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1 Summary 
Problem Statement 

Cloud computing is an emerging approach to distributed computing.  It is related to many 
other approaches in this general field, including Message Passing Interface-based parallel 
computing, Grid computing, and Service Oriented computing.  Not surprisingly, the 
discussion of the various approaches often becomes a confused debate.  It is crucial to 
provide understanding and bring some clarity on the types of computing, in particular, 
sensor-based problems for which Cloud computing is appropriate and also identify some 
limits. Cloud computing infrastructure is of particular interest to sensor-based 
applications in at least three areas: data-parallel processing, real-time stream processing, 
and on-demand emergency response. There is thus an opportunity for sensor grids to 
provide important use cases that help clarify the capabilities that a general-purpose, end-
to-end cyberinfrastructure deployment should provide.  

Sensor technology plays critical roles in supporting war fighters and military personnel as 
they engage in operations that could be high stress and life threatening.  Scenarios and 
systems in which there are large groupings of sensors reporting huge quantities of 
potentially sensitive data, and the need to perform large amounts of processing or 
computation on this data with large cloud computing installations are considered. 
Further, there are adversaries who have a vested interest in either learning 
information from the system, modifying the results finally output from the system  
(be it through modification of the sensor input, filtering or processing of data), or 
denying access to the system.  All aspects of these systems and the environment in 
which some parts of the system operate are susceptible to attack.  It is critical to be 
able to provide reliable results computed from sensor data, in a manner that enables 
one to make educated decisions on the reliability of that data based on 
trustworthiness metrics, while simultaneously preventing the loss of data-secrecy or 
integrity.    The problem of trustworthiness of sensor data in clouds has many pieces, 
interconnecting with one another.  It is necessary to be able to evaluate the coupling of 
clouds and trustworthiness issues with sensor grids. 

Results 
In our research on cloud computing technology, we evaluated the use of open source 
cloud software including Nimbus and Eucalyptus, cloud as a hosting infrastructure for 
message-oriented Grid of Grid software, cloud runtime tools including Hadoop, Dryad 
and MapReduce for data-parallel processing, and cloud runtime environment for sensor 
grid.  It is our current findings that there is no national scale infrastructure to provide the 
foundation for the comprehensive cyberinfrastructure vision of "infrastructure as a 
service" in today's cyberinfrastructure. The current flagship cyberinfrastructure 
deployments in the US are dominated by the requirements of closely coupled, high-end, 
high performance computing.  This computing infrastructure is not well suited for many 
sensor-based applications, which are dominated by data-driven applications, and is also 
ill suited for emergency response, a major application area for sensor grids.  Arguably, 
emerging programs such as the NSF DataNet may address the data-centric needs of 
cyberinfrastructure that are crucial to much of sensor grids, such as long-term storage and 
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preservation of observational and experimental data and their processing pipelines, but 
this program is in its earliest stages.   
 
Side channel analysis has long been known to be a serious threat to information 
confidentiality.  With a sensor grid system both the communication between the sensors 
and the grid and that between the grid and clients are subjected to this threat.  Our 
preliminary research shows that the design of web or cloud application, which is built 
upon the interactions between its client component and server component, makes them 
vulnerable to traffic analysis. Techniques can be developed to infer the internal states of 
these applications and the data associated with them by looking at the attributes such as 
packet size, directions and numbers of the traffic between its two components. In our 
work we developed a model to analyze side-channel weakness in Web applications. For 
experimental purposes seven high profile, top-of-the-line Web applications were tested 
and founded side-channel vulnerabilities in all of them.  We evaluated the effectiveness 
and the overhead of applying common mitigation techniques. Our research shows 
effective mitigations of side-channel leakage threats have to be application-specific. We 
proposed the first technique for automatic detection of side-channel leaks in Web 
applications, and offered novel solutions to the challenges associated with the extensive 
use of AJAX and GUI widgets.  We developed a novel technique for quantifying the 
side-channel leaks in Web applications. The new technique can measure not only the 
information disclosed from a single tainted source but also that aggregated from multiple 
sources. We designed and implemented a preliminary detection and mitigation 
framework for analyzing Web applications and a platform for Web application 
developers to specify privacy policies, upon which Web browsers and servers collaborate 
to enforce such policies. 
 
To understand the threat space of malware on mobile sensors, we explored various attack 
scenarios on mobile sensors container using an easily obtainable Android smartphone as 
a sample sensors container.  While traditional malware defenses focus on protecting 
resources on computers we are specifically interested in the new class of attacks where 
sensory malware uses onboard sensors to steal information from the user’s physical 
environment.  Overt channels between components on an Android phone or covert 
channels between related malware applications are viable vectors for leaking sensitive 
data to adversaries.  In our research we developed novel techniques to demonstrate that 
smartphone-based sensor container malware could easily be made to be aware of the 
context of a voice conversation, which allows it to selectively collect high-value 
information. We studied various channels on the Android smartphone as a mobile sensors 
container platform that can be used to bypass existing security controls, and different 
types of covert channels.  We designed and implemented a sensory malware called 
Soundminer to evaluate our techniques to show a stealthy attack of this type is possible. 
We identified security measures that could be used to mitigate this threat; and designed 
and implemented a defensive architecture that prevents any application from recording 
audio to certain phone numbers specified by privacy policies. 
 
A key issue of trusting data from a sensor grid is to ensure that the sensors themselves 
can be trusted. If the sensor is in the possession of a trusted individual, then it is more 
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likely that it is reporting an honest or legitimate environmental picture, and not one that 
has been manipulated with the goal of producing faulty results that get incorporated into 
final computation.  If the sensor is stolen or otherwise not in the possession of its 
intended owner the environmental picture that the sensor reports may be altered, and thus 
data collected untrustworthy.  For experimental purposes an Android smartphone was 
used as a mobile device that contains a number of different environmental sensors.  Our 
work uses machine-learning techniques and the sensors of a smartphone to estimate the 
likelihood that the legitimate user is in possession of mobile sensor container; in this case, 
the smartphone.  Hidden Markov Models is used to learn daily location routines.  As 
behavior becomes learned the model can begin to determine the likihood that the 
immediate history of the smartphone’s location indicates normal or abnormal behavior, 
producing a trustworthiness metric.  We developed GPS sensor data collector, GPS 
sensor Hidden Markov Model, GPS risk predictor based on the Hidden Markov Model, 
and completed GPS risk metric theft model evaluation. We also completed a Bluetooth 
GPS sensor data collector and Bluetooth GPS entropy-based risk predictor as well as a 
linear risk aggregator.  Data in the Reality Mining Dataset from MIT Reality Mining 
Labs was used to train the Hidden Markov Models. Our preliminary finding indicates that 
giving longer time to detect anomalous behavior results in better accuracy. However, the 
longer time we allow to detection, the greater risk of compromise of the mobile sensors 
container. 
   
Conclusions 
In this report, we have surveyed major concepts in Cloud Computing and have 
considered the requirements for scientific computing on Clouds.  We have specifically 
considered the application of Clouds to sensors, sensor data, and sensor pipelines.    We 
reviewed Cloud Computing's "Infrastructure as a Service" and "Software as a Service" 
models.  We illustrated these requirements using two small projects developed in a pre-
Cloud fashion: the Flood Grid and Polar Grid projects. Our key observation is that 
Clouds grant more control over the environment to developers through virtualization. 
This allows, for example, developers to install and control their own software without 
worrying about version conflicts with developers on unrelated projects. MapReduce, a 
common programming model for clouds, does provide a powerful way to do some sensor 
and geospatial computing tasks (particularly image processing), but its current 
implementations (such as Apache Hadoop) are poor fits for geospatial problems that are 
not file-based, particularly those closely tied to relational database applications.  
Extending MapReduce implementations and other “Software as a Service” tools to 
introduce data base concepts is an active area of research. 
 
Sensor grids and sensor processing pipelines are important subsets of general distributed 
computing research.  We have shown that a number of sensor grid infrastructure 
requirements, such as service hosting, virtual clusters, and virtual data sets map well to 
Cloud Computing's "Infrastructure as a Service" model. We also examined modeling and 
processing services with data-file parallelism (such as image processing pipelines), which 
are examples of common Cloud Computing "Software as a Service" models such as map-
reduce. Cloud computing models still need to be applied to a broader class of sensor grid 
problems. 
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Large commercial vendors dominate Clouds, but there is a growing collection of open 
source software that can be used to build research clouds.  A challenge for core 
Cyberinfrastructure research will be to investigate and document open architecture Cloud 
systems. Sensor grids can and should provide a wide range of important test cases. 
 
It offers a very easy to implement application development interface for integrating 
legacy or new third-party applications with a sensor grid to add crucial grid situational 
awareness capability.  It also provides a concise layered sensor service abstraction for 
easy integration and deployment of new sensors as a grid resource to enhance grid 
situational awareness. 
 
We reported the significant findings of side-channel leak vulnerability of a broad-based 
Web and Cloud applications, and audio sensory malware vulnerability of a class of 
smartphones as mobile sensors container.  We proposed mitigation architectures and 
strategies to address our reported vulnerability findings. 
 
This phase of the Sensor Grid research has been valuable in laying the foundation to 
building a robust functioning sensor grid that incorporates various aspects of 
trustworthiness.  Some practical achievements were made by working with the sensor 
grid middleware SCGMMS. Feedbacks on user experience could facilitate improvements 
in the mobility and portability of the sensor grid middleware interface to support more 
efficient operation of mobile devices and smartphone as a mobile sensors container, 
mobile and stationary sensors, and small portable processors such as GumStix. A 
recommended next step is to move to a more integrated sensor grid with the incorporation 
of trustworthiness algorithms within the infrastructure and on the remote sensors, and the 
extension to a more realistic scenario. 
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2 Scientific Cloud Computing and Sensor Grids 

2.1 Introduction: Scientific Cloud Computing in Context 
Cloud computing is an emerging approach to distributed scientific computing.  It is 
related to many other approaches in this general field, including Message Passing 
Interface-based parallel computing, Grid computing, and Service Oriented computing.  
Not surprisingly, the discussion of the various approaches often becomes a confused 
debate.  In this report, we will attempt to provide some clarity on the types of scientific 
computing (particularly sensor-based) problems for which Cloud computing is 
appropriate and also identify some limits. Specifically, this report summarizes our 
observations on applying Cloud computing approaches to a range of geospatial problems, 
with an emphasis on sensor processing pipelines, both in near real time and in batch 
processing mode.  We take our observations from a number of relevant projects, 
including the QuakeSim project (1,2), the FloodGrid project (described here), and the 
PolarGrid project (www.polargrid.org).  Our lab has developed software to support these 
distributed spatial applications, building on our general investigations of 
Cyberinfrastructure architectures (3).    Applications include Geospatial Information 
System (GIS) Grid services based on Open Geospatial Consortium standards (4) and real-
time streaming Global Positioning System processing infrastructure (5,6).  
 
We take a broad view of the infrastructure requirements for scientific computing.  High 
performance computing and data storage are just two aspects; we also need to manage 
real-time data streams, integrate third party capabilities (such as geographic map and data 
providers), and build interactive user interfaces that act as Science Gateways (7). As we 
discuss in this report, we believe the next generation of major computing infrastructure 
deployments (such as the NSF’s TeraGrid (8) and the DOD’s Major Shared Resource 
Centers) need to provide a broader scope of infrastructure capabilities to their user 
communities.  
 
We adopt here the NSF’s term “cyberinfrastructure” as a label for large-scale scientific 
computing infrastructure. Cyberinfrastructure is the hardware, software, and networking 
that enables regionally, nationally, and globally scalable distributed computing, data and 
information management, and collaboration.  Grid computing is an important subset of 
cyberinfrastructure. In the US, the NSF-funded TeraGrid and the NSF/DOE Open 
Science Grid (9) are examples of national-scale computing infrastructure. Internationally, 
the European Grid Initiative (http://www.egi.eu/) is a prominent example, and the Open 
Grid Forum (http://ogf.org/) provides international community leadership and standards. 
An important characteristic of Grid deployments is that they provide middleware with 
network-accessible programming interfaces (including Web services) that allow remote, 
programmatic access for executing science applications on large clusters and 
supercomputers, managing files and data archives, and getting information about the 
states of the system components. Prominent examples of software (middleware) used to 
provide these services include the Globus Toolkit (10), Condor (11), and gLite 
(glite.web.cern.ch).  Higher-level capabilities can be built on these basic services.  
Examples include workflow composing tools (12,13), which compose basic services into 
higher order applications; and science gateways (7), which provide Web interfaces to 
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services and workflows that are suitable for a broad range of users (researchers, students, 
and the general public).  Ideally, one may build higher-level applications out of a toolbox 
of third party services backed up by persistent Cyberinfrastructure; we formerly termed 
this the “Grid of Grids” approach (3). 
 
The problem that we see is that there is no national scale infrastructure to provide the 
foundation for the comprehensive cyberinfrastructure vision of the well-known Atkins 
report (14); that is, as we will elaborate, there is no "infrastructure as a service" in today's 
cyberinfrastructure. The current flagship cyberinfrastructure deployments in the US are 
dominated by the requirements of closely coupled, high-end, high performance 
computing.  This computing infrastructure is not well suited for many sensor-based 
applications, which are dominated by data-driven applications, and is also ill suited for 
emergency response, a major application area for sensor grids.  Arguably, emerging 
programs such as the NSF DataNet may address the data-centric needs of 
cyberinfrastructure that are crucial to much of sensor grids, such as long-term storage and 
preservation of observational and experimental data and their processing pipelines, but 
this NSF program is in its earliest stages.   
 
Cloud Computing-like infrastructure is of particular interest to sensor-based applications 
in at least three areas: data-parallel processing, real-time stream processing, and on-
demand emergency response. There is thus an opportunity for sensor grids to provide 
important use cases that help clarify the capabilities that a general-purpose, end-to-end 
cyberinfrastructure deployment should provide. We illustrate these concepts through two 
examples, PolarGrid (image processing) and Flood Grid (emergency response).  As we 
will show, the infrastructure requirements of these use cases can be met with Cloud 
computing approaches, including both “Infrastructure as a Service” and “Software as a 
Service.” 
 
Before examining these examples, we first provide background on Cloud computing and 
review programming paradigms for scientific cloud computing and contrast with parallel 
and grid computing models.  This will illustrate the proper problem domain for these 
types of computing problems. 

2.2 Cloud Programming Paradigms for Data-Driven Applications 
We here differentiate the requirements for sensor data-driven computing compared to 
more traditional simulation-based computing.  The different approaches to programming 
simulations are well understood although there is still much progress to be made in 
developing powerful, high-level languages. Today OpenMP and MPI dominate the 
runtime used in large-scale simulations, and the programming is typically performed at 
the same level in spite of intense research on sophisticated compilers. One also uses 
workflow to integrate multiple simulations and data sources together.  This coarse grain 
programming level usually involves distributed systems with much research over last ten 
years on the appropriate protocols and runtime. In this regard Globus and SAGA 
represent important advances.  
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We can ask what the analogous programming paradigms and runtime are for data 
intensive applications, such as obtained from observational sensor networks and 
collections. We already know that many of the distributed system ideas will carry over as 
workflow has typically used dataflow concepts and integrated data and simulations. 
However as data processing becomes a larger part of the whole problem either in terms of 
data size or data-mining/processing/analytics, we can anticipate new paradigms becoming 
important. For example most data analytics involves (full matrix) linear algebra or graph 
algorithms (and packages like R) and not the particle dynamics and partial differential 
equation solvers characteristics of much supercomputer use. Furthermore, storage and 
access to the data naturally involves databases and distributed file systems as an integral 
part of the problem.  
 
