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Abstract.  We present XML schemas and our design for related data services 
for describing faults and surface displacements, which we use within earth-
quake modeling codes.  These data services are implemented using a Web ser-
vices approach and are incorporated in a portal architecture with other, general 
purpose services for application and file management.  We make use of many 
Web services standards, including WSDL and SOAP, with specific implemen-
tations in Java.  We illustrate how these data models and services may be used 
to build distributed, interacting applications through data flow. 

Introduction 

This paper describes our designs and initial efforts for building interacting data ser-
vices for our earthquake modeling Web portal (QuakeSim).  The QuakeSim portal 
targets several codes, including the following.: Disloc produces surface displacements 
based on multiple arbitrary dipping dislocations in an elastic half-space; Simplex 
inverts surface geodetic displacements to produce fault parameters; GeoFEST  is a 
three-dimensional viscoelastic finite element model for calculating nodal displace-
ments and tractions; Virtual California simulates interactions between vertical strike-
slip faults; PARK is a boundary element program to calculate fault slip velocity his-
tory based on fault frictional properties.  A complete code list and detailed descrip-
tions may be found at [1].   

The QuakeSim portal provides the unifying hosting environment for managing the 
various applications listed above.  We briefly describe the portal here for reference, 
and include a more detailed description in the following section.  QuakeSim is built 
out of portlet containers that access distributed resources via Web services, as de-
scribed in [2].  The applications are wrapped as XML objects that can provide simple 
interactions with the hosting environments of the codes, allowing the codes to be 
executed, submitted to batch queuing systems, and monitored by users through the 



browser.  Web services are also used to manage remote files and archive user ses-
sions.  A general view of the portal architecture is shown in Figure 1.  

Going beyond simple submission and management of jobs, we must also support 
interactions between the portal’s applications.  The following motivating scenario [3] 
illustrates the value of code integration: InSAR satellite data produces a map of sur-
face deformations.  Simplex takes this surface data and produces models with errors 
of the underlying fault systems that produce the deformation.   By using synthetic 
data, one may test the potential value of additional InSAR data.  In particular, one 
may compare the improvement on errors in the fault models when one or two addi-
tional “look” angles are added.  One additional angle may be obtained from the same 
satellite, collecting data in both the ascending and descending portions of the satel-
lite’s path.  Two additional look angles, however, require an additional satellite.  
Disloc may be used to generate the necessary synthetic InSAR data.  Simulation re-
sults indicate in fact that an additional data stream generates a significant improve-
ment on the estimated error parameters of the modeled fault.  However, adding a third 
data stream produces a much less noticeable improvement over two data streams.  

Scenarios such as the above require some familiarity with the simulation codes in 
order to manage the code linkage.  When we encounter the fully interacting system, 
we face the additional problem of scaling.  Linking any two codes may be done in a 
one-time fashion, but linking multiple codes is a difficult problem greatly simplified 
by common data formats.  Also, from the portal architecture point of view, it becomes 
possible to develop both general purpose tools for manipulating the common data 
elements and also a well-defined framework for adding new applications that will 
share data. 

QuakeSim Portal Architecture Overview 

QuakeSim is based around a Web Services model, illustrated in Figure 1.  The user 
interacts with the portal through a web browser, which accesses a central user inter-
face server.  This server maintains several client stubs that provide local interfaces to 
various remote services.  These remote services are described in the Web Service 
Description Language (WSDL) [4] and are invoked via Simple Object Access Proto-
col (SOAP) [5] invocations over HTTP.  These services are invoked on various ser-
vice-providing hosts, which may in turn interact with local or remote databases 
(through JDBC, or Java Database Connectivity), as shown for Hosts 1 and 3; or with 
local queuing environments, as shown for Host 2.  WSDL and SOAP are particularly 
useful when dealing with XML data: WSDL method (function) declarations can take 
both simple (string, integer, or float) and custom XML types as arguments and return 
types, and SOAP messages can be used as envelopes to carry arbitrary XML pay-
loads.   Readers interested in a general Web service overview are referred to [6]. 
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Fig. 1.  QuakeSim portal architecture with Web service invocations of remote services.  Ar-
rows indicate remote invocations with indicated protocols. 

