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We compare the low-energy partial wave analyses mN scattering with a high-energy data via
finite energy sum rules. We construct a new set of amplitudes by matching the imaginary part from
the low-energy analysis with the high-energy, Regge parametrization and reconstruct the real parts

using dispersion relations.

I. INTRODUCTION

Recent observations of several new hadron resonances,
including states that do not fit quark model expectations,
demonstrate there is a significant discovery potential in
the hadron spectrum [1]. On the theoretical side lattice
gauge simulations have been evolving rapidly and sim-
ulations of hadron scattering will in the future provide
first principle insights into the hadron spectrum and its
QCD origins [2, 3]. The common feature of data anal-
ysis and lattice simulations is that both require deter-
mination of reaction amplitudes. Properties of known
baryon resonances have been extracted from analysis of
pseudoscalar-nucleon scattering and, more recently, from
single and double meson photoproduction [4, 5]. At
present, the properties of the nucleon and delta reso-
nances with masses below ~ 1.7 GeV are quite well-
determined [6] there is, however, a significant number
of high mass resonances with questionable status and/or
poorly known characteristics. Since resonances appear as
singularities of partial wave amplitudes in the complex
energy and/or angular momentum planes, extraction of
resonance parameters requires analytic continuation of
reaction amplitudes outside the experimentally accessi-
ble range of kinematical variables. This in turn implies
that amplitudes should be constrained as much as possi-
ble using principles of the analytic S-matrix [7]. Specifi-
cally, amplitudes reconstructed from the low-energy par-
tial wave analyses, that contain direct channel resonance
dynamics, should smoothly connect with the high-energy
region. The latter carry information about Regge poles
and/or cuts exchanged in cross channels. The possibility
that in the high-energy limit Regge poles dominate over
Regge cuts is particularly attractive given the factoriza-
tion properties of the former.

Practical implementation of matching between the
low- and the high-energy domains explores analyticity of
the reaction amplitude via dispersion relations. A sum-
mary of past work on reggeized partial wave analysis can
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be found, for example in [8, 9]. Dispersion relations
can be used in various ways. For example, the real part
of an amplitude can be computed from the imaginary
part and compared with alternative parameterizations
e.g. Breit-Wigner, K-matrix or Chew-Mandelstam for-
mulas. This approach was adopted by the SAID group
in [10-12]. Another option is, given low-energy ampli-
tudes, to use dispersion relations to extract parameters of
Regge exchanges and compare them with those obtained
from direct fits to the high-energy data. In this paper
we explore both approaches. Specifically, we study dis-
persion relations in energy at fixed momentum transfer
and moments of the amplitudes, i.e. integrals over en-
ergy. Dispersion relations applied to the moments lead
to sum rules, so called finite energy sum rules, (FESR’s)
that relate the low- to the high-energy contributions to
the amplitudes [13]. FESR’s provide stronger constrains
than dispersion relations alone as they represent deriva-
tives of the latter. By choosing appropriate moments,
one can weight differently various domains of the low en-
ergy regions.

We focus our analysis on 7N scattering as it is the
building block for various analyses including multiple me-
son production. Currently the vast majority of analyses
use directly SAID elastic 7N amplitudes [16]. Unfortu-
nately, fine details, such as the Regge parametrization
for the high energy region, are hard to find [10-12].
The purpose of this work is therefore two fold. Given
that, at present, majority of amplitude analyses focus on
the low-energy side we discuss in detail the high-energy
parametrization, fits, and the connection between the
low-energy and the high-energy analyses. We empha-
size application of dispersion relations and FESR’s as
a tool for constraining low-energy amplitudes and ulti-
mately for extraction of resonance parameters. As a re-
sult we can provide a set of amplitudes valid in the high
energy domain that can be used, via dispersion relations
and FESR’s to constrain phase shift analysis in the low
energy region.!

1 A website with on-line tools will be available [44].



The paper is organized as follows. The core of the ap-
proach was developed in [14, 15] and in Sec. II we sum-
marize the relevant parts of the formalism. Description
of amplitudes in the low-energy and in the high-energy
parametrization are given in Sec. IIT A and Sec. IIIB,
respectively. In Section III A we determine the contribu-
tion of the low-energy partial waves to the FESR’s. In
the high-energy fits we determine the p Regge trajectory
parameters from the 7N charge exchange data and use
elastic 7N scattering to determine the Pomeron and the
f2 exchanges. We compare, in Sec. I1I C, the contribution
to FESR’s from our high-energy fits with the contribution
from the low-energy partial waves obtained by SAID [16].
In Section IV we analyze the contribution from the Regge
poles to the sum rules and show how to reconstruct real
parts of the 7 N amplitudes using simultaneously the low-
and the high-energy data. Specifically, we interpolate the
imaginary part between the two domains and reconstruct
the real part using dispersion relations. We compare the
reconstructed partial waves with the input amplitudes
from SAID. We summarize our results and outline future
prospects in Section V.