It has also been found that much data processing is less closely coupled than traditional 
simulations and is often suitable for dataflow runtime and specification by functional 
languages. However we lack an authoritative analysis of data intensive applications in 
terms of issues like ease of programming, performance (real-time latency, CPU use), 
fault tolerance, and ease of implementation on dynamic distributed resources. A lot of 
progress has been made with the MapReduce framework (discussed in more detail below) 
that was originally developed for Internet-scale information retrieval. Initial research 
shows this is a promising approach to much scientific data analysis. Here we see different 
choices to be explored with different distributed file systems (such as HDFS for Hadoop) 
supporting MapReduce variants and DryadLINQ offering an elegant database interface. 
We note current supercomputing environments do not support HDFS but rather wide area 
file systems like LUSTRE. MapReduce programming models offer better fault tolerance 
and dynamic flexibility than MPI and so should be used in loose coupling problems in 
preference to MPI. 

2.2.1  Cloud Computing and Infrastructure 
Large commercial markets drive Cloud computing development, where IDC estimates 
that clouds will represent 14% of IT expenditure in 2012, and there is rapidly growing 
interest from government, academia, and industry. There are several reasons why clouds 
should be important for large scale scientific computing. 

 
1. Clouds are the largest scale computer centers constructed and so they have the 

capacity to be important to large-scale science problems as well as those at small 
scale. 

2. Clouds exploit the economies of this scale and so can be expected to be a cost 
effective approach to computing. Their architecture explicitly addresses the 
important fault tolerance issue. 

3. Clouds are commercially supported and so one can expect reasonably robust 
software without the sustainability difficulties seen from the academic software 
systems critical to much current Cyberinfrastructure. 

4. There are three major vendors of clouds (Amazon, Google, Microsoft) and many 
other infrastructure and software cloud technology vendors including Rackspace, 
Salesforce, and Eucalyptus Systems. This competition should ensure that clouds 
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should develop in a healthy innovative fashion. Further attention is already being 
given to cloud standards. 

5. There are many Cloud research, conferences and other activities with research 
cloud infrastructure efforts including Nimbus, OpenNebula, Sector/Sphere, and 
Eucalyptus. 

6. There are a growing number of academic and science cloud systems supporting 
users through NSF Programs for Google/IBM and Microsoft Azure systems. In 
the NSF community, FutureGrid (59) offers a Cloud testbed. Magellan (60) is a 
major DOE experimental cloud system. The EU Framework 7 project VENUS-C  
(61) illustrates the international scope of Cloud research. 

7. Clouds offer "on-demand" and interactive computing that is more attractive than 
batch systems to many users. 

 

Despite the long-term advantages listed above, these are still early days for scientific 
cloud computing and work remains to be done.  The problems with using clouds are well 
documented and include the following: 

 
1. The centralized computing model for clouds runs counter to the concept of 

"bringing the computing to the data" and bringing the "data to a commercial cloud 
facility" may be slow and expensive. 

2. There are many security, legal and privacy issues similar to those on the Internet 
that are especially problematic in areas such health informatics where proprietary 
information could be exposed. 

3. The virtualized networking currently used in the virtual machines in today’s 
commercial clouds and jitter from complex operating system functions increases 
synchronization/communication costs. This is especially serious in large scale 
parallel computing and leads to significant overheads in many MPI applications. 
Indeed the usual (and attractive) fault tolerance model for clouds runs counter to 
the tight synchronization needed in most MPI applications. 

 
Some of these issues can be addressed with customized (private) clouds and enhanced 
bandwidth from TeraGrid to commercial cloud networks. For example, there could be 
growing interest in "HPC as a Service" as exemplified by Penguin Computing on 
Demand. However it seems likely that clouds will not supplant traditional approaches for 
very large-scale parallel (MPI) jobs in the near future. It is natural to consider a hybrid 
model with jobs running on either classic HPC systems or clouds or in fact both as a 
given workflow (as in example below) could well have individual jobs suitable for 
different parts of this hybrid system.  
 
Commercial clouds support "massively parallel" applications but only those that are 
loosely coupled and insensitive to higher synchronization costs. Let us focus on 
"massively parallel" or "many task" cloud applications as these most interestingly 
"compete" with more traditional parallel computing implementations. In this case, the 
programming model MapReduce describes problems suitable for clouds. This is offered 
on Amazon clouds and is expected soon on other commercial clouds while it can be 
implemented on any cluster using the open source Hadoop software for Linux or the 
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Microsoft Dryad system for Windows clusters. One can compare MPI, MapReduce (with 
or without virtual machines) and different native cloud implementations and find 
comparable (with a range of 30%) performance on applications suitable for these 
paradigms. MapReduce and its extensions offer the most user-friendly environment. 
 
One can describe the difference between MPI and MapReduce as follows. In MapReduce 
multiple map processes are formed, typically by domain (data) decomposition familiar 
from MPI. These run asynchronously, typically writing results to a file system that is 
consumed by a set of reduce tasks that merge parallel results in some fashion. This 
programming model implies straightforward and efficient fault tolerance by re-running 
failed map or reduce tasks.  

In contrast, MPI addresses a more complicated problem with iterative compute-
communicate stages with synchronization at the communication phase. This 
synchronization means for example that all processes wait if one is delayed or failed. 
This inefficiency is not present in MapReduce, where resources are released when 
individual map or reduce tasks complete. MPI of course supports general (built in and 
user defined) reductions so MPI could be used for applications of the MapReduce style. 
However the latter offers greater fault tolerance and user-friendly, higher level 
environment largely stemming from the coarse grain functional programming model 
implemented as side-effect free tasks. Over-simplifying, MPI supports multiple Map-
Reduce stages, but MapReduce supports just one. Correspondingly, clouds support 
applications that have the loose coupling supported by MapReduce, while classic HPC 
supports more tightly coupled applications. Research into extensions of MapReduce 
attempt to bridge these differences. 

MapReduce covers many high-throughput computing applications including "parameter 
searches". Many data analysis applications including information retrieval fit the 
MapReduce paradigm. For example, in Large Hadron Collider or similar accelerator data, 
maps consists of Monte Carlo generation or analysis of events while reduction is 
construction of histograms by merging those from different maps. In the SAR data 
analysis of ice sheet observations, maps consist of independent Matlab invocations on 
different data samples. Life Sciences have many natural candidates for MapReduce 
including sequence assembly and the use of BLAST and similar programs. On the other 
hand partial differential equation solvers, particle dynamics and linear algebra require the 
full MPI model for high performance parallel implementation. 

2.2.2  Research Areas for Scientific Computing with MapReduce and 
Clouds 

MapReduce and Clouds can be used for some of the applications that are most rapidly 
growing in importance. Their support seems essential if one is to support large-scale data 
intensive applications. More generally a more careful analysis of clouds versus traditional 
environments is needed to quantify the simplistic analysis given above. There is a clear 
algorithm challenge to design more loosely coupled algorithms that are compatible with 
the map followed by reduce model of MapReduce or more generally with the structure of 
clouds. This could lead to generalizations of MapReduce that are still compatible with the 
cloud virtualization and fault tolerance features. 
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There are many software challenges including MapReduce itself; its extensions (both in 
functionality and higher level abstractions); and improved workflow systems supporting 
MapReduce and the linking of clients, clouds and MPI engines. We have noted research 
challenges in security and there is also active work in the preparation, management and 
deployment of program images (appliances) to be loaded into virtual machines. The 
intrinsic conflict between virtualization and the issues around locality or affinity 
(between nodes in MPI or between computation and data) needs more research. 
 
On the infrastructure side, we have already discussed the importance of high quality 
networking between MPI and cloud systems. Another critical area is file systems where 
clouds and MapReduce use new approaches that are not clearly compatible with 
traditional TeraGrid approaches. Support of novel databases such as Big Table across 
clouds and MPI clusters is probably important. Obviously NSF and the computational 
science community needs to decide on the balance between use of commercial clouds as 
well as "private" TeraGrid clouds mimicking Magellan and providing the large scale 
production facilities for codes prototyped on FutureGrid. 

2.3  Cloud Computing for Sensor Grids 

2.3.1  Cloud Computing and Sensor Data Sustainability 
Previous sections in this report have examined general Cloud computing concepts.  We 
now specialize our discussion to consider sensor data and other geospatial applications in 
clouds.  We start with two key observations on environmental and other sensor data 
sources: a) data sizes are rapidly increasing, and b) data and data processing pipelines are 
inseparable.  We illustrate the first point in Table 2-1.  
 
Table 2-1  Example size increases for selected geosopatial applications. 

 
This is a well-known issue in many fields.  However, we believe the second issue has not 
received the equivalent amount of attention.  Sensors and related observational and 
experimental data sources generate raw data that must go through substantial processing 
before becoming usable.  Furthermore, different user communities will want data that has 
undergone different levels of processing (“data products”).  An example is shown in 
Figure 2-1, which shows the processing pipeline steps for NASA UAVSAR data products.  
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End user scientists are most likely to get data at the end of the pipeline (“Level 4” in the 
figure).   
 

 
Figure 2-1 Processing pipeline for NASA UAVSAR synthetic aperture radar data. Levels indicated in 
the figure are NASA CODMAC levels. 

 
The problem for long-term data preservation is that it is not worthwhile to store only the 
final data products, as the products cannot be understood or reproduced without storing 
the entire pipeline.   
 

• We believe one of cloud computing’s potential (and currently unrealized) 
applications is to enable the permanent preservation of processing pipelines.  
Through the use of virtual machines, it is possible to preserve exactly the 
operating systems and software stacks used in the pipeline steps.  Data can be 
made available using Cloud-style interfaces (Amazon S3, for example). We 
believe these have the best chance for long-term sustainability, given the size of 
the current successful commercial investment.  Finally, the actual processing 
pipeline itself may be implemented using MapReduce or similar cloud 
programming paradigms. 

 

2.3.2  Cloud Computing and Grid Computing 
There is an ongoing debate about the precise definitions of Cloud Computing and how it 
can be differentiated from Grids. Following (15), clouds are notable for their elasticity 
(ability for users to scale resources up and down) and for new platform features such as 
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distributed table data storage and the map-reduce programming model. These are not 
inconsistent with goals of Grid Computing, but in practice most Grid work has focused 
on areas like virtual organizations that arise when one links resources and people across 
administrative domains (that is universities and national labs), as exemplified by the 
TeraGrid and OSG. Large commercial clouds are geographically distributed, but they 
federate systems that have similar processes and management and so do not face many 
integration issues tackled by Grids. Some concepts, including service oriented 
architectures and workflow for scientific computing, were pioneered by grids and are 
equally important for clouds. 
 
Academic surveys and initial investigations of clouds are available from (16,17, 18), and 
Clouds from a Grid perspective are discussed in (19). A key distinguishing feature of 
Grids is the “virtual organization” (20).  Grids are designed to support virtual 
organizations that federate multiple real, independent organizations with heterogeneous 
resources. In contrast, commercial Clouds are controlled by single entities (corporations 
such as Amazon, Google, or Microsoft), and the virtual organization problem is not 
central. This may change as more resource-limited organizations (such as universities) 
stand up campus Clouds. Instead, Clouds expose a more user-centric view of their 
infrastructure: service agreements are between the user and the cloud provider, rather 
than between two resource providers attempting to federate themselves. We will focus on 
two specific aspects of the elastic capabilities of Cloud services: Infrastructure as a 
Service and runtime Software as a Service. 

2.4 Infrastructure as a Service 
 
At the lowest and simplest level, clouds are typically implemented using virtual machines 
and virtual storage deployed on large computing and data centers. Users control the 
lifecycle of their virtual infrastructure through Web service-exposed programming APIs 
and Web user interfaces.  A virtual machine is a software implementation of a computer 
than runs on a real computer; it can have a different operating system, software stack, and 
network address from its host.  Clouds providers use vast collections of virtual machines 
to provide "Infrastructure as a Service". Through Web services and virtualization, users 
create and control their own computing resources on remote cloud centers.  A simple but 
powerful extension of this idea is for the virtual machines to come with software 
packages preconfigured.  For example, one may imagine checking out a virtual machine 
or cluster that comes pre-configured with geospatial software (Web Map and Feature 
services, collections of data sets such as demographic and environmental data, and 
analysis software) needed for a particular investigation or to provide a particular service 
to a community.    
 
Less well known than the virtual machine but at least as important for scientific cloud 
computing is the virtual block storage device.  An example of this is Amazon’s Elastic 
Block Store, which can be attached to a virtual machine to provide additional file space. 
These attached file systems do not need to be empty. As Amazon’s public data sets 
illustrate (aws.amazon.com/publicdatasets/), users can create libraries of public and 
community data sets (both files and databases) that can be checked out from the Cloud by 
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individual users.  The applicability of these services for hosting legacy (pre-cloud), 
distributed GIS data sets and services (see again for example Yang et al in this issue) is 
apparent. Additionally, the major Cloud vendors all have very scalable but flat data 
management capabilities as part of their infrastructure. Examples include Google’s 
BigTable, Microsoft Azure’s Table Service, and Amazon’s SimpleDB.  These data 
management systems lack the full functionality of relational databases but work very well 
as extremely scalable Cloud spreadsheets.  Google Maps and Google Earth are prominent 
GIS applications using BigTable, and Google Fusion Tables 
(http://tables.googlelabs.com/) includes an interesting set of GIS capabilities.  
 
Although we have focused on commercial cloud infrastructure above, it is possible to set 
up a cloud using Open Source software on existing server farms and clusters.  Example 
software includes Eucalyptus (23), Nimbus (21), and OpenNebula (www.opennebula.org).  
Academic cloud installations and testbeds base on these and related technologies are 
becoming available.  The NanoHUB project at Purdue University, based on HUBzero 
middleware, is one of the most prominent (22).  Other examples include the NSF-funded 
FutureGrid, the NASA-funded Nebula, and the DOE-funded Magellan testbeds.  
 
Virtualization does come with a price: virtual machines currently introduce significant 
communication overhead and do not support the fastest network connections such as 
Infiniband. This will effect closely coupled parallel applications built with the Message 
Passing Interface (MPI), which commonly run on the NSF TeraGrid. We review these 
overheads in (27).  We expect that the largest, most closely coupled scientific parallel 
problems will continue to run on very large clusters built with advanced rather than 
commodity architectures (see for example the NSF funded Blue Waters supercomputer, 
http://www.ncsa.illinois.edu/BlueWaters/), but many other problems in scientific 
computing are better suited for running on Cloud resources, as we discuss next.  
Furthermore, Clouds are not exclusively dependent on virtualization.  Amazon's Cluster 
Computing Service provides access to real hardware.  The FutureGrid project is also 
developing the infrastructure to provide real hardware as a service to support distributed 
computing research that is performance sensitive. 

