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Abstract

We review the authors’ HPJava programming en-
vironment 1, and compare and contrast with systems
like HPF. Because the underlying programming lan-
guage is Java, and because the HPJava programming
model relies centrally on object-oriented run-time de-
scriptors for distributed arrays, the achievable perfor-
mance has been somewhat uncertain. In the latest pub-
lication [15], we have proved that HPJava individual
node performance is quite acceptable. Now the HPJava
performance on multi-processor systems is critical is-
sue. We argue with simple experiments that we can in
fact hope to achieve performance in a similar ballpark
to more traditional HPC languages.

1. Introduction

In the earlier publications such as [6, 5], we argued
that HPJava should ultimately provide acceptable per-
formance to make it a practical tool for HPC. To prove
our arguments, we started benchmarking HPJava on
a single processor (i.e. a node). Why a single node?
There were two reasons why HPJava node performance
was uncertain. The first one was that the base lan-
guage is Java. We believe that Java is a good choice for
implementing our HPspmd model. But, due to finite
development resources, we can only reasonably hope
to use the available commercial Java Virtual Machines
(JVMs) to run HPJava node code. HPJava is, for
the moment, a source-to-source translator. Thus, HP-

1This work was supported in part by the National Science

Foundation Division of Advanced Computational Infrastructure

and Research, contract number 9872125.

Java node performance depends heavily upon the third
party JVMs. The second reason was related to nature
of the HPspmd model itself. The data-distribution di-
rectives of HPF are most effective if the distribution
format of arrays (“block” distribution format, “cyclic”
distributed format, and so on) is known at compile
time. This extra static information contributes to the
generation of efficient node code 2. But, HPJava distri-
bution format is described by several objects associated
with the array—collectively the Distributed Array De-
scriptor. This makes the implementation of libraries
simple and natural.

Thus, from [15], we proved that HPJava node per-
formance is quite acceptable, compared with C, FOR-
TRAN, and ordinary Java: especially Java is no longer
quite slower than C and FORTRAN; it has almost the
same performance. Moreover, we verified if our library-
based HPspmd programming language extensions can
be implemented efficiently in the context of Java.

In this paper, we discuss some features, run-time
library, and compilation strategies including optimiza-
tion schemes for HPJava. Moreover, we experiment on
simple HPJava programs against C, fortran, and Java
programs.

2. HPJava Language

2.1. HPspmd Programming Model

HPJava [10] is an implementation of what we
call the HPspmd programming language model. HP-

2It is true that HPF has transcriptive mappings which allow

code to be developed when the distribution format is not known

at compile time, but arguably these are an add-on to the basic

language model rather than a central feature.
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Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new BlockRange(N, p.dim(0)) ;

Range y = new BlockRange(N, p.dim(1)) ;

double [[-,-]] c = new double [[x, y]] on p ;

double [[-,*]] a = new double [[x, N]] on p ;

double [[*,-]] b = new double [[N, y]] on p ;

... initialize ‘a’, ‘b’

overall(i = x for :)

overall(j = y for :) {

double sum = 0 ;

for(int k = 0 ; k < N ; k++)

sum += a [i, k] * b [k, j] ;

c [i, j] = sum ;

}

}

Figure 1. Matrix Multiplication in HPJava.

spmd programming language model is a flexible hy-
brid of HPF-like data-parallel features and the popu-
lar, library-oriented, SPMD style, omitting some basic
assumptions of the HPF [?] model.

To facilitate programming of massively parallel, dis-
tributed memory systems, it extends the Java language
with some additional syntax and some pre-defined
classes for handling distributed arrays, and with Adlib
[7], the run-time communication library. HPJava sup-
ports a true multi-dimensional array, which is a modest
extension to the standard Java language, and which is a
subset of our syntax for distributed arrays. HPJava in-
troduces some new control constructs such as overall,
at, and on statements.

As mentioned in earlier section ??, our HPspmd pro-
gramming model must be the nifty choice to support
high-performance grid-enabled applications in science
and engineering.

2.2. Features

Figure 1 is a basic HPJava program for a matrix
multiplication. It includes much of the HPJava special
syntax, so we will take the opportunity to briefly re-
view the featues of the HPJava language. The program
starts by creating an instance p of the class Procs2.
This is a subclass of the special base class Group, and
describes 2-dimensional grids of processes. When the
instance of Procs2 is created, P × P processes are se-
lected from the set of processes in which the SPMD

program is executing, and labelled as a grid.
The Group class, representing an arbitrary HPJava

process group, and closely analogous to an MPI group,
has a special status in the HPJava language. For ex-
ample the group object p can parametrize an on(p)

construct. The on construct limits control to processes
in its parameter group. The code in the on construct
is only executed by processes that belong to p. The on
construct fixes p as the active process group within its
body.

