	=	get_data("iris.scale_test")



As	mentioned	 previously	 these	 these	 are	 examples	 of	 static	API	 endpoints.	 In
many	scenarios	having	a	dynamic	API	would	be	preferred.	Lets	explore	the	data
partition	endpoint	and	modify	the	code	for	the	static	version	to	make	a	dynamic
version.	The	next	part	 is	 the	function	definition	for	 the	dynamic	version	of	 the
data_partition	function,	and	not	much	has	changed.	The	only	change	made	was
that	stings	were	appended	to	the	testing	and	training	file	names	for	convenience.
The	ratio	will	match	the	user	defined	ratio	entered	through	the	url.

Now	 for	 defining	 the	 endpoint,	 naturally	 it	 starts	 the	 same	 way	 as	 the	 static
version	however	now	we	must	add	a	part	that	allows	for	the	user	to	enter	values.
This	is	done	by	use	of	brackets	<	text	>.

				return	"Return	Xtest	and	Ytest	arrays"

@app.route('/api/get/data/train')

def	gettraindata():

				Xtrain,	ytrain	=	get_data("iris.scale_train")

				return	"Return	Xtrain	and	Ytrain	arrays"

@app.route('/api/experiment/svm')

def	svm():

				Xtrain,	ytrain	=	get_data("iris.scale_train")

				Xtest,	ytest	=	get_data("iris.scale_test")

				clf	=	SVC(gamma=0.001,	C=100,	kernel='linear')

				clf.fit(Xtrain,	ytrain)

				test_size	=	Xtest.shape[0]

				accuarcy_holder	=	[]

				for	i	in	range(0,	test_size):

								prediction	=	clf.predict(Xtest[i])

								print("Prediction	from	SVM:	"+str(prediction)+",	Expected

								Label	:	"+str(ytest[i]))

								accuarcy_holder.append(prediction==ytest[i])

				correct_predictions	=	sum(accuarcy_holder)

				print(correct_predictions)

				total_samples	=	test_size

				accuracy	=

				float(float(correct_predictions)/float(total_samples))*100

				print("Prediction	Accuracy:	"+str(accuracy))

				return	"Prediction	Accuracy:	"+str(accuracy)

if	__name__	==	'__main__':

				app.run(debug=True)

def	data_partition(filename,	ratio):

				file	=	open(filename,'r')

				training_file=filename+'_train_'+str(ratio)

				test_file=filename+'_test_'+	str(ratio)

				data	=	file.readlines()

				count	=	0

				size	=	len(data)

				ftrain	=open(training_file,'w')

				ftest	=open(test_file,'w')

				for	line	in	data:

								if(count<	int(size*ratio)):

												ftrain.write(line)

								else:

												ftest.write(line)

								count	=	count	+	1



@app.route('/api/data/partition/<filename>/ratio/<ratio>')

def	partition(filename,ratio):

				ratio	=	float(ratio)

				path='data/'+filename

				data_partition(path,ratio)

				return	"Successfully	Partitioned"



11	REFERENCES

☁�

[1]	L.	Richardson,	“Beautiful	soup	python	package	overview.”	Web	Page,	2019
[Online].	Available:	https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[2]	C.	WODEHOUSE,	“Should	you	use	mongodb?	A	look	at	the	leading	nosql
database.”	 Web	 Page,	 2018	 [Online].	 Available:
https://www.upwork.com/hiring/data/should-you-use-mongodb-a-look-at-the-
leading-nosql-database/

[3]	Guru99,	 “Introduction	 to	mongodb.”	Web	Page,	 2018	 [Online].	Available:
https://www.guru99.com/mongodb-tutorials.html#1

[4]	 MongoDB,	 “Https://www.mongodb.com/.”	 Web	 Page,	 2018	 [Online].
Available:	https://docs.mongodb.com/manual/introduction/

[5]	M.	Papiernik,	“How	to	 install	mongodb	on	ubuntu	18.04.”	Web	Page,	Jun-
2018	 [Online].	 Available:
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-
ubuntu-18-04

[6]	J.	Ellingwood,	“Initial	server	setup	with	ubuntu	18.04.”	Web	Page,	Apr-2018
[Online].	 Available:	 https://www.digitalocean.com/community/tutorials/initial-
server-setup-with-ubuntu-18-04

[7]	MongoDB,	Databases	and	collections,	4.0	ed.	New	York,	New	York,	USA:
MongoDB	 Inc,	 2008	 [Online].	 Available:
https://docs.mongodb.com/manual/core/databases-and-collections/

[8]	J.	M.	Craig	Buckler,	“Using	joins	in	mongodb	nosql	databases.”	Web	Page,
Sep-2016	 [Online].	 Available:	 https://www.sitepoint.com/using-joins-in-
mongodb-nosql-databases/

[9]	 MongoDB,	 Lookup	 (aggregation),	 3.2	 ed.	 New	 York	 City,	 New	 York,
United	 States:	 MongoDB	 Inc,	 2008	 [Online].	 Available:

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.upwork.com/hiring/data/should-you-use-mongodb-a-look-at-the-leading-nosql-database/
https://www.guru99.com/mongodb-tutorials.html#1
https://docs.mongodb.com/manual/introduction/
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://docs.mongodb.com/manual/core/databases-and-collections/
https://www.sitepoint.com/using-joins-in-mongodb-nosql-databases/


https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/

[10]	MongoDB,	MongoDB	 package	 components	 -	 mongoexport,	 4.0	 ed.	 New
York	City,	New	York,	United	States:	MongoDB	Inc,	2008	[Online].	Available:
https://docs.mongodb.com/manual/reference/program/mongoexport/

[11]	MongoDB,	 Security,	 4.0	 ed.	 New	 York	 City,	 New	 York,	 United	 States:
MongoDB	 Inc,	 2008	 [Online].	 Available:
https://docs.mongodb.com/manual/security/

[12]	 MongoDB,	 “MongoDB	 atlas.”	 Web	 Page,	 2018	 [Online].	 Available:
https://www.mongodb.com/cloud/atlas

[13]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/api

[14]	A.	 J.	 J.	 Davis,	 “Announcing	 pymongo3.”	Web	 Page,	Apr-2015	 [Online].
Available:	https://emptysqua.re/blog/announcing-pymongo-3/

[15]	 M.	 Dirolf,	 “PyMongo.”	 Web	 Page,	 Jul-2018	 [Online].	 Available:
https://github.com/mongodb/mongo-python-driver

[16]	 N.	 Leite,	 “MongoDB	 and	 python.”	 Web	 Page,	 Mar-2015	 [Online].
Available:	https://www.slideshare.net/NorbertoLeite/mongodb-and-python