2.4.1  Infrastructure as a Service Case Study: FloodGrid 
To facilitate and improve flood planning, forecasting, damage assessments, and 
emergency responses, the USGS-funded FloodGrid project (a collaboration between the 
Polis Center, www.polis.iupui.edu and the authors) has prototyped an integrated platform 
for inundation modeling, property loss estimation, and visual presentation. Rather than 
centralizing all capabilities onto a specific platform, we have developed this system 
following open service architecture principles, packaging functionalities as Web Services 
and pipelining them as an end-to-end workflow.  Integration is achieved via a Web 
interface that manages user interactions with services. This is an example of a relatively 
simple Science Gateway.  As we review here, even this simple system combines real-
time data services, computational services, and GIS information and data services. We 
build some of these services and leverage third party providers for others. For a similar 
system, see (29). 
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The FloodGrid pilot study focuses on inundations of the White River at Ravenswood area 
in Indianapolis, using the 2D hydraulic model, FaSTMECH (30), calibrated for the region. 
Real-time forecast data from the National Weather Service's Advanced Hydrologic 
Predication Service 
(http://water.weather.gov/ahps2/hydrograph.php?wfo=ind&gage=nori3) provide initial 
conditions of the simulation. The Computational Fluid Dynamics General Notation 
System (CGNS) (31) bridges the computation model and its environmental surface-water 
applications by providing a standard data format and the framework for exchanging data 
in that format. A complete Flood Grid study consists of Web Services for flood 
monitoring, simulation, damage estimation, and visualization.  Figure 2-2 outlines the 
service stack in such a workflow.  
 
The river data monitoring service constantly monitors the NWS real-time forecast and 
starts recording both the flow gauge and the river stage data up to 6 days into the future 
once a pre-defined flood condition is met. During a flood study, the CGNS input process 
service infuses such information as initial conditions into the pre-calibrated regional 
model represented by a CGNS file. The updated CGNS file is in turn fed to the flood 
simulation service as the input to perform the FaSTMECH simulation, which stores 
computation results by once again updating the given CGNS file. The CGNS output 
process service parses the FaSTMECH simulation results and produces rectilinear flood 
depth grids using nearest neighbor clustering techniques. The loss calculation service 
overlays the generated flood grids with parcel property data and calculates percentage 
damages using the Hazards U.S. Multi-Hazard (HAZUS-MH) 
(www.fema.gov/prevent/hazus) analysis tools. Finally the map tile cache service 
visualizes the study results in Google Maps. 
 

 
Figure 2-2  Flood Grid Servic Stack and Workflow. Each component (gray box) is a network 
accessible service with well-defined inputs and outputs expressed using the Web Service Description 
Lanaguage. 

 
The core flood simulation service wraps the FaSTMECH FORTRAN computation 
program using the Swarm job scheduling service framework (32).  Swarm provides a set 
of Web Services for standard computation job management such as submission, status 
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query, and output retrieval. The simulation service is deployed on the Gateway Hosting 
Service at Indiana University (33), a virtual machine-based hosting infrastructure. Flood 
damage estimation and visualization services are developed with Visual Basic .NET, and 
deployed under Internet Information Services (IIS) by the Polis Center.  
 
Figure 2-3 depicts the layout of the user interface on the left, with the corresponding 
screenshot on the right. Upon registration, a user can run new studies or review an earlier 
one in the flood studies control center. The execution status of each service in the study 
workflow is also displayed under this section. For a completed study, simulation results 
are visualized with Google Maps displaying flooded regions and damaged parcel 
properties that are obtained from regional Web Feature Services. The map overlay 
section enables mash-ups with other online geospatial services such as county parcel 
maps and demographic maps from Social Assets and Vulnerabilities Indicators (SAVI) 
Community Information System (www.savi.org).   
 

FloodGrid, as described above, is an example of a "Grid of Grids" federation of several 
services, rather than a cloud. However, we use FloodGrid to illustrate the advantages of 
using both Infrastructure and Software as a Service. We map the Flood Grid 
infrastructure requirements to Cloud Computing infrastructure in Table 2-2.  An 
important requirement for FloodGrid’s infrastructure is reliable service hosting to make 
sure that the services illustrated in Figure 2-2 are persistently available, with redundancy 
and load balancing.  It is certainly possible to have these capabilities without using 
Cloud-based virtualization, but virtualization can be used to build redundancy into the 
fabric of the infrastructure rather than placing this burden on the developers.  This is the 
key design feature of the Gateway Hosting Service, an in-house Infrastructure as a 
Service system.  In two years of operation (from July 2008), FloodGrid's hosted service 
has experienced 6 outages totaling just under 16 hours.   

 

 
Figure 2-3 FloodGrid user interface layout and screenshot (courtesy of Neil Devadasan, IUPUI Polis 
Center).
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Clouds would also be useful as providers of standard data libraries (CGNS files of 
hydrological models) through virtual block stores. For FloodGrid, the central piece is a 
validated CGNS input mesh that models a particular section of a river. Although only one 
such model was available to us for the study, one may envision a librariy of calibrated 
models for different geographical areas available for checkout from virtual block storage 
services.  Similarly, standard GIS data sets (parcel and demographic information) can 
also be delivered in this fashion, coupled to the Web Feature Service that provides them.  
That is, one would not need to reply upon a third party Web service with its own 
reliability concerns.  Instead, GIS data providers could provide virtual images of their 
data and software that can be instantiated by other developers on a Cloud as needed.  
Finally, we note that the system could use pre-configured virtual machines that include 
FasTMECH, Swarm, and all supporting software to distribute the system to other groups 
wanting to run their own versions of FloodGrid. 
 
Table 2-2  Mapping FloodGrid infrastructure requirements to Cloud Computing. 

Flood Grid Requirement Cloud Computing Capability 
Web Service hosting Virtual machine infrastructure  
CGNS mesh model data  Virtual block storage 
GIS data (WFS parcel 
information, HAZUS-MH) 

Virtual block storage 

FaSTMECH Hosting Virtual machine infrastructure; Map-Reduce style 
computation management (optional) 

 
FloodGrid and Elastic Clouds: As described above, FloodGrid is can support both 
automated and on-demand usage scenarios. Both are motivating case studies for elastic 
resources, since the infrastructure usage levels are very low on average but spike during 
flood events. The core flood simulation is the FaSTMECH computation program; it is the 
most compute intensive part of FloodGrid project. When a flood is happening, FloodGrid 
will automatically start the flood simulation through its flood monitoring service for all 
regions of interest.  Users responsible for disaster planning and emergency response will 
also place increased demands on the system to simulate different flood scenarios. 
Computing power demand thus peaks in a narrow period of the flood event. We illustrate 
how elastic resources may be used in this scenario; see Figure 2-4. 
 
Our simulation service is deployed as Xen virtual machines (VM) on the in-house cloud 
hosting service. We estimate the computing power requirement for FaSTMECH by the 
simulation field size and length of flood input. Virtual machines are allocated by the 
service running on Xen master node accordingly. We use the Virtual Block Store (VBS) 
System (44), an open source version of Amazon's Elastic Block Store, to meet our 
storage requirements.  VBS is accessed by VMs as the local disk.  VBS is independent of 
the VM instances, so the simulation results can be accessed even after VM instances have 
been destroyed. In this Infrastructure as a Service configuration, the detail of FaSTMECH 
computing is invisible to FloodGird users; the workflow is always the same for flood 
simulation job.    
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Figure 2-4 Virtualization is used to elastically increase the FloodGrid simulation service to handle 
greater demand during flood events. 

 

To test this configuration, ten flood scenarios with the different flood forecast parameters 
(based on the historical flood data) are added to the flood simulation queue. Four virtual 
machines with FaSTMECH computing service are allocated automatically according to 
the computing time estimation.  The estimated FaSTMECH running time ranges from 30 
minutes to several hours. To provide rapid simulation result delivery with cloud 
computing resource cost in consideration, four virtual machines are allocated based on 
the estimation. Ten flood simulations are sent into the queue in random order. With 4 
virtual machines, all the FaSTMECH jobs finished in 205 minutes. For comparison, 10 
jobs can be finished in 739 minutes with only one virtual machine.   

 
We note in conclusion that no significant modification of the Flood Grid workflow was 
made in this example.  Instead, the elastic nature of clouds allowed us to increase the 
infrastructure available to our service during a peak event by cloning pre-configured 
virtual machines.  We examine programming models for clouds in the next section.  

2.5 Software as a Service 
Although one may want to use Cloud Computing to outsource infrastructure at the 
operating system level, it is also desirable to have higher-level tools and services 
available on top of the cloud infrastructure.  For example, scientific computing needs to 
have tools that simplify running computing tasks on clouds, especially if these scale 
extremely well.  This is an example of what is commonly dubbed "Software as a Service".  
Apache Hadoop is relevant software. Hadoop is an implementation of two ideas 
promulgated by Google: the Google File System and MapReduce (25). Strictly speaking, 
Hadoop and its competitors do not need to run on virtual machine-based infrastructure, 
but the two are a good match (see for example Amazon's Elastic Map Reduce, 
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aws.amazon.com/elasticmapreduce/). MapReduce and its competitors (prominently, 
Microsoft’s Dryad (26)) are designed to solve very large, data-file parallel information 
retrieval problems that arise in Internet-scale searching and indexing. MapReduce is 
designed to manage computing tasks in distributed environments for certain classes of 
parallel problems: those associated with fragmentable data sets. Although it can be 
applied to a wide range of problems (24), it generally is designed to support data-file 
parallelism; that is, we need to apply an operation or a sequence of operations to huge 
input files that can be split into smaller fragments on distributed file systems.  The 
individual operations need little or no communication with each other. In contrast, 
traditional parallel programming, based around the Message Passing Interface (MPI), is 
better suited for tightly coupled applications with significant inter-process 
communication. The notion of file parallelism can be generalized memory, network, and 
other standard input/output mechanisms. Processing and mining sensor streams in a large 
sensor Web are obvious applications for stream data parallelism.  Although not supported 
by Hadoop, this is an intended feature of Dryad and has been explored by research groups 
(27, 28).  
 
MapReduce is usually motivated by examples that count the number of occurrences of 
each word in a large collection of documents. Counting land-use changes is a simple 
geospatial example that provides an elementary motivation for cyber-GIS. In this 
example, we have a large amount of land-use classification images from two different 
time periods covering the same area. For each pixel, it has a label to indicate the type of 
land-use. We can use MapReduce to produce the cross-table of land-use from two times. 
In the map stage, the land-use change of two corresponding pixels is recorded as 
(“landuse1->landuse2”, count), e.g. (“agriculture -> residential”, 1). In reduce stage, the 
list of counts is summed up by the key (“landuse1->landuse2”).  
 
There are certain obvious advantages in applying MapReduce to spatial data processing.  
First, MapReduce scales well, enabling data processing procedures to move smoothly 
from smaller test-beds (as small as a single node) during development and debugging to 
larger cluster and cloud environments. This scalable geospatial processing is crucial to 
spatial applications that deal with large volumes of spatial data. Second, the HDFS 
distributed file system makes it easy to handle large volume of spatial data. Third, 
existing binary can be deployed on the cloud through Hadoop streaming. Finally, tiled 
spatial data system, such as Google Map and Microsoft Bing Map are well suited for 
MapReduce.  We will examine these issues in our PolarGrid case study below. 
There are also common problems associated with applying MapReduce to sensor grid 
problems. First, Hadoop is designed primarily to support text file formats and does not 
have sophisticated data model support, as discussed above.  This is a limitation for spatial 
data sets that are encoded as R-trees and stored in databases rather than in flat files. For 
the geospatial community to adopt MapReduce, implementations like Hadoop need 
extensions that support legacy data structure.  Hadoop also needs standard input/output 
extensions to support raster data to be useful to the geospatial community. Second, even 
for file-centric problems suitable for Hadoop, the spatial data need to be spliced into 
small chunks. Due to the large variation of spatial data types, the data splicer has to be 
written for each data type, and user has to make a decision on how to split the data into 
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meaningful ranges for each separate map tasks. We provide an example in our PolarGrid 
case study below.  Third, existing spatial data processing binaries may be not able to 
access the HDFS file system directly, so wrappers have to developed to load/unload data 
between HDFS file system and local file system. This can introduce significant overhead 
if done frequently.   
 
MapReduce programming model can be used in several different ways to support data-
intensive spatial processing; there are three basic execution units (38):  
 

1. Map only application: only the mapper is presented, it is suitable for one-step 
spatial data transformation operations, e.g. map projection and image filter. 

2. MapReduce application: both mapper and reducer are used. It has been used to 
build spatial index, performance querying and obtain statistical information 
(39,40,41). 

3. Iterative MapReduce application: it runs MapReduce iteratively until certain 
criteria meets. It is suitable to spatial clustering and data mining algorithms, such 
as K-means clustering (42).  

 
MapReduce as a programming model for clouds has received significant attention from 
the academic community.  However, it is not a panacea, and it will not meet all the 
computing requirements of sensor grids and related applications. MapReduce is a batch-
processing approach for processing files registered with a fault-tolerant overlay file 
system (the Google File System or the Hadoop Distributed File System). Problems such 
as large-scale image processing are the best fits for this programming style.  However, 
legacy, relational database-centric geospatial problems are not well suited for 
MapReduce, and relational data processing on a cloud is an open problem. Instead of 
relational databases, cloud data management systems focus on highly scalable but not 
relational, "NoSQL" approaches that sacrifice strong consistency for scalability. In 
contrast, a great deal of geospatial processing is associated with geospatial databases that 
extend classic relational database systems such as PostgreSQL and Oracle. 
 
MapReduce's reliance on files as an implicit data model and its close integration with the 
file system are important limitations. Quadtree-modeled data (often used for indexing 
collections of two-dimensional images such as map tiles) can be adapted 
straightforwardly, but the more geospatial object-centric R-tree encoded data (such as 
geospatial features) are not a good match. As perhaps an intermediate step, many 
commercial clouds are beginning to offer relational databases as services.  Microsoft 
Azure's SQL Service (based on SQL Server) and Amazon RDS (based on MySQL) are 
two examples.   
 
Research into extremely scalable relational database systems and intermediate systems 
between the relational and NoSQL extremes are very active areas, although to our 
knowledge no work specifically on the requirements of sensor grids has taken place. 
HadoopDB (48), for example, is a hybrid between relational databases and MapReduce.  
Naturally supporting R-tree data models in MapReduce-style programming and more 
generally supporting relational databases in Cloud infrastructure are open academic 
problems. More recently, Google has published a description of its new, real-time 
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indexing system, Percolator (49), which has replaced MapReduce as its internal 
mechanism for calculating search rankings.  Unlike MapReduce, Percolator maintains 
state, avoiding the need to completely recalculate ranking indices.  Related systems from 
Yahoo and Microsoft are described in (50) and (51), respectively.  These systems are 
potentially interesting models for real-time geospatial processing.  

2.5.1  Software as a Service Case Study: SAR Image Post-Processing 
In this case study, we examine the cloud computing requirements of a common problem: 
image processing. We are motivated by the need to determine the depth and shape of 
underlying rock beds beneath the Greenland and Antarctic glaciers (34).  Detailed 
knowledge of the rock beds is needed to develop new models to replace the inadequate 
current models of glacial motion. These are examples also of data-parallel computing.  
We begin with a description of the general system before evaluating MapReduce for 
image processing. 
 