The Range class describes a distributed index
range. There are subclasses describing index ranges
with different properties. In this example, we use
the BlockRange class, describing block-distributed in-
dexes. The first argument of the constructor is the
global size of the range; the second argument is a pro-
cess dimension—the dimension over which the range is
distributed. Thus, ranges x and y are distributed over
the first dimension (i.e. p.dim(0)) and second dimen-
sion (i.e. p.dim(1)) of p, and both have N elements.

The most important feature HPJava adds to Java is
the distributed array. A distributed array is a collective
object shared by a number of processes. Like an ordi-
nary array, a distributed array has some index space
and stores a collection of elements of fixed type. Un-
like an ordinary array, the index space and associated
elements are scattered across the processes that share
the array. There are some similarities and differences
between HPJava distributed arrays and the ordinary
Java arrays. Aside from the way that elements of a
distributed array are distributed, the distributed array
of HPJava is a true multi-dimensional array like that
of FORTRAN. Like in FORTRAN, one can form a reg-
ular section of an array. These features of FORTRAN
arrays have adapted and evolved to support scientific
and parallel algorithms.

With a process group and a suitable set of ranges,
we can declare distributed arrays. The type signature
of a distributed array is clearly told by double brackets.
In the type signature of a distributed array, each slot
holding a hypen, -, stands for a distributed dimension,
and a astrisk, *, a sequential dimension. The array c

is distributed in both its dimensions. Besides, Arrays
a and b are also distributed arrays, but now each of
them has one distributed dimension and one sequential
dimension.

The overall construct is another control construct
of HPJava. It represents a distributed parallel loop,
sharing some characteristics of the forall construct of
HPF. The symbol i scoped by the overall construct
is called a distributed index. Its value is a location,
rather an abstract element of a distributed range than
an integer value. The indexes iterate over all locations.
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Procs2 p = new Procs2(2, 3) ;

on(p) {

Range x = new ExtBlockRange(N, p.dim(0)) ;

Range y = new ExtBlockRange(N, p.dim(1)) ;

double [[-,-]] a = new double [[x, y]] on p ;

... initialization for ‘a’

for(int iter=0; iter<count; iter++){

Adlib.writeHalo(a, wlo, whi);

overall(i=x for 1 : N - 2)

overall(j=y for 1+(i‘+iter)%2 : N-2 : 2) {

a[i,j] = 0.25F * (a [i-1,j] + a [i+1,j] +

a [i,j-1] + a [i,j+1]);

}

}

}

Figure 2. Red-black iteration.

It is important to note that (with a few special ex-
ceptions) the subscript of a distributed array must be
a distributed index, and the location should be an ele-
ment of the range associated with the array dimension.
This unusual restriction is an important feature of the
model, ensuring that referenced array elements are lo-
cally held.

We will give another old favorite program, red-black
relaxation. It is still interesting since it is a kernel in
some practical solvers (for example we have an HPJava
version of a multigrid solver in which relaxation it is a
dominantly time-consuming part). Also it conveniently
exemplifies a whole family of similar, local, grid-based
algorithms and simulations.

We can see an HPJava version of red-black relax-
ation of the two dimensional Laplace equation in Fig-
ure 2. Here we use a different class of distributed
range. The class ExtBlockRange adds ghost-regions
[9] to distributed arrays that use them. A library func-
tion called Adlib.writeHalo updates the cached val-
ues in the ghost regions with proper element values
from neighboring processes.

There are a few additional pieces of syntax here.
The range of iteration of the overall construct can be
restricted by adding a general triplet after the for key-
word. The i‘ is read “i-primed”, and yields the integer
global index value for the distributed loop (i itself does
not have a numeric value—it is a symbolic subscript).
Finally, if the array ranges have ghost regions, the gen-
eral policy that an array subscript must be a simple
distributed index is relaxed slightly—a subscript can
be a shifted index, as here. The value of the numeric
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Figure 3. HPJava Architecture.

shift—symbolically added to or subtracted from the
index—must not exceed the width of the ghost regions,
and the index that is shifted must be a location in the
distributed range of the array, as before.