[17]	V.	Oleynik,	 “How	 do	 you	 use	mongodb	with	 python?”	Web	 Page,	Mar-
2017	 [Online].	 Available:	 https://gearheart.io/blog/how-do-you-use-mongodb-
with-python/

[18]	 I.	 MongoDB,	 “Installing	 /	 upgrading.”	 Web	 pages,	 2008	 [Online].
Available:	http://api.mongodb.com/python/current/installation.html

[19]	 R.	 Python,	 “Introduction	 to	 mongodb	 and	 python.”	 Web	 Page,	 2016
[Online].	 Available:	 https://realpython.com/introduction-to-mongodb-and-
python/

[20]	W3Schools,	“Python	mongodb	create	database.”	Web	Page,	1999	[Online].
Available:	https://www.w3schools.com/python/python_mongodb_create_db.asp

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://docs.mongodb.com/manual/reference/program/mongoexport/
https://docs.mongodb.com/manual/security/
https://www.mongodb.com/cloud/atlas
https://api.mongodb.com/python/current/api
https://emptysqua.re/blog/announcing-pymongo-3/
https://github.com/mongodb/mongo-python-driver
https://www.slideshare.net/NorbertoLeite/mongodb-and-python
https://gearheart.io/blog/how-do-you-use-mongodb-with-python/
http://api.mongodb.com/python/current/installation.html
https://realpython.com/introduction-to-mongodb-and-python/
https://www.w3schools.com/python/python_mongodb_create_db.asp


[21]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/tutorial.html

[22]	 N.	 O’Higgins,	 PyMongo	 &	 python.	 O’Reilly,	 2011	 [Online].	 Available:
http://img105.job1001.com/upload/adminnew/2015-04-07/1428393873-
MHKX3LN.pdf

[23]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/examples/aggregation.html

[24]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	 https://docs.mongodb.com/manual/reference/operator/aggregation-
pipeline/

[25]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	https://docs.mongodb.com/manual/core/map-reduce/

[26]	 MongoDB,	 “PyMongo	 v2.0	 documentation.”	 Web	 Page,	 2008	 [Online].
Available:	https://api.mongodb.com/python/2.0/examples/map_reduce.html

[27]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	https://api.mongodb.com/python/current/examples/copydb.html

[28]	 MongoEngine,	 “MongoEngine	 user	 documentation.”	 Web	 Page,	 2009
[Online].	Available:	http://docs.mongoengine.org/

[29]	 Wikipedia,	 “Object-relational	 mapping.”	 Web	 Page,	 May-2009	 [Online].
Available:	https://en.wikipedia.org/wiki/Object-relational_mapping

[30]	 MongoDB,	 “Flask-mongoengine.”	 Web	 Page,	 2008	 [Online].	 Available:
http://docs.mongoengine.org/guide/defining-documents.html

[31]	 MongoEngine,	 “User	 guide:	 Document	 instances.”	 Web	 Page,	 2009
[Online].	 Available:	 http://docs.mongoengine.org/guide/document-
instances.html

[32]	 MongoEngine,	 “2.1	 installing	 mongoengine.”	 Web	 Page,	 2009	 [Online].
Available:	http://docs.mongoengine.org/guide/installing.html

https://api.mongodb.com/python/current/tutorial.html
http://img105.job1001.com/upload/adminnew/2015-04-07/1428393873-MHKX3LN.pdf
https://api.mongodb.com/python/current/examples/aggregation.html
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/core/map-reduce/
https://api.mongodb.com/python/2.0/examples/map_reduce.html
https://api.mongodb.com/python/current/examples/copydb.html
http://docs.mongoengine.org/
https://en.wikipedia.org/wiki/Object-relational_mapping
http://docs.mongoengine.org/guide/defining-documents.html
http://docs.mongoengine.org/guide/document-instances.html
http://docs.mongoengine.org/guide/installing.html


[33]	MongoEngine,	 “2.2	 connection	 to	 mongodb.”	Web	 Page,	 2009	 [Online].
Available:	http://docs.mongoengine.org/guide/connecting.html

[34]	MongoEngine,	“User	guide	2.5.	Querying	 the	database.”	Web	Page,	2009
[Online].	Available:	http://docs.mongoengine.org/guide/querying.html

[35]	Wikipedia,	“Flask	(web	framework).”	Web	Page,	2010	[Online].	Available:
https://en.wikipedia.org/wiki/Flask_(web_framework)

[36]	 MongoDB,	 “Flask-pymongo.”	 Web	 Page,	 2008	 [Online].	 Available:
https://flask-pymongo.readthedocs.io/en/latest/

[37]	MongoDB,	“Flask	mongoalchemy.”	Web	Page,	2008	 [Online].	Available:
https://pythonhosted.org/Flask-MongoAlchemy/

[38]	 MongoDB,	 “Flask-mongoengine.”	 Web	 Page,	 2008	 [Online].	 Available:
http://docs.mongoengine.org/projects/flask-mongoengine/en/latest/

[39]	 Wikipedia,	 “Flask	 (web	 framework).”	 Web	 Page,	 Oct-2018	 [Online].
Available:	https://en.wikipedia.org/wiki/Flask_(web_framework)

[40]	 R.	 T.	 Fielding	 and	 R.	 N.	 Taylor,	 Architectural	 styles	 and	 the	 design	 of
network-based	 software	 architectures,	 vol.	 7.	 University	 of	 California,	 Irvine
Doctoral	dissertation,	2000.

[41]	 Wikipedia,	 “Representational	 state	 transfer.”	 Web	 Page,	 2019	 [Online].
Available:	https://en.wikipedia.org/wiki/Representational_state_transfer

[42]	 OpenAPI	 Initiative,	 “The	 openapi	 specification.”	 Web	 Page	 [Online].
Available:	 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/2.0.md

[43]	 OpenAPI	 Initiative,	 “The	 openapi	 specification.”	 Web	 Page	 [Online].
Available:	https://github.com/OAI/OpenAPI-Specification

[44]	RAML,	“RAML	version	1.0:	RESTful	api	modeling	language.”	Web	Page
[Online].	 Available:	 https://github.com/raml-org/raml-
spec/blob/master/versions/raml-10/raml-10.md

http://docs.mongoengine.org/guide/connecting.html
http://docs.mongoengine.org/guide/querying.html
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://flask-pymongo.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-MongoAlchemy/
http://docs.mongoengine.org/projects/flask-mongoengine/en/latest/
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md