The sub-glacial terrain images acquired from Synthetic Aperture Radar (SAR) reveal ice 
sheet thickness and the details of internal ice layers over vast areas beneath the 3 KM-
thick Greenland ice sheet (35). Approximately 25 TB of raw SAR data are available for 
processing Polar Grid resources from the 2008-2009 campaigns (45).  A single research 
group can manage initial data processing as a one-time exercise since there are generally 
no optional processing steps that need to be explored.  However, higher-level data 
products, such as improving the SAR image qualities in post-processing, require human 
interaction. One main image quality issue is speckle noise. The speckle noise usually 
appears as random granular patterns, which can reduce the image resolution and give the 
image a fuzzy appearance. Applying proper filters enhances the image quality and 
improves the interpretation of sub-glacial structures. SAR image processing is 
computationally intensive; it is desirable to use a scalable approach for parallel SAR 
image post-processing. In this pilot project, we have evaluated both the use of map-
reduce methods to initial data processing and the service-based infrastructure 
requirements needed to support user-driven filtering. Filters are shown in Table 2-3. 
Table 2-3 Testing dataset and filters 

Data and Filters Parameters 
Helheim dataset Size: 17023 (w) x 970 (h), ground track: 67 km 
Medium filter Horizontal and vertical length (h, v) 
Wiener filter Horizontal and vertical length (h, v) 
Fir1 filter Cut off frequency (f) 

 
Image processing is done by Matlab scripts, which we complie as standalone executables.  
The standalone executable uses the Matlab Compiler Runtime (MCR) engine and can be 
deployed royalty-free on clusters with compatible architecture.  This incidentally 
illustrates an advantage of Cloud Computing's Infrastructure as a Service. Instead of 
making a binary for every platform in a heterogeneous resource collection (such as the 
TeraGrid or OSG), or limiting ourselves to only those machines for which we have 
compatible binaries, we may instead specify the operating system on virtual clusters.  
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Case Study Example: Hadoop and SAR Image Post-Processing: SAR image processing is 
a data-parallel problem and so well suited for map-reduce in principal.  Matlab is a 
common development environment in many fields, including signal image processing, so 
it is important to determine if it can feasibly be combined with Hadoop. We perform our 
evaluation on the same testbed described above.  We begin with a small example that 
nevertheless illustrates some problems porting Matlab to Hadoop.    
 
Matlab and MCR have some special properties that influence the performance in Hadoop. 
First, we must overcome a mismatch between Matlab's standard input/output mechanisms 
and the Hadoop Distributed File System (HDFS). Matlab standard input (stdin) and 
standard output (stdout) are associated with a shell or command window. This means 
Matlab scripts can’t interact directly with HDFS. As a workaround, we developed a 
python wrapper to load the SAR input file from Hadoop into the local file system.  After 
the file is processed, the output images are sent back to HDFS by the same python script.  
Second, MCR includes support for multi-cores; however, it will only take advantage of 
multi-cores in certain computations, such as the FIR filtering operation used in this 
application. Finally, MCR makes use of thread locking and only one thread is allowed to 
access the MCR at a time.  Consequently the numbers of mappers and reducers on a 
computing node do not influence the performance of MCR on Hadoop, which processes 
threaded computing jobs in the sequential order.  
 
In this example, the complied Matlab script works as the mapper, and there is no 
“reduce” phase. 100 random chosen pairs of filter and parameter are used for the 
performance test. It takes 1353 seconds for the master node to finish these 100 image-
processing jobs. On a slave node, it takes 2553 seconds. In the Hadoop streaming 
environment, Hadoop distributes computing jobs equally among three computing nodes, 
and takes 901 seconds to finish, roughly 1.5 times speed up over the best node. Since 
each node has been assigned an equal number of image processing jobs, slower slave 
machines impact the performance more. It is possible to develop a customized input 
splitter that distributes more jobs to the faster master node.  We conclude from this 
example that Hadoop streaming is an easy way to deploy a data-parallel application built 
from a Matlab binary. However, a custom wrapper is necessary to stage stdin/stdout data 
between HDFS and the Matlab application. To improve the performance, frequent file 
operation should be avoided in Matlab applications. A major drawback is that the total 
number of computing nodes, instead of computing cores, determines Hadoop streaming 
performance in this case.    
 
We next examine using MapReduce to produce reduced data products from the processed 
data. For this test, we developed a sample Matlab application, which implements the 
specially tailored Douglas-Peucker algorithm (47) to simplify the flight line data, and 
compiled it as a standalone executable. Again, the MCR allows us to port our compiled 
program to a cluster running our Hadoop installation. Flight line simplification is a data-
parallel problem and well suited for MapReduce in principal. Hadoop streaming is used 
to run MapReduce tasks.  

As in the previous example, we had to develop a python script to overcome the mismatch 
between Matlab's standard input/output mechanisms and the Hadoop Distributed File 
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System. This script also acted as a Hadoop reader to read the flight line’s native binary 
format; this eliminates the needs to convert the data into text format in advance. In the 
map stage, the Maltab executable is used to simplify the flight line by smaller chunk in 
5000 points each. The simplified points are reorganized by flight line section and time 
stamp. 

The sample application is developed on a three node in-house Hadoop test bed and tested 
with 50K points. We next deployed this application on Indiana University's Quarry 
cluster, an IBM HS21 Bladeserver cluster running Red Hat Linux, with TORQUE and 
Moab for job management. The deployment processed 250M points on Quarry smoothly 
with no modification required of the original implementation.  
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3 Vulnerability and Mitigation Techniques for Cloud 
Computing with Sensor Grid 

 

Sensor technology plays critical roles in supporting war fighters and military personnel as 
they engage in operations that could be high stress and life threatening.  We consider  
scenarios  and  systems  in which there  are large groupings  of sensors reporting huge 
quantities of potentially  sensitive  data,  and  the  need to perform  large amounts  of 
processing or computation on this data  with large grid and cloud computing  
installations. Further, we consider that there  are adversaries  that have a vested  
interest  in either  learning  information from the  system,  modifying the  results  
finally output from the system  (be it through modification  of the sensor input,  
filtering or processing of data), or denying access to the  system.  All aspects  of 
these  systems  and  the  environment in which some parts  of the  system operate  are 
assumed  to be susceptible  to attack.  Our goal is to be able to provide reliable 
results  computed from sensor data,  in a manner  that enables one (be it the user or 
the system)  to make educated decisions on the  reliability  of that data  based  on 
trust metrics,  while simultaneously preventing  the  loss of data-secrecy or integrity.   
Further, maintenance of system  integrity  and  security  is considered  a core 
requirement. Issues such as anonymity  and data-providence are important, but  
beyond the scope of this document. 

3.1 Introduction: Security, Privacy and Trustworthiness Issues 
The  computing  environments of a sensor  grid  are  fraught  with  different  kinds  of 
threats, which endanger the security  and privacy assurance  the system can provide.  
Mitigation of these threats relies on establishing trust on individual  system layers 
through proper security  control.  In this section, we survey the security  and privacy 
risks on each layer of senor-grid  computing  and the technical  challenges for 
controlling  them. 

A sensor grid interacts with its operating  environment through a set of sensors.  
Those sensors work either autonomously or collaboratively  to gather  data  and 
dispatch  them  to the grid.  Within  the grid, a brokering system  filters and  routes  
the  data  to their  subscribers,  the  clients  of the  sensor grid.  We now describe the 
security  and  privacy  issues on each layer of such an operation.   This  includes  the  
environment  the  sensors are working in; the  sensors; the  grid; the  clients; and  the  
communications between  the  sensor and  grid and the grid and clients. 

The Environment. An adversary  could compromise  the  sensors’ working 
environments to contami- nate  the data  they  collect.  For example,  one can add ice 
around  individual  sensors to manipulate the temperatures they measure.  Detection  
of such a compromise  can be hard,  when the adversary  has full control  of the 
environment. A possible approach  is to check the consistency  of the data  collected 
from multiple  sensors and identify  anomalous  environmental changes as indicated 
by the data. 
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Sensors. Sensors  can  be tempered  with  by  the  adversary  who can  steal  or modify  
the  data  they collect.  Mitigation of this threat needs the techniques  that detect 
improper operations on the sensors and protect its sensitive data. 

Grid. Information flows within the grid can be intercepted and eavesdropped  on by 
malicious code that are injected  into the  system  through its vulnerabilities.  
Authentication and  information-flow  control needs to be built  into the brokering  
system  to defend against  such a threat. 

Client. The  adversary  can also manage  to evade  the  security  and  privacy  
protection of the  system through exploiting the weaknesses of the clients’ browsers.  
The current design of browsers is well known to be insufficient for fending off attacks  
such as cross-site scripting  (XSS) and cross-site request  forgery (XSRF). Such 
weaknesses can be used by the  adversary  to acquire  an end user’s privileges  to 
wreck havoc on the grid.  Defense against  the threat relies on design and 
enforcement of new security  policy model that improves  on the  limitations of the  
same  origin  policy  adopted in all of the  mainstream browsers. 

Communication Channels. The communications between the sensors and the grid, 
and the grid and the client, are subject to both passive (e.g., eavesdropping) and 
active (e.g., man-in-the-middle) attacks. Countering this  threat depends  on proper  
cryptographic protocols  that achieve both  data  protection and mutual 
authentication. A more tricky issue here is the information leaks through side 
channels,  for example, packet sizes and sequences.  Our preliminary research shows 
that such information reveals the state  of web applications, which can be further  
utilized  to infer sensitive data  within  the  application. Understanding and mitigating 
the problem  needs further  investigation. 

In our research we focused on the following specific topics: 

Side-channel detection and mitigation.  Side-channel analysis has long been known to be 
a serious threat to information confidentiality.  Within a sensor grid system both the 
communication between the sensors and the grid and that between the grid and clients are 
subject to this threat.  Our preliminary result shows that the design of the Web 
applications, which is built upon the interactions between its client component and server 
component, makes it vulnerable to traffic analysis. Techniques can be developed to infer 
the internal states of the traffic (packet size, directions and number) between its two 
components.   

Sensory malware detection and mitigation. To understand the threat space of malware on 
mobile sensors, we explored various attack scenarios on mobile sensors container using 
an easily obtainable Android smartphone as a sample sensors container for experimental 
studies. 
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3.2 Side-channel Leaks in Software as a Service: Threats and 
Defense 

With the industrial trend of software-as-a-service, more applications are delivered on the 
web. Unlike a desktop application, a web application is split into browser-side and 
server-side components. A subset of the application’s internal information flows are 
inevitably exposed on the network.  Our research shows that despite encryption, side-
channel information leak is a realistic and serious threat to user privacy [73]. Specifically, 
we found that surprisingly detailed sensitive user information is being leaked out from a 
number of high-profile, top-of-the-line web applications in healthcare, taxation, 
investment and web search: an eavesdropper can infer the illnesses/ medications/surgeries 
of the user, the user’s family income and investment secrets, despite HTTPS protection; a 
stranger on the street can glean enterprise employees' web search queries, despite 
WPA/WPA2 Wi-Fi encryption. More importantly, the root causes of the problem are 
some fundamental characteristics of web applications: stateful communication, low 
entropy input for better interaction, and significant traffic distinctions. Thus the scope of 
the problem seems industry-wide. We also performed concrete analyses to demonstrate 
the challenges of mitigating these vulnerabilities, which suggest the necessity of a 
disciplined engineering practice for side-channel mitigations in future web application 
developments.  
 
To answer this urgent call, we developed a suite of new techniques for automatic 
detection and quantification of side-channel leaks in web applications. Our approach, 
called Sidebuster [74], can automatically analyze an application’s source code to detect 
its side channels and then perform a rerun test to assess the amount of information 
disclosed throughsuch channels (quantified as the entropy loss).  Sidebuster has been 
designed to work on event-driven applications and can effectively handle the AJAX GUI 
widgets used in most web applications. In our research, we implemented a prototype of 
our technique for analyzing GWT applications and evaluated it using complicated web 
applications. Our study shows that Sidebuster can effectively identify the side-channel 
leaks in these applications and assess their severity, with a small overhead. 
 
Summary of findings and results 
 

1. Analysis of the side-channel weakness in web applications.  We come up with 
a model to analyze the side-channel weakness in web applications and attribute 
the problem to prominent design features of these applications.  We discovered 
concrete vulnerabilities in high-profile and really popular web applications, which 
disclose different types of sensitive information due to various application 
features. These studies lead to the conclusion that the side-channel information 
leaks are likely to be fundamental to web applications. 

 
2. In-depth study on the challenges in mitigating the threat. We evaluated the 

effectiveness and the overhead of applying common mitigation techniques.  Our 
research shows that the effective mitigations of the threat have to be application-
specific, i.e., they rely on an in-depth understanding of the application being 
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protected. This suggests the necessity of a significant improvement of the web 
application development practice.  

 
3. We propose the first technique for automatic detection of side-channel leaks 

in web applications. Built upon existing technologies such as taint analysis, our 
approach can effectively evaluate the source code of those applications to identify 
the program locations where sensitive user data affects encrypted communication 
through data flows and/or control flows. We offered novel solutions to the 
technical challenges associated with the special features of web applications, 
particularly their extensive use of AJAX GUI widgets. 

 
4. We present a novel technique for quantifying the side-channel leaks in web 

applications. The new technique can measure not only the information disclosed 
from a single taint source but also that aggregated from multiple sources, 
according to the dependency relations among these sources. 

 
5. Design and implementation of a preliminary mitigation framework. We 

implemented our techniques into a prototype for analyzing the web applications 
built upon Google Web Toolkit (GWT), and evaluated it over real-world or 
synthesized applications.  Our study shows that Sidebuster worked effectively on 
these applications and incurred acceptable overheads. We also  designed a 
platform over which the application developers specify privacy policies, and the 
browser and the web server collaborate to enforce the policies. We implemented a 
prototype of the design and evaluated its functional correctness.  

 
6. Research paper.  Two peer-reviewed research papers are published at the IEEE 

Symposium on Security and Privacy (Oakland 2010) and the ACM Conference on 
Computer and Communications Security (CCS 2010), two flagship security 
venues, respectively.  

 
7. Video demonstration. Video demonstrations of our work are available at the 

following links:   
https://sites.google.com/site/ourdemos/                                
http://www.youtube.com/watch?v=WTqaLCUNYFM&feature=related          
http://www.youtube.com/watch?v=NsrSroM8ePo&feature=mfu_in_order&list=UL 

 

3.2.1  A Simple Model for Analyzing Side-channel Leaks in Web and Cloud 
Applications 

A prominent feature of web applications is that in a web application, the input points, the 
program logic and the application states are split between the browser and the server, so a 
subset of the information flows must go through the network. We refer to them as web 
flows. Web flows are subject to eavesdropping on the wire and in the air, thus often 
protected by HTTPS and Wi-Fi encryption.  The attacker’s goal is to infer sensitive 
information from the encrypted traffic. In other words, an attack can be thought of as an 
ambiguity-set reduction process, where the ambiguity-set of a piece of data is the set 
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containing all possible values of the data that are indistinguishable to the attacker. How 
effectively the attacker can reduce the size of the ambiguity-set quantifies the amount of 
information leaked out from the communications – if the ambiguity-set can be reduced to 
1/ℜ of its original size, we say that log2ℜ bits of entropy of the data are lost.  
Following we present a model about web applications and their side-channel leaks.  

3.2.1.1  Model Abstraction 
A web application can be modeled as a quintuple (S, Σ, δ, f, V),  where S is a set of 
program states that describe the application data both on the browser, such as the DOM 
(Document Object Model) tree and the cookies, and on the web server. Here we treat 
back-end databases as an external resource to a web application, from which the 
application receives inputs. Σ is a set of inputs the application accepts, which can come 
from the user (e.g., keystroke inputs), or back-end databases (e.g., the account balance). 
A transition from one state to another is driven by the input the former receives, which is 
modeled as a function δ: S × Σ→ S. A state transition in our model always happens with 
web flows, whose observable attributes, such as packet sizes, number of packets, etc., can 
be used to characterize the original state and its inputs. This observation is modeled as a 
function f: S × Σ→ V, where V is a set of web flow vectors that describe the observable 
characteristics of the encrypted traffic. A web flow vector v is a sequence of directional 
packet sizes, e.g., a 50-byte packet from the browser and a 1024-byte packet from the 
server are denoted by “(50, 1024)”. 
 