II. THE FORMALISM
A. Kinematics

We use the standard parametrization of the w/N scat-
tering amplitude, T in terms of scalar functions A and
B [14]

Ty = 01, M) | A+ 5+ 35) B33 | uha,p2). (1)
The scalar amplitudes are functions of the standard Man-
delstam variables, s, t, u, related by s4t+u = 2M?2 4242,
where M and p refer to the nucleon and pion mass,
respectively. In the s-channel, which corresponds to
7N — 7N, s = W? is the square of the total energy
in the center of mass frame and the other two variables,
t and u are related to the scattering angle in this frame.
Except when explicitly stated all quantities are given in
units of GeV. The t-channel corresponds to the reaction
7m — NN. In Eq. (1) the indices b,a and i, j label the
pion and the nucleon isospin, respectively. The A and
B amplitudes can be decomposed in terms of amplitudes
with well defined total isospin in either ¢ or s channel.
In terms of the ¢t-channel isospin amplitudes, denoted by
AM) for isospin-0 and A(™) for isospin-1, the amplitudes
in Eq.(1) are given by

Al = 64005 A +i€pa (7€) ;; AT, (2)

and similarly for the B amplitude. The relations between
the ¢-channel and the s-channel, 7N — 7N, isospin-1/2
and isospin-3/2 amplitudes are,

AB) = A 42400 AB) = A _ A (3)

In the following, however, we will be primarily working
with the t—channel isospin amplitudes. Partial wave ex-
pansion in the s-channel, which will be used below to
parametrize the A and B amplitudes in the nucleon res-
onance region, is written for the so-called reduced helicity
amplitudes, f; and fo, which are related to A, B by
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Here E = (s+ M? — ;%) /2W denotes the nucleon energy
in the s-channel center of mass frame, The partial wave
expansion is given by [17]
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with fy+ being the partial wave amplitudes with parity
(=1)%*! and total angular momentum J = ¢4 1/2. Here,
z = cosfly = 1+ t/2¢® denotes cosine of the s-channel
scattering angle and ¢ = v E2 — M? is the relative mo-
mentum in the s-channel center-of-mass frame. In this
frame, the helicity amplitudes are given by
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where the lower-script &+ stands for the nucleon helicity

+1/2.

At high energies and small angles the reaction is dom-
inated by leading Regge singularities in the t-channel
which are given in terms of the ¢-channel helicity am-
plitudes, i.e.

Tt(ﬂ:)
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and the scattering angle in the ¢-channel, 6, satisfies,
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The amplitudes are normalized in a way that the total
cross section, differential cross section and polarization



asymmetry, are given by
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with piap being the initial pion momentum in the nucleon
rest frame (the lab frame). The A and B amplitudes for
the charge exchange reaction, 7~ p — 7%n are related to
the t-channel isospin amplitudes by,

Al =—V240), B=—-v2 B, (11)

and elastic scattering, 7¥p,

A=A £ 4 B =B B, (12)

B. Finite Energy Sum Rules

The invariant amplitudes A and B are free from kine-
matical singularities. The only singularities are those de-
manded by unitarity, which at fixed-t are the s— and the
u—channel thresholds, and the nucleon pole. This leads
to the dispersion relations which we write for amplitudes
with fixed ¢-channel isospin [14]
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The variable v defined by
s—u t t
= = B, — > — = 14
V=0 lab + 7 Z Mt o =0 (14)

is introduced to account for the s —u crossing symmetry.
In Eq. (14), Ep.p is the pion energy in the nucleon rest
frame and vy = v(Ejp, = p) corresponds to the value
at the 7N threshold. The contribution from the nucleon

pole corresponds to vy = (t — 2u?)/4M. The residue
of the nucleon pole is proportional to the renormalized
7NN coupling constant, g2 ~ 5672. A and B(-)
(A and B™) are even (odd) under crossing. One
often considers dispersion relations for the amplitudes
A'F) and vB&F) . They are proportional to ¢-channel he-
licity amplitudes and thus have the asymptotic limit as
s — oo fixed by the leading Regge singularity of the t¢-
channel partial waves. They correspond to amplitudes
with ¢-channel helicity non-flip (4’) and flip (vB), re-
spectively and with ¢-channel isospin 0 (superscript —)
and 1 (superscript +), respectively.