[45]	 R.	 H.	 Kevin	 Burke	 Kyle	 Conroy,	 “Flask-restful.”	 Web	 Page	 [Online].
Available:	https://flask-restful.readthedocs.io/en/latest/

[46]	 E.	 O.	 Ltd,	 “Django	 rest	 framework.”	 Web	 Page	 [Online].	 Available:
https://www.django-rest-framework.org/

[47]	 S.	 Software,	 “API	 development	 for	 everyone.”	 Web	 Page	 [Online].
Available:	https://swagger.io

[48]	 S.	 Software,	 “Swagger	 codegen	 documentation.”	 Web	 Page	 [Online].
Available:	https://swagger.io/docs/open-source-tools/swagger-codegen/

[49]	 A.	 Y.	 W.	 Hate,	 “OpenAPI.Tools.”	 Web	 Page	 [Online].	 Available:
https://openapi.tools/

[50]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.edureka.co/blog/mapreduce-tutorial/?
utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-
wr&utm_medium=description

[51]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.youtube.com/watch?
v=SqvAaB3vK8U&list=WL&index=25&t=2547s

[52]	 “Apache	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.ibm.com/analytics/hadoop/mapreduce

[53]	 Wikipedia,	 “MapReduce.”	 Aug-2019	 [Online].	 Available:
https://en.wikipedia.org/wiki/MapReduce

[54]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm

[55]	 A.	 Khan,	 “Hadoop	 and	 spark.”	 Aug-2019	 [Online].	 Available:
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark.
[Accessed:	03-Sep-2017]

[56]	 “Apache	 spark	 vs	 hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce/

https://flask-restful.readthedocs.io/en/latest/
https://www.django-rest-framework.org/
https://swagger.io
https://swagger.io/docs/open-source-tools/swagger-codegen/
https://openapi.tools/
https://www.edureka.co/blog/mapreduce-tutorial/?utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-wr&utm_medium=description
https://www.youtube.com/watch?v=SqvAaB3vK8U&list=WL&index=25&t=2547s
https://www.ibm.com/analytics/hadoop/mapreduce
https://en.wikipedia.org/wiki/MapReduce
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce/


[57]	 Twister,	 “Twister2:	 Twister2	 Big	 Data	 Hosting	 Environment:	 A
composable	 framework	 for	 high-performance	 data	 analytics.”	Web	 Page,	 Feb-
2017	[Online].	Available:	https://twister2.gitbook.io/twister2/

[58]	 Twister,	 “Twister2:	 Twister2	 Big	 Data	 Hosting	 Environment:	 A
composable	 framework	 for	 high-performance	 data	 analytics.”	Web	 Page,	 Feb-
2017	[Online].	Available:	https://github.com/DSC-SPIDAL/twister2/

[59]	Twister,	“Twister2	word	count	example.”	Aug-2019.

[60]	 Twister,	 “Task	 examples.”	 Web	 Page,	 Feb-2017	 [Online].	 Available:
https://twister2.gitbook.io/twister2/examples/task_examples

[61]	 Twister,	 “Communication	 Model.”	 Web	 Page,	 Feb-2017	 [Online].
Available:
https://twister2.gitbook.io/twister2/concepts/communication/communication-
model

[62]	S.	Kamburugamuve	et	al.,	“Twister:	Net-communication	library	for	big	data
processing	 in	 hpc	 and	 cloud	 environments,”	 in	 2018	 ieee	 11th	 international
conference	on	cloud	computing	(cloud),	2018,	pp.	383–391.

[63]	 Twister2,	 “Kmeans	 performance	 comparison.”	 Web	 Page,	 Jan-2019
[Online].	Available:	https://twister2.gitbook.io/twister2/

[64]	 Twister,	 “Twister	 Examples.”	 Web	 Page,	 Feb-2017	 [Online].	 Available:
https://twister2.gitbook.io/twister2/examples

[65]	 Docker,	 “Overview	 of	 docker	 hub.”	 Web	 Page,	 Mar-2018	 [Online].
Available:	https://docs.docker.com/docker-hub/

[66]	S.	Bhartiya,	“How	to	use	dockerhub.”	Blog,	Jan-2018	[Online].	Available:
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub

[67]	 Docker,	 “Repositories	 on	 docker	 hub.”	 Web	 Page,	 Mar-2018	 [Online].
Available:	https://docs.docker.com/docker-hub/repos/

[68]	 R.	 Irani,	 “Docker	 tutorial	 series-part	 4-docker	 hub.”	 Blog,	 Jul-2015
[Online].	Available:	 https://rominirani.com/docker-tutorial-series-part-4-docker-

https://twister2.gitbook.io/twister2/
https://github.com/DSC-SPIDAL/twister2/
https://twister2.gitbook.io/twister2/examples/task_examples
https://twister2.gitbook.io/twister2/concepts/communication/communication-model
https://twister2.gitbook.io/twister2/
https://twister2.gitbook.io/twister2/examples
https://docs.docker.com/docker-hub/
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub
https://docs.docker.com/docker-hub/repos/
https://rominirani.com/docker-tutorial-series-part-4-docker-hub-b51fb545dd8e


hub-b51fb545dd8e

[69]	G.	M.	Kurtzer,	“Singularity	Containers	for	Science.”	Presentation,	Jan-2019
[Online].	 Available:	 http://www.hpcadvisorycouncil.com/events/2017/stanford-
workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf#43

[70]	National	Institute	of	Standars,	“NIST	big	data	public	working	group.”	Aug-
2019	[Online].	Available:	https://bigdatawg.nist.gov/

[71]	 LIGO,	 “Ligo	 data	 grid.”	 Sep-2019	 [Online].	 Available:	 https://www.lsc-
group.phys.uwm.edu/lscdatagrid/overview.html

http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf#43
https://bigdatawg.nist.gov/
https://www.lsc-group.phys.uwm.edu/lscdatagrid/overview.html

	1 PREFACE
	1.1 Disclaimer ☁️
	1.1.1 Acknowledgment
	1.1.2 Extensions

	1.2 Contributors ☁️

	2 SYLLABUS
	2.1 e222: Intelligent Systems Engeneering II ☁️
	2.1.1 Teaching and learning methods
	2.1.2 Representative bibliography
	2.1.3 Grading
	2.1.4 Incomplete
	2.1.5 Other classes I423, I523, I524, B649, E516, E616
	2.1.6 Communication
	2.1.6.1 How to take this class