The objective of the adversary can be formalized as follows. Consider at time t an 
application state st to accept an input (from the user or the back-end database). The input 
space is partitioned into k semantically-disjoined sets, each of which brings the 
application into a distinct state reachable from st. For example, family incomes are often 
grouped into different income ranges, which drive a tax preparation application into 
different states for different tax forms. All k such subsequent states form a set St+1∈S. The 
attacker intends to figure out the input set containing the data that the application receives 
in st, by looking at a sequence of vectors (vt , vt+1, … , vt+n-1) caused by n consecutive 
state transitions initiated from st . This process is illustrated in Figure 3-1. It is evident 
that a solution to this problem can be applied recursively, starting from s0, to infer the 
sensitive inputs of the states that the web application goes through. 
 
Before observing the vector sequence, the attacker has no knowledge about the input in st: 
all the k possible input sets constitute an ambiguity set of size k.  Upon seeing vt, the 
attacker knows that only transitions to a subset of St+1, denoted by Dt+1, can produce this 
vector, and therefore infers that the actual input can only come from k/α sets in the input 
space, where α∈[1,∞) is the reduction factor of this state transition. The new ambiguity 
set Dt+1 can further be reduced by the follow-up observations (vt+1, … , vt+n-1). Denote the 
ratio of this reduction by β, where β∈[1,∞).  In the end, the attacker is able to identify one 
of the k/(αβ) input sets, which the actual input belongs to. 
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Figure 3-1 Ambiguity set reduction 

3.2.1.2  Threat Analysis over Web and Cloud Application Properties 
The above analysis demonstrates the feasibility of side-channel information leaks in web 
applications. The magnitude of such a threat to a specific web application, however, 
depends on the size of the input space of the sensitive data and the reduction factors 
incurred by its state transitions. The former determines whether it is possible for the 
attacker to efficiently test input values to identify those that produce the web traffic 
matching the observed attribute vectors. The latter indicates the amount of the 
information the attacker can learn from such observations. In this section, we show that 
some prominent features of today’s web application design often lead to low entropy 
inputs and large reduction factors, making the threat realistic.   

3.2.1.3  Low Entropy Input for Interactiveness 
State transitions of a web application are often caused by the input data from a relatively 
small input space. Such a low-entropy input often come as a result of the increasing use 
of highly interactive and dynamic web interfaces, based upon the techniques such as 
AJAX (asynchronous JavaScript and XML). Incorporation of such techniques into the 
GUI widgets of the application makes it highly responsive to user inputs: even a single 
mouse click on a check box or a single letter entered into a text box could trigger web 
traffic for updating some DOM objects within the application’s browser-side interface. 
Examples of such widgets include auto-suggestion or auto-complete that populates a list 
of suggested contents in response to every letter the user types into a text box and 
asynchronously updating part of the HTML page according to every mouse click.  Such 
widgets have been extensively used in many popular web applications hosted by major 
web content providers like Facebook, Google and Yahoo.  They are also supported by 
mainstream JavaScript libraries for web application development.  Moreover, the 
interfaces of web applications are often designed to guide the user to enter her data step 
by step, through interacting with their server-side components. Those features make state 
transition happen even with a very small amount of input data, and as a result, enable the 
attacker to enumerate all possible input values to match the observed web flow vector. 

3.2.1.4  Stateful Communications 
Like desktop applications, web applications are stateful: transitions to next states depend 
both on the current state and on its input. To distinguish the input data in Figure 3-1, the 
attacker not only can utilize vt, but also every vector observed along the follow-up 
sequences. This increases the possibility of distinguishing the input. For example, 
different income ranges lead to different state transitions in a tax preparation application; 
the letters in the input box affect all the follow-up auto-suggestion contents; etc. 
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Although the reduction factor for each transition may seem insignificant, the combination 
of these factors, which is application-specific, can be really powerful. We will show 
through real application scenarios that such reduction powers are often multiplicative, i.e., 
β = βt+1 •… •βt+n, where βx is the reduction factor achieved through analyzing vector vx. 

3.2.1.5  Significant Traffic Distinctions 
Ultimately the attacker relies on traffic distinctions to acquire the reduction factor from 
each web flow.  Such distinctions often come from the objects updated by the browser-
server data exchange, which usually have highly disparate sizes due to the diversity of 
web contents, including HTML, video, picture, Flash and others.  

3.2.2  Information Leaks Discovered in Real-World Web Applications 
Here we briefly describe our findings on the side-channel vulnerabilities in seven high-
profile, top-of-the-line web applications, including Google Health, Google/Yahoo/Bing 
Search, SmartTax*/TaxLower* and AccuInvest*. Note that we use pseudonyms (notated 
by ‘*’) to describe the last three applications, per requests from related organizations. The 
details of these findings are elaborated in the technical report [73]. 

3.2.2.1  Google Health 
Google Health is a free personal health information service that runs exclusively on 
HTTPS. Once logged in, a user can build her health profile by entering her medical 
information under several tabs, including Conditions, Medications, Procedures, etc. She 
can also find specialists through the system. In our research, we found that an 
eavesdropper is able to infer a user's conditions, the medications she takes, the procedures 
she has, and the type of doctors she is looking for.  As an example, Figure 3-2 illustrates 
the user interface for adding a condition or disease. Its input box includes an auto 
suggestion list that displays ten possible conditions in response to every letter the user 
types. Generating this list triggers a round of communications characterized by a web 
flow vector (253±1, 581, x), where “±” describes the deviations of the packet size 
in different rounds, and x precisely indicates the size of the suggestion list.  This size can 
often be uniquely mapped to the state of the suggestion list, i.e., the letters that have been 
typed. As a result, an eavesdropping adversary can infers from x the first letter the user 
enters, e.g., ‘a’, then the two letter sequence, e.g., ‘ac’, and so on. Actually, we found that 
when ‘a’ to ‘z’ is typed as the first letter under the Conditions tab, their x values are all 
different, except those for ‘h’ and ‘m’. These two letters can often be distinguished by 
looking at x for two letter sequences: ‘ha’ to ‘hz’ are all distinct from ‘ma’ to ‘mz’, 
except ‘ha’ and ‘ma’. We also discovered that when the user selects a suggestion, the 
traffic she generates often has a distinct attribute vector.  This enables the adversary to 
easily identify the disease condition being entered. Our research shows that the same 
leaks also happen when the user chooses her condition through mouse clicks or utilizes 
the ``find-a-doctor'' functionality to find a specialist. A demo of the attack is at 
https://sites.google.com/site/ourDemos/. 
 



 36 

tabsTabs

“W” clicked

Input box
“Add” button

“Conditions” 
clicked

“Add” links

 
 
Figure 3-2 Goolge Health User Interface for adding health records 

3.2.2.2  SmartTax*/TaxLower* 
SmartTax* and TaxLower* are two of the most widely used applications for preparing 
the United States' tax documents for individuals and businesses. Traditionally, they were 
sold on CDs. In recent years, the online versions of these applications become available, 
which are accessible through HTTPS exclusively. We found that those web applications 
actually leak a large amount of user information, such as family income, whether the user 
paid big medical bills, etc. For example, Figure 3-3 shows the applications' work flows 
for determining one's eligibility for child credits. Such a decision is made based upon the 
user's Adjusted Gross Income (AGI): if the AGI is below $110,000 for Married Filing 
Jointly, the user gets the full credit; if it goes above $150,000, she gets none; otherwise, 
the user gets partial credits. As we can see from the Figure, the transitions from the state 
“Summary of Deductions & Credits” to other states all generate distinct web flow vectors, 
in which the specific value of b can be identified from the vector when the program 
enters the state “Deductions & Credits”.  By observing those vectors, the attacker is able 
to confidently determine where the taxpayer's AGI falls: below $110,000, between 
$110,000 and $150,000, or above $150,000. As another example, Figure 3-4 illustrates 
the state transitions when the user is trying to claim student loan interest deduction.  In 
this case, whether the user is eligible actually leads the program to go through different 
execution paths: if her AGI is above $145,000, she is not eligible, and therefore no 
further question will be asked; otherwise, the application gets into the highlighted state 
where the information about the user's interest is required.  This further exposes the user's 
AGI range to the eavesdropper.  Figure 3-5 summarizes the AGI ranges that can be 
inferred from the applications' traffics. 
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Figure 3-3 State transitions for child credit eligibilities 
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Figure 3-4 Asymmetric paths in student loan interest deduction 
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Figure 3-5 Some disclosed AGI ranges 

 

3.2.2.3  AccuInvest* 
AccuInvest* is a leading mutual fund company, which  provides many services, including 
mutual fund investment, stock brokerage, retirement savings, etc, for individual 
customers and institutional investors.  Its side-channel leaks come from graphical 
visualization of data.  As an example, Figure 3-6 illustrates the three funds the user 
invests and their 12-month performances. Note that we did not use a screen shot of the 
real application, per the request from AccuInvest*. All these charts are GIF images, 
which are downloaded to the client separately from their accommodating page. Since one 
can choose only from 9 mutual funds for her retirement plan, and image sizes of these 
funds' performances are all distinct and public, the eavesdropper can easily determine 
which funds one invested.  More interesting is the way to infer fund allocations. For 
example, consider that one invests in three funds. Given the resolutions of the image, 
there are totally 79401 possible images for different allocations of those funds.  For a 
particular packet size, there are more than 385 possible images on average. However, the 
user's investments can still be inferred from the fact that AccuInvest* updates the pie 
chart every day after the market closes, the pie chart's evolution can be viewed as state 
transitions over a multiple-day period, initiated by the input of the first-day's financial 
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data from the back-end database and driven by the follow-up daily inputs from the market. 
Since the price of each fund, in cents, is public knowledge, the pie charts on different 
days can be correlated. Our research shows that one's fund allocations can often be 
determined by analyzing the changes of the sizes of her pie charts during four 
consecutive days. The similar approach could also be used to infer the strategies of 
investment professionals, such as brokers, hedge fund managers and trust institutions. 
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Figure 3-6 Mutual Fund List (left) and Allocation (right) 

3.2.2.4  Google/Yahoo/Bing Search 
In addition to HTTPS, cryptographic protocols for wireless communications, such as 
WPA and WPA2, are also found in our research to leak out a significant amount of 
information in the web applications that they protect. This problem was found in our 
research to be particularly serious for search engines. Although individual query words 
the user enters may not be as sensitive as the health and financial data, if an attacker can 
obtain her query histories, the consequence can be more serious:  query histories reveal a 
lot about one's online activities, which is often viewed as sensitive information assets, 
particularly in corporate settings due to intellectual property concerns.  
Google/Yahoo/Bing Search all provide auto-suggestion features to help users enter their 
queries quickly and accurately. On the other hand, existing Wi-Fi encryption schemes are 
unable to hide side-channel leaks: specifically, WPA uses RC4 stream cipher and WPA2 
adopts AES block cipher operating in the counter mode, which all preserve the length of 
the plaintext being encrypted. As a result, the query words a user types into those search 
engines, even encrypted by WPA/WPA2, are essentially unprotected from an 
unauthorized party that sniffs the wireless communications of the user's organization.  
We present a demo at the aforementioned link. 

3.2.3  Challenges in Mitigating the Side-channel Leaks 
Our study indicates that mitigation of the side channel problem in web and cloud 
applications is highly nontrivial.  Particularly, it is unlikely to have an application-
agnostic solution to the problem.  Specifically, we evaluated the effects of two padding 
strategies on the aforementioned web applications, including rounding that rounds up 
packet sizes to the nearest multiple of certain bytes, and random padding that appends 
packets to a random length within a certain range. We found that the leaks within Google 
Health cannot be completely subdued even after packets are rounded to 512 bytes, which 
incurs a network overhead of 32.3%. For SmartTax*, even rounding packets to 2048 
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bytes, with an overhead of 38.10%, is insufficient for hiding the 7 income ranges 
disclosed from asymmetric execution paths, which actually cannot be covered by padding 
alone. More interesting is the observation that the search engine leaks cannot be fixed by 
rounding, as the auto-suggestion lists are actually GZip-compressed by web servers, and 
some organizations decompress them for inspecting the packets while others let the users' 
browsers do the decompression: as a result, the web server cannot use rounding to protect 
both compressed and uncompressed contents transmitted in different recipients' Wi-Fi 
networks. On the other hand, random padding seems to have nothing but marginal effects 
on the inference attack on the images of AccuInvest*, because the eavesdropper can 
compare the traffic attributes of the same user's images collected from different rounds of 
client/server interactions to remove the randomness. 

3.2.4  Automatic Detection and Quantification of Side-channel Leaks in Web 
and Cloud Application Development 

The first step of such a principled development methodology is to identify potential side-
channel weaknesses from a web application and determine their gravity. This requires 
automatic program analysis technologies to be developed to support in-depth analysis of 
increasingly complicated web applications.  In our research, we made the first step 
towards building such technologies.  We developed Sidebuster, the first approach for 
automatic detection and quantification of side-channel leaks in web applications [2]. 
Based upon a set of “taint sources” the developer labels as sensitive, Sidebuster conducts 
an information-flow analysis on source code to track the propagation of “tainted” data 
across a program's client/server components. Whenever the tainted data are found to be 
transmitted to the network through an encrypted channel, an information-leak evaluation 
is performed to understand whether the side-channel information of the channel, such as 
packet sizes and sequences, can be used to infer the content of the data. Whenever a 
branch condition is found to be tainted and its branches involve client/server 
communications, our tool evaluates whether the attributes of such communications reveal 
the sensitive condition.  We also propose new techniques for analyzing GUI widgets, 
such as auto-suggestion lists, which are triggered by input events (e.g., letters being 
entered) to synthesize different user inputs into an integral variable (e.g., a query word) 
that the developer labels as a “taint target”. 
 

3.3 Sensory Malware on Mobile Sensors: Attacks and Defenses 
To fully understand the threat space of malware on mobile sensors, we conducted 
preliminary research using easily obtainable smartphones as sample sensors containers. 
We explored various attack scenarios. While traditional malware defenses focus on 
protecting resources on the computer (or as we would expect, on the smartphone), we are 
specifically interested in the new class of attacks where sensory malware uses onboard 
sensors to steal information from the user’s physical environment. We refer to such 
malware that exploit onboard sensors as sensory malware.  For example, the user carries 
around a video and audio sensor (microphone) at all times, and thus immense amounts of 
information such as sensitive conversations, spoken passphrases or biometrics, keyboard 
acoustic emanations when placed next to a keyboard, and broader surveillance becomes 
possible. Video “sensors” can gather visual information about a user’s private 
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environment such as pictures of colleagues, which may be sensitive with military and 
intelligence-gathering agencies. Accelerometers and GPS sensor information can be used 
to infer location and activity patterns of users such as soldiers, thus compromising 
military secrecy.   

