
 1

Management of Real-Time Streaming Data Grid 
Services 

Geoffrey Fox, Galip Aydin, Harshawardhan Gadgil, Shrideep Pallickara, Marlon 
Pierce, and Wenjun Wu 

Community Grids Laboratory 
Indiana University 

501 North Morton Street, Suite 224 
Bloomington, IN 47404 

{gcf,gaydin,hgadgil,spallick,marpierc,wewu}@indiana.edu 

Abstract: We discuss the architectural and management support for real time 
data stream applications, both in terms of lower level messaging and higher 
level service, filter and session structures. In our approach, messaging systems 
act as a Grid substrate that can provide qualities of service to various streaming 
applications ranging from audio-video collaboration to sensor grids. The mes-
saging substrate is composed of distributed, hierarchically arranged message 
brokers that form networks.  We discuss approaches to managing systems for 
both broker networks and application filters:  broker network topologies must 
be created and maintained, and distributed filters must be arranged in appropri-
ate sequences. These managed broker networks may be applied to a wide range 
of problems.  We discuss applications to audio/video collaboration in some de-
tail and also describe applications to streaming Global Positioning System data 
streams.      

1. Introduction 

A growing number of applications involve real-time streams of information that need 
to be transported in a dynamic, high-performance, reliable, and secure fashion. Ex-
amples include sensor nets for both science and the military applications, mobile 
devices on ad-hoc networks, and collaborative applications. In the latter case the 
streams consist of a set of “change events” for a collaborative entity multicast to the 
participating clients. They could be the frames of audio-video streams, encoded 
changed pixels in a shared display, or high level semantic events such as signals of 
PowerPoint slide changes. Here we describe our research into ways of managing such 
streams, which we think are a critical component of both sensor nets and real time 
synchronous collaboration environments. 

We develop real-time streaming technology assuming that the sources, sinks, and 
filters of these streams are Web or Grid services. This allows us to share the support 
technology between streaming applications and benefit from the pervasive interop-
erability of a service-oriented architecture. Further, this allows a simple model of 
collaborative Web and Grid services gotten by “just” sharing the input or output 
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ports. As services expose their change by explicit messages (using what we call a 
message-based Model-View-Controller architecture [1]), it is much easier to make 
them collaborative than traditional desktop applications, in which events are often 
buried in the application. Traditional collaborative applications can be made service 
oriented with in particular a set of services implementing traditional H.323 function-
ality and interoperating with Access Grid and Polycom systems. This required devel-
opment of an XML equivalent of the H.323 protocol [2]. Our other major motivation 
is the sensor networks of military, scientific and social infrastructure. These are well 
suited to a service architecture as exemplified by the US military Global Information 
Grid with its service-based Network Centric Operations and Warfare Architecture [3, 
4]. 

We have developed general purpose, open source software to support distributed 
streams, described in Sec. 2. NaradaBrokering [5] forms a distributed set of message 
brokers that implement a publish-subscribe software overlay network. This environ-
ment supports multiple protocols (including UDP, TCP, and parallel TCP) and pro-
vides reliable message delivery with a scalable architecture.  

Our architecture supports the interesting concept of hybrid streams where multiple 
“simple streams” are intrinsically linked: examples are linkages of a stream of annota-
tion white boards with original audio/video stream [7] and the combination of lossless 
and lossy codec streams (using perhaps parallel TCP and UDP respectively) to repre-
sent a large dynamic shared display.  

Several applications drive the development of our technology. These include col-
laboration services with audio, video, and shared display streams, as well as linkages 
of real-time Global Positioning System sensors to Geographical Information Systems 
implemented as Web services. Other examples include integration of hand-held de-
vices to a Grid [6] and the linkage of annotations to video streams showing how com-
posite streams can be supported for real-time annotation [7].  The first two applica-
tions are described in sections 4 and 5 and illustrate the need the high level session 
and filter infrastructure on top of the messaging infrastructure 

The messaging infrastructure supports the application services with their filters, 
gateways and sessions reflecting both collaborative and workflow functions. How-
ever we have found the need for a set of services that manage the messaging itself 
and so control broker deployment and quality of service. Section 3 describes the inte-
gration of the management of messaging and higher-level services. 