In what follows we summarize the derivation of the
finite energy sum rules. The derivation applies to A’()
and vBF) | with F standing for either A or vB,
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The nucleon pole lies outside the range of integration
and is given by the first term on the right hand side of
Eq. (15). In the following we focus on the dispersive
part. At fixed-t we approximate the large-v behavior
of the amplitudes by ¢-channel Regge poles. Regge-pole
contribution has the form of
I i

R (v, t) = =B(t) e (16)
where 7 = +1 is the signature. In the physical region
of the ¢t-channel, amplitudes with positive (negative) sig-
nature correspond to exchanges of spin-even (odd) res-
onances, e.g. p exchange has odd signature and the
Pomeron and the f> have positive signatures. In Eq. (16),
a = aft) is the Regge pole trajectory and 8 = S(¢) is
the residue. In the s-channel physical region, both are
smooth functions of t. In the derivation of the FESR it
is assumed that R* is a good approximation to F'* at
high energies, i.e. ¥ > A. The value of A is to be chosen
by comparing with the data. The function R* can be
represented through a dispersive integral,

Ri(y,t):%/ du’ImRi(u’,t)(/l T )
0
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(17)
with Im R*(v) = B(t)v*. Combining Eq. (17) with
Eq. (15) and approximating, for v > A, Im F* by the
Regge amplitude Im R* one finds that for v > A

o0

FE(v,t) = R (v,t) — Z

k=0

L g,

2 We use the value g2 = 567 in our numerical evaluation
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Finally, equating Re F* with Re RT for v > A leads to
the condition Qf(A, t) =0, and therefore,
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with odd (even) k entering the sum rule for F* and
F~, respectively. This sum rule relates integrals over
the imaginary part of the amplitudes F* taken over the
low energy region, v < A on left hand side to the param-
eters of the Regge singularities in the cross-channel on
the right hand side.

III. APPLICATION OF FESR

In this section we evaluate the sum rules. To evaluate
the left hand side (I.h.s.) we use various low energy (v <
A) parametrizations and for the right hand side (r.h.s.)
we use a Regge-pole fit to the high-energy data.

A. Low Energy Parametrization

The left hand side of the FESR in Eq. (19) can be eval-
uated using the low-energy partial wave expansion. The
invariant amplitudes are computed from partial waves
using Egs. (5). In the following we compare amplitudes
obtained by SAID, [16] (specifically the WI80 solution),
Bonn-Gatchina (BoGa) [18], the Julich model [19] (more
precisely, the fit A), and the Karlsruhe-Helsinki (KH80
solution) [20]. The Bonn-Gatchina and Julich analyses
are coupled channel analyses. Their parametrization of
the 1N — 7N channel is determined by fitting the SAID
solution. The BoGa, Julich and KH80 amplitudes are
binned in W, starting from W = 1080 MeV with 5 MeV
bins (BoGa, Julich) and 10 MeV bins (KH80). The SAID
amplitudes are binned in F,p,, starting from Ej,, = 10
MeV with 10 MeV bins. We use cubic spline interpolation
between bins in numerical evaluation of the amplitudes.

The Bonn-Gatchina and Julich analyses include par-
tial waves (c¢f. Eq. (5)) with angular momentum up to
{ =4 and ¢ = 5, respectively, while the SAID and KH80
include waves up to £ = 7. For ¢ outside the physical re-
gion of the s-channel, invariant amplitudes are obtained
by analytical continuation. Continuation outside the s-
channel physical region (|zs] = |cosfs| > 1) based on
a truncated set of partial waves in general produces un-
physical results. At fixed s (or v) invariant amplitudes
obtained this way become less reliable as the magnitude

of zg or t increase. Using the four sets of partial wave
amplitudes we typically find that, as long as 4. < 7,
for s > 1.2 GeV? the contribution to the FESR that orig-
inates from integration over v in the unphysical region is
stable as long as |t| is smaller than 1 GeVZ2. Therefore, in
computation of the left hand side of the FESR we restrict
the range of t to —1 <t < 0 GeV2. Alternative methods
for extending the range of applicability of the truncated
partial wave sum were discussed, for example, in [21]. We
do not follow them here since the simple truncation gives
a stable result when extrapolated to restricted range of
t.

From Eq. (14) it follows that the cutoff A which enters
the expression for Si(A,t), in Eq. (19) depends on the
beam energy Fi., and ¢, A = EJ* +t/4M. All four
partial wave solutions are constrained by data up to (at
least) Flap = 2.1 GeV. In the study of the FESR we
therefore use £ = 2 GeV when determining the cutoff.

The left hand side of the sum rule, Eq. (19) is a func-
tion of t determined by integrals over the low energy
partial waves. The sum rule relates this ¢-dependence
to that of the Regge pole parameters appearing on the
right hand side. For example, vanishing of Si(A,¢) at a
particular value of ¢ on the left hand side would imply
a zero in the residue B(¢), if the right hand side were
dominated by a single Regge pole. In general, however,
the right hand side receives contributions from more than
one Regge-pole and matching ¢ dependencies of the two
sides of the sum rule is not so simple. The Regge pole
parametrization of the right hand side will be discussed
in the following section. Here we comment on the fea-
tures of the t-dependence observed for the left hand side
of the sum rule.

