

Designing a Grid Computing Environment Shell Engine

Mehmet A. Nacar
 Community Grids Lab,

Indiana University
mnacar@indiana.edu

 Marlon Pierce
Community Grids Lab,

Indiana University
marpierc@indiana.edu

 Geoffrey Fox
Community Grids Lab,

Indiana University
gcf@indiana.edu

Abstract

We describe the design and features of our Grid
Computing Environments Shell system, or GCEShell. We
view computing Grids as providing essentially a globally
scalable distributed operating system that exposes low
level programming APIs. From these system-level
commands we may build a higher level library of more
user-friendly shell commands, which may in turn be
programmed through scripts. The GCEShell consists of a
shell engine that serves as a container environment for
managing GCEShell commands, which are client
implementations for remote Web Service/Open Grid
Service Architecture services that resemble common
UNIX shell operations.

Keywords: Grid Computing Environments, Web
Services

1. Introduction

Grid Computing Environments (GCEs) [1] provide a
user view of computational Grid technologies.
GCEs are often associated with Web portals, but in
general may be any type of client management
environment. GCEs also come in two primary
varieties: Problem Solving Environments (PSEs),
which provide custom interfaces for working with
specific sets of applications, visualization tools, etc;
and shell-like system portals, which provide direct
access to basic commands such as file manipulation
and command execution. In Ref. [1] these latter
portals are referred to as “GCEShell” portals.

GCEShell environments may however be
separated from specific user interface rendering. We
consider here a general engine for managing Grid
Web Service clients. This GCEShell engine, which

we initially implement as a command line interface,
is inspired by the UNIX [2] shell environments,
which provide a more user friendly environment for
interacting with the operating system than
programming directly with system level libraries.
We view the emerging Open Grids Services
Architecture (OGSA) [3,4] and Web service [5]
infrastructures as providing a global operating
system, extending ideas such as originally
incorporated in the Legion system [6]. As with
other operating systems, most users should not be
expected to program at the system level. Instead, we
see the need for a command hosting and
management environment that supports a number of
useful shell-like commands: commands for listing
and manipulating remote files, commands for listing
system resources, and so on. These shell commands
should also support simple composition and
workflow through linkages (such as pipes and
redirects) and ultimately through scripting
environments.

2. GCEShell Engine

The shell engine is the core application that
interprets commands, runs client commands,
communicates with the servers (applications and
registries), and manages application lifecycles. The
GCEShell engine essentially serves as a container
for client applications, analogous to server-side
hosting environments [3].

Our initial implementation of the GCEShell
interface is as command line interface similar to
UNIX shells. It manages user command entries and
gives results back to standard output. Also,
command instances and each command’s status are

stored at this stage. The shell engine spawns a new
thread for each shell command so that user can
coordinate each single command entry by itself
using several commands like kill, ps, history, exit.

The GCEShell involves both local and remote

commands. The shell engine makes several
different manipulations, like if the given URI is
local, the engine directly makes related command
calls. Otherwise, WSDL interfaces [7] are
discovered at the given URI that gives service
description. According to that information, service
requests are made at given SOAP endpoint by using
SOAP protocol [8].

The shell engine aggregates all the objects that

perform functionality to the shell container. These
objects are commands, tasks, communication with
servers, and workflows. In other words, the shell
engine negotiates with servers, manages application
lifecycles, discovers services and communicates
with remote services. If the worst case happens, like
a service provider is down, there are several cases to
overcome that situation. First, the request may be
repeated according to service priority and
importance. This time slice should be restricted in
terms of system performance dynamically. Finally,
if a part of command arguments fails, either entire
command fails or partial result given on demand.

Figure 1 shows the shell engine’s principal

components. Each component in our
implementation is a Java interface with an
implementing class. Arrows in the figure indicates
communications between modules. Broken arrows
show relationship with Exception Handler. Bold
arrows indicate execution steps. Following this
design simplifies development of the more
complicated components (such as the command line
parser) and also allows future reimplementation by
other developers.

Figure 1 also indicates the steps followed after

a command is issued to the shell. Here we
summarize the execution steps for processing a user
command. In Step 1, the user enters a command.
That command is caught by the shell engine and
divided into the tokens by the Parser in Step 2. The
Parser is responsible for checking the syntax of
command line. We follow a typical shell-like syntax
for command the command line: commands,

attributes and options. The Parser can also
distinguish delimiters between multiple commands
and remove them. In our test implementation we
mark each item in the command line as a token and
collect them in a hash table. Parsing along syntax
rules is a quite well known subfield of computer
science and is reviewed in [9]. We are in the
process of replacing the test implementation with a
more formal parsing engine that will produce a parse
tree at the end of Step 2. We are currently evaluating
third party parser packages such as ANTLR [10] and
Java implementations of the DOM [11].