While generic architectures have been proposed to control access to the network, for 
example, after software has accessed certain sensor information, various vectors exist for 
leaking garnered information. Overt channels between components on the smartphone 
(Android provides very little security against communicating applications, for example), 
or covert channels between related malware applications (through a storage channel, for 
example) are currently viable vectors for leaking sensitive data to adversaries. It is even 
possible to leverage other “blessed” applications on the phone to act as a carrier for such 
information (by invoking a web-browser with an encoded URL, for example). Thus we 
are interested in building a unified architecture for controlling access to sensor data, and 
limiting what information can be gleaned from the user’s environment unless he or she is 
making use of legitimate applications.  

Summary of findings and results 
 

1. Targeted, context-aware information discovery from sound recordings. We 
demonstrated that smartphone- based malware can easily be made to be aware of 
the context of a phone conversation, which allows it to selectively collect high-
value information. This is achieved through novel techniques we developed to 
profile the interactions with a phone menu, and recover digits either through a 
side-channel in a mobile phone or by recognizing speech. We also show how only 
limited permissions are needed and how Soundminer can determine the 
destination number of the phone call through IVR fingerprinting. 

 
2. Stealthy data transmission. We studied various channels on the smartphone 

platform that can be used to bypass existing security controls, including data 
transmission via a legitimate network-facing application, which has not been 
mediated by the existing approaches, and different types of covert channels. We 
also discovered several new channels, such as vibration/volume settings, and 
demonstrated that covert channel information leaks are completely realistic on 
smartphones. 

 
3. Implementation and evaluation. We implemented Soundminer on an Android 

phone and evaluated our technique using realistic phone conversation data. Our 
study shows that an individual’s credit-card number can be reliably identified and 
stealthily disclosed. Therefore, the threat of such a sophisticated attack is real. 

 
4. Defensive architecture.  We identified security measures that could be used to 

mitigate this threat, and in particular, we designed and implemented a defensive 
architecture that prevents any application from recording audio to certain phone 
numbers specified by privacy policies. 
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5. Research paper. A peer-reviewed research paper describing our work on 
Soundminer has been accepted by the 18th Annual Network & Distributed 
System Security Symposium. 

 
6. Video demonstration: A video demonstration of Soundminer’s operation is 

available on Youtube. http://www.youtube.com/watch?v=_wDhzLuyR68 
 

3.3.1  Malware Design 
We built a software prototype of one instance of sensory malware to demonstrate the 
reality of the threat, and to better understand defensive techniques to limit such malware. 
Soundminer is a speech-based malware that uses several heuristics to target analysis at 
only specific portions of the audio sample. Such targeted analysis drastically reduces the 
amount of resources needed to analyze audio samples, thus decreasing the observability 
of such malware by the human operator and by known automated defenses. Soundminer 
uses more general profiles that tune the malware to recognize several different situations, 
or contexts, such as a recognized phone number that is dialed. Based on the context, 
Soundminer can, for example, detect a credit card customer service line and target 
analysis to credit card number extraction. Calls to financial institutions such as banks 
often require portions of the user’s social security number, which could be extracted 
similarly. Such profiles can make use of other clues such as audio or video triggers to 
better target surveillance and transmit specific information. Soundminer also uses 
smartphone specific covert channels to evade all known security architectures for limiting 
the flow of sensor information in smartphones. Soundminer is thus able to extract 
valuable information from sensors and transmit them covertly to a remote server. 

3.3.2  Architecture Overview 
The main goal of Soundminer is to extract a small amount of high-value private data 
from a person’s speech and transmit it to a malicious party. It also aims to do so in a 
stealthy manner, by evading detection and not degrading the user experience, and under 
possibly restricted configurations as described above.  These goals are achieved by a 
design illustrated in Figure 3-7, which includes two key components: a context-aware 
data collector (collector for short) and a data transmitter (transmitter). The collector 
monitors the phone state and makes a short recording of the calls it deems interesting 
based on a profile database. The recording is then analyzed based on the specific profile to 
extract user data and passed to the transmitter, which manages to send it to the malware’s 
master. Since Soundminer does not have direct access to the Internet, this transmission 
needs to be done through a second application, either a legitimate network-facing 
application like the browser or a colluding program with the networking permission.  
To deliver the data to the latter, the transmitter needs to use covert channels, when the 
overt communication is monitored by a protection mechanism [75]. 
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Figure 3-7 Soundminer architecture with collection and communication parts connected to overt 
channel to a second application which can access the Internet. 

 
Audio is recorded by the collection module as illustrated in Figure 3-8 using the 
microphone, and processed, and high-value data is extracted and forwarded to the 
communication part. The collector is designed to monitor phone states to identify and 
record phone conversations of interest, then decode the recording to perform a 
lightweight analysis, which uses tone/speech recognition and the profile of the call to 
locate and extract high-value information. This process is illustrated in the right part in 
figure below. The profile database contains profiles that resemble state machines. Here 
we elaborate its design and implementation. 
 

 
Figure 3-8 Soundminer audio collection module. 

 

An IVR system includes a phone menu, which guides the caller to move step by step 
through the service.  During such a process confidential user information to authenticate 
the user of for other purposes could be compromised by way of malware that have 
knowledge of the state transitions of the service process. Figure 3-9 illustrates a state 
machine model of a service line with two different paths branches indicate the input 
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required by the user to take the the expected input sequence for reaching high-value 
information would either be “1” or “2, 2, 1”. 

 

 
Figure 3-9 IVR data paths to sensitive information. 

3.3.3  Malware Attacks 
We present two methods that will circumvent existing prevention and detection 
mechanisms. In the first method, Soundminer uses a legitimate, existing application with 
network access (such as the browser) to transmit the sensitive information. In the second 
method, Soundminer uses a paired Trojan application with network access and 
communicates with it through a covert channel. Both methods circumvent known, 
existing defenses. 

3.3.3.1  Leveraging Third-Party Applications 
The permission mechanism in Android only restricts individual applications, not the 
relations between applications. This allows Soundminer to communicate with its master 
through a legitimate network-facing application, such as a web browser. Specifically, the 
malware can request the browser to open an URL in the form http://target?number=N 
with N the credit card number to pass it to a target web site. A weakness of this approach 
is that the transmission is more noticeable to the user, as the browser will be brought to 
the foreground. Such an activity, however, can be easily covered by, for example, 
popping up advertisements that apparently come out of the browser, or cheating the user 
into believing that this is caused by a stray click that leads to standard sites such as 
Google and CNN. Nevertheless, we consider this approach to be more intrusive than a 
paired Trojan application, which once installed, performs all such communication in the 
background. 

3.3.3.2  Covert Channels with Paired Trojans 
Next we consider communication between two Trojan applications. In this case, 
Soundminer is paired with a Deliverer Trojan with network access, which transmits the 
extracted sensitive information (typically only a few dozen bytes) to the malware’s 
master over the Internet. Under the current Android security model, the Soundminer and 
Deliverer applications could communicate through overt channels, however such 
communication will be limited with recently proposed defenses. To be as stealthy as 
possible and to circumvent such defenses, covert channels on the Android platform can 
be used instead to covertly transfer the extracted information from Soundminer to 



 44 

Deliverer and thereby to the malware’s master. We identified and evaluated new covert 
channels of communication on smartphone platforms and demonstrates that 
communication through such channels is realistic for sensory malware. 

3.3.4  Defensive Architecture 
To counter such threats, therefore, we need a framework that is better equipped to deal 
with sensory malware threats. Since no existing defenses work on Soundminer, we 
designed and implemented a defensive architecture that foils the malware. In essence, all 
audio recording and phone call requests are mediated by a reference monitor, which can 
disable (blank out) the recording when necessary. The decision on when to turn off the 
switch is made according to the privacy policies that forbid audio recording for a set of 
user-specified phone numbers, such as those of credit-card companies. We evaluate our 
prototype defensive architecture and show that it can effectively prevent our 
demonstrated attacks with minimal processing overhead. 

 
We implement a prototype to add a context-sensitive reference monitor to control the 
AudioFlinger service, the Android kernel service in charge of media data. This approach 
prevents audio data from leaking to untrusted applications during a sensitive call. Our 
reference monitor is designed to block all applications from accessing the audio data 
when a sensitive call is in progress. It consists of two components: 
 
Reference Service:  

The reference service determines whether the phone enters or leaves a sensitive state by 
monitoring call activity. If a sensitive call is made it alerts the controller. In our prototype 
the reference service is implemented in the RIL, the “radio interface layer” which 
mediates access from the Android OS to the baseband hardware. Any attempt to make a 
call, no matter how it is made, has to pass through the RIL. The reference service 
intercepts attempts to make outgoing calls and checks the called number. If a call is made 
to a sensitive number it notifies the controller. 

Controller:  

The controller embedded in the AudioFlinger service mediates access to audio data. It 
operates in one of the following two modes: 

1. Exclusive Mode: In exclusive mode, the controller blanks all audio data being 
delivered to applications requesting audio data. Instead of the actual audio data, 
these applications will simply record silence. 

2. Non-Exclusive Mode: In non-exclusive mode, the controller does not intervene 
and the audio data is delivered normally to applications. 

When the reference service detects that a sensitive call is being made, it alerts the 
controller. On receiving the alert from the reference service, the controller enters 
exclusive mode and blanks all audio data being delivered to applications. Once the 
sensitive call has ended, the reference ser- vice again notifies the controller, which reverts 
back to non- exclusive mode. Our reference service can be used by existing reference 
monitor architectures to intercept phone calls, and use the controller to enable/disable 
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recording from the microphone. Although we focus on audio data, the principle of adding 
context information to protect Android kernel services can be extended to protect other 
sensor data. We believe that existing architectures can use a similar technique to defend 
against sensory malware. 

We evaluate our prototype defensive architecture and show that it can effectively prevent 
our demonstrated attacks with minimal processing overhead. 
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4 Detection of Anomalous Use of Sensors 
 
A key issue of trusting data  from a sensor grid  is to ensure  that the  sensors 
themselves  can be trusted.  In our model we consider  sensors that should  be in the 
possession of trusted individuals. If the sensor is in the possession of a trusted 
individual, then it  is more  likely that it  is reporting a honest  or legitimate 
environment, and  not  one that has  been manipulated with  the  goal of producing  
faulty  results  that get incorporated in to final computation. To facilitate our 
research on learning and building trustworthiness algorithms and models for 
sensors, we make use of easily obtainable smartphones as sample mobile sensor 
containers to test and verify computational models.  
 
Smartphones, like many mobile sensors, can be easily stolen,  misplaced  or 
temporarily intercepted and  reprogrammed by adversaries.   If stolen  or misplaced,  
the  environment  that the  sensors report  may be altered,  and thus the  data  
collected  untrustworthy.  The  use of traditional authentication technologies  to 
ensure  a legitimate user is in control  of the smartphone sensor is not practical, as 
said users cannot  be queried to  authenticate  every time  the  sensor grid  r ece ives  
o r  requests  information.  Our work aims at enabling a mobile sensor, in this case a 
smartphone to a t t empt  to  de t e rmine  i f it is no longer in the possession of its 
legitimate user, and in such cases deauthenticate the phone (essentially  removing it  
from  the  sensor  grid,  or tagging  its  information to  note  potential risk  in 
including  it  in any computations).  This  project  uses machine-learning techniques  
and  the  sensors of the  smartphone to estimate  the likelihood that the legitimate 
user is in possession of the phone.  In particular, the phone learns normal  behaviors  
of the  phone’s sensors when it’s knowingly possessed by the  legitimate user, and  
uses  that  information to  estimate   the  likelihood  that it  is still  in  the  user’s  
possession  based on current sensor  readings.   Currently,  we are  using  Hidden  
Markov  Models to  learn  daily  location routines through eGPS  and  other  locating  
technologies.    As behavior  becomes  learned,  the  model can  begin  to  determine 
the  likelihood that the  immediate  history  of the  phone’s  location  indicates normal 
or abnormal behavior,  producing  a trustworthiness metric.  The goal is to develop 
appropriate models for other  sensors built  in to the  smartphone. In particular, 
currently available WiFi  signals and  devices, Bluetooth signals  and  devices,  
accelerometers, temperature  sensors,  audio  and  video recordings  can be used to 
determine different forms of normal  behavior.  Each  signal can be learned  with  a 
machine learning technique  appropriate to it, and based on it develop a 
trustworthiness metric. 

 

4.1 Places and Faces: Using Contextual Data to Authenticate 
and Deauthenticate Smartphones 

We approch the general problem of detection of anomalous use of sensors by using 
contextual data to authenticate and deauthenticate smartphones for our preliminary study 
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of building and understanding the use of stochastic models to determine trustworthiness 
of sensor data. 
 
Modern smartphones are privy to an extraordinary amount of private information, both 
directly stored on the phone and through automated VPN connections to network storage. 
Further, many applications are using smartphone possession as a token in itself for use in 
authentication to third-party systems. Thus, the value of smartphones has increased 
substantially, yet the authentication and deauthentication mechanism of these devices 
remains largely unchanged from that of traditional PCs: password authentication with 
timed-out deauthentication. Unfortunately, due to the modes in which smartphones are 
used, and the difficulty of entering passwords on smartphones' input devices, this feature 
is often unused. However, modern smartphones have access to a number of sensors that 
PCs have traditionally not. We present and evaluate a system that has smartphones 
monitor their sensors to determine the risk that an individual in possession of a phone is 
truly the correct individual, as opposed to having been lost or stolen. We consider an 
architecture that allows for as many risk determining sensors as are available. We 
specifically implement measurement based on the current and recent history of the 
geographical position of the phone (places) as well as the social network of individuals 
and devices that the phone can observe (faces).  Geolocation is predicted by the use of a 
Hidden Markov Model and Bluetooth is predicted by measuring the frequency of 
observed Bluetooth IDs with respect to an observed historical distribution of observed 
IDs. We evaluate the effectiveness of the service by using the data traces of 
approximately 30 individuals whose positional and Bluetooth data was recorded over a 
period of approximately 90 days from the RealityMining dataset from the Reality Mining 
Lab at MIT (http://reality.media.mit.edu). We simulate loss and theft by a number of 
different models we discuss herein. 
 

4.2 Threat Model 
We note that the threat model we wish to pursue here is not one of a dedicated adversary 
targeting a specific individual's phone, but rather thefts of opportunity and loss of phones. 
In such cases, timely entry of a password or another form of direct authentication may be 
necessary. Rather, we wish to protect against loss, misplacement or random theft of the 
phone: we believe for most individuals and organizations, this is a greater risk than being 
specifically targeted. 
 

4.3 Using Sensor Data to Measure Contextual Risk 
The model we consider is one where the many sensors on a modern smartphone each 
measure risk independently. This allows measurements of risk be tailored to how 
individuals might use their phones in different contexts, allowing risk measurements to 
be made on several somewhat independent axes.  Then a global risk evaluation engine 
can measure the risk of independent sensors, and determine a global risk metric that is 
used for authentication and deauthentication. This global risk evaluator can also take in to 
account different global parameters such as time of day, day of the week, and date. A key 
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advantage of this scheme is that it permits that there will be many occasions when 
individual sensors can give false positives and negatives.  

4.4 Geolocation Risk 
Android smartphones can determine their position using a combination of several 
different information sources, which includes cellular transmissions (in particular, tower 
location), GPS positioning and WiFi positioning. The combination of all of these pieces 
of information is often called eGPS, and frequently provides position far more accurately 
than any of the technologies alone. Our high-level goal is for the phone to learn certain 
geographic locations and routines that correspond to either a safe or dangerous state.  
 