The results obtained for the left hand side of Eq. (19)
for the two lowest moments, Sk (A,t), k =0, 1, using the
four low-energy parametrizations (SAID, KH80, BoGa
and Julich) of for A’#) and vB®) are shown in Fig. 1.
All solutions yield similar Lh.s. for the sum rules. In
Fig. 2 we keep only the SAID model and show the left
hand side of the sum rule for higher moments, with k
up to £ = 5. Inspecting Figs. 1 and 2 we observe the
following.

e The even moments (k = 0,2,4) of the crossing-
odd helicity-flip amplitude ¥B(~) have a zero at
t ~ —0.5 GeV2. If the right hand side of the
sum rule were approximated by a single p pole,
this would imply a zero in the p trajectory residue
B,(t) at t ~ —0.5 GeV2. The p trajectory func-
tion is approximated by a,(t) ~ 0.5 + ¢, which at
t ~ —0.5 GeV? yields a, = 0, i.e. corresponds
to an exchange of a particle with spin-0. For a
helicity-flip amplitude this value of t is referred to
as a nonsense point since a particle of spin-0 can-
not flip helicity at the nucleon vertex. Therefore
the helicity-flip amplitude is expected to vanish at
this point and this can be achieved, for example
if B,(t) oc a,(t) for ¢ near a nonsense value. This
relation is referred to as the sense mechanism [22]
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FIG. 1. (color online) Left hand side of the sum rule, in Eq.(19), computed with k = 0 for crossing odd amplitudes A" and
vB™) and with k = 1 for crossing even amplitudes A’ and vB™) using the four low-energy parametrizations discussed in

the text and Eip* = 2 GeV.

for inserting zero into the amplitude at a nonsense
point.

e The 0-th moment of the crossing-odd helicity non-
flip amplitudes A’() has a zero between t = 0 and
t = —0.1 GeVZ2. The 2-nd and 4-th moments of the
crossing-odd helicity non-flip amplitude A’(7) ex-
hibit also a zero but it appears closer to the point
t = —0.1 GeVZ2. This is consistent with high-energy
phenomenology where one observes a crossover be-
tween 71 p and 7~ p differential cross sections as at
t ~ —0.1GeV?. The crossover is attributed to the
p exchange since an isovector, t-channel exchange
contributes with opposite signs to 7 p and 7~ p am-
plitudes. The difference between differential cross
sections for 77 p and 77 p will therefore change sign
if the p changes sign at ¢t ~ —0.1 GeV?2.

The 1-st moment (k = 1) of the crossing-even he-
licity flip and non-flip amplitudes, A’(*) and vB(+)
have a minimum at ¢t ~ —0.6 GeV?2. These ampli-
tudes involve exchange of the Pomeron and the f;
pole. Both exchanges contribute significantly to the
right hand side of the sum rule. The interpretation
of the minimum is therefore not obvious. As will
be shown in the following section we find that this
minimum appears approximatively at the location

of the signature-even zero of the fy trajectory at
ay = 0. There are theoretical reasons supporting
the vanishing of the f; contribution at this point.
However we haven’t find a satisfactory explanation
for the minimum of the right hand side of the sum
rule.

The odd moments (k = 1,3,5) of the crossing-
even t—channel helicity-flip amplitudes, vB(*) are
quite similar to the corresponding moments of the
t—channel non-flip amplitude A’(+). In other word
the difference A’ — vB is small. At large ener-
gies, the s—channel helicity-flip amplitude is pro-
portional to the difference A’ — vB ~ A and only
the Pomeron and the fo contribute to the am-
plitude, AV = AP + A/ and analogously for
B. The Pomeron is purely helicity non-flip in the
s—channel, i.e. vBY > AP ~ 0. Thus the resid-
ual contribution to A"t) — yB(H) ~ A ~ Af
originates from a small s—channel helicity flip con-
tribution of the f, trajectory i.e. vBf > Af +£ 0.
Based on the above observations we conclude that
the Pomeron and the fy contribute dominantly to
the s-channel helicity non-flip amplitude, or, equiv-
alently, that the isoscalar exchanges contribute
equally to the t—channel helicity flip and non-flip.
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FIG. 2. (color online) Left hand side of the sum rule, in Eq.(19), computed for k up to 5 using the SAID model and Ej 5~

GeV.

Hence, in the high energy region, we will use the
same parametrization for A’(t) and vB().

B. High energy parametrization

In this section we discuss parametrization of the
t—channel helicity amplitudes Eq. (7) for 7N scattering
in the high-energy region. As discussed in the preceding
section, the leading asymptotic behavior of the 7N am-
plitudes involves three ¢t—channel Regge poles P, fo and
p, The first two have positive signature and contribute
to the t-channel isoscalar amplitudes. The p has neg-
ative signature and contributes to the isovector ampli-
tudes. Schematically, displaying only factors originating
from the isospin, amplitudes for the three 7N reactions
of interest are given by

mtp = atp=P+ fo L p, (20a)

T p = m'n = —V2p. (20b)
Regge amplitudes in Eq. (16) with even signature (7 =
+1) have poles at even integer values of a while for odd
signature ( 7 = —1) the poles occur for odd integer val-
ues of a. The poles corresponding to the reggeized p-
exchange are physical if the pole is located at a,(t) > 1
and corresponds to a positive value of t. The unphys-
ical poles located at o, < 0 ought to be canceled by
residue zeros. To remove such nonsense poles one choses
the residue in the form g, o< 1/T'(a,) [26]. In this case,

0.2 04 06

—t(GeV?)