	2.1.7 Covered Topics
	2.1.7.1 Week 1. Overview of this Class
	2.1.7.2 Week 1 and 2. Review of Python for Intelligent Systems Engineering
	2.1.7.3 Week 2. Review of Linux shell for OSX, Linux, and Windows
	2.1.7.4 Week 3. Introduction to REST
	2.1.7.5 Week 4. Introduction to Scientific Writing
	2.1.7.6 Week 5 to 9. Introduction to Cloud Computing
	2.1.7.7 Week 10: Lecture Free Time
	2.1.7.8 Week 11. Introduction to Cloud Platforms
	2.1.7.9 Week 12 to 16. Review of AI for AI-Cloud Computing Integration
	2.1.7.10 Cloud Edge Computing
	2.1.7.11 Alternative Projects


	2.2 Assignments ☁️
	2.2.1 Account Creation
	2.2.2 Sections, Chapters, Examples
	2.2.3 Project
	2.2.3.1 Project Deliverables
	2.2.3.2 Project Topic

	2.2.4 Alternate Project: Virtual Cluster
	2.2.5 Alternative Project: 100 node Raspberry Pi cluster
	2.2.6 Submission of sections and chapters and projects


	3 PYTHON
	3.1 Introduction to Python ☁️
	3.1.1 References

	3.2 Python 3.7.4 Installation ☁️
	3.2.1 Hardware
	3.2.2 Prerequisits Ubuntu 19.04
	3.2.3 Prerequisits macOS
	3.2.3.1 Installation from Apple App Store
	3.2.3.2 Installation from python.org
	3.2.3.3 Installation from Hoembrew

	3.2.4 Prerequisits Ubuntu 18.04
	3.2.5 Prerequisite Windows 10
	3.2.5.1 Linux Subsystem Install

	3.2.6 Prerequisit venv
	3.2.7 Install Python 3.7 via Anaconda
	3.2.7.1 Download conda installer
	3.2.7.2 Install conda
	3.2.7.3 Install Python 3.7.4 via conda


	3.3 Interactive Python ☁️
	3.3.1 REPL (Read Eval Print Loop)
	3.3.2 Interpreter
	3.3.3 Python 3 Features in Python 2

	3.4 Editors ☁️
	3.4.1 Pycharm
	3.4.2 Python in 45 minutes

	3.5 Language ☁️
	3.5.1 Statements and Strings
	3.5.2 Comments
	3.5.3 Variables
	3.5.4 Data Types
	3.5.4.1 Booleans
	3.5.4.2 Numbers

	3.5.5 Module Management
	3.5.5.1 Import Statement
	3.5.5.2 The from … import Statement

	3.5.6 Date Time in Python
	3.5.7 Control Statements
	3.5.7.1 Comparison
	3.5.7.2 Iteration

	3.5.8 Datatypes
	3.5.8.1 Lists
	3.5.8.2 Sets
	3.5.8.3 Removal and Testing for Membership in Sets
	3.5.8.4 Dictionaries
	3.5.8.5 Dictionary Keys and Values
	3.5.8.6 Counting with Dictionaries

	3.5.9 Functions
	3.5.10 Classes
	3.5.11 Modules
	3.5.12 Lambda Expressions
	3.5.12.1 map
	3.5.12.2 dictionary

	3.5.13 Iterators
	3.5.14 Generators
	3.5.14.1 Generators with function
	3.5.14.2 Generators using for loop
	3.5.14.3 Generators with List Comprehension
	3.5.14.4 Why to use Generators?


	3.6 LIBRARIES
	3.6.1 Python Modules ☁️
	3.6.1.1 Updating Pip
	3.6.1.2 Using pip to Install Packages
	3.6.1.3 GUI
	3.6.1.3.1 GUIZero
	3.6.1.3.2 Kivy

	3.6.1.4 Formatting and Checking Python Code
	3.6.1.5 Using autopep8
	3.6.1.6 Writing Python 3 Compatible Code
	3.6.1.7 Using Python on FutureSystems
	3.6.1.8 Ecosystem
	3.6.1.8.1 pypi
	3.6.1.8.2 Alternative Installations

	3.6.1.9 Resources
	3.6.1.9.1 Jupyter Notebook Tutorials

	3.6.1.10 Exercises

	3.6.2 Data Management ☁️
	3.6.2.1 Formats
	3.6.2.1.1 Pickle
	3.6.2.1.2 Text Files
	3.6.2.1.3 CSV Files
	3.6.2.1.4 Excel spread sheets
	3.6.2.1.5 YAML
	3.6.2.1.6 JSON
	3.6.2.1.7 XML
	3.6.2.1.8 RDF
	3.6.2.1.9 PDF
	3.6.2.1.10 HTML
	3.6.2.1.11 ConfigParser
	3.6.2.1.12 ConfigDict

	3.6.2.2 Encryption
	3.6.2.3 Database Access
	3.6.2.4 SQLite
	3.6.2.4.1 Exercises 🅾️


	3.6.3 Plotting with matplotlib ☁️
	3.6.4 DocOpts ☁️
	3.6.5 Cloudmesh Command Shell ☁️
	3.6.5.1 CMD5
	3.6.5.1.1 Resources
	3.6.5.1.2 Installation from source
	3.6.5.1.3 Execution
	3.6.5.1.4 Create your own Extension
	3.6.5.1.5 Bug: Quotes


	3.6.6 cmd Module ☁️
	3.6.6.1 Hello, World with cmd
	3.6.6.2 A More Involved Example
	3.6.6.3 Help Messages
	3.6.6.4 Useful Links

	3.6.7 OpenCV ☁️
	3.6.7.1 Overview
	3.6.7.2 Installation
	3.6.7.3 A Simple Example
	3.6.7.3.1 Loading an image
	3.6.7.3.2 Displaying the image
	3.6.7.3.3 Scaling and Rotation
	3.6.7.3.4 Gray-scaling
	3.6.7.3.5 Image Thresholding
	3.6.7.3.6 Edge Detection

	3.6.7.4 Additional Features

	3.6.8 Secchi Disk ☁️
	3.6.8.1 Setup for OSX
	3.6.8.2 Step 1: Record the video
	3.6.8.3 Step 2: Analyse the images from the Video
	3.6.8.3.1 Image Thresholding
	3.6.8.3.2 Edge Detection
	3.6.8.3.3 Black and white



	3.7 DATA
	3.7.1 Data Formats ☁️
	3.7.1.1 YAML
	3.7.1.2 JSON
	3.7.1.3 XML

	3.7.2 MongoDB in Python ☁️
	3.7.2.1 Cloudmesh MongoDB Usage Quickstart
	3.7.2.2 MongoDB
	3.7.2.2.1 Installation
	3.7.2.2.1.1 Installation procedure