2.3. Run-time Communication Library

In this section, we mention Adlib, the HPJava run-
time communication library, and the mpjdev API [16],
which is designed with the goal that it can be imple-
mented portably on network platforms and efficiently
on parallel hardware. It needs to support communica-
tion of intrinsic Java types, including primitive types,
and objects. It should transfer data between the Java
program and the network while keeping the overheads
of the Java Native Interface as low as practical.

Unlike MPI which is intended for the application de-
veloper, mpjdev is meant for library developers. Ap-
plication level communication libraries like the Java
version of Adlib, or MPJ [4] might be implemented on
top of mpjdev. mpjdev itself may be implemented on
top of Java sockets in a portable network implementa-
tion, or—on HPC platforms—through a JNI interface
to a subset of MPI. The positioning of the mpjdev API
is illustrated in Figure 3.

The initial version of the mpjdev has been targeted
to HPC platforms—through a JNI interface to a sub-
set of MPI. A Java sockets version that provides more
portable network implementation is included in HP-
Java 1.0.
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3. Compilation Strategies for HPJava

In this section, we will see efficient compilation
strategies for HPJava. The HPJava compilation system
consist of three parts; Parser, Type-Analyzer, Transla-
tor, and Optimizer. HPJava adopted JavaCC [12] as a
parser generator. Type-Analyzer, Translator, and Op-
timizer are reviewed in following subsections. Figure 3
is the overall HPJava hierarchy.

3.1. Type-Analysis and Translation

The implementation of type-analysis (i.e. type-
checking) system for the HPJava language has been
the most time-consuming part of implementing the en-
tire system. Since the HPJava language is a superset
of ordinary Java language, HPJava fully supports the
Java Language Specification [13].

In stark distinction to HPF, the HPJava translation
scheme does not require insertion of compiler-generated
communications, making it relatively straightforward.
The most complicated part is ensuring that node code
works independently of the distribution format of ar-
rays. The current translation schemes is documented
in detail in the HPJava manual, called Programming
in HPJava [6], and translation scheme [3].

3.2. Optimization

For common parallel algorithms, where HPJava is
likely to be successful, distributed element access is
generally located inside distributed overall loops.
One main issue optimization strategies must address is
the complexity of the associated terms in the subscript
expressions for addressing local element for distributed
arrays. Optimization strategies should remove over-
heads of the naive translation scheme (especially for
overall construct), and speed up HPJava, i.e. pro-
duce a Java-based environment competitive in perfor-
mance with existing FORTRAN programming environ-
ments.

To eliminate complicated distributed index sub-
script expressions in the inner loops, the HPJava com-
piler will adopt both of Partial Redundancy Elimina-
tion (PRE) algorithm from [14] and Strength Reduction
(SR) algorithm from [2].

PRE is a very important optimization technique to
remove partial redundancies in the program by ana-
lyzing data flow graph that solves code replacements.
PRE is a powerful and proper algorithm for HPJava
compiler optimization since overall loops are the right
locations which have the complexity of the associated
terms in the subscript expressions for addressing local
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Figure 4. Experiment for matrix multiplication
in HPJava with PRE/SR.

element for distributed arrays, and since loop invari-
ants, which are naturally partially redundant, are gen-
erally located in the subscript expression of distributed
arrays. Moreover, PRE should be applied to a general
or Static Single Assignment (SSA) [8] formed data flow
graph after adding landing pads [18], representing entry
to the loop from outside.

SR replaces expensive and slow operations by equiv-
alent, efficient, cheaper, and fast ones on the target
machine. SR is effective to be used to replace computa-
tions involving multiplications and additions with ones
involving only additions. The combination of complex
multiplications and additions are natural to the sub-
script expression of distributed arrays.

Thus, applying PRE/SR to the naively translated
codes could make performance of HPJava faster, and
could have HPJava comparable to C, FORTRAN, and
Java. In the section 4, we will prove leaps of perfor-
mance for HPJava using PRE/SR before adopting the
optimization strategies to HPJava.

4. Experiments

As we mentioned earlier, we proved that HPJava
individual node performance is quite acceptable, and
proved that Java itself can get 70 – 75% of the perfor-
mance of C and FORTRAN from the previous publica-
tion [15]. Moreover, from Figure 4, we can see the dra-
matic result after applying PRE/SR. The results use the
IBM Developer Kit 1.3 (JIT) with -O flag on Pentium4
1.5GHz Red Hat 7.2 Linux machines. Thus, now, we
expect that the HPJava results will scale on suitable
parallel platforms, so a modest penalty in node perfor-
mance is considered acceptable.