The service architecture allows the portal user to browse the database on Host 1, 
determine the interesting data file and transfer it to Host 2.  Host 2 maintains applica-
tion executables, and the application may be run with the appropriate input data on a 
queuing system (Host 2 may be a cluster or parallel computer).  Following comple-
tion of the job execution, the user may transfer the output back to another database or 
file system, or she may download the files to her desktop.    

More detailed descriptions of the portal architecture are available from [2].  The 
essential pieces for file transfer and job submission and monitoring have been devel-
oped.  We must now address services for managing input and output data formats for 
specific applications.  Before proceeding, however, we wish to clarify the communi-
cation infrastructure and performance.  The system we present here enables loosely 
couple distributions of applications and data.  The primary feature of this system is 
the use of WSDL to describe interfaces to services.  These services may be bound to 
more than one protocol, so if high performance file transfer (for example) is needed, 
we may make use of a non-SOAP implementation of a higher performance protocol.  
In the current system, the data sizes are sufficiently small and the inter-service com-
munication sufficiently infrequent, that communication performance is not an issue.  
System time is dominated by user interactions with the system, queuing system wait 
times, and (in the case of Simplex) execution time.   The system we have described 



does not make use of inter-service communication (or intra-service communication) 
to during application execution.  There are much more efficient communication 
mechanisms such as MPI for these cases, and certain of the applications we wrap 
(PARK, for example) make use of this.   

XML Schemas for Code I/O 

XML provides a useful data exchange language.  It may be used to encode and pro-
vide structure to application input files and output data, and may also be transmitted 
easily between interacting distributed components by using SOAP.  XML has several 
advantages for use here, but we wish to first highlight its use of namespaces.  All 
XML schemas are named by a Uniform Resource Identifier (URI) in a structured 
way.  We may thus be quite specific about which definitions of faults or surface de-
formations we are actually using within a particular XML document.  We do not 
expect that our definitions for faults, for example, will be a final standard adopted by 
all, so it is useful to qualify all our definitions in this manner. 

While examining the inputs and outputs for the applications to be added to Quake-
Sim, it became apparent that the data may be split into two portions: code-
independent data definitions for fault and surface deformation data, and code-
dependent formatting rules for incorporating the fault data and various code parame-
ters, such as number of iterations and observation points.  We consider as a starting 
case the applications Disloc and Simplex, together with fault characterization needed 
by all applications. 

Our schema for faults is available from [8].  We highlight the major elements here.  
We structure our fault definitions as being composed of the following items.  The 
Map View includes elements for longitude, latitude, and strike angle for the fault.  
The Cartesian View describes the location and dimensions of the fault in Cartesian 
space.  Parameters include depth of the fault, width, length, and dip angle. Material 
Properties include various parameters needed to characterize the fault such as Lame 
parameters.  Slip includes the strike slip, dip slip, and tensile components of the fault 
slip.  Finally, Rate includes strike, dip, and tensile rates.  Surface displacements may 
also be expressed in XML, as shown in [9].  Displacements may be characterized by 
their locations on a two-dimensional observation plane and the values of the three 
dimensional displacements (or rates of displacements) and errors. 

Disloc and Simplex schemas may be viewed as [10] and [11], respectively.  These 
may be compared to the actual input instructions for the codes as described in [12] 
and [13].  Note that we are not modifying the codes to take directly the XML input.  
Rather, we use XML descriptions as an independent format that may be used to gen-
erate input files for the codes in the proper legacy format.  Both codes’ schemas defer 
the definitions of Faults and Displacements to the appropriate external schema defini-
tions, which may be included by the use of XML namespaces.  The application sche-
mas simply define the information necessary to implement the input files.  The Disloc 
schema, for example, defines the optional format for observation points, which may 
be either on a regular grid or at a group of specified points.  



Implementing Services for the Data Model 

After defining the data models, we must next do two things: a) bind the schemas to a 
particular language, and b) implement services for interacting with the data through 
the language bindings.  We first describe the general process and then look at the 
specific details for the Disloc, Simplex, Displacement and Fault schemas. 

XML schemas map naturally to constructs in object oriented languages.  For ex-
ample, we may naturally map the schemas used to describe the data and code inter-
faces to Java data classes: each element of the schema has corresponding accessor 
(get and set) methods for obtaining and manipulating values.  We do this (as a matter 
of course) with tools such as Castor [17], which automates the Java-to-XML transla-
tions.   