	3.7.2.2.2 Collections and Documents
	3.7.2.2.2.1 Collection example
	3.7.2.2.2.2 Document structure
	3.7.2.2.2.3 Collection Operations

	3.7.2.2.3 MongoDB Querying
	3.7.2.2.3.1 Mongo Queries examples

	3.7.2.2.4 MongoDB Basic Functions
	3.7.2.2.4.1 Import/Export functions examples

	3.7.2.2.5 Security Features
	3.7.2.2.5.1 Collection based access control example

	3.7.2.2.6 MongoDB Cloud Service

	3.7.2.3 PyMongo
	3.7.2.3.1 Installation
	3.7.2.3.2 Dependencies
	3.7.2.3.3 Running PyMongo with Mongo Deamon
	3.7.2.3.4 Connecting to a database using MongoClient
	3.7.2.3.5 Accessing Databases
	3.7.2.3.6 Creating a Database
	3.7.2.3.7 Inserting and Retrieving Documents (Querying)
	3.7.2.3.8 Limiting Results
	3.7.2.3.9 Updating Collection
	3.7.2.3.10 Counting Documents
	3.7.2.3.11 Indexing
	3.7.2.3.12 Sorting
	3.7.2.3.13 Aggregation
	3.7.2.3.14 Deleting Documents from a Collection
	3.7.2.3.15 Copying a Database
	3.7.2.3.16 PyMongo Strengths

	3.7.2.4 MongoEngine
	3.7.2.4.1 Installation
	3.7.2.4.2 Connecting to a database using MongoEngine
	3.7.2.4.3 Querying using MongoEngine

	3.7.2.5 Flask-PyMongo
	3.7.2.5.1 Installation
	3.7.2.5.2 Configuration
	3.7.2.5.3 Connection to multiple databases/servers
	3.7.2.5.4 Flask-PyMongo Methods
	3.7.2.5.5 Additional Libraries
	3.7.2.5.6 Classes and Wrappers


	3.7.3 Mongoengine ☁️
	3.7.3.1 Introduction
	3.7.3.2 Install and connect
	3.7.3.3 Basics


	3.8 CALCULATION
	3.8.1 Word Count with Parallel Python ☁️
	3.8.1.1 Generating a Document Collection
	3.8.1.2 Serial Implementation
	3.8.1.3 Serial Implementation Using map and reduce
	3.8.1.4 Parallel Implementation
	3.8.1.5 Benchmarking
	3.8.1.6 Excersises
	3.8.1.7 References

	3.8.2 NumPy ☁️
	3.8.2.1 Installing NumPy
	3.8.2.2 NumPy Basics
	3.8.2.3 Data Types: The Basic Building Blocks
	3.8.2.4 Arrays: Stringing Things Together
	3.8.2.5 Matrices: An Array of Arrays
	3.8.2.6 Slicing Arrays and Matrices
	3.8.2.7 Useful Functions
	3.8.2.8 Linear Algebra
	3.8.2.9 NumPy Resources

	3.8.3 Scipy ☁️
	3.8.3.1 Introduction
	3.8.3.2 References

	3.8.4 Scikit-learn ☁️
	3.8.4.1 Introduction to Scikit-learn
	3.8.4.2 Installation
	3.8.4.3 Supervised Learning
	3.8.4.4 Unsupervised Learning
	3.8.4.5 Building a end to end pipeline for Supervised machine learning using Scikit-learn
	3.8.4.6 Steps for developing a machine learning model
	3.8.4.7 Exploratory Data Analysis
	3.8.4.7.1 Bar plot
	3.8.4.7.2 Correlation between attributes
	3.8.4.7.3 Histogram Analysis of dataset attributes
	3.8.4.7.4 Box plot Analysis
	3.8.4.7.5 Scatter plot Analysis

	3.8.4.8 Data Cleansing - Removing Outliers
	3.8.4.9 Pipeline Creation
	3.8.4.9.1 Defining DataFrameSelector to separate Numerical and Categorical attributes
	3.8.4.9.2 Feature Creation / Additional Feature Engineering

	3.8.4.10 Creating Training and Testing datasets
	3.8.4.11 Creating pipeline for numerical and categorical attributes
	3.8.4.12 Selecting the algorithm to be applied
	3.8.4.12.1 Linear Regression
	3.8.4.12.2 Logistic Regression
	3.8.4.12.3 Decision trees
	3.8.4.12.4 K Means
	3.8.4.12.5 Support Vector Machines
	3.8.4.12.6 Naive Bayes
	3.8.4.12.7 Random Forest
	3.8.4.12.8 Neural networks
	3.8.4.12.9 Deep Learning using Keras
	3.8.4.12.10 XGBoost

	3.8.4.13 Scikit Cheat Sheet
	3.8.4.14 Parameter Optimization
	3.8.4.14.1 Hyperparameter optimization/tuning algorithms

	3.8.4.15 Experiments with Keras (deep learning), XGBoost, and SVM (SVC) compared to Logistic Regression(Baseline)
	3.8.4.15.1 Creating a parameter grid
	3.8.4.15.2 Implementing Grid search with models and also creating metrics from each of the model.
	3.8.4.15.3 Results table from the Model evaluation with metrics.
	3.8.4.15.4 ROC AUC Score

	3.8.4.16 K-means in scikit learn.
	3.8.4.16.1 Import

	3.8.4.17 K-means Algorithm
	3.8.4.17.1 Import
	3.8.4.17.2 Create samples
	3.8.4.17.3 Create samples
	3.8.4.17.4 Visualize
	3.8.4.17.5 Visualize


	3.8.5 Parallel Computing in Python ☁️
	3.8.5.1 Multi-threading in Python
	3.8.5.1.1 Thread vs Threading
	3.8.5.1.2 Locks

	3.8.5.2 Multi-processing in Python
	3.8.5.2.1 Process
	3.8.5.2.2 Pool
	3.8.5.2.2.1 Synchronous Pool.map()
	3.8.5.2.2.2 Asynchronous Pool.map_async()

	3.8.5.2.3 Locks
	3.8.5.2.4 Process Communication
	3.8.5.2.4.1 Value



	3.8.6 Dask - Random Forest Feature Detection ☁️
	3.8.6.1 Setup
	3.8.6.2 Dataset
	3.8.6.3 Detecting Features
	3.8.6.3.1 Data Preparation