The results of the parsing are next passed to the

Workflow Manager in Step 3, which is responsible
for executing the parsed command line. The test
implementation represents this as a hashtable, but
we are in the process of converting this to use a
“parse tree” object as described above. The
workflow manager is then responsible for managing
the execution of the clients and their arguments that
it receives from the parser, Step 4. These clients may
be either local applications (such as shell history
commands) as shown in Step 4a, or clients that must
connect to remote applications, Step 4b. In the latter
case, the client must then interact with the remote
Web Service, Step 5. In both cases, the client
applications implement a common shell command
interface (see next section). Each command line is
represented as a single object and is executed by a
single thread. The Workflow Manager is
responsible for creating new threads for each
command line it receives (represented as a parse
tree). Each thread in turn must walk the tree and
identify commands (nodes that only possess leaves)
and create “command objects” (detailed below) to
execute the specific shell commands. These
command objects are executed in sequence if the
command line has more than one command.
Exceptions may occur at numerous places in this
system and are handled by the Exception Handler.
We address these issues below. We implemented
event system model for this design that works in
between workflow manager and exception handler.

WS Clients cover inspection of services,

discoveries and service requests for grid services.
First of all, the service in the specified URI is
inspected and WSDL interface is found. After that
the engine creates client stubs for that service and
makes remote procedure requests from SOAP

endpoint. If an exception is thrown, the exception
handler deals with that. Unless it is succeeded, the
service and so the command fails and gives an exit
code and message as error.

The Workflow Manager traces all parts of

command to be completed successfully. It combines
completed parts in accordance with command line
and finally outputs are sent to GCEShell interface.

The base shell context is responsible for

creating child shell contexts to hold individual
commands and for managing the lifecycle of these
child contexts. It also manages communications
between the child contexts; that is, the pipes and
redirects are functions of the base context. Child
context threads must block until the command
completes. If this is not implemented in the shell
command itself (the client is decoupled from the
server and exits before the server process completes)
then the child context will need to implement a
listener that gets notified when the command
completes on the server.

The GCEShell engine’s design must provide a

simple, well defined mechanism for adding new
shell commands. Command prototypes and base
shell connections is specified. In future, we need to
add dynamic class loading so that grid users could
place new features on run time. However, a user can
add, remove or replace a command implementation
by updating properties file and providing appropriate
classpaths.

3. GCEShell Commands

GCEShell contains command and context
interfaces which must be implemented by new
commands. Single command objects are derived
from base shell so that singleton carries all
requirements needed. To simplify the loading and
management of child components by the Base Shell,
we define a common interface for both local and
remote shell commands. The shell interface has the
following methods.

• For each attribute, write accessor (get and

set) methods.
• For execution directions, execute() method.
• To kill the command or process, exit()

method.

• Allowing process to sleep, suspend()
method.

Commands are similar to jakarta-ant tasks and
JXTA ShellCommands. A task can have multiple
attributes. The value of an attribute might contain
references to a property. These references will be
resolved before the task is executed. A service
command can have a set of properties. These might
be set in the properties file by outside the base shell.
A property has a name and a value; the name is case-
sensitive. Properties may be used in the value of
command names.

Commands will be well defined by interfaces, so

a developer might want to add more commands. To
do that, it is needed to implement classes that
inherited from that interface. The only thing is to
plug that new command into shell container,
updating property file giving command name and
package name pairs. Removing a command or
replacing new ones are need similar configuration
above.

4. Exceptions and Exception Handling

The most crucial expectation from any kind of shell
is to run forever, unless a user exits it. GCEShell has
modular and integrated design, to prevent conflicts
in terms of using services and crashes. It is
especially important for GCEShell, which interact
with distributed resources that may become
unavailable for a number of reasons. It is therefore
important that the GCEShell have robust exception
handling.

ParserException is thrown, when the command
stream consist of unknown syntax parameters or
characters. Thus, the user can correct words or
syntax. If the given command name is not specified
in the properties file, CommandNotFound exception
is thrown. LocalClientException is thrown when a
local command has an internal error, perhaps caused
by improper input. Finally,
RemoteClientExceptions may be thrown either if the
remote command was sent improper input or the
remote server is unreachable for any number of
reasons.

Each exception interacted with related module,
but most of them are handled by the workflow
manager and base shell. There are mechanisms to
deal with exceptions. For example, when remote

client exception thrown, the request will be made in
a loop so far to get service or exceed the timeout.
Also, timeouts can be done several times.

5. Information System Requirements

The Shell Commands are responsible for
discovering the service that they need and for
communicating with that service. However, it is
possible and perhaps desirable for the shell to take
over some of these responsibilities when the
command is run by the shell. In this case, the
command would contact the GCEShell in the service
discovery phase and communicate only indirectly
with the remote service, with direct communications
filtered through the shell.