08

=2

for even (odd) integer o < 0, the signature-odd ampli-
tude vanishes (is finite). This pattern of residue zeros
is consistent with FESR for the crossing-odd amplitudes
helicity-flip amplitude vB(~), which, at high-energies, as
discussed in the previous section, is expected to have a
zero at a, = 0. As discussed in the previous section,
the non-flip, isovector amplitude A’(=), however, is ex-
pected to be finite at a, = 0, (corresponding to the
point ¢ ~ —0.5 GeV?). This is achieved by choosing
B, o 1/T(a + 1). Furthermore, vanishing of A’(~) near
t = 0 is observed in the 7%p crossover and we account
for this by multiplying the residue by an additional fac-
tor (14 Cy)e“1t — Cy, with Cy chosen to reproduce the
crossover in w¥n.

With these parametrizations the two ¢-channel isovec-
tor amplitudes are predicted to vanish at the next non-
sense wrong signature point, i.e. at a, = —2, which
is located at t ~ —2.8 GeV?2. Unfortunately this point
is beyond the range of applicability of our study since,
as discussed earlier, truncation of the partial wave series
prevents us from extrapolating the amplitudes to such
large values of [¢|.

The isovector t—channel amplitudes are therefore ap-
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FIG. 3. (color online) 77 p — m°n differential cross sections from Plab=1.969 GeV to piap=199.3 GeV. Scaling factors are

indicated on the figure. The theoretical model includes the p pole (solid line). Data from [23-25].

proximated by the p Regge-pole and are given by

1 P\ ,CPt _ rp in
A = rOP (1+C)em ) 1Vap
0 I(a,+1) 2sinmay,

(21a)
T emimor 1

a,—1
I'(a,) 2sinmay, ’

B = —DpePit (21b)
The energy dependence is chosen such that the differ-
ential cross section behaves as do/dt ~ s*% =2 at large
energies. The relative sign is such that the imaginary
part of A=) and B(~) have the same sign as C§; and D,
respectively.

In the following we use a linear trajectory for the p
pole, a, = 042 + oz;,t. We first determine the parameters
of the p trajectories using only the data on the charge
exchange reaction 7~ p — m%n. Since the parameter Cf
is sensitive to the cross-over between 7~ p and 7 p elastic
scattering, our first fit cannot be used to determine C%.

~1
We then impose the relation C§ = [eo.lcf - 1} such

that the cross over arises at t = —0.1 GeV?.

At this stage, our model for the t-channel p exchange
involves six parameters: magnitudes of the two residues,
CY and D}, two slope parameters, C{ and DY, and the
intercept 042 and the slope a; of the p trajectory. We fix
these parameters by fitting the differential cross section
for the charge exchange reaction 7~p — 7%n using ex-
isting data for pion momentum, p;, > 20 GeV [25]. We
extrapolate the model down to pjap = 2 GeV and com-
pare it to the data on Fig. 3. The results of the fit are
summarized in the second column in Table I.

For piap > 20 GeV corresponding to the energy range
of the data in Ref. [25], the p pole dominates and we can

TABLE I. Regge pole parameters.

T p P f
a3 10.490 + 0.003 1.075 + 0.001 0.490
ay, 10.943 £+ 0.009 0.434 £ 0.002 0.943

o — 0.162 + 0.007 -
C¥| 5.01+0.09 23.89+0.09 71.3540.29)
C¥| 10104+ 0.21 2.214+0.02 3.18 % 0.04
D [128.87 +2.86 - -
7| 1.384+0.07 - -

neglect other contributions like Regge cuts and the p’
daughter trajectory. One can therefore assume a power
law behavior for the energy dependence of the differential
cross section and extract the p trajectory from

1 p2do(pa,t)/dt 1 (Vva
cenl) = 5 loe (pidcr(pb,t)/dt) ot (32) - 2
We compare the effective trajectory extracted from the
data [25] using p, = 150.2 GeV and p, = 199.2 GeV
in Eq. (22) and from our model in Fig. 4. They clearly
agree well as our trajectory is fitted to this data set. The
data support a linear trajectory at least up to the zero
a,(t) = 0. For the determination of the p trajectory at
higher |t|, we refer to the measurement of Refs [27, 28]
using semi-inclusive reaction.
We now turn our attention to the isoscalar Regge poles.
We assume that the isoscalar amplitudes are dominated
by the Pomeron and the f5 poles., i.e.

A = A A BY) = BF 1 B, (23)
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FIG. 4. (color online) p trajectories from our model (blue
solid line) and Barger and Phillips [? ] (green dashed line)
compared to effective trajectory extracted from data with Eq.
(22). We use data at piap, = 20.8 and 199.3 GeV from [25].