	3.8.6.4 Random Forest
	3.8.6.5 Acknowledgement



	4 DEVOPS TOOLS
	4.1 Refcards ☁️
	4.2 Virtual Box ☁️
	4.2.1 Installation
	4.2.2 Guest additions
	4.2.3 Exercises

	4.3 Vagrant ☁️
	4.3.1 Installation
	4.3.1.1 macOS
	4.3.1.2 Windows 🅾️
	4.3.1.3 Linux 🅾️

	4.3.2 Usage

	4.4 Linux Shell ☁️
	4.4.1 History
	4.4.2 Shell
	4.4.3 The command man
	4.4.4 Multi-command execution
	4.4.5 Keyboard Shortcuts
	4.4.6 bashrc, bash_profile or zprofile
	4.4.7 Makefile
	4.4.8 chmod
	4.4.9 Exercises

	4.5 Secure Shell ☁️
	4.5.1 ssh-keygen
	4.5.2 ssh-add
	4.5.3 SSH Add and Agent
	4.5.3.1 Using SSH on Mac OS X
	4.5.3.2 Using SSH on Linux
	4.5.3.3 Using SSH on Raspberry Pi 3/4
	4.5.3.4 Accessing a Remote Machine

	4.5.4 SSH Port Forwarding 🅾️
	4.5.4.1 Prerequisites
	4.5.4.2 How to Restart the Server
	4.5.4.3 Types of Port Forwarding
	4.5.4.4 Local Port Forwarding
	4.5.4.5 Remote Port Forwarding
	4.5.4.6 Dynamic Port Forwarding
	4.5.4.7 ssh config
	4.5.4.8 Tips
	4.5.4.9 References

	4.5.5 SSH to FutureSystems Resources ☁️
	4.5.5.1 Testing your FutureSystems ssh key

	4.5.6 Exercises ☁️

	4.6 Github ☁️
	4.6.1 Overview
	4.6.2 Upload Key
	4.6.3 Fork
	4.6.4 Rebase
	4.6.5 Remote
	4.6.6 Pull Request
	4.6.7 Branch
	4.6.8 Checkout
	4.6.9 Merge
	4.6.10 GUI
	4.6.11 Windows
	4.6.12 Git from the Commandline
	4.6.13 Configuration
	4.6.14 Upload your public key
	4.6.15 Working with a directory that will be provided for you
	4.6.16 README.yml and notebook.md
	4.6.17 Contributing to the Document
	4.6.17.1 Stay up to date with the original repo
	4.6.17.2 Resources

	4.6.18 Exercises
	4.6.19 Github Issues
	4.6.19.1 Git Issue Features
	4.6.19.2 Github Markdown
	4.6.19.2.1 Task lists
	4.6.19.2.2 Team integration
	4.6.19.2.3 Referencing Issues and Pull requests
	4.6.19.2.4 Emojis

	4.6.19.3 Notifications
	4.6.19.4 cc
	4.6.19.5 Interacting with issues

	4.6.20 Glossary
	4.6.21 Example commands
	4.6.21.1 Local commands to version contril your files
	4.6.21.2 Interacting with the remote


	4.7 Git Pull Request ☁️
	4.7.1 Introduction
	4.7.2 How to create a pull request
	4.7.3 Fork the original repository
	4.7.4 Clone your copy
	4.7.5 Adding an upstream
	4.7.6 Making changes
	4.7.7 Creating a pull request

	4.8 Tig ☁️

	5 Introduction to Cloud Computing and Data Engineering for Cloud Computing and Machine Learning ☁️
	5.1 A. Summary of Introduction to Cloud Computing & Data Engineering
	5.2 B. Defining Clouds I
	5.3 C. Defining Clouds II
	5.4 D. Defining Clouds III
	5.5 E. Virtualization
	5.6 F. Technology Hypecycle I
	5.7 G. Technology Hypecycle II
	5.8 H. Cloud Infrastructure I
	5.9 I. Cloud Infrastructure II
	5.10 J Cloud Software
	5.11 K. Cloud Applications I
	5.12 L Cloud Applications II
	5.13 M Cloud Applications III
	5.14 N. Clouds and Parallel Computing
	5.15 O. Storage
	5.16 P. HPC and Clouds
	5.17 Q. Comparison of Data Analytics with Simulation
	5.18 R. Jobs
	5.19 S. The Future I
	5.20 T. The Future and other Issues II
	5.21 U. The Future and other Issues III

	6 REST
	6.1 Introduction to REST ☁️
	6.1.0.1 Collection of Resources
	6.1.0.2 Single Resource
	6.1.0.3 REST Tool Classification

	6.2 OpenAPI REST Services with Swagger ☁️
	6.2.1 Swagger Tools
	6.2.2 Swagger Community Tools
	6.2.2.1 Converting Json Examples to OpenAPI YAML Models


	6.3 OpenAPI 2.0 Specification ☁️
	6.3.1 The Virtual Cluster example API Definition
	6.3.1.1 Terminology
	6.3.1.2 Specification

	6.3.2 References

	6.4 OpenAPI 3.0 REST Service via Introspection ☁️
	6.4.1 Verification
	6.4.2 Swagger-UI
	6.4.3 Mock service
	6.4.4 Exercise

	6.5 OpenAPI REST Service via Codegen ☁️
	6.5.1 Step 1: Define Your REST Service
	6.5.2 Step 2: Server Side Stub Code Generation and Implementation
	6.5.2.1 Setup the Codegen Environment
	6.5.2.2 Generate Server Stub Code
	6.5.2.3 Fill in the actual implementation

	6.5.3 Step 3: Install and Run the REST Service:
	6.5.3.1 Start a virtualenv:
	6.5.3.2 Make sure you have the latest pip:
	6.5.3.3 Install the requirements of the server side code:
	6.5.3.4 Install the server side code package:
	6.5.3.5 Run the service
	6.5.3.6 Verify the service using a web browser:

	6.5.4 Step 4: Generate Client Side Code and Verify
	6.5.4.1 Client side code generation:
	6.5.4.2 Install the client side code package:
	6.5.4.3 Using the client API to interact with the REST service

	6.5.5 Towards a Distributed Client Server

	6.6 Flask RESTful Services ☁️
	6.7 Rest Services with Eve ☁️
	6.7.1 Ubuntu install of MongoDB
	6.7.2 macOS install of MongoDB
	6.7.3 Windows 10 Installation of MongoDB
	6.7.4 Database Location
	6.7.5 Verification
	6.7.6 Building a simple REST Service
	6.7.7 Interacting with the REST service
	6.7.8 Creating REST API Endpoints
	6.7.9 REST API Output Formats and Request Processing
	6.7.10 REST API Using a Client Application
	6.7.11 Towards cmd5 extensions to manage eve and mongo 🅾️