 Workflow manager coordinates all negations
with services and adjust timeouts according to
priority of specified services. The purpose of
involving WSIL [12] is that the base shell needs to
inspect web services instantly. Likewise, gce-ls
command is available remote service of the shell. In
case of taking URI argument, related web service
method being invoked. So, currently up and running
web services reported back to the shell container.
For example,

 gce-list http://fuji.ucs.indiana.edu:8080/axis/services

The gce-list command examines the inspection.wsil
at this location and inspects what WS running and
gets back the list of WSDL interfaces.

The shell container is eligible to deal with some
possible failures. If a command resulted with error
or exception, workflow manager might be able to
manage that in different cases. Depending on partial
results, either command is terminated or request is
repeated until getting the service or timeout.

6. Status of Implementation and Future Plans

GCEShell interface is a standalone application
written in Java. All commands implement the same
interface and each command runs in a new thread.
We have implemented the following so far: a) we
are constructing the GCEShell engine, with initial
prototypes; b) we are implementing an initial set of
commands, which use the interface described above
for clients and implement remote services using

Apache Axis (http://ws.apache.org/axis); c) the shell
has ability to use environment variables; and d) we
are implementing an initial information discovery
command, gce-list, based on WSIL. This command
can be used to discover available web services and
provides information to the user on locations of
services. The collection of commands that we have
implemented so far includes the following: gce-ls,
gce-list, gce-ps, gce-set, gce-history, gce-man, gce-
kill, and gce-help.

Future plans include support for shell command
composition and scripting. One of the powers of the
shell environment is that new, specialized
commands may be created as needed from the basic
library of shell commands. We consider this to be
one possible solution for Web Service orchestration.
Simple command composition can be done using
redirects, pipes and tees will be interesting
applications in GCEShell because these require file
transfer and sophisticated lifecycle management
because of commands running on base shell and
services are remote and distributed.

Embedding a scripting language is also planned.

This scripting language may include support for
existing scripting languages such as Python, as well
as XML-based workflow languages such as
BPEL4WS.

7. References

[1] G. C. Fox, D. Gannon, and M. Thomas. “A Summary of
Grid Computing Environments”. Concurrency and
Computation: Practice and Experience, Vol 14, No 13-15
(2002).

[2] B. W. Kernighan and R. Pike. The Unix Programming
Environment. Prentice Hall, Englewood Cliffs, NJ (1984).

[3] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. “The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration Open Grid Services
Infrastructure Working Group, Global Grid Forum, June 22,
2002. Available from
http://www.globus.org/research/papers/ogsa.pdf.

[4] S. Tuecke, K Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, and P. Vanderbilt. “Grid Service Specification,”
Global Grid Forum Recommendation Draft. Available from
http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-
gridservice-04_2002-10-04.pdf.

[5] M. Champion, C. Ferris, E. Newcomer, and D. Orchard.
“Web Services Architecture,” W3C Working Draft 14

November 2002. Available from http://www.w3.org/TR/ws-
arch/.

[6] G. Stoker, B.S. White, E. Stackpole, T.J. Highley, M.
Humprey. “Grids: Harnessing Geographically-Separated
Resources in a Multi-Organisational Context" Presented at High
Performance Computing Systems, June 2001. Available from
http://www.cs.virginia.edu/~legion/papers/HPCS01.pdf

[7] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana. “Web Service Description Language (WSDL)
1.1”, W3C Note 15 March 2001. Available from
http://www.w3c.org/TR/wsdl.

[8] D. Box, et al. “Simple Object Access Protocol (SOAP) 1.1”,
W3C Note 08 May 2000. Available from
http://www.w3.org/TR/SOAP/.

[9] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. 1986.

[10] T. Parr. “ANTLR: ANother Tool for Language
Recognition”. Available from http://www.antlr.org

[11] A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol, J. Robie, M.
Champion, and S. Byrne, “Document Object Model Level 2
Core.”, W3C Recommendation 13 November 2000. Available
from http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113.

[12] K. Ballinger, P. Brittenham, A. Malhotra, W. A. Nagy, and
S. Pharies,"Specification: Web Service Inspection Language
(WS-Inspection) 1.0.", 2001. Available from http://www-
106.ibm.com/developerworks/webservices/library/ws-
wsilspec.html.

Figure 1: GCE Shell execution steps and block diagram

GCE Interface
(User Commands)

SOAP

Parser Base Shell

Exception Handler

Local Clients Workflow Manager

WS Clients

Remote Services

GCE Shell Engine

WS OGSA

(1)

(5)

(3)

(2)

(4a)

(4b)
Exception Thrown