The low-energy contribution to the FESR in Fig. 1 indi-
cates that helicity-flip B and helicity non-flip A’(+)
isoscalar t—channel amplitudes are comparable. Phe-
nomenologically the helicity non-flip amplitude A’(+),
proportional to the total cross section, is more con-
strained by the data than the helicity flip amplitude
vB™) . We choose to impose the equality between
t—channel helicity flip and non-flip amplitudes in order
to satisfy the FESR. The first physical particle on the fo
trajectory is the fo(1275) spin-2 meson. To remove the
ghost pole at ay = 0 we use the parametrization

T e*iﬂ(){nﬁ + 1
14

A/]P’ _ 7OP6C]}1’t
0 I'(ap) 2sinmap

a]p, VB]P’ —_ 14/1?’7
(24a)

™ 67747.Taf + 11/0‘f Z/Bf _ A/f'
I'(ay) 2sinmoag

AT = —cf el :
(24b)

We choose the f; trajectory to be degenerate with the p,
ay = a,. The degeneracy between the p and f, trajecto-
ries and residues follows from absence of exotic, isospin-2
mesons, e.g. in 7T scattering [29]. Degeneracy be-
tween the fy and p and absence of ghost poles (ay = 0)
is then consistent with the observed zero in the p residue
at a, =0 ¢f. Eq.(21Db).

The Pomeron trajectory has a special status. There
are no known mesons lying on it, with the exception that
it may be related to the tensor glueball [30]. The tra-
jectory is known to be approximately constant, of ~ 1.
In the following we parametrize it using a second order
polynomial,

ap = af + apt + aft?, (25)

to model the deviation from a straight line observed in
the differential cross section c¢f. Fig. 6. Over the range
of ¢t considered here, the Pomeron trajectory is almost

constant, and whether or not the factor I'(aF) is included
is a matter of taste.

In total we thus have seven parameters describing the
leading t-channel isoscalar Regge poles. Initially we at-
tempted to fix these parameters, just like we did in the
case of isovector exchanges, by fitting the differential
cross section. Since the Pomeron exchange, having the
largest intercept, dominates and at the same time has a
weak t-dependent, we found that the error on the mag-
nitude of the residue was large, of the order of 10%. We
therefore chose to perform a fit of the total cross sections
(keeping only piap, > 5 GeV data) to first determine C(;P o
and af for the Pomeron. The results are shown in Fig. 5.
In the next step, using the differential cross section for
DPlab > 3 GeV we determine the fo and Pomeron slope
parameters Cf”f , and the remaining Pomeron parame-
ters that determine its ¢-dependence, ap and ag. The
comparison with the data is shown in Fig. 6 for pj,;, > 50
GeV. In the fit we use the data from [31-33]. The value
of the parameters is given in columns three and four in
Table L.

80

60+

20+

k=)

Log;o(Piab)

FIG. 5. (color online) Total cross section. Data from [6].

We compare our model with the differential cross sec-
tion at plap = 3,5,6 GeV from Ref. [33] as shown on
Fig. 7. Our amplitudes reproduce the 7*p differential
cross section in whole range of ¢.

In the model the isovector contributions to the helicity
non-flip amplitude is almost negligible. If follows from
Eq. (10c), that with the approximation A’(~) ~ 0 polar-
izations in 7Tp and 7~ p elastic scattering are predicted
to be opposite to each other. This is verified at energies
higher than pjap > 5 GeV, c¢f. as shown in Fig 8.

C. Comparison between low- and high-energy
contributions to the sum rules

Having determined the parameters for the high energy
model we can compute the right hand side of the sum rule
in Eq. (19). The comparison with the left hand side com-
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puted with the SAID solution, and discussed in Sec. ITI A
is shown in Fig. 9. We compare the first three moments
of the amplitudes A’ and vB&). The same cutoff
A = B +t/4M with ETP* = 2 GeV is used in each

sum rule.

The 0-th moment of the t—channel isovector, he-
licity non-flip amplitude, A’(-) changes sign at
t ~ —0.05 GeV? but the 2-nd and 4th of this am-
plitude change sign at t ~ —0.1 GeV2. As we ex-
plained, we included the change of sign at a fixed
t = —0.1 GeV? in the parametrization (21). The 2-
nd and 4th moments of our model for the right hand
side agree well with the left side of the sum rules.
The 0-th moment of our model appears shifted at
small |t| compared to the 0-th moment of the SATD
solution. This displacement might be caused by
sub-leading Regge contributions (e.g Regge cut or
daughters trajectories).