Humans have natural cyclical behaviors dictated by circadian rhythms and calendars. For 
many individuals our location is quite predictable due to schedules imposed by our jobs 
or educations. For such individuals, this provides an ability to prognosticate on the risk of 
a smartphone’s theft or lose, based solely on its position. For example for many nine-to-
five workers, if their phones are located in their offices during business hours, this would 
indicate a low risk of theft or loss, while if their phones were detected outside of their 
premises at 3am on a weeknight, this would indicate a high risk for theft or loss.  

4.4.1  Hidden Markov Model 
We extend the work of Farrahi and Gatica-Perez [77]. We are using a third-order Hidden 
Markov Model (HMM) to determine the risk of misuse of a phone based on current 
positional information. Farrahi and Gatica-Perez considered the problem of determining 
location for contextual application purposes, but without specific interest in 
authentication and security mechanisms. A day is divided into blocks of 30 minutes. In 
any given period the phone is considered to be in one of four specified places (e.g., Home, 
Work,  Aux 1, No Location Reading) or in a generic unlabeled place (Other). Thus the 
location of an individual through a time period is being converted into a string, as is 
depicted in Figure 4-1. 

 
 
 
 
 
 
 
 
 

 

 

 
Figure 4-1 Convert to common location string for HMM learning. 
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Currently, we are considering a supervised learning case where a user specifically defines 
these five locations, with the goal of using clustering algorithms to eventually learn 
popular locations. Traces of individuals' positions are then collected, and the HMM 
iterative Viterbi training and Forward algorithm are used for training on this past 
annotated data sequences and predicting risk.  Based on a trained HMM, and a recent 
history of the phones' positions, the forward algorithm is used to determine the likelihood 
of the recent history, and this estimate is used to determine the risk associated with the 
phone's current position. Of clear importance is the efficiency with which both training 
and evaluation can be performed. Due to the need to only occasionally perform training 
(say daily or weekly to update the movement model with the most recent trends), its 
efficiency is of lesser importance than that of real-time risk evaluation which needs to be 
performed on demand in real-time in order to prevent users form becoming frustrated 
with risk-calculation delays.  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 4-2 Tradeoff learning accuracy versus runtime costs. 

As previously mentioned, risk evaluation is based on the use of the forward algorithm.  
The forward algorithm runs in  where n is the number of states and t is the number 
of time-blocks being analyzed; given an HMM M the forward algorithm returns the 
probability that a given sequence of positions  is output by an HMM, given that it 
terminates in state .  More formally, , for a given , and . 
However, for risk analysis we have no preference for any specific terminal state, and so 
we are interested in . A simple modification that sums the probabilities 
over all final states runs in  operations, and returns the value of interest. Given the 
running time is cubic in the number of states and we need near real-time evaluations of 
the algorithm, we need to minimize the state space. To minimize the state space we 
actually construct 48 individual HMMs to learn patterns of behavior during 3-hour 
periods of the day with each period being offset by 30 minutes. This construction could 
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be viewed as a Hierarchical HMM in which the transition distribution in the high-level 
HMM are all Kronecker -functions. The model is depicted in Figure 4-2. 

4.4.2  Determining Risk 
In order to arrive at an actual quantitative prediction for risk, the phone uses its 
geographic positions for the previous 3 hours, parses them into a string representation, 
and feeds it in to the HMM to determine how likely the trained model is to output the 
observed string. However, this is not a normalized value that can be compared between 
different time periods. Therefore, in order to normalize measured values, we compare the 
probability of the observed locations to the probability of the least likely string 
corresponding to the same time period for the day in the training dataset. The gap 
between the observed strings probability and that of the least likely data from the training 
set results in a more normalized value. 

In order to measure the effectiveness of the model at predicting risk, and to calibrate the 
exact rules we use to determine when the phone should lock itself according to the 
geographic location sensor (in isolation), we simulated the HMM using geolocated data 
culled by NAMES HERE in the Reality Mining Dataset [76]. The data includes the 
anonymized geolocation data of approximately 90 students, and faculty who carried 
cellphones over a 99 day period. By hand tagging the data we are able to model 
approximately 30 users in our system, other users were excluded due to either a lack of 
data, or the inability to identify locations such as work and work. 

4.4.3  Simulate Theft to Model Anomalous Use of Smartphone Sensors 
For each user we trained on 30 days of data, and then predicted location.  It is very hard 
to conceive of how one might get actual, experimental data on the theft or loss of phones. 
Therefore, we simulated this behavior: we performed experiments where after a 
predefined time of theft or loss, the location of the phone continuously reports its 
locations as “other”. Since our threat model is one where individuals are not targeted, this 
corresponds to the likely scenario where the thief takes a phone and his or her location 
will no longer correspond to any of the identified locations of the stolen phone’s owner.  
We considered several different offsets in time to determine effective rates of theft 
detection. In Figure 4-3 we present typical ROC curves for different levels of  theft 
sensitivity. Each curve represents how long we are willing to give the phone to detect 
anomalous behavior. Clearly, more time to detect anomalous behavior results in better 
accuracy, as is easily seen in the figure. However, the longer we allow for detection, the 
greater risk of compromise on the phone.   
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Figure 4-3 Example ROC curve for theft detection based on geographical data for user from Reality 
Mining Dataset. 

 

4.5 Social Network Risk 
In many cases the mere presence of other people or objects can indicate a low risk for 
theft or loss of the phone. For example, the presence of one’s spouse (or his/her 
corresponding phone) indicates that it is unlikely that the phone has been stolen or lost, as 
they would both have to be stolen or lost in conjunction. Given the proposed threat model, 
this is considered to be a low probability event. Similarly, if the user’s phone detects the 
presence of the user’s car, then it is unlikely the phone has been stolen, but rather that the 
phone is in the user’s car: a location that one would frequently consider secure. Thus, we 
see we can use a form of social network analysis to determine if it is likely the phone has 
been lost or stolen.   
 
Worth noting is how social network risk seems to complement location risk. In particular, 
there are many cases where people visit new or infrequently visited locations, but do so 
with friends, family and co-workers. Therefore, in exactly the cases where the geographic 
position of an individual might indicate a high-risk setting, the social network risk 
counteract it to indicate a low-risk setting due to the presence of many trusted friends. 
In order to detect the presence of “friends”, we use 2.4GHZ wireless radios to scan for 
the unique Medium Access Control (MAC) identifiers of commonly observed wireless 
devices. Detecting a device implies that it is relatively close due to the relatively short 
broadcast ranges these radios posses.  
 



 52 

4.5.1  Hardware and Software Implementation 
In principle, one could use either WiFi or Bluetooth on modern smartphones to detect the 
MAC addresses of friendly or frequently seen devices. However, we have implemented 
the detection for Bluetooth devices only for several technical reasons. The primary reason 
being that we could not easily put the Android phones we had access to in to 802.11’s 
promiscuous mode without directly modifying the WiFi driver. This mode permits the 
detection of wireless traffic not explicitly targeted at a smartphone in question, and thus 
would allow us to easily detect the presence of  nearby WiFi devices.  
 
In implementing this scheme for Bluetooth, we also had difficulties in that the Android 
Dream platform we initially developed for did not support versions of the Android 
Operating System past 1.6, and the API for Bluetooth in those versions was limited. 
Therefore, we acquired to more modern phones (specifically, the Nexus One and HTC 
Legend) which supported the latest version of the Android OS, which in turn fully 
supported the Bluetooth API. 

4.5.2  Determining Risk 
In order to determine the safety or risk to the phone, based on the presence of other 
phones we consider two systems. First, a white-list in which devices whose presence 
suggest there is very little risk of theft. Examples might include one’s home PC, or one’s 
vehicle. The white-list is user administrable, and can be modified at any time.  
 
Beyond the white-list, we implement a gray-list. This list maintains a history of devices 
that the phone observes over time. The list is used to define a sampled probability 
distribution of observed Bluetooth devices over time. The distribution is then used to 
calculate an averaged spot-entropy (or information content) at any given point, to 
determine the risk of the current setting. That is, the Entropy of the distribution is denoted 

 

H(X) = Pr( p)⋅ log(1/Pr( p))
p∈X
∑ , where for a given id p its probability Pr(p) is its 

frequency of observation. An individual entry is added to the observations in order to 
give a baseline entropy measurement for observations of new, previously unobserved, 
IDs.  
 
In any given time period, the smartphone can now listen for local Bluetooth devices. In 
principal, we would like frequently observed devices to lead to a sense of safety for the 
phone, while infrequently observed devices should make the phone feel insecure. Further, 
one would expect that seeing a number of frequently observed devices would be 
beneficial, while a number of infrequently observed devices would be detrimental. 
Further, we would like a metric that returns results between 0 and 1. Therefore, we settle 
on the following metric for determining spot risk. 
 
 
Here, H(x) denotes the Entropy of the observed ID history distribution, 
and Obs is the set of ID’s that is currently observed. Finally, 

 

I(o) = −log(Pr(o)) is the information or spot entropy of the observation o, where Pr(o) is 
defined by the History distribution. 

 

1

e
− (I (o)−H (X ))

o∈Obs
∑
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4.5.3  Performance 
Again, using the Reality Mining Dataset from (N. Eagle, 2006) we attained the Bluetooth 
sensing information from approximately 30 individuals over a 90 day time period. 
Having data collection for 90 days means that each individual can have up to 90 days of 
data collection. In practice most individuals have significantly less active days of 
Bluetooth data collection.  In order to simulate theft for this sensor, at a given point in 
time we introduce completely random Bluetooth IDs as the only IDs seen by the phone. 
Intuitively, this captures the theft of a phone, when the thief departs the scene of the 
crime, and is unlikely to encounter the IDs of individuals or devices that the phone is 
typically in close proximity to. Currently we are analyzing the ROC curves that result 
from a number of slightly different configurations of the above metric to determine its 
effectiveness. 
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5 A Technology Demonstrations of Sensor Grid with 
Mobile Sensors 

5.1 Application Introduction  
Traditional use of grid technology has focused on improving computational throughput 
for computationally intensive applications.  The initial Phase I and early Phase II research 
demonstrated the use of the grid middleware to dynamically acquire the required grid 
resources and execute computationally intensive applications.  During the second half of 
the Phase II research, the focus shifted to grid middleware capabilities that facilitated 
dynamic creation and management of a sensor grid to provide situational awareness 
through the use of multi-layered sensors coupled with the sensor data computation.  
During this Phase III research effort, the application demonstration has focused on 
development of a scenario to demonstrate the sensor grid middleware’s potential 
operational usage.  This Phase III application draws upon technology that uses both a 
mobile sensor platform, and distributed sensors communicating via a sensor grid to 
provide operational situational awareness.  Ultimately, the intent is to develop and use 
trustworthiness algorithms to assess and report the confidence that the sensor data can be 
trusted, as well as develop a sensor grid that is resistant to malicious tampering by using 
trustworthiness algorithms to assist with making resource allocation decisions. 
 
To achieve these application development and demonstration objectives, the research 
team used the Anabas Sensor Grid Middleware software core to connect two different 
types of sensor networks.  The first grid was formed by using mobile robot platforms, 
carrying a sensor payload.  The second grid network was formed using autonomous 
wireless cameras. 
 
Development of this sensor grid application could address various scenarios related to 
both military and commercial applications.  The sensor grid and trustworthiness 
technology could be useful to the warfighter as follows.  Several robot scouts could be 
sent into a dangerous urban environment, with low visibility and combatants at unknown 
positions throughout the city. These robots would communicate via a sensor grid, which 
also connects other sensors, such as UAV and satellites. 
 
The operators can request surveillance for a specific area, using the sensor grid, and then 
use a handheld device (smart phone, etc.) to prepare a strategy using real time 
information.  While the handheld device puts useful information in the hands of the 
warfighter, if stolen by the adversary, it could be used maliciously.  Assuming the enemy 
defeats the device's authentication, not only could the enemy gain a strategic advantage, 
they could also disrupt the sensor resources used by the warfighter. 
 
This damage could be limited by intelligently making use of trusted information to both 
limit the control a user has over the system, and the limit the amount of information 
presented to the user.  The system could be designed to make intelligent decisions about 
the use of sensor resources, without relying directly on the user.  Thus, the autonomy of 
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the system increases the trust, security, and reliability of the system, compared to the all-
or-nothing security of a strictly user controlled system. 
 
The ultimate focus of the sensor grid research aims to achieve several objectives.  The 
first objective it to provide a functional feasibility demonstration of a prototype Trusted 
Sensor Grid, capable of allocating resources based on some sort of trust metric.  The 
second objective is to build a Sensor Grid testbed, which can be used to explore 
autonomic trust methods, approaches and concepts.  The testbed will be built using two 
sensor networks -the mobile sensors and the overhead cameras - integrated into a grid 
with the necessary software to operate these sensors on the grid.  Finally, a demonstration 
will be performed which will clearly illustrate the usage of trustworthiness algorithms to 
resolve resource contention between untrusted users, demonstrate the application and 
usefulness of trustworthiness algorithms within a sensor grid, and make use of existing 
grid technology and standards. 
 
Due to the limitation of resources allocated to the application development and 
demonstration, the demonstrations of the Sensor Grid technology was partitioned 
between a 2010 and a 2011 segment.  The objectives of the 2010 demonstration were to 
show: 
 

1. the mobile sensors assembled and functioning, but may have simple actions (e.g., 
no mapping), performing some very simple surveillance (e.g., simple distance 
measurement), 

2. the overhead sensor assembled and functioning (e.g., observing and tracking an 
object), 

3. one mobile phone with camera or video sensors used to view the observations of 
one of the external sensors (e.g., overhead camera), and 

4. mobile phone and sensors integrated and communicating through the sensor grid 
middleware SCGMMS API. 

 
As a follow-up, after further application development, the objectives of the 2011 
demonstration will be to show: 
 

1. one of the smartphones used to fiddle with parameters to alter system behavior in 
a malicious way and the other phone capable of displaying the status of the sensor 
grid, status of robots with sensors, and trustworthiness metrics, 

2. incorporation of separately developed trustworthiness algorithms in the sensor 
grid to moderate the effect of the malicious phone in some way that is visible 
(“demonstrable”), 

3. sensor functionality building on the 2010 demonstration by adding 
a. a Simultaneous Localization and Mapping (SLAM) functionality, and 
b. some ability for the operator to select focus areas of surveillance, 

4. in addition to a malicious phone, the sensors can be switched into a malicious 
mode. 
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5.2 Application Development 
There were several subtasks associated with building the sensor grid application and 
demonstration.  The application development task involved the initial hardware/software 
configuration and setup, the sensor hardware configuration and setup, software 
preparation and development, and then software porting to the hardware.  The initial 
hardware/software configuration and setup was specifically focused on the Sensor Grid 
Middleware launch and setup.   

5.2.1  Sensor Grid Middleware Configuration and Setup 
To use the the Sensor-Centric Grid Middleware Management System (SCGMMS) 
software as the integrating infrastructure, the first subtask was setting up four desktops 
with the Linux Fedora 12 operating system and installing the sensor grid software on 
them.  There were some issues installing the sensor grid software since the computers 
were set up with Fedora Linux whereas some of the scripts contained windows style line 
endings.  Also, Fedora had the open source versions of Java and IcedTea, which were not 
fully compatible with the sensor grid software.  After resolving these issues, the 
installation finished smoothly. 
 