2. NaradaBrokering: a Distributed Messaging Substrate 

NaradaBrokering [5, 9] is a messaging infrastructure that is based on the pub-
lish/subscribe paradigm. The system efficiently routes messages [10] from the origi-
nators to the consumers that are interested in the message. The system places no re-
strictions on the size and the rate at which these messages are issued. Consumers can 
express their interests (or specify subscriptions) using simple formats such as charac-
ter strings. Subscriptions may also be based on sophisticated queries involving XPath, 
SQL, or regular expressions. Support for these subscription formats enables consum-
ers to precisely narrow the type of messages that they are interested in. The substrate 
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incorporates support for enterprise messaging specifications such as the Java Message 
Service. The substrate also incorporates support for a very wide array of transports 
(TCP, UDP, Multicast, SSL, HTTP and ParallelTCP among others), which enable the 
infrastructure to be leveraged by entities in a wide variety of settings. To cope with 
very large payloads the system leverages ParallelTCP at the transport level and ser-
vices such as compression and fragmentation to reduce individual message sizes. The 
fragments (compressed or otherwise) are reconstituted by appropriate services (coa-
lescing and de-compression) prior to delivery to the application.  

The most fundamental unit in NaradaBrokering is a message. A stream can be 
thought of as being composed by a series of messages, each with causal and ordering 
correlations to previous messages in the stream. The inter-broker latency for routing 
typical messages is around 1 millisecond. In a controlled cluster setting a single bro-
ker was found to support up to 400 UDP-based A/V clients concurrently with ade-
quate latency [11]. Among the services most relevant for collaboration within the 
system are the following. 
1. Support for a replay and recording services: The recording service is used to store 

messages reliably to the archival system. The recording is done in such a way that 
all events issued by the recording entity are stored in the order that they were pub-
lished. The replay service facilitates the replay of these previously stored mes-
sages. The replay service support replays in multiple flavors. Entities may request 
replays based on sequencing information, timing information, content of the mes-
sage or based on the topics that these messages were published to. In some cases 
one or more of the parameters can be combined in a single request. 

2.  Support for consistent global timestamps [12] through an implementation of the 
Network Time Protocol (NTP). This implementation ensures that timestamps at the 
distributed entities are within a few milliseconds of each other. This allows us to 
ensure that we can order messages based on these global timestamps. This is espe-
cially useful during replays when we can precisely determine the order in which 
messages should be released to the application. 

3. Support for buffering and subsequent time-spaced release of messages to reduce 
jitters. The typical lower bound for time space resolution is a millisecond. How-
ever, we have also been able to successively time-space events in the order of sev-
eral microseconds. By buffering and releasing messages we reduce the jitters that 
may have been introduced by the network. 
More recently, we have incorporated support for Web Services within the sub-

strate. Entities can send SOAP messages directly to the brokers that are part of the 
messaging infrastructure. We have incorporated support for Web Service specifica-
tions such as WS-Eventing, WS-ReliableMessaging, and WS-Reliability. Work on 
implementing the WS-Notification suite of specifications is currently underway. The 
implementation of these specifications also had to cope with other specifications such 
as WS-Addressing and WS-Policy that are leveraged by these applications. In addi-
tion to the rules governing SOAP messages and the implemented protocols, rules 
governing WS-Addressing are also enforced. 

In our support for SOAP within NaradaBrokering we have introduced filters and 
filter-pipelines. A filter is smallest processing unit for a SOAP message. Several 
filters can be cascaded together to constitute a filter-pipeline. Here, the filters within a 
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filter-pipeline can be dynamically shuffled and reorganized. The system allows a 
filter-pipeline to be registered for every role that the node (functioning as a SOAP 
intermediary) intends to perform.  

Upon receipt of a SOAP message that is targeted to multiple roles (as indicated by 
the SOAP 1.2 role attribute) the corresponding filter-pipelines are cascaded so that 
the appropriate functions are performed. The SOAP message is first parsed to deter-
mine the roles that need to be performed. Next, we check to see if there are any pipe-
lines registered for a specific role. The scheme allows developers to develop their 
own Filters and Filter-Pipelines and target them for specialized roles. For example, a 
developer may wish to develop a filter that performs message transformations be-
tween the competing notification specifications: WS-Eventing and WS-Notification. 
By providing an extensible framework for the creation of Filters and the registration 
of roles sophisticated applications can be built. 