First, we experiment HPJava with a simple Laplace
Equation with red-black relaxation on the Sun Solaris
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Figure 5. Laplace Equation with red-black re-
laxation with size of 512 x 512 on Sun Solaris
9 with 8 UltraSPARC III processors.

9 with 8 UltraSPARC III Cu 900MHz Processors and
16GB of main memory.

Figure 5 shows the result of four different versions
(HPJava with PRE/SR optimization, HPJava with naive
translation, FORTRAN, and Java) of red-black relax-
ation of the two dimensional Laplace equation. After
applying PRE/SR for the naive translation, HPJava can
be improved up to 170% of the performance.

Second, The results of our benchmarks use an IBM
SP3 running with four Power3 375MHz CPUs and 2GB
of memory on each node. This machine uses AIX ver-
sion 4.3 operating system and the IBM Developer Kit
1.3.1 (JIT) for the Java system. We are using the
shared “css0” adapter with User Space(US) communi-
cation mode for MPI setting and -O compiler command
for Java. For comparison, we also have completed ex-
periments for sequential Java, Fortran and HPF ver-
sion of the HPJava programs. For the HPF version of
program, it uses IBM XL HPF version 1.4 with xlhpf95
compiler commend and -O3 and -qhot flag. And XL
Fortran for AIX with -O5 flag is used for Fortran ver-
sion.

Figure 6 shows result of four different versions (HP-
Java, sequential Java, HPF and Fortran) of red-black
relaxation of the two dimensional Laplace equation
with size of 512 by 512. In our runs HPJava can out-
perform sequential Java by up to 17 times. On 36 pro-
cessors HPJava can get about 78% of the performance
of HPF. It is not very bad performance for the ini-
tial benchmark result. Scaling behavior of HPJava is
slightly better then HPF. Probably, this mainly reflects
the low performance of a single Java node compare to
FORTRAN. We do not believe that the current com-
munication library of HPJava is faster than the HPF
libray because our communication library is built on

��������	
���������

�

���

���

���

���

����

����

����

����

� � � �� �� ��

������
��
�����  �� 

!
��
�
"
 
# 
�
�

$�% $�&�'� %(�)�*� &�'�

Figure 6. Laplace Equation with red-black re-
laxation with size of 512 x 512 on IBM SP3.

top of the portablity layers, mpjdev and MPI, while
IBM HPF is likely to use a platform specific commu-
nication library. But clearly future versions of Adlib
could be optimized for the platform.

5. Related Works

HPJava is an instance of what we call the HPspmd
model: arguably it is not exactly a high-level paral-
lel programming language in the ordinary sense, but
rather a tool to assist parallel programmers in writing
SPMD code. In this respect the closest recent language
we are familiar with is probably Co-Array FORTRAN
[17], but HPJava and Co-Array FORTRAN have many
obvious differences. In Co-Array FORTRAN, array
subscripting is local by default, or involves a combina-
tion of local subscripts and explicit process ids. There
is no analogue of global subscripts, or HPF-like distri-
bution formats. In Co-Array FORTRAN the logical
model of communication is built into the language—
remote memory access with intrinsics for synchroniza-
tion. In HPJava, there are no communication primi-
tives in the language itself. We follow the MPI phi-
losophy of providing communication through separate
libraries.

6. Conclusions

The main purpose of this paper was to verify if
our library-based HPspmd language extensions can be
implemented efficiently in the context of Java. The
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underlying communication libraries and parallelization
strategies have been proven in other domains of appli-
cation (e.g. [19]). Thus, the emphasis is on demon-
strating that a simple translation scheme for HPJava
can produce efficient HPJava node code.

Now, the first fully functional HPJava is operational
and can be downloaded from [10]. The system fully
supports the Java Language Specification [13], and has
tested and debugged against the HPJava test suites
and jacks [11], an Automated Compiler Killing Suite.
The current score is comparable to that of Sun jdk 1.4
and IBM Developer Kit 1.3.1. This means that the
HPJava front-end is very conformant with Java. The
HPJava test suites includes simple HPJava programs,
and complex scientific algorithms and applications such
as a multigrid solver, adapted from an existing FOR-
TRAN program (called PDE2), taken from the Gene-
sis parallel benchmark suite [1]. The whole of this pro-
gram has been ported to HPJava (it is about 800 lines).
A research application for fluid flow problems, CFD 3

(Computational Fluid Dynamics) has been ported to
HPJava (it is about 1300 lines) as well.
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