The generated Java language bindings for the Fault, Disloc, and Simplex schemas 
are manipulated through service implementation files.  This follows the same proce-
dure described in [2] for Application Web Service schema.  Essentially the service 
developer defines the programming interface she wants to expose and wraps the cor-
responding Java data class method invocations.  This interface serves essentially as a 
façade to simplify interactions with the generated Castor classes.  The service pro-
vider then translates the service interface into WSDL and “publishes” this interface.  
Publication may be done informally or through information services such as WSIL 
[14].  

Client user interfaces for creating and manipulating the remote service may be 
built in the following manner: the developer downloads the WSDL interface and 
generates client-side stubs.  The stubs are proxy objects that may be used as if they 
were local objects, but which invoke remote methods on the server.  The client devel-
oper creates a particular interface based around the general purpose client stubs. 

 We now follow the above procedures for creating services for managing Disloc 
input and output.  We describe the service implementation using Java interfaces and 
abstract classes, which define contracts that let an implementing class know what 
methods it must define for compatibility. 

 As described above, the Fault, Displacement, Disloc, and Simplex schemas may 
be converted automatically into Java classes using Castor, but we still must produce a 
developer-friendly façade over the data bindings.  We must go a step further and 
define two generic interfaces that must be implemented by all applications: methods 
for handling Fault data and Displacement data.  We also define an abstract (unimple-
mented) parent for code files which requires that its children implement methods for 
importing and exporting code data into legacy formats.   

The FaultData interface fragment in Java has the following methods: 
public interface FaultData { 

 public Fault[] getAllFaults(); 

 public Fault getFault(String faultName); 

 public void setFault(Fault sampleFault, String 
faultName); 



... 

} 

This interface defines general methods possessed by all implementing classes.  The 
variable Fault and the array of Faults, Fault[], are just Java representations of the 
XML Fault definition.  Similarly, the DisplaceData interface defines general methods 
for manipulating Displacements, with corresponding method names and arguments.   

Finally, we require an abstract parent that, when extended by a particular applica-
tion, will implement the translations between XML legacy input and output data for-
mats of the code.  For example, we may express the input file for Disloc using XML, 
but to generate the input file for actually running the code, we must export the XML 
to the legacy format.  Similarly, when Disloc has finished, we must import the output 
data and convert its legacy format into XML, where we may for example exchange 
Fault or Displacement data with another application.  The reverse operations must 
also be implemented.  The GEMCode abstract parent captures these requirements: 
public abstract class GEMCode { 

 pubic abstract void exportInputData(File f, 
GEMCode gc); 

 public abstract GEMCode importInputData(File 
filename); 

 public abstract void exportOutputData(File f, 
GEMCode gc); 

 public abstract GEMCode importOutputData(File 
filename); 

} 

This defines the method names for general important and export methods, which 
must be fleshed out by the implementation.  

Finally, the application implementation must extend its abstract parent and imple-
ment the FaultData and DisplaceData methods.  It will also need to define relevant 
applications methods.  For example, a partial listing (in Java) for Disloc would be  
public class DislocData extends GEMCode implements 
FaultData, DisplaceData { 

 public void createInputFile() { ; } 

 public void setObservationStyle(String 
obsvStyle) { ; } 

 public void setGridObsvPoints(XSpan x, YSpan 
y) { ; } 



 public void setFreeObsvPoints(PointSpec[] 
points) { ; } 

} 

DislocData thus is required to implement functions for manipulating Fault and 
Displacement data, import and export methods that translate between XML and Dis-
loc legacy formats, and finally Disloc-specific methods for setting observation points, 
etc. Note the variables XSpan, YSpan, and PointSpec (or their arrays) are just Java 
classes automatically generated by the data bindings from the XML schema descrip-
tions.   

The class listed above provides methods for setting the observation style and ob-
servation points for outputs, as well as material properties of the fault.  The observa-
tion points for Disloc output may be either in a regular grid or on specified surface 
points.   The last two methods may be used to access the appropriate output of the 
surface deformations. 

The above code fragment is next converted into WSDL (which is language-
independent but too verbose to list here) and may be used by client developers to 
create methods for remote invocation.  The value of WSDL and SOAP here is again 
evident: the Fault class, for example, may be directly cast back into its XML form and 
sent in a SOAP message to the remote service. 

Data Service Architecture 

The final step is to define the architecture that describes how the various services 
must interact with each other.  We first consider the case for Disloc running by itself, 
illustrated in Figure 2.  Services are described in WSDL and SOAP is used for inter-
component communication. 