The moments of the t—channel isovector, helicity
flip amplitude, vB(~) presents the same character-
istic as the non-flip amplitude A’(-): the left hand
side of the sum changes sign but for the lowest mo-
ment, the crossing point appears at a smaller value
of [t| than for all the other moments. In our model

for the high energy region of this amplitude, we
included only the dominant p pole with a residue
vanishing at the non-sense point o, = 0. Thus,
the crossing for the right hand side of the sum rule
appears at the same [¢| for all moments. And the
crossing point, given by the p trajectory, t = —0.52
GeV? is in agreement with the 2-nd and 4-th mo-
ments of the SAID solution. As in the non-flip
amplitude, a sub-leading Regge singularity whose
influence would be non-negligible only in the 0-th
moment, could be responsible for this deviation.

e The sum rules for the k = 1,3, 5 moments of A'()
are well satisfied. The high energy parametrization
at t = 0 is largely constrained by the total cross
section.

e As we explained before, ¢f. Eqs (23) and (24), we
imposed the condition ¥B(t) = A’+) at high en-
ergy. We thus have no freedom in the high energy
parametrization of ¥B(*) and the sum rules for the
k =1,3,5 moments are only qualitatively satisfied.
The difference A’ — vB is, at high energy, approx-
imatively the s—channel helicity flip amplitude.
The isoscalar exchanges have small s—channel he-
licity flip amplitude at hight energies [26]. We have
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includes the p, Pomeron and f poles. The data on the top and bottom lines are extracted from Ref.

[33]. The bottom lines,

by presenting the difference between 7~ p and 7 p emphases on the crossover.

neglected this contribution since the data are not
very sensitive to it.

The results discussed above correspond to fixed A =
Erex + t/AM with EfP2* = 2 GeV. We have also in-
vestigated sensitivity to variations in A. The total cross
sections shown in Fig. 5 shows resonance behavior up to
Ey, ~ 1.6 — 2 GeV. At higher energies the total cross
section is smooth and well described by a sum of Regge
poles. The range Ej,p ~ 1.6 — 2 GeV corresponds to the
transition region. The cutoff in energy sum rules should
be chosen in that region. We use A’(*), the amplitude
that seems to best satisfy the FESR to study A depen-
dence. In Fig. 10 we compare both sides of the sum
rule for the £ = 5 moment when EJ}* takes the values
of 1 GeV, 1.5 GeV, 2 GeV and 2.5 GeV. Near the for-
ward direction, the FESR is satisfied only for Ej,, > 1.5
GeV, which confirms the transition between resonances
and Regge pole observed in the total cross section.

IV. THE NEW AMPLITUDES

One can contemplate the following strategy for an im-
proved partial wave analysis that incorporates the high-
energy data. A model is proposed, i.e. as in the SAID
model, for the imaginary part of the amplitudes below
Flap ~ 2 GeV. In this energy range, the model can con-
tain a limited number of partial waves. A different model,
based on Regge exchanges is constructed for Ej,, > 2
GeV. The parameters of the high-energy model are con-
strained by two independent conditions. One is the high
energy data itself, the other is the FESR. The imagi-
nary part of the amplitudes in the whole physical re-
gion v € [y, o] is obtained by interpolating between the
imaginary part of the partial wave series at low energies
and the imaginary part of the Regge model at high en-
ergies. In the intermediate energy range, different tech-
niques, e.g. linear interpolation or conformal mapping
can be used to match the two models. Real parts of the
amplitudes are then reconstructed using dispersion rela-
tions.
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FIG. 8. (color online) 7tp — ntp polarization. The theoretical model (solid line) includes the p, Pomeron and f poles. Data

from [34-36].

A. Fixed-t Analysis

In the following we illustrate this procedure using the
SAID model at low energies v < v 1.5 GeV, and
the Regge model described in Sec. III B at high energies,
v > vy = 2.1 GeV. Between v, and vy, we use a lin-
ear interpolation. This simple method of connecting the
two regions is enough for our purpose since the imaginary
part of the amplitudes will be integrated in the disper-
sion relations. The resulting imaginary parts are shown
Fig. 11.

We reconstruct the real parts from the dispersion rela-
tions (15). In the case of A’(*), because of the Pomeron,
the imaginary part grows like Im A’(+) ~ p1:975 at high
energy. The integrand in the dispersion relation there-
fore needs a subtraction. We choose to match the real
part of the reconstructed A’(+) with the real part of the
SAID amplitude at s = 1.5 GeVZ2.

In Fig. 12 we compare the real part of the new am-
plitudes and with those of SAID for t = 0 and ¢t =
—0.3 (GeV?). All four amplitudes globally agree. As
expected the difference decreases as t decreases because
the FESR is better satisfied.

In this study the high energy model was only con-
strained by the data and not the FESR. This can be
improved by imposing both constraints simultaneously.

B. Partial Waves

Now than we have determined the real part of our
new amplitudes, we now turn our attention to the par-
tial waves. Inversion of the formulas in Eq. (5) requires
knowledge of the amplitudes in the whole angular domain
cosf € [—1,1]. However, our study focused on t—channel
Regge poles near the forward direction at high energy
and we estimated the domain of application of this ap-
proximation to be 0 < —t < 1 GeV?2 for pr.p, > 3 GeV.
We are, therefore, limited to the region W < 1.6 GeV
(to = —4q>,,. = 1 GeV?) for the reconstruction of the
partial waves. We will nevertheless perform the partial
waves expansion of our Regge model up to W =4 GeV,
keeping in mind that above W = 1.6 GeV we are ex-
trapolating our Regge amplitudes outside the domain
[t] <1 GeVZ.