	6.8 HATEOAS ☁️
	6.8.1 Filtering
	6.8.2 Pretty Printing
	6.8.3 XML

	6.9 Extensions to Eve ☁️
	6.9.1 Object Management with Eve and Evegenie
	6.9.1.1 Installation
	6.9.1.2 Starting the service
	6.9.1.3 Creating your own objects


	6.10 Django REST Framework ☁️
	6.11 Github REST Services ☁️
	6.11.1 Issues
	6.11.2 Exercise


	7 MAPREDUCE
	7.1 Introduction to Mapreduce ☁️
	7.1.1 MapReduce Algorithm
	7.1.1.1 MapReduce Example: Word Count

	7.1.2 Hadoop MapReduce and Hadoop Spark
	7.1.2.1 Apache Spark
	7.1.2.2 Hadoop MapReduce
	7.1.2.3 Key Differences

	7.1.3 References

	7.2 Hadoop ☁️
	7.2.1 Hadoop and MapReduce
	7.2.2 Hadoop EcoSystem
	7.2.3 Hadoop Components
	7.2.4 Hadoop and the Yarn Resource Manager
	7.2.5 PageRank

	7.3 Installation of Hadoop ☁️
	7.3.1 Releases
	7.3.2 Prerequisites
	7.3.3 User and User Group Creation
	7.3.4 Configuring SSH
	7.3.5 Installation of Java
	7.3.6 Installation of Hadoop
	7.3.7 Hadoop Environment Variables

	7.4 Hadoop Virtual Cluster Installation Using Cloudmesh 🅾️ ☁️
	7.4.1 Cloudmesh Cluster Installation
	7.4.1.1 Create Cluster
	7.4.1.2 Check Created Cluster
	7.4.1.3 Delete Cluster

	7.4.2 Hadoop Cluster Installation
	7.4.2.1 Create Hadoop Cluster
	7.4.2.2 Delete Hadoop Cluster

	7.4.3 Advanced Topics with Hadoop
	7.4.3.1 Hadoop Virtual Cluster with Spark and/or Pig
	7.4.3.2 Word Count Example on Spark


	7.5 SPARK
	7.5.1 Spark Lectures ☁️
	7.5.1.1 Motivation for Spark
	7.5.1.2 Spark RDD Operations
	7.5.1.3 Spark DAG
	7.5.1.4 Spark vs. other Frameworks

	7.5.2 Installation of Spark ☁️
	7.5.2.1 Prerequisites
	7.5.2.2 Installation of Java
	7.5.2.3 Install Spark with Hadoop
	7.5.2.4 Spark Environment Variables
	7.5.2.5 Test Spark Installation
	7.5.2.6 Install Spark With Custom Hadoop
	7.5.2.7 Configuring Hadoop
	7.5.2.8 Test Spark Installation

	7.5.3 Spark Streaming ☁️
	7.5.3.1 Streaming Concepts
	7.5.3.2 Simple Streaming Example
	7.5.3.3 Spark Streaming For Twitter Data
	7.5.3.3.1 Step 1
	7.5.3.3.2 Step 2
	7.5.3.3.3 Step 3
	7.5.3.3.4 Step 4
	7.5.3.3.5 step 5
	7.5.3.3.6 step 6


	7.5.4 User Defined Functions in Spark ☁️
	7.5.4.1 Resources
	7.5.4.2 Instructions for Spark installation
	7.5.4.2.1 Linux

	7.5.4.3 Windows
	7.5.4.4 MacOS
	7.5.4.5 Instructions for creating Spark User Defined Functions
	7.5.4.5.1 Example: Temperature conversion
	7.5.4.5.1.1 Description about data set
	7.5.4.5.1.2 How to write a python program with UDF
	7.5.4.5.1.3 How to execute a python spark script
	7.5.4.5.1.4 Filtering and sorting


	7.5.4.6 Instructions to install and run the example using docker


	7.6 ADVANCED HADOOP
	7.6.1 Amazon EMR (Elastic Map Reduce)🅾️ ☁️
	7.6.1.1 Why EMR?
	7.6.1.2 Understanding Clusters and Nodes
	7.6.1.2.1 Submit Work to a Cluster
	7.6.1.2.2 Processing Data

	7.6.1.3 AWS Storage
	7.6.1.4 Create EMR in AWS
	7.6.1.4.1 Create the buckets
	7.6.1.4.2 Create Key Pairs
	7.6.1.4.2.1 Create Key Value Pair Screen shots


	7.6.1.5 Create Step Execution – Hadoop Job
	7.6.1.5.0.1 Screen shots

	7.6.1.6 Create a Hive Cluster
	7.6.1.6.1 Create a Hive Cluster - Screen shots

	7.6.1.7 Create a Spark Cluster
	7.6.1.7.1 Create a Spark Cluster - Screenshots


	7.6.2 Twister2 ☁️
	7.6.2.1 Introduction
	7.6.2.2 Twister2 API’s
	7.6.2.2.1 TSet API
	7.6.2.2.2 Task API

	7.6.2.3 Operator API
	7.6.2.3.1 Resources


	7.6.3 Twister2 Installation ☁️
	7.6.3.1 Prerequisites
	7.6.3.1.1 Maven Installation
	7.6.3.1.2 OpenMPI Installation
	7.6.3.1.3 Install Extras
	7.6.3.1.4 Compiling Twister2
	7.6.3.1.5 Twister2 Distribution


	7.6.4 Twister2 Examples ☁️
	7.6.4.1 Submitting a Job
	7.6.4.2 Batch WordCount Example

	7.6.5 HADOOP RDMA ☁️
	7.6.5.1 Launching a Virtual Hadoop Cluster on Bare-metal InfiniBand Nodes with SR-IOV on Chameleon
	7.6.5.2 Launching Virtual Machines Manually
	7.6.5.3 Extra Initialization when Launching Virtual Machines
	7.6.5.4 Important Note for Tearing Down Virtual Machines and Deleting Network Ports



	8 CONTAINER
	8.1 Introduction to Containers ☁️
	8.1.1 Motivation - Microservices
	8.1.2 Motivation - Serverless Computing
	8.1.3 Docker
	8.1.4 Docker and Kubernetes

	8.2 DOCKER
	8.2.1 Introduction to Docker ☁️
	8.2.1.1 Docker Engine
	8.2.1.2 Docker Architecture
	8.2.1.3 Docker Survey

	8.2.2 Running Docker Locally ☁️
	8.2.2.1 Instillation for OSX
	8.2.2.2 Installation for Ubuntu
	8.2.2.3 Installation for Windows 10
	8.2.2.4 Testing the Install