The browser interface gathers user code selections (“Disloc”) and a desired host 
for executing Disloc.  The user then fills out HTML forms, providing information 
needed to construct the Fault and Disloc schemas.  These pages are created and man-
aged by the User Interface Server, which acts as a control point (through client stubs) 
for managing the remote services. These HTTP requests parameters are translated 
into XML by the Disloc data service, which implements the interfaces described 
previously.  This file is then exported to the legacy format and transferred to the exe-
cution host.  When the code exits, the legacy data format may be transferred back to 
the Data Service and imported into XML.   
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Fig. 2.  Interactions of the Disloc data service.  Shaded boxes indicate distributed components.  
Solid arrow lines indicate over-the-wire transmissions with the indicated protocols.   

The value of the last step is that it now allows the output data to be shared in a 
common format with other applications.  See for example [15] as a similar approach. 
Visualization and analysis services may acquire the displacement data from Disloc, as 
may an application such as Simplex in our motivating scenario.  Such data sharing is 
enabled by the common XML data format, but to be used requires an additional Data 
Hub service, as illustrated in Figure 3. 

The Data Hub service is responsible for extracting the Fault and Displacement data 
from the formatted XML output of applications.  The Data Hub service may interop-
erate with other services such as the Database Service illustrated in Figure 1.  Figure 
3 illustrates the interaction of the Simplex and Disloc Data services with the hub. 

Note that Figure 3 assumes the interactions of Figure 2 have already taken place.  
The User Interface server again acts as the central control point and issues commands 
(at either user request or through automating events) initially to the Disloc data ser-
vice to transfer its output data to the hub (Step 1).  The service accomplishes this in 
Step 2.  In Step 3 the User Interface server requests that Simplex should import se-
lected displacements from the Data Hub.  The data (in XML) is then imported in Step 
4.  The Simplex Data Service may then (with additional Fault data) generate a Sim-
plex legacy input file and execute the Simplex application as shown in Figure 2. 

We note that other architectures are possible here.  In particular, the Data Hub ser-
vice is shown to act as a “push” client when accepting Disloc data (Step 2), but we 



may also implement it using a publish/subscribe model based around messaging sys-
tems such as the Java Messaging Service.    

User Interface
Server

Simplex Data
Service

Disloc Data
Service

(1) Requests formatted 
Disloc output
data be pushed to 
Data Hub.

Data Hub
Service

(2) XML displacement
data is transferred.(4) Requests and receives

displacement data.

(3) Signals Simplex
to request displacement
data from Data Hub.

Execution
Host

Execution
Host

 
Fig. 3.  Simplex and Disloc share data through the Data Hub service.  Shaded objects represent 
distributed components.  Closed arrows represent connections with execution services such as 
shown in Figure 2.  The open arrows represent SOAP over HTTP invocations. 

Summary and Conclusions 

We have presented our initial architecture for implementing code specific data ser-
vices.  This consisted of three major steps.  First, we devised XML schemas to ex-
press the application input data and code parameters.  We gave examples of this proc-
ess for Disloc and Simplex. Next we wrap these data models in Web services that can 
be plugged into our portal.  These models must implement a set of specified inter-
faces for manipulating Faults and Displacements, as well as a parent interface that 
requires the service to implement import and export functions for converting between 
XML and legacy formats.  These services may then be deployed and clients built 
following normal Web service development patterns.  Finally, we provide a means 
for connecting two code-specific data services.  A central data hub imports and ex-
ports XML-encoded fault and displacement data.  This can be used to share, for ex-
ample, synthetic Disloc displacement data with Simplex. 

There are two possible revisions in our architecture.  The first is in data encoding.  
XML is a verbose way for marking up data, and an alternate approach may be to 
encode only metadata in XML and use an alternative data format, such as HDF [16], 
for large data sets.  We will need to base this on network and host performance tests 
for a large number of use cases.  The second possible modification is in the nature of 
the Data Hub.  As shown in Figure 3, we have designed this to be a Web service 



component and assume point-to-point messaging.  However, we must also explore 
alternative publish/subscribe mechanisms that will allow subscribed hosts to be noti-
fied when interesting data has been published.  This mechanism would remove some 
of the low-level control capabilities from the User Interface server.  
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