3. HPSearch: Managing Broker Networks and Service Grids 

As discussed in the previous section, NaradaBrokering provides a software messag-
ing infrastructure.  In a related project, we have been developing HPSearch [14] as a 
scripting-based management console for broker networks and their services. At one 
end of the spectrum are services which help manage the messaging middleware, 
while at the other end are services that leverage capabilities of the middleware 
(WSProxy). The management of both sets of services is handled by a scripting me-
dium that binds Uniform Resource Identifiers (URI) to the scripting language. By 
binding URI as a first-class object we can use the scripting language to manage the 
resource identified by the URI. We discuss these functions in detail below. 

In order to deploy a distributed application that uses NaradaBrokering, the mid-
dleware must be setup and a broker network topology must be deployed. Broker 
network topology may also be changed at runtime using HPSearch by adding or 
deleting links between brokers. Once the middleware is setup, we leverage the broker 
network to deploy the distributed application.  

To fulfill this requirement we have been developing a specialized Web Service 
called the Broker Service Adapter (BSA) that helps us deploy brokers on distributed 
nodes and setup links between them. The BSA is a Web Service that enables man-
agement of the middleware via WS-Management. Further, the BSA network is a 
scalable network that periodically restructures itself to achieve a tree based structure. 
A management engine simply sends the appropriate commands to the root BSA node 
which is then appropriately routed to the correct BSA. Errors and other conditions are 
similarly handled and notified to the management engine using WS-Eventing. 

HPSearch uses NaradaBrokering to route data between components of a distrib-
uted application. This data transfer is managed transparently by the HPSearch runtime 
component, the Web Service Proxy (WSProxy) [14]. Thus, each of the distributed 
components is exposed as a Web Service which can be initialized and steered by 
simple SOAP requests. WSProxy can either wrap existing applications or create new 
data processing and data filtering services. WSProxy handles streaming data transfer 
using NaradaBrokering on behalf of the services thus enabling streaming data transfer 
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for any service. The streaming data is enabled using NaradaBrokering middleware, a 
distributed routing substrate. Thus there are no central bottlenecks and failure of a 
broker node routes the data stream through alternate routes if available. Further, Na-
radaBrokering supports reliable delivery via persistent storage [13] thus enabling 
guaranteed delivery for data streams. 

4. Global-MMCS: Audio and Video Stream Services and 
Management 

Global-MMCS, as a service-oriented multimedia collaboration system, mainly proc-
esses multimedia streams: video, audio, whiteboards and so on. “Events” in video or 
audio are usually called video frames or audio samples. Generally speaking, there are 
a lot of similarities between multimedia streams and other data streams such as sensor 
data. All streaming data require significant Quality of Service (QoS) constraints and 
dynamic filtering. These are both particularly demanding and well-understood for 
multimedia streams for both communication and processing. Because of high band-
width generated by raw multimedia bit-streams, complicated codecs must be used to 
compress the streams and transmit them over the Internet.  Further, multimedia 
streams are typically used collaboratively and so stress the infrastructure needed to 
support the efficient software or hardware of multicasting required by the delivery of 
a given stream to multiple clients. Due to the diversity of collaboration clients sup-
ported by Global-MMCS, the services for multimedia streams need to adapt the 
streams to different clients. We note that many relevant web service specifications 
like those for reliable messaging and notification appear not well designed for scal-
able efficient multicast as needed by Global-MMCS. Thus we suggest that multime-
dia collaboration is an excellent proving ground for general streaming data grid infra-
structure. 

Streaming Filters: A media service or filter is a functional entity, which can re-
ceive one or multiple media streams, perform some processing, and output one or 
multiple media streams.  Each service is characterized by a set of input and output 
stream interfaces and a processing unit. According to the number of fan-in and fan-
out filters, they can be divided into three categories: one-in-one-out filters, multiple-
in-one out filters, and one-in-multiple-out.  In addition, there is a final “sink” filter 
category.  We discuss each of these below.   

One-In-One-Out filters implement the basic transformation operation. For in-
stance, a filter can receive as input a video stream in YUV4:1:1 format, resize it and 
deliver the modified video as output. Each filter provides a very basic adaptation on a 
stream in an intermediate format. Complex stream transformations can be built by 
combining several basic filters and creating a filtering workflow pipeline. Below are 
examples of one-in-one-out filters:  