TABLE II. Regge pole parameters for the partial wave inver-
sion.

x p P f

a2 10.490 + 0.003 1.075 £ 0.001 0.490
ay, [0.943 +0.009 0.421 + 0.003 0.943
ol - - -
Cy| 5.01£0.09 23.89=+0.09 71.35+0.29
CT| 10.10£0.21 1.95+0.02 3.84 £0.05
D{§ [128.87 £ 2.86 - -
Df| 1.38+£0.07 — —
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Having at hand a model for the high-s, low-t region
we can extrapolate it to the whole physical domain and
compare the reconstructed partial waves to SAID par-
tial waves. We note, however, that we need to use a

0‘.2 1.0

—t(GeV?)

Solid lines: right hand sides (low energy from SAID) ; dashed line:

linear trajectory for the Pomeron. Otherwise it would
lead to an unphysical pole ap(t) > 0 for negative ¢. The
non linear term was supposed to model deviations from
a straight line only for large |¢|. We therefore perform an
alternative fit of elastic 7*p scattering differential cross
section with a linear trajectory for the Pomeron. The
parameters are given in Table II. The difference with the
original parametrization is only the parameters af, CF

and C{ governing the t—dependence of the isoscalar ex-
changes. As can be seen in Fig. 6, the differences between
the two models are significant only at large |t|. The ob-
tained partial waves should therefore be a faithful repre-
sentation of the true wave at least above /s > V5 GeV.
The partial waves obtained with only the Regge model
are compared to SAID partial waves on Fig. 13 and 14.
The high spin partial waves of the Regge model in the
transition region W = 2 — 2.5 GeV are globally lower
than SAID partial waves.

V. SUMMARY AND FUTURE DIRECTIONS

Finite energy sum rules were derived and applied for
wN charge exchange in the forward direction in the
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past [37-39]. FESR’s were later applied at finite-¢ in we note that we compare the r.h.s. of the FESR with

charge exchange mN to predict the p exchange parame-
ters [13, 40]. More recently, the Bonn-Julich group com-
pared their Regge amplitudes and SAID amplitude in the
intermediate region [41, 42]. The agreement is better for
the spin flip amplitude compared to that for the non-flip.
The disagreement in the non flip amplitude may be re-
lated to the constraint on the residue being proportional
to the trajectory. As we saw in Sec. IIT A the zero in the
non flip amplitudes is responsible for the cross over in
7n%p and appears at small |t| and not at the zero related
to the wrong signature point o, = 0.

In this work we investigated the possibility of imple-
menting the FESR constraints on a global fit to data. We
first computed the finite energy sum rules from various
solutions. They all displayed the same features. Guided
by these results, we parametrized the high energy re-
gion with amplitudes involving the exchange of t-channel
poles. The Pomeron and fo contributions to the A’(+)
amplitude, with their magnitude constrained by the to-
tal cross section and their t—dependence constrained by
this differential cross-section, satisfy the FESR very well.
The FESR for the B(™) amplitude is not as well satisfied
since we imposed the relation vB(t) = A’+) in the high
energy region. The difference between the two side of
the sum rules for vB(*) is however small. In addition

the l.h.s taken from SAID. When computed using other
solutions, presented in Fig. 1, the r.h.s. of the sum rule
seems in better agreement with our l.h.s.. The sum rule
for the dominant isovector amplitude vB(~) is also very
well satisfied. The largest relative deviations between the
two sides of the sum rule are observed in the smallest am-
plitude A’(-). In particular the lowest moment of the left
side of the sum rule for A’(-) displays a change of sign at a
different ¢ with respect to its other moments. As we chose
to reproduce the change of sign of the highest moments,
the FESR for the lowest moment is not so well satisfied.
In summary, an independent fit of the high energy data
yield FESR’s globally satisfied for the four amplitudes.
There are nevertheless room for improvement.

The transition region between resonances and Regge
exchanges is found to be Ej,, ~ 1.6 — 2 GeV. We joined
the imaginary parts of the amplitudes in the two regions
and defined new amplitudes in the whole energy range
and for small angles. The real parts of these new ampli-
tudes are reconstructed from the dispersion relation. The
real parts compare well with the original SAID solution
as shown in Fig. 12.

In practice, one would implement the analyticity con-
straints and dispersion relations in an iterative proce-
dure. Pietarinen [43] applied such a method, based on
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conformal mapping, to 7N charge exchange and elastic
scattering. Nowadays, SAID uses dispersion relations to
constrain the real parts of the amplitudes [10-12]. We
expect that our Regge parametrization will help to im-
plement, in a systematic way finite energy sum rules in
pion-nucleon scattering and also paves the way for simi-
lar implementation in other reactions. With this aim, all
the material, including data and software are available in
an interactive form online [44].
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FIG. 13. (color online) Comparison between SAID (solid lines) and Regge model (dashed lines) partial waves. The z—axis

W in GeV.
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