	8.2.3 Dockerfile ☁️
	8.2.3.1 Specification
	8.2.3.2 References

	8.2.4 Docker Hub ☁️
	8.2.4.1 Create Docker ID and Log In
	8.2.4.2 Searching for Docker Images
	8.2.4.3 Pulling Images
	8.2.4.4 Create Repositories
	8.2.4.5 Pushing Images
	8.2.4.6 Resources


	8.3 DOCKER AS PAAS
	8.3.1 Docker Swarm ☁️
	8.3.1.1 Terminology
	8.3.1.2 Creating a Docker Swarm Cluster
	8.3.1.3 Create a Swarm Cluster with VirtualBox
	8.3.1.4 Initialize the Swarm Manager Node and Add Worker Nodes
	8.3.1.5 Deploy the application on the swarm manager

	8.3.2 Docker and Docker Swarm on FutureSystems ☁️
	8.3.2.1 Getting Access
	8.3.2.2 Creating a service and deploy to the swarm cluster
	8.3.2.3 Create your own service
	8.3.2.4 Publish an image privately within the swarm cluster
	8.3.2.5 Exercises

	8.3.3 Hadoop with Docker ☁️
	8.3.3.1 Building Hadoop using Docker
	8.3.3.2 Hadoop Configuration Files
	8.3.3.3 Virtual Memory Limit
	8.3.3.4 hdfs Safemode leave command
	8.3.3.5 Examples
	8.3.3.5.1 Statistical Example with Hadoop
	8.3.3.5.1.1 Base Location
	8.3.3.5.1.2 Input Files
	8.3.3.5.1.3 Compilation
	8.3.3.5.1.4 Archiving Class Files
	8.3.3.5.1.5 HDFS for Input/Output
	8.3.3.5.1.6 Run Program with a Single Input File
	8.3.3.5.1.7 Result for Single Input File
	8.3.3.5.1.8 Run Program with Multiple Input Files
	8.3.3.5.1.9 Result for Multiple Files

	8.3.3.5.2 Conclusion

	8.3.3.6 Refernces

	8.3.4 Docker Pagerank ☁️
	8.3.4.1 Use the automated script
	8.3.4.2 Compile and run by hand

	8.3.5 Apache Spark with Docker ☁️
	8.3.5.1 Pull Image from Docker Repository
	8.3.5.2 Running the Image
	8.3.5.2.1 Running interactively
	8.3.5.2.2 Running in the background

	8.3.5.3 Run Spark
	8.3.5.3.1 Run Spark in Yarn-Client Mode
	8.3.5.3.2 Run Spark in Yarn-Cluster Mode

	8.3.5.4 Observe Task Execution from Running Logs of SparkPi
	8.3.5.5 Write a Word-Count Application with Spark RDD
	8.3.5.5.1 Launch Spark Interactive Shell
	8.3.5.5.2 Program in Scala
	8.3.5.5.3 Launch PySpark Interactive Shell
	8.3.5.5.4 Program in Python

	8.3.5.6 Docker Spark Examples
	8.3.5.6.1 K-Means Example
	8.3.5.6.2 Join Example
	8.3.5.6.3 Word Count

	8.3.5.7 Interactive Examples
	8.3.5.7.1 Stop Docker Container
	8.3.5.7.2 Start Docker Container Again
	8.3.5.7.3 Remove Docker Container



	8.4 KUBERNETES
	8.4.1 Introduction to Kubernetes ☁️
	8.4.1.1 What are containers?
	8.4.1.2 Terminology
	8.4.1.3 Kubernetes Architecture
	8.4.1.4 Minikube
	8.4.1.4.1 Install minikube
	8.4.1.4.2 Start a cluster using Minikube
	8.4.1.4.3 Create a deployment
	8.4.1.4.4 Expose the servi
	8.4.1.4.5 Check running status
	8.4.1.4.6 Call service api
	8.4.1.4.7 Take a look from Dashboard
	8.4.1.4.8 Delete the service and deployment
	8.4.1.4.9 Stop the cluster

	8.4.1.5 Interactive Tutorial Online

	8.4.2 Using Kubernetes on FutureSystems ☁️
	8.4.2.1 Getting Access
	8.4.2.2 Example Use
	8.4.2.3 Exercises


	8.5 SINGULARITY
	8.5.1 Running Singularity Containers on Comet ☁️
	8.5.1.1 Background
	8.5.1.2 Tutorial Contents
	8.5.1.3 Why Singularity?
	8.5.1.4 Hands-On Tutorials
	8.5.1.5 Downloading & Installing Singularity
	8.5.1.5.1 Download & Unpack Singularity
	8.5.1.5.2 Configure & Build Singularity
	8.5.1.5.3 Install & Test Singularity

	8.5.1.6 Building Singularity Containers
	8.5.1.6.1 Upgrading Singularity

	8.5.1.7 Create an Empty Container
	8.5.1.8 Import Into a Singularity Container
	8.5.1.9 Shell Into a Singularity Container
	8.5.1.10 Write Into a Singularity Container
	8.5.1.11 Bootstrapping a Singularity Container
	8.5.1.12 Running Singularity Containers on Comet
	8.5.1.12.1 Transfer the Container to Comet
	8.5.1.12.2 Run the Container on Comet
	8.5.1.12.3 Allocate Resources to Run the Container
	8.5.1.12.4 Integrate the Container with Slurm
	8.5.1.12.5 Use Existing Comet Containers

	8.5.1.13 Using Tensorflow With Singularity
	8.5.1.14 Run the job


	8.6 Exercises ☁️

	9 NIST
	9.1 NIST Big Data Referenece Architecture ☁️
	9.1.1 Pathway to the NIST-BDRA
	9.1.2 Big Data Characteristics and Definitions
	9.1.3 Big Data and the Cloud
	9.1.4 Big Data, Edge Computing and the Cloud
	9.1.5 Reference Architecture
	9.1.6 Framework Providers
	9.1.7 Application Providers
	9.1.8 Fabric
	9.1.9 Interface definitions


	10 AI
	10.1 Artificial Intelligence Service with REST 🅾️ ☁️
	10.1.1 Unsupervised Learning
	10.1.2 KMeans
	10.1.3 Lab:Practice on AI
	10.1.4 k-NN
	10.1.5 Machine Learning and Cloud Services
	10.1.5.1 Introduction and Regression
	10.1.5.2 K-means Clustering
	10.1.5.3 Visulization
	10.1.5.4 Clustering Examples
	10.1.5.5 General Clustering with Examples
	10.1.5.6 In Depth Example with four centers
	10.1.5.7 Parallel Computing and K-means

	10.1.6 Example Project with SVM


	11 REFERENCES