Decoder/Encoder transcoder filters aim at compressing/uncompressing the data 
into a chosen intermediate format (e.g. RGB24, YUV4:1:1, Linear Audio).  Common 
codecs include H.261, H.263, MPEG1, MPEG2, MPEG4, H.264, and RealMedia. 
Transcoding generates a new stream which is encoded in the format wanted by the 
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user. For examples, if a RealPlayer user needs to receive a video encoded in H.261 
RTP, a RealStream producer is needed to first decode the H.261 video and generate a 
new RealFormat stream. Image-scaling filters resize video frames, which is useful to 
adapt a stream for devices with limited display capacities. They are sometimes re-
quired to enable transcoding operations. For example MPEG videos may be transmit-
ted in any size while H.261 videos require predefined sizes such as CIF, QCIF or 
SQCIF. Color-space-scaling filters reduce the number of entries in the color space, 
for example from 24 to 12 bits, gray-scale or black-and-white. Frame-rate filters can 
reduce the frame rate in a video stream to meet low-end clients like PDA. For exam-
ple, we can discard B-frame or P-frame in a MPEG-4 video stream with 24 fps to 
create a new stream with a lower frame rate. 

Multiple-In-One-Out filters, also known as mixer filters, combine multiple 
streams.  A video mixer can create a mixed video streams resulting from several input 
sources. Each element of the resulting mixed video (typically displayed as a grid of 
images) results from an image-scaling adaptation of a particular stream. An audio 
mixer can create a mixed audio stream by summing up several input sources. Audio 
mixing is very important to those clients that can’t receive multiple RTP audio 
streams and mix them. Video mixing service improves the visual collaboration espe-
cially for those limited clients that can only handle a single video stream.  Multiplex-
ors//Demultiplexors are used to aggregate/separate audio and video data in a multi-
media stream. For instance, an MPEG multiplexor allows merging an MP3 audio and 
an MPEG-1 video in a MPEG2 stream. Multiplex and demultiplex are quite useful for 
guaranteeing stream synchronization in unpredictable network environments.  

One-In-Multiple-Out filters, or duplicator filters, are used to replicate an output 
media stream. Duplication is useful when a stream has different targets with different 
requirements. In most cases, multiple simple media filters should be organized in a 
media filter chain. Filters can be either as simple as bit-stream parsing, or as compli-
cated as decoding and encoding. Composite media services are usually acyclic com-
putation graphs consisting of multiple filter chains.  

There is also another type of bit-stream service, called sink service, which doesn’t 
change bits in the stream. Examples of sink services include buffering and replaying 
services.  These can buffer real-time multimedia streams in memory caches or disk 
storage, and allow users to reply or fast-forward these streams through RTSP session. 
Sink filters can handle single or multiple streams. When multiple streams flow into a 
sink entity, all the streams can be synchronized and replayed. Based on such a com-
posite sink service, an annotation service can be developed. Through annotation, 
users can attach text and image streams to the original video and audio stream to 
convey additional meaning in collaboration.   

Global-MMCS Workflow Management: There is substantial literature on Grid 
and Service-based workflow [16].  Unlike many of these systems, Global-MMCS’s 
streaming workflow, especially conferencing workflow, is implicit and can be deter-
mined by the system at run time based on the specified (in XGSP) sinks and sources 
and their QoS. For example, when a PDA with limited network and processing capa-
bility wants to receive an H.261 encoded, 24 fps, CIF video stream, a customized 
workflow is need to transcode the H.261 stream to a JPEG picture stream or low-
bitrate RealMedia Stream. An intelligent workflow engine can easily build a filter 
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chain automatically based on the format description of the source stream and capabil-
ity description of the PDA. Such an engine usually follows a graph search algorithm 
and tries to find a route from the graph node representing the format of the source 
stream to the destination node representing the format needed by the receiver. 
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Fig. 1 Workflow and filters in GlobalMMCS. 
No user involvement is needed for defining explicit workflow. Furthermore, in or-

der to minimize the traffic and delay, most of one-in-one-out filter chain should be 
constrained in a single service container. One needs a distributed implementation to 
orchestrate multiple-in and multiple-out filters for different clients. Therefore the key 
issue in Global-MMCS media service management is how to locate the best service 
container based on streaming QoS requirement and make the service provider shared 
by participants in XGSP Sessions.  