While the ultimate objective is to build a sensor grid testbed, the actual scope of this 
initial application was to use the Anabas Sensor Grid software to integrate a small scale 
grid of sensors.  Initially, the “grid” will consist of an AXIS 207 MW network camera, an 
Overo Gumstix computer-on-module and an HTC Legend Android phone.  The sensors 
use the Narada Broker core of the grid software to send messages to each other using a 
publish/subscribe interface paradigm.  As a proof of concept that we could use the sensor 
grid middleware to transfer sensor data and support situational awareness, the imagery 
tracking information was collected using an AXIS camera, then transmitted using the 
Sensor Grid Middleware’s publish/subscribe paradigm (see Figure 5-1), and then 
displayed on an Android phone.  The Sensor Grid Middleware was configured and setup 
to provide a communication venue between the producers and consumers of the sensor 
data. 
 

 
Figure 5-1 High-level sensor data exchange using SCGMMS. 

5.2.2  Sensor Hardware Configuration and Setup 
The sensor hardware configuration and setup involved working with several key 
hardware elements.  Figure 2-1 shows the major hardware items that were involved with 
the application development.   
 
The Sensor-Centric Grid Middleware Management System has already been discussed 
above.  The other items will be discussed in the following paragraphs. 
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Figure 5-2 Sensor Grid application major hardware components. 

 

5.2.3  Software Preparation and Development 

5.2.3.1  Axis Network Camera 
The lower right-hand corner of Figure 2-2 shows the AXIS 207 MW camera.  This will 
be used as a stationary electro-optical sensor for observing the testbed field.  The research 
team developed and implemented software to track a “green blob” for the AXIS camera.  
The AXIS 207 MW camera is a small wireless network camera capable of sending up to 
12 frames per second at 1.3 Megapixel resolution. The resident software included on the 
AXIS camera by can be set up to send (using File Transfer Protocol (FTP)) images to a 
computer when it detects motion.  This resident capability was used in conjunction with a 
complimentary transmission (also using FTP) program installed on the Gumstix board to 
upload images to said device.  The Gumstix Overo board is a computer-on-module (COM) 
device about the size of a stick of gum.  A COM is a type of single-board computer, 
meaning that it contains all features necessary to be a functional computer on one board.  
Due to time and resource constraints, the transmission program that exchanged data 
between the camera and the Gumstix module was all that was completed for this phase of 
the research. 
 
Simply uploading images didn’t allow for the type of image manipulation on the camera 
that the research team desired, so a program was developed to run on the camera.  No 
documentation was given for development outside of the AXIS’s Hypertext Transfer 
Protocol (HTTP)-based interface so cross-compiling programs for the camera was 
difficult.  The raw camera output and file system weren’t readily available so the research 
team wrote a program to download the current image from an AXIS camera website and 
then decode the downloaded data so it could be manipulated.  This necessitated 
compiling an HTTP library and a Joint Photographic Experts Group (JPEG) library for 
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the camera.  While this was difficult, it was completed after some trial and error.  At first 
the only manipulation done was to simply take the average luminescence value for the 
image and print it.   
 
The next part of the development effort was focused on fully implementing the code to 
send the manipulated camera data.  The first step was sending the luminescence value via 
a custom User Datagram Protocol (UDP) protocol developed by one of the research team 
members for a related effort.  The next step was developing the code to send the AXIS 
camera data via the NaradaBroker publish-subscribe interface.  The NaradaBroker server 
was set up, along with a desktop program, to receive and display the data using the 
NaradaBroker C++ bridge interface software.  Next, the research team worked to 
successfully compile the NaradaBroker C++ bridge for porting to the camera.  Again 
there were a few complications to successfully completing this task, but after some minor 
changes to the bridge library code, the software compiled and we were able to get the 
AXIS camera to communicate with the desktop software through the NaradaBroker 
server software. 

5.2.3.2  HTC Legent Phone 
After the successful compilation, the research team added more image manipulation 
capability to the camera code for performing simple blob detection on green objects. 
After completing the software to detect the green objects, the camera program would then 
send the blob information using either the simple UDP protocol or via the 
NaradaBrokering C++ bridge.  Next, the research team developed a simple Qt program to 
receive the object tracking information on the desktop and display it.  Finally, after 
validating the visual tracking display software was functioning, the research team 
developed a simple application for the HTC Legend (Android O.S.) phone (see Figure 
5-3) to develop some level of confidence and comfort. The android environment was 
fairly easy to learn and use, which helped development considerably.  
 

             
Figure 5-3 HTC Legend Android phone and blob tracking display. 

 
The next phase of development was creating an Android Phone application that received 
the blob tracking data via NaradaBrokering and displayed the data in a visual tracking 
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form.  The major challenge encountered was that some of the Java Archive (JAR) files 
from NaradaBroker were incompatible with the Dalvik virtual machine required for the 
Android Operating System (OS).  However, after determining which JAR files were 
needed for the display application, the research team was able to remove the conflicting 
library files.  The development also uncovered the fact that the Android virtual machine 
doesn’t support non-blocking I/O.  After working around these two roadblocks, the 
display application was finished and only required a few small adjustments to the camera 
and Android application software to synchronize the communication. 

5.2.3.3  Laser Range Finder and GumStix Processor 
Another aspect of the research effort was to develop software to communicate between 
the Hokuyo URG-04LX-UG01 Laser Range finder and the GumStix to provide location 
information to the grid. The data from the Laser Range finder is shared with other nodes 
and the cloud thru the Narada Broker. As discussed above, the objective of the 
application demonstration will be to integrate some tracking data with some mapping 
data to support sensor grid situational awareness. The focus of the Laser system will be to 
provide both distance and relative bearing information for use of the robot platform upon 
which it is mounted, as well as other users of the data on the sensor grid. The code was 
initially developed on a Linux laptop, then it was ported to the Gumstix platform. 
 
During the process of developing a second robot base, the researcher discovered that the 
GumStix lacked sufficient current to power the URG-04LX-UG01 laser. Although the 
mobility of the robot platform was significantly restricted, the research team was able to 
use the URG-04LX-UG01 laser with the GumStix by using an external USB hub to 
provide a self-contained power source which has sufficient current to power the laser. 
This will drive the need to fabricate a cable between the Gumstix and the laser to allow 
power to come from the mobile robot platform’s battery for the laser. 
 

5.3 Application Demonstration 
The demonstration scenarios are discussed here. 

5.3.1  Demonstration Overview 
The actual demo was somewhat limited and only showed the operation of the AXIS 207 
MW camera tracking a green object with a relative positioning of the object being shown 
on the HTC Legend smart phone.  The demonstration illustrated the passing of data from 
the camera to the smart phone using the sensor grid middleware’s publish-subscribe 
interface.  The image shown on the right-hand side of Figure 5-3 shows the blob tracking 
display provided on the two smart phone screens.  Additionally, the operation of the 
Hokuyo URG-04LX-UG01 Laser Range finder processing range data on the GumStix 
and then passing the range data through the sensor grid middleware to a display screen 
was demonstrated.  Figure 5-4 shows a representation of the type of display that was 
demonstrated.  While the actual range “rays” displayed were actually thinner, the length 
of the “rays” corresponded to the distance that objects were away from the range finder. 
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Figure 5-4 Representative laser range finder display. 

5.3.2  Demo Performance and Limitations 
One of the key aspects of the demonstration was that the communication between the 
Axis Camera and the HTC Legend was implemented using the Narada Broker core of the 
Sensor Grid Middleware.  Another smart phone had the interface implemented just using 
the Sensor Grid Middleware.  Both phones displayed the tracking results of the camera 
equally illustrating the flexibility of the sensor grid middleware interface.  The limitations 
of the demonstration were that the elements were demonstrated separately and not in an 
integrated fashion.  

5.4 Application Summary 
While the original objective was to integrate several individual applications interfacing 
through the sensor grid middleware, the research team fell short of meeting this objective 
due to a limitation of resources and a late change in personnel.  Nevertheless, the 
development of the application software for the Axis Camera, HTC Legend smart phone, 
Hokuyo Laser Range finder and GumStix provided significant progress toward the 
objective of building a sensor grid testbed to examine trustworthiness algorithm 
development.  The insight gained working with the mobile wireless devices, the sensor 
grid middleware and the unique interface challenges have helped to lay the foundation for 
starting the next phase of this research with all the components necessary to begin 
integrating the sensor grid testbed. 
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6 Conclusions 
 
This phase of the sensor grid research has been valuable in laying the foundation to 
building a robust functioning sensor grid that is deployable in Cloud and could 
incorporate various trustworthiness algorithms being developed. 
 
In this report, we have surveyed major concepts in Cloud Computing and have 
considered the requirements for scientific computing on Clouds.  We have specifically 
considered the application of Clouds to sensors, sensor data, and sensor pipelines.    We 
reviewed Cloud Computing's "Infrastructure as a Service" and "Software as a Service" 
models.  We illustrated these requirements using two small projects developed in a pre-
Cloud fashion: the Flood Grid and Polar Grid projects. Our key observation is that 
Clouds grant more control over the environment to developers through virtualization. 
This allows, for example, developers to install and control their own software without 
worrying about version conflicts with developers on unrelated projects. MapReduce, a 
common programming model for clouds, does provide a powerful way to do some sensor 
and geospatial computing tasks (particularly image processing), but its current 
implementations (such as Apache Hadoop) are poor fits for geospatial problems that are 
not file-based, particularly those closely tied to relational database applications.  
Extending MapReduce implementations and other “Software as a Service” tools to 
introduce data base concepts is an active area of research. 
 
Sensor grids and sensor processing pipelines are important subsets of general distributed 
computing research.  We have shown that a number of sensor grid infrastructure 
requirements, such as service hosting, virtual clusters, and virtual data sets map well to 
Cloud Computing's "Infrastructure as a Service" model. We also examined modeling and 
processing services with data-file parallelism (such as image processing pipelines), which 
are examples of common Cloud Computing "Software as a Service" models such as map-
reduce. Cloud computing models still need to be applied to a broader class of sensor grid 
problems. 
 
Regarding side-channel leaks, in the current state of Web technology, and to the same 
extent Cloud technology, every Web or Cloud application gives away some information 
through its side-channels.  However, not all such leaks deserve serious attentions and 
mitigation efforts.  A question is how to quantify the private information that can be 
inferred from a side-channel vulnerability. This question can be answered by a dynamic 
analysis, as the encrypted traffic of a Web application is actually produced by its 
underlying Web platform (Web servers and browsers) whose source code is often beyond 
the access of the application developers.  In our report we describe our design of a 
quantification technique that systematically re-runs selected portions of a Web 
application to understand how the domain of a taint source or target can be partitioned by 
its side-channel leaks.  We also report an evaluation study that demonstratates the 
effectiveness of our techniques. 
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In this report we discuss our research on sensory malware, a new strain of smartphone 
malware that uses onboard sensors to collect confidential user data.  We presented 
Soundminer, a Trojan with innocuous permissions that can sense the context of its 
audible surroundings to extract a very small amount of high-value data.  In particular, we 
observe that confidential user data can be easily identified from one’s interactions with a 
phone menu system. Our evaluation shows that the malware can accurately identify 
private data and incur only a small overhead. We present a defensive architecture that in 
our evaluation is effective to prevent our demonstrated attacks with minimal processing 
overhead. 
 
We also present the preliminary work using hierarchy HMMs to learn geolocation and 
social network environmental data via sensors on a smartphone, based on which risk 
about current state of sensor/smartphone ownership could be modeled.  More simulations 
and computational experiments are needed to understand how to tune and build 
meaningful trustworthiness metric for the problem on hand. 
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7 Recommendations 
 
Clouds 

• Large commercial vendors dominate Clouds, but there is a growing collection of 
open source software that can be used to build research clouds.  A challenge for 
core cyberinfrastructures research will be to investigate and document open 
architecture Cloud systems. Sensor grids can and should provide a wide range of 
important test cases. 

 
Side-channel Leaks Mitigation 

• Side-channel leaks have been shown to be a serious vulnerability, yet mitigation 
of such vulnerability is highly non-trivial. A systematic methodology to identify 
and quantifiy potential side-channel leaks is needed to help understanding the 
gravity of this vulnerability. Developing high-performance, automatic program 
analysis technologies to support rapid, in-depth analysis of increasingly 
complicated Web/Cloud applications is a meaningful first-step towards this goal.  

 
Detection of Anomalous Users of Sensors 

• Overall risk engine structure 
• Current: uses simple linear expectation 
• Goal: uses SVM or other non-linear classifier, and show benefits of 

multiple sensors 
• Evaluation of Bluetooth risk metric in addition to and in combination with GPS 

risk metric  
• Other sensors could support phone call and surfing pattern analysis, accelerometer 

for gait analysis, and voice detection for characterization and classification of 
surroundings. 

 
Sensory Malware Defenses 

• Preliminary defensive architecture has been demonstrated. 
• Other possible defenses to consider for including in the defensive architecture 

include tone playback settings, finer-grain sensor access, mediation of event 
management, anomaly detection and network monitoring. 

 
Technology Demonstration 

• Sensor Deployment: The next level of sensor deployment should be distributed in 
a wired and wireless environment with some stationary and some on mobile 
platforms or embedded in smartphones. The deployment should be oen that 
represents the essence of a realistic scenario.  

• Application Maturity and Scenario Sophistication: Leveraging the foundation that 
has been laid through this current effort, the level of the maturity of the 
application shoud increase significantly over the next phase of the reaserch.  In 
addition to just displaying the blob tracking and range calculations, the 
smartphone as a mobile sensor platform should include application software to 
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view the status of the sensor grid, the status of the individual sensors, a display of 
some kind of monitored trustworthiness metrics. This means developing sensor 
grid clients on mobile devices, and integrating trustworthiness algorithms, say for 
first responders to use for decision-support.  Another smartphone could be used to 
simulate a malicious attacker by allowing the user to alter system behavior in 
various ways. 

• Furthermore, the desire will be to develop and deploy trustworthiness algorithms 
in the system to moderate the effect of the attacker in a way that is apparent to 
outside observers, who are observing one of the smartphone displays (optionally 
presented in a larger format for the audience). 

• The next application demo should build on the previous by adding real utility to 
the system.  

• The sensors themselves can be compromised directly in various ways, for 
example, by physically removing a sensor or attaching a bug.   
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Lists of Acronyms, Abbreviations, and Symbols 
 

Term Meaning 
Sensor-Centric Grid Middleware 
Management System (SCGMMS) 

A Middleware for sensor management 

Sensor a time-dependent stream of information 
with a geo-spatial location 

ROC Curve Receiver Operating Characteristics Curve. 
The sensitivity and specificity of a 
diagnostic test depends on more than just 
the "quality" of the test--they also depend 
on the definition of what constitutes an 
abnormal test.  

HDFS Hadoop Distributed File System 
DryadLINQ DryadLINQ combines two important 

pieces of Microsoft technology: the Dryad 
distributed execution engine and the .NET 
Language Integrated Query (LINQ). 

SLAM Simultaneous localization and mapping 
(SLAM) is a technique used by robots and 
autonomous vehicles to build up a map 
within an unknown environment or to 
update a map within a known environment 
while simultaneously keeping track of their 
current location. 

MapReduce It is a Google technology to support 
distributed processing on large datasets on 
clusters of computers. 

TeraGrid National Science Foundation's effort to 
build and deploy the world's largest 
distributed infrastructure for open scientific 
research. 

Reality Mining Dataset The Reality Mining project represents a 
very large mobile phone experiment 
conducted by the MIT Media Lab. It 
collects a large volume unprecedented of 
data on human behavior and group 
interactions that are anonymized and made 
available to the general academic/research 
community. 
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