 
Session Management and NaradaBrokering Integration: As shown in Figure 1, 

NaradaBrokering can publish performance monitoring data in the form of XML on a 
topic which is subscribed to by the AV Session Server. From these performance data 
and broker network maps, the Session Server can estimate the delay and bandwidth 
between the service candidates and the requesting user. Based on the workload of the 
media service providers and estimated the performance metrics, the Session Server 
can find the best service providers and initiate a media service instance. Furthermore, 
the AV Session Server has to monitor the health of each media service instance. 
Through a specific NaradaBrokering topic, an active media service instance can pub-
lish status meta-data to notify the session server. If it fails to respond within a period 
of time, the AV Session Server restarts it or locates a new service provider and start a 
new instance. Note that the messaging infrastructure supports both TCP control and 
UDP media streams and their reliable delivery; the session can choose separate QoS 
for each type of stream. 
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Each session server may host limited numbers of active XGSP AV sessions. The 
exact number depends upon the workload and the computational power of the ma-
chine. The session initiator will firstly locate the right session provider to create a 
session service instance for a particular XGSP AV session. Then, this session server 
will locate the necessary media service resources on demand. In the current imple-
mentation, a default audio mixer is created to handle all the audio in the session. Pri-
vate audio mixers can be created on-demand for private sessions supporting sub-
groups in the session. Further, multiple video mixers can be created by the session 
server on the request of the client.   An image grabber (thumbnail) service is created 
when a new video stream is detected in the session. Further, customized transcoding 
services can be created when a user sends a request to access particular streams. For 
example, a mobile client like PDA connected to Wi-Fi, which only has limited proc-
essing power wants to choose a 24 4-CIF MPEG-4 video; then a transcoding process 
pipeline consisting of frame rate adapter, video size down-sampler and color trans-
formation, is needed to create this stream. Another example is an H.323 terminal, 
which can only handle H.261 and H.263 codecs, wants to display a MPEG-4 video, it 
will ask the session server to start a MPEG-4-to-H.261 transcoder.  

 Sink services like buffering, archiving and replaying services can also be initiated 
by real-time XGSP sessions. Buffering and archiving services store events into dis-
tributed cache and file storage attached to NaradaBrokering overlay networks. Once 
stream data flow into these “sinks”, replaying service can pull the data flow out of the 
sinks and send to clients based on the RTSP request of the user. The events are ac-
cessed in an ordered fashion and resynchronized using their timestamps which have 
been unified using NaradaBrokers NTP service. The list with time-stamps of these 
archived and annotated streams is kept in the WS-Context dynamic meta-data service. 
Through the recording manager service, a component of AV session server, users can 
choose streams to be buffered and archived. And through replay and RTSP services, 
users can initiate RTSP sessions and replay those buffered streams. After the streams 
are buffered, users can add annotations to the streams and archive the new composite 
steams for later replay. 

5. Supporting Real Time Sensor Grid Services 

The basic services needed to support audio-video collaboration, such as reliable de-
livery, multicasting and replay, can also be applied to problems in real-time delivery 

of sensor grid 
data.  In Fig. 2, 
we depict our 
work to de-
velop filters on 
live Global 
Positioning 
System data.  
OCRTN, 
RICRTN, and 

Fig. 2 Naradabrokering may be used to support filters of real-time GPS data.
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SDCRTN represent GPS networks for Orange, Riverside, and San Diego Counties in 
Southern California.  These stations are maintained by the Scripps Orbit and Perma-
nent Array Center (SOPAC) and are published to an RTD server, where they are 
made publicly available. Data is published from these stations in the binary RYO 
format.  By connecting a sequence of filters, we convert and republish the data as 
ASCII and as Geography Markup Language (GML) formatted data.  The data can be 
further subdivided into individual station position measurements. 

We are currently developing more sophisticated real-time data filters for data min-
ing.  Tools such as RDAHMM [17] may be used to detect state changes in archived 
GPS time signals.  These may be associated with both seismic and aseismic causes.  
We are currently working to develop an RDAHMM filter that can be applied to real-
time signals and link them in streaming fashion to the Open Geospatial Consortium 
standard services supporting integration of maps, features and sensors. 

6. Future Work 

Conventional support of SOAP messages using the verbose “angle-bracket” repre-
sentation is too slow for many applications. Thus we and others are researching [6, 
18] a systematic use of “fast XML and SOAP” where services negotiate the use of 
efficient representations for SOAP messages. All messages rigorously support the 
service WSDL and transport the SOAP Infoset using the angle bracket form in the 
initial negotiation but an efficient representation where possible for streamed data 
Another interesting area is structuring the system so that it can be implemented either 
with standalone services, message brokers and clients or in a Peer-to-Peer mode. 
These two implementations have tradeoffs between performance and flexibility and 
both are important. The core architecture “naturally” works in both modes but the 
details are not trivial and require substantial further research. 
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